雷达机动目标跟踪技术研究

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 绪论

1.1 课题背景及目的

目标跟踪问题实际上就是目标状态的跟踪滤波问题,即根据传感器已获得的目标量测数据对目标状态进行精确的估计[1]。它是军事和民用领域中一个基本问题,可靠而精确地跟踪目标是目标跟踪系统设计的主要目的。在国防领域,目标跟踪可用于反弹道导弹的防御、空防预警、战场区域监视、精确制导和低空突防等。在民用领域,则用于航空和地面交通管制、机器人的道路规划和障碍躲避、无人驾驶车的跟踪行驶、电子医学等。作为科学技术发展的一个方面,目标跟踪问题可以追溯到第二次世界大战的前夕,即1937年世界上出现第一部跟踪雷达站SCR-28的时候。之后,许多科学家和工程师一直努力于该项课题的研究,各种雷达、红外、声纳和激光等目标跟踪系统相继得到发展并且日趋完善。

运动目标的机动会使跟踪系统的性能恶化,对机动目标进行跟踪是人们多年来一直关注的问题。随着现代航空航天技术的飞速发展,机动目标在空间飞行的速度、角度、加速度等参数不断变化,使得目标的位置具有很强的相关性,因此,提高对这类目标的跟踪性能便成为越来越重要的问题,迫切需要研究更为优越的跟踪滤波方法。机动目标的跟踪研究,已成为当今电子战的研究热点之一。今天,精密跟踪雷达不仅广泛应用于各类武器控制和各类实验靶场,而且还广泛应用于各种空间探测、跟踪和识别领域,以及最先进的武器控制系统。

跟踪模型和匹配滤波是机动目标跟踪的两个关键部分,机动目标的精确跟踪在过去和现在都是一个难题,最根本原因在于跟踪滤波采用的目标动力学模型和机动目标实际动力学模型不匹配,导致跟踪滤波器发散,跟踪性能严重下降。本文将机动目标作为研究对象,从目标的运动建模和匹配滤波算法入手,提出或修正跟踪算法,从而实现对机动目标的精确跟踪。

1.2 机动目标跟踪技术及其发展状况

目标机动是指运动当中的目标,其运动方式在不断地发生变化,从一种形式变化为另一种形式,目标的运动可能从匀速到变速,也可能送直线到转弯,它的运动方式并不会从一而终。通俗地说,就是“目标速度的大小和方向发生变化”。

一般情况下,机动目标跟踪方法概括来讲可以分为以下两类:具有机动检测的跟踪算法和无需机动检测的自适应跟踪算法。机动目标的跟踪需要综合运用统计决策、滤波

算法以及其它的数学方法,将传感器所接受到的信号数据进行处理,得到目标的位置、速度、加速度等估计信息。图1.1给出了机动目标跟踪的基本原理图。

图1.1 机动目标跟踪基本原理图

对于机动目标跟踪来说,所面临的主要挑战是两种离散的不确定性:量测起源的不确定性和目标运动方式不确定性。量测起源的不确定性是指由传感器系统提供的量测数据可能是外部的干扰数据,它有可能是由杂波、虚警和相邻的目标所引起的,也可能是被跟踪目标的对抗系统所主动发出的虚假信息。目标运动方式的不确定性是指目标在未知的时间段内可能作已知的或未知的机动。一般情况下,目标的非机动方式以及目标发生机动时所表现出的不同机动形式都可以通过数学模型来加以描述。机动目标跟踪过程中,采用不正确的目标运动模型会导致跟踪系统的跟踪性能严重下降。本文的重点是如何处理目标运动的机动以及对其的跟踪问题。

1.2.1 机动目标跟踪模型

现代跟踪系统一般都采用类似卡尔曼滤波的迭代算法,因此对机动目标进行建模就显得尤为重要。机动目标模型是机动目标跟踪与预测的基本要素之一,也是一个关键而又棘手的问题。早期,人们在构造目标运动建模时,由于缺乏有关目标运动的精确数据及存在许多不可预测的现象,一般认为目标作匀速直线运动,而随机加速度常常被看成是具有随机特性的扰动输入,并假定其服从零均值的高斯白噪声分布,这时,建立在线性无偏、最小均方差准则下的递推的卡尔曼滤波算法可直接使用。然而,当目标发生诸如拐弯或躲避等机动动作时,上述假定则不尽合理。由于目标的动力学特点及目标性能限制,使得机动具有一定的相关性。对机动目标建模不仅是滤波器的重要组成,也是从运动学机理上解决目标机动的方法[2]。

1、基于直线运动的机动目标模型

(1) 微分多项式模型

笛卡尔坐标系中,若用()(),(),()x t y t z t 来表示目标在时刻t 的位置,则其运动轨迹可以用多项式来逼近。尽管用多项式逼近目标运动轨迹,其近似性好,但对跟踪系统来说并不合适,因为跟踪系统所要求的是对目标运动状态的估计,而不是轨迹曲线的拟合和平滑。

(2)匀速(CV )和匀加速(CA )模型

CV 和VA 模型将目标的运动先验地定义为匀速或匀加速运动,机动被看做是一种随机

的输入,其大小体现在过程噪声的协方差矩阵中。当目标无机动,即目标作匀速或匀加速直线运动时,可分别采用二阶CV 或三阶CA 模型[3]。

(3)时间相关模型(Singer 模型)

机动目标建模问题的本质是如何准确地描述加速度()a t 。对于处于一般机动情况下的运动目标,均可采用二阶系统一阶时间相关模型很好地描述[4]。该模型形式简单,只比CA 模型多了一个表述机动频率的量,对于匀速和匀加速范围之间的目标机动,有很好的描述能力。

(4)Jerk 模型

Jerk 是目标加速度的导数,对于机动性的运动目标,利用目标的Jerk 描述目标机动更为方便。K.Mehrotra 指出,各种机动目标模型在跟踪复杂机动时性能不佳的主要原因是状态向量的导数阶数不足[5]。为此,在目标机动模型的状态分量中加入了目标位置的三阶导数,及加速度的变化率或Jerk 。

2、基于圆周的机动目标模型

(1) 圆周模型

1992年,Watson 和Blair 提出了圆周模型,该模型将目标的运动近似为匀速圆周运动,根据角速度、加速度和速度之间的运动学关系,可以将目标的圆周运动包含在一个以角速度ω为参数的转移矩阵中[6]。该模型是用圆弧代替直线来近似采样周期内的目标运动,当采样周期趋于零时,该模型与CV 模型的形式一致。

(2) 弧线模型

Best 和Norton 设目标法向加速度的变化率远远小于切向速度的变化率,推出弧线模型[7],该模型的转移矩阵与匀速圆周运动的转移矩阵相同,但多了切向加速度,是更一般的弧线情况。

(3) Helferty 模型

Helferty 将Singer 建模的思想推广到圆周运动,提出Helferty 模型[8]

。该模型假设目标加速度a 在x 、y 轴上的分量彼此独立,其转弯的角速度ω均匀分布于[],ππ-,并假设加速度指数相关。但该模型需要增广三个状态变量,维数太大,相应计算量大。

1.2.2 机动目标跟踪中的状态估计技术

20世纪40年代,Kolmogorov 和Wiener 等提出了平稳随机过程的最优线性滤波问题,首先实现了动态估计,其主要结果及时通过Wiener —Hopf 方程求出滤波器的最优传递函

相关文档
最新文档