PID控制系统的Simulink仿真分析
课程设计专家PID控制系统simulink仿真
课程设计题目:专家PID控制系统仿真专家PID控制系统仿真摘要简单介绍了常规PID控制的优缺点和专家控制的基本原理,介绍了专家PID控制的系统结构,针对传递函数数学模型设计控制器。
基于MATLAB的simulink仿真软件进行应用实现,仿真和应用实现结果均表明,专家PID控制具有比常规PID更好的控制效果,且具有实现简单和专家规则容易获取的优点。
论文主要研究专家PID控制器的设计及应用,完成了以下工作:(1)介绍了专家PID控制和一般PID控制的原理。
(2)针对任务书给出的受控对象传递函数G(s)=523500/(s3+87.35s2+10470s) ,并且运用MATLAB实现了对两种PID控制器的设计及simulink仿真,且对两种PID控制器进行了比较。
(3)结果分析,总结。
仿真结果表明,专家PID控制采用多分段控制,其控制精度更好,且具有优越的抗扰性能。
关键词:专家PID,专家系统,MATLAB,simulink仿真Expert PID control system simulationAbstractThe advantages and disadvantages of conventional PID control and the basic principle of expert control are briefly introduced, and the structure of expert PID control system is introduced. Simulink simulation software based on MATLAB is implemented. The simulation and application results show that the expert PID control has better control effect than the conventional PID, and has the advantages of simple and easy to get.This paper mainly studies the design and application of the expert PID controller:(1) the principle of PID control and PID control is introduced in this paper.(2) the controlled object transfer function G (s) =523500/ (s3+87.35s2+10470s), and the use of MATLAB to achieve the design and Simulink simulation of two kinds of PID controller, and the comparison of two kinds of PID controller.(3) result analysis, summary.The simulation results show that the control accuracy of the expert PID control is better than that of the control.Key words:Expert PID , MA TLAB, expert system, Simulink, simulation目录摘要 (I)Abstract ..................................................................................................................................... I II 第一章引言 . (2)1.1 研究目的和意义 (2)1.2国内外研究现状和发展趋势 (3)第二章PID控制器综述 (3)2.1常规PID控制器概述 (3)2.2专家PID控制器 (4)第三章专家PID控制在MATLAB上的实现 (5)3.1简介 (5)3.2设计专家PID 控制器的实现方法 (5)3.3.专家PID控制器的S函数的M文件实现 (7)3.4专家PID控制器的simulink设计 (8)3.5专家PID控制和传统PID比较 (13)第四章结论 (14)4.1专家PID控制系统的优缺点及解决方案 (14)4.2最终陈述 (14)第一章引言近十几年,国内外对智能控制的理论研究和应用研究十分活跃,智能控制技术发展迅速,如专家控制、自适应控制、模糊控制等,现已成为工业过程控制的重要组成部分。
Simulink中系统PID控制调节解析
PID控制实现
PID控制实现:
简单仿真系统
PID控制实现:
1)离散时间域 2)考虑硬件条件 3)控制算法生成代码
1.打开PID Controller,点击Discretetime切换到离散域,Sample time根据 实际硬件的采样时间更改
2.同样采用Tune..调节离散域下新的最 优PID参数,系统从原来不稳定变成稳 定
Simulink中系统 PID控制调节
天津科技大学:机械工程肖志鹏
主要内容
• • • •
查看系统响应 动态调节系统响应 PID控制参数调优 PID控制实现
查看系统响应
查看Simulink仿真系统响 应:
简单仿真系统
查看Simulink仿真系统响应:
1.在模型分析的节点选择线性 分析点
2.从菜单栏->Analysis->Control Design->Linear Analysis...打开线性分 析窗口
动态调节Simulink系统响 应:
12.完成后关闭窗口,会提示是否保存测 试数据。注意:调节模型中的PID系数是 11.在窗口树状图选择SISO Design Task, 一个变量,如何直接关闭模型数据就不会 保存下来,一定要保存得到的数据 在Compensator Editor页,点击Update Simulink Block Parameters更新参数
谢谢观赏
水平有限如有错误欢迎指正
参考资料:
/products/simulink
积分饱和简介
所谓积分饱和现象是指若系统存在一个方向的偏差, PID控制器的输出由于积分作用的不断累加而加大, 从而导致u(k)达到极限位置。此后若控制器输出继续 增大,u(k)也不会再增大,即系统输出超出正常运行 范围而进入了饱和区。一旦出现反向偏差,u(k)逐渐 从饱和区退出。进入饱和区愈深则退饱和时间愈长。 此段时间内,执行机构仍停留在极限位置而不能随着 偏差反向立即做出相应的改变,这时系统就像失去控 制一样,造成控制性能恶化。这种现象称为积分饱和 现象或积分失控现象。
基于-Simulink的位置式和增量式PID仿真
基于Simulink的位置式和增量式PID仿真一、实验目的:1、用Matlab的仿真工具Simulink分别做出数字PID控制器的两种算法(位置式和增量式)进行仿真;2、被控对象为一阶惯性环节 D(s) = 1 / (5s+1);3、采样周期 T = 1 s;4、仿真结果:确定PID相关参数,使得系统的输出能够很快的跟随给定值的变化,给出例证,输入输出波形,程序清单及必要的分析。
二、实验学时:4三、实验原理:(1)列出算法表达式:位置式PID控制算法表达式为:(2)列出算法传递函数:(3)建立simulink模型:(4)准备工作:双击step,将sample time设置为1以符合采样周期 T = 1 s 的要求;选定仿真时间为500。
第一步是先获取开环系统的单位阶跃响应,在Simulink中,把反馈连线、微分器、积分器的输出连线都断开,并将’Kp’的值置为1,调试之后获取响应值。
再连上反馈线,再分别接上微分器、积分器,仿真,调试仿真值。
2、增量式PID:(1)列出算法表达式:增量式PID控制算法表达式为:(2)列出算法传递函数:(3)建立simulink模型:(4)准备工作:双击step,将sample time设置为1以符合采样周期 T = 1 s 的要求;选定仿真时间为500。
第一步是先获取开环系统的单位阶跃响应,在Simulink中,把反馈连线、微分器、积分器的输出连线都断开,并将’Kp’的值置为1,调试之后获取响应值。
再连上反馈线,再分别接上微分器、积分器,仿真,调试仿真值。
四、实验内容:1、位置式:(1)P控制整定仿真运行完毕,双击“scope”得到下图将Kp的值置为0.5,并连上反馈连线。
仿真运行完毕,双击“scope”得到下图效果不理想,再将Kp的值置为0.2,并连上反馈连线。
P控制时系统的单位阶跃响应图如下:(2)PI控制整定(比例放大系数仍为Kp=0.2)经多次输入Ki的值,发现Ki=1时,系统的输出最理想,选定仿真时间,仿真运行,运行元毕后. 双击" Scope " 得到以下结果(3)PID控制整定经多次输入调试,Kd的值置为0.5时,系统能最快地趋向稳定。
Simulink仿真之PID控制
5.3 PID控制器参数整定 PID控制器参数整定
PID控制器参数整定的方法很多,概括起来有两大类: (1)理论计算整定法 主要依据系统的数学模型,经过理论计算确定控制器参数。 这种方法所得到的计算数据未必可以直接使用,还必须通 过工程实际进行调整和修改。 (2)工程整定方法 主要有Ziegler-Nichols整定法、临界比例度法、衰减曲线 法。这三种方法各有特点,其共同点都是通过试验,然后 按照工程经验公式对控制器参数进行整定。但无论采用哪 一种方法所得到的控制器参数,都需要在实际运行中进行 最后调整与完善。 工程整定法的基本特点是:不需要事先知道过程的数学模 型,直接在过程控制系统中进行现场整定;方法简单,计 算简便,易于掌握。
t 0
PID控制器具有以下优点: (1)原理简单,使用方便。 (2)适应性强。 (3)鲁棒性强,即其控制 品质对被控制对象特性的变 化不太敏感。
5.2 PID控制算法 PID控制算法
5.2.1 比例(P)控制
纯比例控制的作用和比例调节对系统性能的影响
5.2.2 比例积分(PI)控制 比例积分(PI)控制
第5章 PID控制 PID控制
5.1 PID控制概述 5.2 PID控制算法 5.3 PID控制器参数整定 5.4 本章小结 习题与思考
内容提要
本章描述PID控制的基本概念,介绍 PID控制算法以及PID参数整定等基 础知识,并通过大量的仿真实例讲 述PID参数整定。 通过本章,读者对PID控制的原理、 算法能有较为全面的认识,并熟练 通过仿真进行PID参数整定。
PI控制举例 PI控制举例
ห้องสมุดไป่ตู้
5.2.3 比例微分(PD)控制 比例微分(PD)控制
PD控制作用举例
PID实验报告(实验一)
实验一:使用simulink对给定对象进行控制仿真一:原理说明:一般说,增加控制系统比例增益,可以提高系统的响应速度,同时也会降低稳态误差。
尽管如此,如果比例增益太大,系统超调就会增大,如果Kp再进一步增加,震荡就会加大,系统就会变得不稳定。
图a实验原理图如下图(a)所示,其中原理图中给定的黄色的输入信号的理想的输入稳定值是1(如图(b)中的箭头所示),而根据误差中值定理算得它的实际的稳定值是0.6。
通过尝试使用不同的Kp值,观察Kp的设定对系统动态过程的影响如下图(b)、(c) 、(d) 、(e)所示。
当:A.要求系统的静差为给定值的40%时,计算为:(1 -0.6)/1*100%=40%), 系统的静差为给定值的40%的图像如左图(d)所示;B.系统要求它的超调量小于或者等于40%的条件下,使得系统的上升时间尽量减少,计算过程为:(1.4-1)/1*100%=40%),系统要求超调量小于或者40%的条件下,使得系统的上升时间尽量减少的图像如左图(e)所示。
一:当给定K P 分别为 0.8、2.4、3.5 :Kp 的设定对系统动态过程的影响图像如左图(b )所示:1_1:当调节K P 分别为1、3、5:Kp 的设定对系统动态过程的影响图像如左图(c )所示:1_2:当调节K P 分别为 1.5、3、5:图(c )图(b )系统的静差为给定值40%(注:(1 -0.6)/1*100%=40%)的图像如左图(d )所示:对于单位负反馈,静差E(S)=R(S)-C(S),其中输入信号为1(t )根据终值定理)(lim 0s sE s 可知当K P 取1.5时,系统的静差刚好为给定值的40%。
1_3:当调节K P 分别为7、3、5:系统要超调量小于或40%(( 1.4-1)/1*100%=40%)条件下,使系统上升时间尽量减少如图(e )所示:总结:联系图(d ) 图(e )上图(b)、(c)、(d)、(e)可知,K P由0.8一直增大到7可以看出,增大比例系数K P可以加快系统的响应,在有静差的时候有助于减小静差。
课程设计专家PID控制系统simulink仿真
课程设计题目:专家PID控制系统仿真专家PID控制系统仿真摘要简单介绍了常规PID控制的优缺点和专家控制的基本原理,介绍了专家PID控制的系统结构,针对传递函数数学模型设计控制器。
基于MATLAB的simulink仿真软件进行应用实现,仿真和应用实现结果均表明,专家PID控制具有比常规PID更好的控制效果,且具有实现简单和专家规则容易获取的优点。
论文主要研究专家PID控制器的设计及应用,完成了以下工作:(1)介绍了专家PID控制和一般PID控制的原理。
(2)针对任务书给出的受控对象传递函数G(s)=523500/(s3+87.35s2+10470s) ,并且运用MATLAB实现了对两种PID控制器的设计及simulink仿真,且对两种PID控制器进行了比较。
(3)结果分析,总结。
仿真结果表明,专家PID控制采用多分段控制,其控制精度更好,且具有优越的抗扰性能。
关键词:专家PID,专家系统,MATLAB,simulink仿真Expert PID control system simulationAbstractThe advantages and disadvantages of conventional PID control and the basic principle of expert control are briefly introduced, and the structure of expert PID control system is introduced. Simulink simulation software based on MATLAB is implemented. The simulation and application results show that the expert PID control has better control effect than the conventional PID, and has the advantages of simple and easy to get.This paper mainly studies the design and application of the expert PID controller:(1) the principle of PID control and PID control is introduced in this paper.(2) the controlled object transfer function G (s) =523500/ (s3+87.35s2+10470s), and the use of MATLAB to achieve the design and Simulink simulation of two kinds of PID controller, and the comparison of two kinds of PID controller.(3) result analysis, summary.The simulation results show that the control accuracy of the expert PID control is better than that of the control.Key words:Expert PID , MA TLAB, expert system, Simulink, simulation目录摘要 (I)Abstract ..................................................................................................................................... I II 第一章引言 . (2)1.1 研究目的和意义 (2)1.2国内外研究现状和发展趋势 (3)第二章PID控制器综述 (3)2.1常规PID控制器概述 (3)2.2专家PID控制器 (4)第三章专家PID控制在MATLAB上的实现 (5)3.1简介 (5)3.2设计专家PID 控制器的实现方法 (5)3.3.专家PID控制器的S函数的M文件实现 (7)3.4专家PID控制器的simulink设计 (8)3.5专家PID控制和传统PID比较 (13)第四章结论 (14)4.1专家PID控制系统的优缺点及解决方案 (14)4.2最终陈述 (14)第一章引言近十几年,国内外对智能控制的理论研究和应用研究十分活跃,智能控制技术发展迅速,如专家控制、自适应控制、模糊控制等,现已成为工业过程控制的重要组成部分。
控制系统仿真实验报告书
一、实验目的1. 掌握控制系统仿真的基本原理和方法;2. 熟练运用MATLAB/Simulink软件进行控制系统建模与仿真;3. 分析控制系统性能,优化控制策略。
二、实验内容1. 建立控制系统模型2. 进行仿真实验3. 分析仿真结果4. 优化控制策略三、实验环境1. 操作系统:Windows 102. 软件环境:MATLAB R2020a、Simulink3. 硬件环境:个人电脑一台四、实验过程1. 建立控制系统模型以一个典型的PID控制系统为例,建立其Simulink模型。
首先,创建一个新的Simulink模型,然后添加以下模块:(1)输入模块:添加一个阶跃信号源,表示系统的输入信号;(2)被控对象:添加一个传递函数模块,表示系统的被控对象;(3)控制器:添加一个PID控制器模块,表示系统的控制器;(4)输出模块:添加一个示波器模块,用于观察系统的输出信号。
2. 进行仿真实验(1)设置仿真参数:在仿真参数设置对话框中,设置仿真时间、步长等参数;(2)运行仿真:点击“开始仿真”按钮,运行仿真实验;(3)观察仿真结果:在示波器模块中,观察系统的输出信号,分析系统性能。
3. 分析仿真结果根据仿真结果,分析以下内容:(1)系统稳定性:通过观察系统的输出信号,判断系统是否稳定;(2)响应速度:分析系统对输入信号的响应速度,评估系统的快速性;(3)超调量:分析系统超调量,评估系统的平稳性;(4)调节时间:分析系统调节时间,评估系统的动态性能。
4. 优化控制策略根据仿真结果,对PID控制器的参数进行调整,以优化系统性能。
调整方法如下:(1)调整比例系数Kp:增大Kp,提高系统的快速性,但可能导致超调量增大;(2)调整积分系数Ki:增大Ki,提高系统的平稳性,但可能导致调节时间延长;(3)调整微分系数Kd:增大Kd,提高系统的快速性,但可能导致系统稳定性下降。
五、实验结果与分析1. 系统稳定性:经过仿真实验,发现该PID控制系统在调整参数后,具有良好的稳定性。
模糊自适应PID控制器及Simulink仿真
模糊自适应PID控制器及Simulink仿真目录摘要 (1)ABSTRACT (1)第一章绪论 (1)1.1PID控制器的发展与应用 (1)1.2PID控制器参数设置中存在的问题 (2)1.3模糊自适应PID控制器发展研究现状 (2)1.4本文的主要工作 (4)第二章 PID控制原理简介 (4)2.1引言 (4)2.2PID控制原理 (5)2.3PID控制器系统概述 (5)2.3.1比例控制(P) (7)2.3.2 积分调节(I) (7)2.3.3微分调节(D) (9)第三章 PID控制器应用技术简介 (10)3.1数字PID控制算法原理 (11)3.2位置式PDI控制算法 (11)3.3控制规律的选择 (12)3.4PID控制器的参数整定 (13)第四章模糊PID控制器及系统仿真 (13)4.1模糊自适应PID控制系统 (13)4.2常规PID和模糊自适应PID控制系统的仿真比较 (14)4.3常规PID控制系统仿真 (14)4.4模糊自适应PID控制系统仿真 (16)4.5二者的比较 (18)第五章总结 (20)参考文献 (23)致谢 (24)*******大学2012届本科生毕业设计(论文)摘要随着工业生产的发展,于20世纪30年代,美国开始使用PID功调节器,它比直接作用式调节器具有更好的控制效果,因而很快得到了工业界的认可。
至今,在所有生产过程控制中,大部分的回路仍采用结构简单、鲁棒性强的PID控制或改进型PID控制策略。
PID控制作为一种经典的控制方法,几乎遍及了整个工业自动化领域,是实际工业生产过程正常运行的基本保证;控制器的性能直接关系到生产过程的平稳高效运行以及产品的最终质量,因此控制系统的设计主要体现在控制器参数的整定上。
随着计算机技术的飞跃发展和人工智能技术渗透到自动控制领域,近年来出现了各种实用的PID控制器参数整定方法。
PID控制算法作为最通用的控制方法,对它的参数整定有许多方法;对于不同的控制要求、不同的系统先验知识,考虑用不同的方法;这些算法既要考虑到收敛性、直观、简单易用,还要综合负载干扰、过程变化的影响,并能根据尽可能少的信息和计算量,给出较好的结果。
SIMULINK建模仿真PID控制
实验二PID调节器实验内容:SIMULINK建模仿真学生信息:自动化提交日期:2023年5月28日报告内容:PID调节器一、实验目的1.掌握仿真系统参数设置及子系统封装技术;2.分析PID调节器各参数对系统性能的影响。
二、实验设备1.计算机1台2.MATLAB 7.X软件1套。
三、实验原理说明1.建立新的simulink模块编辑界面,画出如图1所示的模块图。
对应的增益参数分别设为P和I,左击选中全部框图,右击菜单选择“creat subsystem”,变为图2。
图1:图2:2.右击图2中间的框图“Subsystem”,在右击的菜单中选择“Mask Subsystem”,出现下图。
先直接输入disp('PI调节器'),给待封装的子系统命名。
3.选择“Parameters”进行参数设置,点击按钮,添加参数,此参数必须与上文设置的参数对应,否则无效,如下图所示。
4.点击OK,完成子系统的封装。
双击PI调节器模块,出现参数设定对话框如下,可以进行参数调节。
四、实验步骤1.从continue模块集中拉出Derivative、Integrator以及从Math Operations模块集中拉出Gain模块,设计PID调节器,对PID调节器进行封装;2.建立Simulink原理图如下:3.双击PID调节器模块,调整调节器的各参数。
五、实验要求分析调节器各参数对系统性能的影响,撰写实验报告:1.P调节将PID调节器的积分增益和微分增益改为0,使其具有比例调节功能,对系统进行纯比例调节。
调整比例增益(P=0.5,2,5),观察响应曲线的变化。
图1 P=0.5时的阶跃信号及其响应图2 P=2时的阶跃信号及其响应图3 P=5时的阶跃信号及其响应P增大,系统在稳定时的静差减少。
2.PD调节调节器的功能改为比例微分调节,调整参数(P=2,D=0.1,0.5,2,5),观测系统的响应曲线。
图4 P=2,D=0.1时的阶跃信号及其响应图5 P=2,D=0.5时的阶跃信号及其响应图6 P=2,D=2时的阶跃信号及其响应图7 P=2,D=5时的阶跃信号及其响应D增大,系统将会快速收敛,同时系统静差会增大。
控制系统仿真实验六simulink
实验六:Simulin建模与仿真一、实验目的1、掌握Simulink建模与仿真的基本方法。
2、熟悉Simulink基本模块库及主要元件的使用方法。
二、实验学时:4学时三、实验原理:1、Simulink 仿真过程在已知系统数学模型或系统框图的情况下,利用Simulink进行建模仿真的基本步骤如下。
(1)启动Simulink,打开Simulink库浏览器。
(2)建立空白模型窗口。
(3)由控制系统数学模型或结构框图建立Simulink仿真模型。
(4)设置仿真参数,运行仿真。
(5)输出仿真结果。
2、Simulink建模与仿真基本方法根据给定的数学模型或控制系统框图,可建立Simulink仿真模型。
下面以图3-1所示的控制系统框图为例,说明Simulink建模与仿真的基本方法。
图中R 是单位阶跃输入信号,Y为系统输出响应。
建立图6-3所示系统框图的Simulink仿真模型的基本方法如下。
1.启动MATLAB/Simulink工具箱依次启动MATLAB软件、Simulink模块库浏览器后,如图6-1所示。
2.建立Simulink空白模型Simulink空白模型的建立可通过如下方法进行。
1、在MATLAB主窗口中选择【File】→【New】→【Model】命令。
2、在Simulink模块库浏览器窗口中选择【File】→【New】→【Model】命令。
3、单击Simulink模块库浏览器工具栏中的(New model)工具。
图6-1 闭环控制系统框图通过上述方法可以打开Simulink空白模型,如图6-2所示。
并可将其保存为后缀是mdl的文件(Simulink仿真模型的文件存储格式),例如Example_Model.mdl。
在保存Simulink模型文件的时候,为了实现向下兼容,MATLAB R2008/Simulink 7.1允许将模型保存为其他版本的Simulink模型。
图6-2 空白模型窗口3.根据系统框图选择模块构建Simulink仿真模型,首先需要知道所需模块所属的子模块库名称。
先进PID控制器的Simulink仿真设计(计算机控制技术)
电子信息工程学系实验报告
课程名称:计算机工业控制技术
实验项目名称:先进PID 控制器的Simulink 仿真设计 实验时间:
班级: 姓名: 学号:
实 验 目 的:
1.掌握PID 控制规律的特点。
2.研究连续PID 、数字增量PID 、抗积分饱和PID 控制算法的异同。
3.掌握使用Simulink 仿真设计各种PID 控制器。
4.学会使用Matlab 生成子系统封装,并加入控制器模块库;再调用重新构造系统。
实 验 环 境:
计算机、matlab 软件
实 验 内 容 及 步 骤:
1.根据控制算法画出Simulink 框图;
2.设定各模块的参数
3.生成子系统封装,加入控制器模块库;
4.设计应用系统调用控制器模块。
三种PID 控制器实验的图形与数据分别是: 【1】 连续PID 控制器:
【2】数字增量式PID控制器:
【3】抗积分饱和PID控制器:
实验结果及分析:
【1】连续PID控制器:
此时:kp=0.9;ki=0.008;kd=0.002
Mp%=10.76%;调整时间:0.1161s;稳定输出为1
【2】数字增量式PID控制器:
此时:Kp=0.2;ki=0.001;kd=0.001;T=0.001
Mp%=11.46%;调整时间:0.16425s;稳定输出为1 【3】抗积分饱和PID控制器:
此时:Kp=1;ki=0.001;kd=0.001。
基于Simulink的汽车行驶速度PID控制系统仿真
实验四:基于Simulink的控制系统仿真
实验四:基于Simulink 的控制系统仿真实验目的1. 掌握MATLAB 软件的Simulink 平台的基本操作; 2. 能够利用Simulink 平台研究PID 控制器对系统的影响;实验原理PID (比例-积分-微分)控制器是目前在实际工程中应用最为广泛的一种控制策略。
PID 算法简单实用,不要求受控对象的精确数学模型。
1.模拟PID 控制器典型的PID 控制结构如图1所示。
`图1 典型PID 控制结构 连续系统PID 控制器的表达式为()()()()tp I Dde t x t K e t K e d K dt ττ=++⎰ (1)式中,P K ,IK 和DK 分别为比例系数,积分系数和微分系数,分别是这些运算的加权系数。
对式(7-21)进行拉普拉斯变换,整理后得到连续PID 控制器的传递函数为1()(1)I C P D P D I K G s K K s K T s s T s =++=++ (2)显然P K ,IK 和DK 这3个参数一旦确定(注意/,/I P I D D PT K K T K K ==),PID 控制器的性能也就确定下来。
为了避免微分运算,通常采用近似的PID 控制器,气传递函数为1()(1)0.11D C P I D T s G s K T s T s =+++ (3)实验过程PID 控制器的P K ,I K 和D K 这3三个参数的大小决定了PID 控制器的比例,积分和微分控制作用的强弱。
下面请通过一个直流电动机调速系统,利用MA TLAB 软件中的Simulink 平台,使用期望特性法来确定这3个参数的过程。
并且分析这3个参数分别是如何影响控制系统性能的。
【问题】某直流电动机速度控制系统如图2所示,采用PID 控制方案,使用期望特性法来确定P K ,IK 和DK 这3三个参数。
期望系统对应的闭环特征根为:-300,-300,-30+j30和-30-j30。
请建立该系统的Simulink 模型,观察其单位阶跃响应曲线,并且分析这3个参数分别对控制性能的影响。
SIMULINK仿真BP神经网络整定的PID控制
SIMULINK仿真BP神经网络整定的PID控制随着智能化、自动化技术的不断发展,控制系统在各个领域的应用也越来越广泛,PID控制器是目前工业控制系统中应用最广泛的控制算法之一。
然而,在一些复杂的控制系统中,PID 控制器往往不能够满足精度和稳定性的要求。
此时,BP神经网络整定的PID控制算法就显得非常重要了。
而在这个过程中,SIMULINK作为一个工程仿真软件,也非常重要。
BP神经网络整定的PID 控制算法即是将BP神经网络算法与PID控制算法结合起来,将神经网络算法用于计算PID控制器的三个参数Kp、Ki、Kd。
显然,这种整定方法能够有效改善传统PID控制器在一些系统中出现的稳定性差、响应速度慢等问题。
而针对这个方法的仿真实现,SIMULINK是一个非常重要的工具。
使用SIMULINK可以方便地实现BP神经网络整定的PID控制算法,具体步骤如下:1. 在Simulink模型中添加BP神经网络模块,这个模块可以通过Matlab自动调整PID控制器的参数。
2. 设置模型的输入和输出信号,输入信号一般是被控对象的状态或者环境的参数,输出信号是PID控制器的输出。
3. 进行仿真,并根据仿真结果反馈调整BP神经网络的参数。
以上步骤是SIMULINK仿真BP神经网络整定的PID控制算法的基本实现过程。
通过这个算法,控制系统的精度和稳定性都能得以提高,效果明显。
需要注意的是,整定参数时需要考虑到被控对象的动态特性,避免超调和不稳定等问题。
总之,对于一些复杂的控制系统,使用SIMULINK仿真BP神经网络整定的PID控制算法是非常必要的。
通过这种方法能够提高控制系统的效率和稳定性,为工业控制提供更可靠的保障。
PID控制系统的Simulink仿真分析
实验报告课程名称:MATLAB语言与控制系统仿真实验项目:fID控制系统的Simulink仿真分析—专业班级:学号: 姓名:指导教师:日期:机械工程实验教学中心注:1、请实验学生及指导教师实验前做实验仪器设备使用登记; 2 、请各位学生大致按照以下提纲撰写实验报告,可续页;3 、请指导教师按五分制(优、良、中、及格、不及格)给出报告成绩; 4、课程结束后,请将该实验报告上交机械工程实验教学中心存档。
、实验目的和任务1 .掌握PID 控制规律及控制器实现。
2•掌握用Simulink 建立PID 控制器及构建系统模型与仿真方法。
、实验原理和方法种线性控制器,它根据给定值与实际输出值构成控制偏差。
PID 控制规律写成传递函数的形式为K式中,K P 为比例系数;K i 为积分系数;K d 为微分系数;T i-为积分时间常数; K iKT d 」为微分时间常数;简单来说,PID 控制各校正环节的作用如下:K p(1) 比例环节:成比例地反映控制系统的偏差信号, 偏差一旦产生,控制器立即产 生控制作用,以减少偏差。
(2) 积分环节:主要用于消除静差,提高系统的无差度。
积分作用的强弱取决于积 分时间常数T ,T i 越大,积分作用越弱,反之则越强。
(3) 微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号变得太大 之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调在模拟控制系统中,控制器中最常用的控制规律是PID 控制。
PID 控制器是 G(s)E(s) U(s)K p (11 T i ST d S) K pKi s节时间。
三、实验使用仪器设备(名称、型号、技术参数等)计算机、MATLA软件四、实验内容(步骤)1、在MATLAB^令窗口中输入“ simulink ”进入仿真界面。
2、构建PID 控制器:(1)新建Simulink 模型窗口(选择“ File/New/Model ”),在Simulink Library Browser中将需要的模块拖动到新建的窗口中,根据PID控制器的传递函数构建出如下模型:各模块如下:Math Operations 模块库中的Gain模块,它是增益。
simulink仿真pid案例
simulink仿真pid案例(实用版)目录一、Simulink 简介二、PID 控制器原理三、Simulink 中 PID 控制器的搭建四、Simulink 中 PID 控制器的仿真步骤五、总结正文一、Simulink 简介Simulink 是 MATLAB 中的一个仿真环境,可以用来模拟和分析动态系统。
通过 Simulink,用户可以构建、模拟和测试控制系统,以及进行模型验证和优化。
在 Simulink 中,用户可以通过搭建图形化的模块来描述系统,然后进行仿真和分析。
二、PID 控制器原理PID 控制器是一种常用的闭环控制器,用于控制系统的稳定性和精度。
PID 控制器包括三个部分:比例(P)、积分(I)和微分(D)控制器。
比例控制器根据系统误差的大小来调整控制量;积分控制器根据系统误差的积分来调整控制量,以消除稳态误差;微分控制器根据系统误差的变化速率来调整控制量,以改善系统的动态性能。
三、Simulink 中 PID 控制器的搭建在 Simulink 中,用户可以通过搭建模块来实现 PID 控制器。
首先,需要创建一个 PID 控制器模块,这可以通过 Simulink 中的“Continuous”或“Discrete”子库中的“PID”模块来完成。
然后,需要将 PID 控制器模块与其他模块(如输入、输出和被控对象模块)连接起来,以形成一个完整的控制系统模型。
四、Simulink 中 PID 控制器的仿真步骤在 Simulink 中,进行 PID 控制器仿真的步骤如下:1.打开 Simulink,创建一个新的模型。
2.在 Simulink 库中选择“Continuous”或“Discrete”子库,然后将“PID”模块拖拽到仿真界面中。
3.创建被控对象模块,例如使用“Transfer Function”模块来描述一个二阶线性时不变系统。
4.将被控对象模块与 PID 控制器模块相连接,同时设置好各个模块的参数。
控制仿真实验报告
实验名称:基于MATLAB/Simulink的PID控制器参数优化仿真实验日期:2023年11月10日实验人员:[姓名]实验指导教师:[指导教师姓名]一、实验目的1. 理解PID控制器的原理及其在控制系统中的应用。
2. 学习如何使用MATLAB/Simulink进行控制系统仿真。
3. 掌握PID控制器参数优化方法,提高控制系统的性能。
4. 分析不同参数设置对系统性能的影响。
二、实验原理PID控制器是一种广泛应用于控制领域的线性控制器,它通过将比例(P)、积分(I)和微分(D)三种控制作用相结合,实现对系统输出的调节。
PID控制器参数优化是提高控制系统性能的关键。
三、实验内容1. 建立控制系统模型。
2. 设置PID控制器参数。
3. 进行仿真实验,分析系统性能。
4. 优化PID控制器参数,提高系统性能。
四、实验步骤1. 建立控制系统模型使用MATLAB/Simulink建立被控对象的传递函数模型,例如:```G(s) = 1 / (s^2 + 2s + 5)```2. 设置PID控制器参数在Simulink中添加PID控制器模块,并设置初始参数,例如:```Kp = 1Ki = 0Kd = 0```3. 进行仿真实验设置仿真时间、初始条件等参数,运行仿真实验,观察系统输出曲线。
4. 分析系统性能分析系统在给定参数下的响应性能,包括超调量、调节时间、稳态误差等指标。
5. 优化PID控制器参数根据分析结果,调整PID控制器参数,优化系统性能。
可以使用以下方法:- 试凑法:根据经验调整参数,观察系统性能变化。
- Ziegler-Nichols方法:根据系统阶跃响应,确定参数初始值。
- 遗传算法:使用遗传算法优化PID控制器参数。
6. 重复步骤3-5,直至系统性能满足要求五、实验结果与分析1. 初始参数设置初始参数设置如下:```Kp = 1Ki = 0Kd = 0```仿真结果如图1所示:![图1 初始参数设置下的系统输出曲线](https:///5Q8w6zQ.png)从图1可以看出,系统存在较大的超调量和较长的调节时间,稳态误差较大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
课程名称: MATLAB语言与控制系统仿真
实验项目: PID控制系统的Simulink仿真分析专业班级:
学号:
姓名:
指导教师:
日期:
机械工程实验教学中心
注:1、请实验学生及指导教师实验前做实验仪器设备使用登记; 2、请各位学生大致按照以下提纲撰写实验报告,可续页;
3、请指导教师按五分制(优、良、中、及格、不及格)给出报告成绩;
4、课程结束后,请将该实验报告上交机械工程实验教学中心存档。
一、实验目的和任务
1.掌握PID 控制规律及控制器实现。
2.掌握用Simulink 建立PID 控制器及构建系统模型与仿真方法。
二、实验原理和方法
在模拟控制系统中,控制器中最常用的控制规律是PID 控制。
PID 控制器是一种线性控制器,它根据给定值与实际输出值构成控制偏差。
PID 控制规律写成传递函数的形式为
s K s Ki
K s T s T K s U s E s G d
p d i
p ++=++==)11()()()( 式中,P K 为比例系数;i K 为积分系数;d K 为微分系数;i
p
i K K
T =
为积分时间常数;
p
d
d K K T =
为微分时间常数;简单来说,PID 控制各校正环节的作用如下: (1)比例环节:成比例地反映控制系统的偏差信号,偏差一旦产生,控制器立即产
生控制作用,以减少偏差。
(2)积分环节:主要用于消除静差,提高系统的无差度。
积分作用的强弱取决于积
分时间常数i T ,i T 越大,积分作用越弱,反之则越强。
(3)微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调
节时间。
三、实验使用仪器设备(名称、型号、技术参数等)
计算机、MATLAB软件
四、实验内容(步骤)
1、在MATLAB命令窗口中输入“simulink”进入仿真界面。
2、构建PID控制器:(1)新建Simulink模型窗口(选择“File/New/Model”),在Simulink Library Browser中将需要的模块拖动到新建的窗口中,根据PID控制器的传递函数构建出如下模型:
各模块如下:
Math Operations模块库中的Gain模块,它是增益。
拖到模型窗口中后,双击模块,在弹出的对话框中将‘Gain’分别改为‘Kp’、‘Ki’、‘Kd’,表示这三个增益系数。
Continuous模块库中的Integrator模块,它是积分模块;Derivative模块,它是微分模块。
Math Operations模块库中的Add模块,它是加法模块,默认是两个输入相加,双击该模块,将‘List of Signs’框中的两个加号(++)后输入一个加号(+),这样就改为了三个加号,用来表示三个信号的叠加。
Ports & Subsystems模块库中的In1模块(输入端口模块)和Out1模块(输出
端口模块)。
(2)将上述结构图封装成PID控制器。
①创建子系统。
选中上述结构图后再选择模型窗口菜单“Edit/Creat Subsystem”
②封装。
选中上述子系统模块,再选择模型窗口菜单“Edit/Mask Subsystem”
③根据需要,在封装编辑器对话框中进行一些封装设置,包括设置封装文本、对话框、图标等。
本次试验主要需进行以下几项设置:
Icon(图标)项:“Drawing commands”编辑框中输入“disp(‘PID’)”,如下
左图示:Parameters(参数)项:创建Kp,Ki,Kd三个参数,如下右图示:
至此,PID控制器便构建完成,它可以像Simulink自带的那些模块一样,进行拖拉,或用于创建其它系统。
3、搭建一单回路系统结构框图如下图所示:
所需模块及设置:Sources模块库中Step模块;Sinks模块库中的Scope模块;Commonly Used Blocks模块库中的Mux模块;Continuous模块库中的Zero-Pole 模块。
Step模块和Zero-Pole模块设置如下:
4、构建好一个系统模型后,就可以运行,观察仿真结果。
运行一个仿真的完整过程分成三个步骤:设置仿真参数、启动仿真和仿真结果分析。
选择菜单“Simulation/Confiuration Parameters”,可设置仿真时间与算法等参数,如下图示:其中默认算法是ode45(四/五阶龙格-库塔法),适用于大多数连续或离散系统。
5、双击PID模块,在弹出的对话框中可设置PID控制器的参数Kp,Ki,Kd:
设置好参数后,单击“Simulation/Start”运行仿真,双击Scope示波器观察输出结果,并进行仿真结果分析。
比较以下参数的结果:
(1)Kp=,Ki=,Kd=
(2)Kp=,Ki=2,Kd=
(3)Kp=,Ki=,Kd=
6、以Kp=,Ki=,Kd=这组数据为基础,改变其中一个参数,固定其余两个,以此来分别讨论Kp,Ki,Kd的作用。
7、分析不同调节器下该系统的阶跃响应曲线
(1)P调节 Kp=8
(2)PI调节 Kp=5,Ki=2
(3)PD调节 Kp=,Kd=
(4)PID调节 Kp=,Ki=5,Kd=3
程序及运行结果如下
(1)Kp=,Ki=,Kd=
2)Kp=,Ki=2,Kd=
(3)Kp=,Ki=,Kd=
6、以Kp=,Ki=,Kd=这组数据为基础,改变其中一个参数,固定其余两个,以此来分别讨论Kp,Ki,Kd的作用。
先改变kp的值,其余两个不变,分为两组,第一组是kp的值小于,第二组是kp 的值大于.此处的值都是任意取得,kp1=
(1)Kp=,Ki=,Kd=
改变ki的值,其余两个不变,分为两组,第一组是ki的值小于,第二组是ki的值大于.此处的值都是任意取得,
ki1=
改变kd的值,其余两个不变,分为两组,第一组是kd的值小于,第二组是kd的值大于.此处的值都是任意取得,
kd1=
、分析不同调节器下该系统的阶跃响应曲线
(1)P调节 Kp=8
(2)PI调节 Kp=5,Ki=2
(3)PD调节 Kp=,Kd=
(4)PID调节 Kp=,Ki=5,Kd=3
五.结论
总结PID调节的基本特点
pid调节即为比例,积分,微分调节。
Kp为比例参数,主要是用于快速调节误差;
Ki为积分参数,主要是用于调节稳态时间;
Kd为微分参数,主要是用于预测误差趋势,提前修正误差。
随着kp,ki,kd减小,系统反应速度变慢,超调量逐渐减小,系统调整时间也在变小。
使kd变化其余两个值不变,可看出随着kd的增加,超调量变小,震荡次数变少,调整时间变短。
使kp变化其余两个值不变,可看出随着kp的增加震荡次数增加,调整时间变长,超调量变大。
使ki变化其余两个值不变,可看出随着ki 增加超调量变大,调整时间变长。
P调节,波动很大, pi调节比p调节稳定,pd调节不准确。
合时的取值可以使得PID调节快速,平稳,准确.。