物理仿真实验

合集下载

【大学物理实验(含 数据+思考题)】仿真实验 落球法测定液体的粘度

【大学物理实验(含 数据+思考题)】仿真实验  落球法测定液体的粘度

仿真实验 / 落球法测定液体的粘度一、实验目的(1)观察液体的粘滞现象;(2)用落球法测量不同温度下蓖麻油的粘度;(3)巩固使用基本测量仪器的技能;(4)了解PID温度控制的原理。

二、实验仪器变温黏度测量仪,ZKY-PID温控实验仪,停表,螺旋测微器,钢球若干,金属镊子。

三、实验原理1.落球法测定液体黏度原理一个在静止液体中下落的小球受到重力、浮力和黏滞阻力3个力的作用,如果小球的速度v很小,且液体可以看成在各方向上都是无限广阔的,则从流体力学的基本方程可以导出表示黏滞阻力的斯托克斯公式:(1)(1)式中d为小球直径。

由于黏滞阻力与小球速度v成正比,小球在下落很短一段距离后,所受外力达到平衡,小球将以匀速下落,此时有:(2)式中ρ为小球密度,ρ为液体密度。

由(2)式可解出黏度η的表达式:(3)本实验中,小球在直径为D的玻璃管中下落,液体在各方向无限广阔的条件不满足,此时黏滞阻力的表达式可加修正系数(1+2.4d/D),而(3)式可修正为:(4)当小球的密度较大,直径不是太小,而液体的黏度值又较小时,小球在液体会达到较大的值,奥西思-果尔斯公式反映出了液体运动状态对中的平衡速度v斯托克斯公式的影响:(5)其中,Re称为雷诺数,是表征液体运动状态的无量纲参数。

(6)当Re小于0.1时,可认为(1)、(4)式成立。

当0.1<Re<1时,应考虑(5)式中1级修正项的影响,当Re大于1时,还须考虑高次修正项。

考虑(5)式中1级修正项的影响及玻璃管的影响后,黏度η1可表示为:(7)由于3Re/16是远小于1的数,将1/(1+3Re/16)按幂级数展开后近似为1-3Re/16,(7)式又可表示为:(8)已知或测量得到ρ、ρ、D、d、v等参数后,由(4)式计算黏度η,再由(6)式计算Re,若需计算Re的1级修正,则由(8)式计算经修正的黏度η1。

在国际单位制中,η的单位是Pa·s(帕斯卡·秒),在厘米,克,秒制中,η的单位是P(泊)或cP(厘泊),它们之间的换算关系是:1Pa·s=10P=1000cP (9)2.PID条件控制PID调节是自动控制系统中应用最为广泛的一种调节规律,自动控制系统的原理可用图1说明。

大学物理仿真实验报告

大学物理仿真实验报告

大学物理仿真实验报告大学物理仿真实验报告引言在大学物理实验中,物理仿真实验起着重要的作用。

通过仿真实验,学生可以在虚拟环境中进行各种物理实验,观察和分析实验现象,从而加深对物理原理的理解和掌握。

本文将以大学物理仿真实验为主题,探讨其在物理教学中的重要性和应用价值。

一、物理仿真实验的意义物理仿真实验是一种虚拟实验教学手段,通过计算机技术和数学模型,将真实的物理实验过程模拟到计算机软件中,使学生可以在虚拟环境中进行实验操作和观察实验现象。

与传统实验相比,物理仿真实验具有以下几个方面的意义。

1. 提供安全环境物理实验中常常涉及到高温、高压、高电压等危险因素,如果学生没有足够的实验经验和安全意识,很容易发生事故。

而物理仿真实验可以提供一个安全的环境,让学生在虚拟场景中进行实验操作,避免了实验过程中的安全隐患。

2. 提供多样实验条件物理仿真实验可以根据不同的实验要求和学生的学习进度,提供多样的实验条件。

学生可以通过调整参数、改变实验环境等方式,观察和分析不同条件下的实验现象,深入理解物理原理。

3. 提供实验重复性在传统实验中,学生可能因为操作不当或其他原因导致实验结果不准确或失败。

而物理仿真实验可以提供实验的重复性,学生可以反复进行实验,找出问题所在,并改正错误,从而提高实验的准确性和可靠性。

二、物理仿真实验的应用价值物理仿真实验在物理教学中具有广泛的应用价值,不仅可以提高学生的实验操作能力,还可以培养学生的科学思维和创新能力。

1. 提高实验操作能力物理仿真实验可以让学生熟悉实验仪器的使用方法和实验步骤,培养他们的实验操作能力。

通过虚拟实验,学生可以反复练习实验操作,掌握实验技巧,提高实验的准确性和效率。

2. 培养科学思维物理仿真实验可以培养学生的科学思维,让他们学会观察、分析和解释实验现象。

在虚拟实验中,学生需要通过观察实验现象、整理数据、分析规律等步骤,从而培养他们的科学思维和逻辑思维能力。

3. 提升创新能力物理仿真实验可以激发学生的创新能力。

大学物理仿真实验实验报告_分光计

大学物理仿真实验实验报告_分光计

大学物理仿真实验实验报告_分光计.大学物理仿真实验实验报告分光计土木21班2120702008崔天龙..验项目名称:分光计一、实验目的1(使学生深入了解分光计的构造和设计原理,学会调整分光计的正确方法;2(了解用最小偏向角法测棱镜材料折射率的基本原理;3(完成测量折射率实验,并正确分析实验误差。

二、实验原理1(分光计的结构分光计主要由三部分:望远镜,平行光管和主体(底座、度盘和载物台)组成。

附件有小灯泡、小灯泡的低压电源以及看度盘的放大镜。

望远镜的目镜叫做阿贝目镜,如图1所示。

2(分光计的调整原理和方法调整分光计,最后要达到下列要求:(1)平行光管发出平行光;(2)望远镜对平行光聚焦(即接收平行光);(3)望远镜、平行光管的光轴垂直仪器公共轴。

分光计调整的关键是调好望远镜,其他的调整可以以望远镜为标准。

在调整望远镜时,可以先将小灯泡的光引入分划板,当分划板的位置刚好在望远镜的焦平面上时,从载物台上放置的平面镜上反射回来的光正好落在分划板上形成一个清晰的十字象。

利用这个原理可以将望远镜调好(出射平行光以及使望远镜的主轴与仪器主轴垂直),当望远镜调好后就可以利用望远镜调节平行光管,此时就可以进行光线的角度的测量了。

3(用最小偏向角法测三棱镜材料的折射率..如下图,一束单色光以角入射到AB面上,经棱镜两次折射后,从AC面射出来,出射角为。

入射光和出射光之间的夹角称为偏向角。

当棱镜顶角A一定时,偏向角的大小随入射角的变化而变化。

而当=时,为最小(证明略)。

这时的偏向角称为最小偏向角,记为。

由上图可以看出,这时设棱镜材料折射率为n,则故..由此可知,要求得棱镜材料的折射率n,必须测出其顶角A和最小偏向角。

三、实验仪器图 1 : 分光计仪器分光计是一种基本的光学测量仪器,能准确快捷地测量各种角度,该仪器配上棱镜、光栅等可用于光谱测量。

配上偏振片、波片等,可作为椭偏仪使用。

图 2 : 分光计分光计中心为载物台,外围为刻度盘和游标盘,双游标的作用是为了消除刻度盘和游标盘中心不重合造成的偏心误差。

物理仿真实验报告

物理仿真实验报告

物理仿真实验报告物理仿真实验报告引言:物理仿真实验是一种通过计算机软件模拟真实物理实验的方法,它可以帮助我们深入理解物理现象和原理。

本篇报告将介绍我进行的一次物理仿真实验,重点讨论实验的目的、方法、结果和结论。

实验目的:本次实验的目的是研究物体在受到不同力的作用下的运动规律,并探究力对物体运动的影响。

通过仿真实验,我们可以观察和分析物体在不同力的作用下的运动轨迹、速度和加速度的变化。

实验方法:我们使用了一款物理仿真软件,在虚拟环境中进行实验。

首先,我们选择了一个简单的物理模型,如自由落体或平抛运动。

然后,我们设置不同的初始条件和力的大小,观察物体的运动情况。

通过改变初始速度、质量或施加的力的方向,我们可以研究不同情况下的运动规律。

实验结果:在实验中,我们观察到了许多有趣的现象和规律。

例如,在自由落体实验中,我们发现物体在没有外力作用下以恒定的加速度向下运动,这个加速度被称为重力加速度。

我们还发现,物体的质量对自由落体的运动没有影响,所有物体都以相同的加速度自由下落。

在平抛运动实验中,我们发现物体在水平方向上做匀速直线运动,而在竖直方向上受到重力的影响而做自由落体运动。

通过改变施加的力的大小和方向,我们还研究了物体在斜面上滑动的情况。

我们发现,施加的力越大,物体的加速度越大,滑动的速度也越快。

而改变施加力的方向会改变物体在斜面上的运动轨迹,例如,当施加的力与斜面垂直时,物体只会沿着斜面下滑,而不会在水平方向上运动。

结论:通过这次物理仿真实验,我们深入了解了物体在受到不同力的作用下的运动规律。

我们发现,物体的质量对自由落体和平抛运动没有影响,而施加的力的大小和方向会直接影响物体的加速度和运动轨迹。

这些发现对我们理解和应用物理学原理具有重要意义。

在实际的物理实验中,我们往往受到实验条件的限制,无法进行大范围的变量改变和数据记录。

而物理仿真实验则为我们提供了一个灵活、可控的环境,使我们能够更深入地研究物理现象。

最新大学物理实验仿真实验实验报告

最新大学物理实验仿真实验实验报告

最新大学物理实验仿真实验实验报告
实验目的:
1. 通过仿真实验加深对物理现象的理解。

2. 学习使用计算机辅助物理实验的方法。

3. 掌握数据分析和处理的基本技能。

实验原理:
本实验通过计算机仿真技术模拟物理现象,使学生能够在没有实际实验设备的情况下,也能进行物理实验的学习。

通过模拟实验,可以观察和分析各种物理规律,如牛顿运动定律、电磁学原理等。

实验设备和软件:
1. 计算机及显示器。

2. 物理仿真软件(如PhET Interactive Simulations)。

实验步骤:
1. 打开物理仿真软件,并选择合适的实验模块。

2. 根据实验要求设置初始参数和条件。

3. 运行仿真实验,观察物理现象的变化。

4. 记录实验数据,并进行必要的计算。

5. 分析实验结果,验证物理定律和公式。

6. 撰写实验报告,总结实验过程和结论。

实验数据与分析:
(此处应插入实验数据表格和分析结果,包括但不限于实验观测值、计算值、图表等)
实验结论:
通过本次仿真实验,我们成功地模拟并分析了(具体物理现象)。

实验结果与理论预测相符,验证了(相关物理定律或公式)的正确性。

同时,我们也认识到了仿真实验在物理教学和研究中的重要性和实用性。

建议与反思:
(此处应提出实验过程中遇到的问题、解决方案以及对未来实验的建议或反思)
注意:以上内容仅为模板,具体的实验数据、分析和结论应根据实际完成的仿真实验内容进行填写。

物理仿真实验

物理仿真实验

物理仿真实验报告——液体表面张力系数的测定实验简介:液体表层指液体与气体、液体与固体以及不相混合的液体之间的界面。

液体表层分子有从液面挤入液体内部的倾向,这使得液体的表面自然收缩,就整个液面来说,如同拉紧的弹性薄膜,这种沿着表面,使液面收缩的力称为表面张力。

表面张力在船舶制造、水利学、化学化工、凝聚态物理中都能找到它的应用。

测量液体(例如水)的表面张力系数有多种方法,如最大泡压法、平板法(亦称拉普拉斯法)、毛细管法、焦利氏秤法、扭力天平法等。

这里只介绍焦利氏秤法。

本实验首先利用逐差法测量焦利氏秤弹簧的倔强系数,然后利用拉脱法测量液体的表面张力系数。

实验原理1、液体分子受力情况液体表面层中分子的受力情况与液体内部不同。

在液体内部,分子在各个方向上受力均匀,合力为零。

而在表面层中,由于液面上方气体分子数较少,使得表面层中的分子受到向上的引力小于向下的引力,合力不为零,这个合力垂直于液体表面并指向液体内部,如图1所示。

所以,表面层的分子有从液面挤入液体内部的倾向,从而使得液体的表面自然收缩,直到达到动态平衡(即表面层中分图1 液体分子受力示意图子挤入液体内部的速率与液体内部分子热运动而达到液面的速率相等)。

这时,就整个液面来说,如同拉紧的弹性薄膜。

这种沿着表面,使液面收缩的力称为表面张力。

想象在液面上划一条线,表面张力就表现为直线两侧的液体以一定的拉力相互作用。

这种张力垂直于该直线且与线的长度成正比,比例系数称为表面张力系数。

2、 矩形金属框架测量原理将一表面清洁的矩形金属薄片竖直浸入水中,使其底面水平并轻轻提起。

当金属片底面与水面相平,或略高于水面时,由于液体表面张力的作用,金属片的四周将带起一部分水,使水面弯曲,呈图2所示的形状。

这时,金属片在竖直方向上受到(1)金属片的重力mg ;(2)向上的拉力F ;(3)水表面对金属片的作用力——表面张力。

图2 金属框受力示意图其中为水面与金属片侧面的夹角,称为接触角。

大学物理仿真实验报告

大学物理仿真实验报告

实验名称:光电效应实验实验日期:2023年4月10日学号:2120302003实验人员:张三、李四一、实验目的1. 通过仿真实验,理解光电效应的基本原理。

2. 掌握光电效应方程的推导过程。

3. 分析入射光频率与光电子最大初动能之间的关系。

4. 熟悉光电效应在光电探测技术中的应用。

二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。

根据爱因斯坦的光电效应方程,光电子的最大初动能 \(E_k\) 与入射光的频率 \(v\) 和金属的逸出功 \(W_0\) 之间存在以下关系:\[E_k = hv - W_0\]其中,\(h\) 为普朗克常数。

三、实验步骤1. 打开仿真软件,设置入射光的频率和强度。

2. 调整金属表面的逸出功,观察光电子的发射情况。

3. 记录不同频率入射光下的光电子最大初动能。

4. 分析入射光频率与光电子最大初动能之间的关系。

四、实验结果与分析1. 当入射光的频率较低时,光电子的发射率较低,且光电子的最大初动能较小。

2. 随着入射光频率的增加,光电子的发射率逐渐增加,光电子的最大初动能也随之增加。

3. 当入射光的频率达到一定值时,光电子的发射率达到最大,此时光电子的最大初动能也达到最大值。

4. 当入射光的频率继续增加时,光电子的发射率逐渐降低,光电子的最大初动能也逐渐降低。

根据实验结果,可以得出以下结论:1. 光电效应方程 \(E_k = hv - W_0\) 是正确的。

2. 入射光的频率与光电子的最大初动能之间存在正相关关系。

3. 光电效应在光电探测技术中具有广泛的应用。

五、实验总结本次实验通过仿真实验,使我们深入理解了光电效应的基本原理,掌握了光电效应方程的推导过程,并分析了入射光频率与光电子最大初动能之间的关系。

通过实验,我们认识到光电效应在光电探测技术中的重要性,为今后的学习和研究打下了坚实的基础。

六、实验拓展1. 研究不同金属的逸出功对光电效应的影响。

2. 探究光强度对光电效应的影响。

大学物理仿真实验报告

大学物理仿真实验报告

大学物理仿真实验报告目录1. 实验目的和意义1.1 实验目的1.2 实验意义2. 理论背景介绍2.1 牛顿力学2.2 动量守恒定律2.3 能量守恒定律3. 实验器材和原理3.1 实验器材3.2 实验原理4. 实验步骤4.1 实验准备4.2 实验具体步骤5. 实验数据记录及分析5.1 数据记录5.2 数据分析6. 实验结论与讨论6.1 实验结论6.2 结论讨论7. 实验中的问题及解决方法7.1 问题描述7.2 解决方法实验目的和意义实验目的本实验旨在通过物理仿真模拟,探究运动物体的力学规律,深入理解牛顿力学原理以及动量守恒和能量守恒定律。

实验意义通过本实验,可以加深对物理定律的理解,提高实验操作能力,培养科学思维和分析问题的能力。

理论背景介绍牛顿力学牛顿力学是经典物理力学的一个重要分支,主要描述了物体受力下的运动规律,包括牛顿三定律等内容。

动量守恒定律动量守恒定律表明,在一个封闭系统内,系统的总动量保持不变,即系统内所有物体的动量之和在任意时刻都是恒定的。

能量守恒定律能量守恒定律是物理学中的一个基本原理,即在一个封闭系统内,系统的总能量保持不变,能量可以转化形式但总量不变。

实验器材和原理实验器材本实验所需器材包括计算机、物理仿真软件等。

实验原理实验基于牛顿力学原理,通过模拟不同条件下物体的运动,验证动量守恒和能量守恒定律。

实验步骤实验准备1. 打开计算机,启动物理仿真软件。

2. 设置实验初始参数,包括物体质量、速度等。

实验具体步骤1. 进行单个物体的运动模拟,记录相关数据。

2. 进行碰撞实验,观察动量和能量的转移情况。

3. 分析实验结果,得出结论。

实验数据记录及分析数据记录在实验过程中记录了单个物体的运动轨迹、速度等数据,以及碰撞实验中的动量和能量转移情况。

数据分析通过对实验数据的分析,可以验证动量守恒和能量守恒定律是否得到满足,进一步探讨物体运动规律。

实验结论与讨论实验结论实验结果表明,在所设定条件下,动量守恒和能量守恒定律是成立的,验证了物理定律在模拟实验中的适用性。

大学物理仿真实验报告

大学物理仿真实验报告

扫描隧道显微镜(STM)一.实验目的1.学习和了解扫描隧道显微镜的原理和结构;2.观测和验证量子力学中的隧道效应;3.学习扫描隧道显微镜的操作和调试过程,并以之来观测样品的表面形貌;4.学习用计算机软件处理原始图象数据。

二.实验原理(一)隧道电流扫描隧道显微镜(Scanning Tunneling Microscope)的工作原理是基于量子力学中的隧道效应。

对于经典物理学来说,当一个粒子的动能E低于前方势垒的高度V0时,它不可能越过此势垒,即透射系数等于零,粒子将完全被弹回。

而按照量子力学的计算,在一般情况下,其透射系数不等于零,也就是说,粒子可以穿过比它能量更高的势垒(如图1)这个现象称为隧道效应。

隧道效应是由于粒子的波动性而引起的,只有在一定的条件下,隧道效应才会显著。

经计算,透射系数T为:由式(1)可见,T与势垒宽度a,能量差(V0-E)以及粒子的质量m有着很敏感的关系。

随着势垒厚(宽)度a的增加,T将指数衰减,因此在一般的宏观实验中,很难观察到粒子隧穿势垒的现象。

扫描隧道显微镜的基本原理是将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近(通常小于1nm) 时,在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。

隧道电流I是电子波函数重叠的量度,与针尖和样品之间距离S以及平均功函数Φ有关:式中Vb是加在针尖和样品之间的偏置电压,平均功函数Φ1和Φ2分别为针尖和样品的功函数,A为常数,在真空条件下约等于1。

隧道探针一般采用直径小于1mm的细金属丝,如钨丝、铂-铱丝等,被观测样品应具有一定的导电性才可以产生隧道电流。

(二)扫描隧道显微镜的工作原理由式(2)可知,隧道电流强度对针尖和样品之间的距离有着指数依赖关系,当距离减小0.1nm,隧道电流即增加约一个数量级。

因此,根据隧道电流的变化,我们可以得到样品表面微小的高低起伏变化的信息,如果同时对x-y方向进行扫描,就可以直接得到三维的样品表面形貌图,这就是扫描隧道显微镜的工作原理。

高中物理仿真实验教案

高中物理仿真实验教案

高中物理仿真实验教案
实验目的:通过模拟光线在不同介质中的折射过程,探究光的折射规律。

实验器材:光源、直尺、三棱镜、半圆筒形容器、白纸等。

实验原理:光线从一种介质射入到另一种介质中时,会发生折射现象。

根据折射定律可知,入射角和折射角之间的关系可以由下式描述,即$n_1 \cdot \sin \theta_1 = n_2 \cdot \sin
\theta_2$,其中$n_1$和$n_2$分别为两种介质的折射率,$\theta_1$和$\theta_2$分别为
光线在两种介质中的入射角和折射角。

实验步骤:
1. 将光源放置在一定距离外,并调整使其光线直射。

2. 将半圆筒形容器中加满水,放置在光源与直尺之间。

3. 在直尺上标注出不同角度的刻度。

4. 将三棱镜放在水中,使得光线从空气射入水中,观察并测量入射角和折射角。

5. 重复上述步骤,改变入射角度并记录数据。

实验评估:根据实验数据,绘制入射角和折射角的关系图,并与理论值进行比较分析,验
证折射定律的准确性。

拓展实验:可以将实验环境改为不同介质条件下进行光的折射实验,如空气和玻璃的折射
实验,以及不同角度的光线折射实验等。

实验总结:通过本实验,我们深入理解了光的折射规律,加深了对光学知识的理解和掌握,提高了实验操作能力和数据分析能力。

大学物理仿真实验报告

大学物理仿真实验报告





仿





实验名称:气垫上的直线运动
一.实验目的:
利用气垫技术精确的测定物体的平均速度、瞬时速度、加速度以及当地的重力加速度,通过物体沿斜面自由下滑运动来研究匀变速运动的规律和验证牛顿第二定律。

二.实验原理:
三.实验仪器:
气垫导轨装置(主要由气轨、气源、滑块、挡光片、光电门、游标卡尺、米尺和光电计时装置等组成)
四.实验步骤:
五.实验结果:1.实验过程效果图:
2.匀变速运动中速度与加速度的测量
3.验证牛顿第二定律
六.思考题:
1-用平均速度V代替瞬时速度V对本实验中的影响如何?答:会使测得结果偏小影响实验精度。

物理仿真实验

物理仿真实验

学号:08022020班级:材料硕81姓名:龙骏物理仿真实验报告实验名称:刚体转动惯量的测量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系;3.学习作图的曲线改直法,并由作图法处理实验数据。

实验原理1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:M = Iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at2/2。

刚体受到张力的力矩为Tr 和轴摩擦力力矩Mf。

由转动定律可得到刚体的转动运动方程:Tr- Mf=Iβ。

绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:m(g - a)r - Mf= 2hI/rt2 (2)Mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:mgr = 2hI/ rt2 (3)式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量I。

3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:A.作m –1/t2图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r 和砝码下落高度h,(3)式变为:M = K1/ t2 (4)式中K1= 2hI/ gr2为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t2的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

从m – 1/t2图中测得斜率K1,并用已知的h、r、g值,由K1= 2hI/ gr2求得刚体的I。

物理仿真实验的研究内容

物理仿真实验的研究内容

物理仿真实验的研究内容物理仿真实验是一种基于计算机技术的实验方法,它通过计算机软件对实验环境进行模拟,从而达到进行实验的效果。

物理仿真实验具有许多优点,如节省时间、降低成本、提高实验效率等。

下面就介绍一些物理仿真实验的研究内容。

1. 物理仿真实验的基本原理物理仿真实验的基本原理是利用计算机技术对物理过程进行模拟,从而得到实验结果。

物理仿真实验可以分为离散事件仿真和连续事件仿真两种。

离散事件仿真是指将物理过程离散化为一些离散事件,通过计算机模拟这些事件的发生和演变来得到实验结果。

连续事件仿真则是将物理过程连续化,通过计算机模拟这些连续过程的演变来得到实验结果。

2. 物理仿真实验的应用领域物理仿真实验的应用领域非常广泛,包括物理学、工程学、地球科学、医学等各个领域。

在物理学中,物理仿真实验可以用来研究各种物理现象,如量子力学、相对论等;在工程学中,物理仿真实验可以用来研究各种工程问题,如空气动力学、热力学等;在地球科学中,物理仿真实验可以用来研究地球内部的物理过程,如地震、火山等;在医学中,物理仿真实验可以用来研究人体的各种物理过程,如心血管系统、呼吸系统等。

3. 物理仿真实验的模拟方法物理仿真实验的模拟方法包括数值模拟和物理模拟两种。

数值模拟是指通过计算机对物理过程进行数值计算,从而得到实验结果。

物理模拟则是通过对实验环境进行物理构建,再通过计算机对其进行控制和监测,从而得到实验结果。

数值模拟主要适用于离散事件仿真,物理模拟主要适用于连续事件仿真。

4. 物理仿真实验的软件工具物理仿真实验的软件工具包括MATLAB、COMSOL、ANSYS等。

MATLAB是一种基于矩阵运算的高级计算机语言,可以用于各种科学计算,包括数值计算、符号计算、图像处理等。

COMSOL是一种基于有限元分析的物理仿真软件,可以用于各种工程问题的模拟和分析。

ANSYS是一种基于有限元分析的工程仿真软件,可以用于各种工程问题的模拟和分析。

仿真物理实验-受迫振动

仿真物理实验-受迫振动

受迫振动一、实验目的:本实验目的在于研究阻尼振动和受迫振动的特性,要求学生测量弹簧重物振动系统的阻尼常数,共振频率。

二、实验原理:受迫振动图1 受迫振动质量M的重物按图1放置在两个弹簧中间。

静止平衡时,重物收到的合外力为0。

当重物被偏离平衡位置时,系统开始振动。

由于阻尼衰减(例如摩擦力),最终系统会停止振动。

振动频率较低时,可以近似认为阻力与振动频率成线性关系。

作用在重物上的合力:其中 k1, k2是弹簧的倔强系数。

K = k+ k2是系统的等效倔强系数。

1x是重物偏离平衡位置的距离,是阻尼系数。

因此重物的运动方程可表示为:其中 and 。

在欠阻尼状态时() ,方程解为:A, 由系统初始态决定。

方程的解是一幅度衰减的谐振动,如图2所示。

图2 衰减振动振动频率是:(1)如果重物下面的弹簧由一个幅度为a的振荡器驱动,那么这个弹簧作用于重物的力是。

此时重物的运动方程为:方程的稳态解为:(2)其中。

图3显示振动的幅度与频率的关系。

图3 衰减振动幅度与振动频率关系弱阻尼情况下,当,振动的幅度会很大,最大值出现在:(3)幅度衰减一半的区域:(4)三、实验仪器:砝码挂钩、砝码、电子天平、弹簧、振荡器、信号发生器、米尺、秒表。

四、实验内容: 1.测量弹簧倔强系数。

(1)测量两根弹簧和砝码挂钩的质量。

在实验场景中单击鼠标右键弹出菜单,对挂钩和弹簧进行称重。

通过鼠标选择并砝码并拖放到电子天平上完成砝码的称重操作。

(2)按照实验原理中图1安装好振动系统,把较紧的弹簧放在面。

(3)在砝码盘上添加砝码并记录砝码挂钩的偏移。

使用砝码前先用电子天平称量砝码。

使用鼠标选择砝码,并把砝码拖放在需要的位置。

(4)画出质量m和挂钩偏移x的曲线,算出系统等效弹簧倔强系数K。

2.阻尼振动(1)调整挂钩上砝码质量,使弹簧的长度基本相等。

(2)计算振动系统的本征频率f o 。

(3)连接好信号发生器和振荡器,打开信号发生器,设定频率为f o 。

大学物理仿真实验

大学物理仿真实验

大学物理仿真实验大学物理仿真实验大学物理仿真实验钢丝杨氏模量测定姓名:学号:学院:班级:实验日期:年月日一、实验名称:钢丝杨氏模量测定二、实验目的:1.测量钢丝杨氏模量;2.掌握利用光杠杆测定微小形变的方法;3.采用逐差法和作图法得出测量结果,掌握这两种数据处理的方法。

三、实验仪器:支架和金属钢丝,光杠杆,镜尺组四、实验原理:在胡克定律成立的范围内,应力和应变之比是一个常数,即E=(F/S)/(△L/L)=FL/S△L(1)E被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅与材料的结构、化学成分及其加工制造方法有关。

某种材料发生一定应变所需要的力大,该材料的杨氏模量也就大。

杨氏模量的大小标志了材料的刚性。

通过式(1),在样品截面积S上的作用应力为F,测量引起的相对伸长量ΔL/L,即可计算出材料的杨氏模量E。

因一般伸长量ΔL很小,故常采用光学放大法,将其放大,如用光杠杆测量ΔL。

光杠杆是一个带有可旋转的平面镜的支架,平面镜的镜面与三个足尖决定的平面垂直,其后足即杠杆的支脚与被测物接触。

当杠杆支脚随被测物上升或下降微小距离ΔL时,镜面法线转过一个θ角,而入射到望远镜的光线转过2θ角。

当θ很小时,≈tan?=△L/l(2)式中l为支脚尖到刀口的垂直距离(也叫光杠杆的臂长)。

根据光的反射定律,反射角和入射角相等,故当镜面转动θ角时,反射光线转动2θ角tan2?≈2?=b/D(3)式中D为镜面到标尺的距离,b为从望远镜中观察到的标尺移动的距离。

从(2)和(3)两式得到△L/l=b/(2D)(4)由此得△L=bl/(2D)(5)合并(1)和(4)两式得E=2DLF/(Slb)(6)式中2D/l叫做光杠杆的放大倍数。

只要测量出L、D、l和d(S=Πdd/4)及一系列的F与b之后,就可以由式(5)确定金属丝的杨氏模量E。

五、实验内容1.调节仪器(1)调节放置光杠杆的平台F与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。

大学物理仿真实验报告--李贝津妮

大学物理仿真实验报告--李贝津妮

西安交通大学大学物理仿真实验实验报告姓名:史丹青班级:装备92学号:09037041直流电桥的应用--电子称实验一实验目的(1)通过实验装置对未知物体的重量进行测量。

(2)了解直流电桥的应用,加强对电桥应用的认识二实验装置虚拟实验模板三实验步骤:(1)连接虚拟实验模板上的正负15V 电源导线,(将红、黑、蓝三个插针分别拉到相应的插孔处)(2)连接作图工具两端到Uo2输出端口,并点击作图工具图标,弹出作图工具窗口。

(3)打开图中左上角的电源开关,指示灯呈黄色。

(4)当15V 电源和示波器导线连接正确后,在由X、Y 轴构成的作图框中的Y 轴上将出现一个红色基准点。

(5)调节Rw3到某值,再调节Rw4将红色的基准点调节到坐标轴原点位置(6)连接虚拟实验模板上的正负4V 电源线,红色基准点再次偏离原点,调节Rw1,将红色零点调回原点位置。

(7)将虚拟实验模板上的砝码逐个拖到托盘上,作图框中将逐段输出波形。

(8)点击作图框中的“保存”,保存已知重量砝码的输出波形(保存的波形为蓝色),将托盘上的砝码逐个放回原位。

(9)将未知重量的物体拖到托盘上,则输出一段(红色)波形,比较红、蓝两输出波形即可估计未知物体的重量。

四实验结果及数据处理(1)实际实验电路图如下(2)将已知重量的砝码逐个放在托盘上后以及放上未知砝码所得的波形图线为下图所示:(3)由上图所示,根据红线(未知物体)与蓝线(已知砝码)的比较,能够得出未知砝码的重量为50g。

五实验结论(1)该实验方法利用输出波形的比较能够很方便的并且准确的测量未知物体的重量(2)该实验中未知物体的重量为50g。

大学物理实验仿真实验实验报告

大学物理实验仿真实验实验报告

大学物理实验仿真实验实验报告I. 引言大学物理课程中的实验教学是培养学生科学思维和实践能力的重要环节。

然而,由于实验设备和资源的限制,学生往往难以亲自进行所有的物理实验。

为了解决这一问题,许多高校开始采用物理实验仿真实验,即利用计算机模拟技术进行物理实验的虚拟仿真。

本实验报告将详细介绍一次大学物理实验仿真实验的进行过程和结果。

II. 实验目的本次实验的目的是通过物理仿真软件,模拟测量并分析简谐振动的周期时间与质量、弹性系数的关系。

通过实验,掌握简谐振动的基本原理和实验方法,并通过仿真实验,加深对实验数据的分析和处理能力。

III. 实验原理简谐振动是指物体在一个恢复力作用下沿同一直线往复运动的物理现象。

其周期T与质量m以及弹性系数k之间的关系可以通过以下公式表示:T = 2π√(m/k)根据该公式,我们可以推导出质量对周期的影响,以及弹性系数对周期的影响。

通过仿真实验,我们可以得到不同质量和弹性系数下的周期时间数据,进而分析它们之间的关系。

IV. 实验装置与方法本次实验采用XXX物理仿真实验软件进行,该软件能够通过计算机模拟出各种物理实验的过程和结果。

具体的实验步骤如下:1. 打开XXX物理仿真实验软件,进入简谐振动实验模块。

2. 设置初始条件,包括质量、弹性系数等参数。

3. 点击开始按钮,开始模拟实验过程。

4. 观察模拟实验的过程,记录下每次振动的周期时间。

5. 根据记录的周期时间数据,计算出不同质量和弹性系数下的平均周期时间。

6. 绘制周期时间与质量、弹性系数之间的关系曲线。

V. 实验结果与分析根据模拟实验过程中记录的数据,我们计算出了不同质量和弹性系数下的平均周期时间,并绘制了周期时间与质量、弹性系数之间的关系曲线。

通过曲线的趋势,我们可以得出以下结论:1. 质量对周期时间的影响:质量越大,周期时间越长。

这是因为质量越大,惯性力也就越大,所需的恢复力也越大,导致周期时间增加。

2. 弹性系数对周期时间的影响:弹性系数越大,周期时间越短。

最新大学物理仿真实验实验报告1

最新大学物理仿真实验实验报告1

最新大学物理仿真实验实验报告1实验目的:本次实验旨在通过物理仿真软件,加深对基本物理原理的理解,并掌握使用现代科技手段进行物理实验的方法。

通过模拟不同的物理现象,提高分析和解决物理问题的能力。

实验原理:在本次实验中,我们将利用仿真软件模拟光的折射和反射现象。

光的折射遵循斯涅尔定律,即入射光线、折射光线和法线都在同一平面内,且入射角和折射角的正弦之比等于两种介质的折射率之比。

反射则遵循反射定律,即入射角等于反射角,且入射光线、反射光线和法线都在同一平面内。

实验设备:1. 物理仿真软件(如PhET Interactive Simulations)2. 计算机及显示器3. 数据记录表格实验步骤:1. 打开物理仿真软件,并选择适当的模拟实验模块。

2. 设定初始条件,如光源位置、介质的折射率、观察屏幕的位置等。

3. 启动模拟,观察光在不同介质间的传播情况,记录入射角、折射角和反射角。

4. 更改介质的折射率,重复步骤3,观察折射和反射角的变化。

5. 对收集到的数据进行分析,验证斯涅尔定律和反射定律。

实验结果与分析:在实验过程中,我们观察到当光从低折射率介质进入高折射率介质时,折射角小于入射角;反之,折射角大于入射角。

此外,反射角始终等于入射角,这一点在所有模拟实验中都得到了验证。

通过改变入射角和介质的折射率,我们得到了一系列的数据,这些数据与理论预测相符,从而验证了斯涅尔定律和反射定律的正确性。

结论:通过本次仿真实验,我们成功模拟了光的折射和反射现象,并验证了相关的物理定律。

实验结果表明,物理仿真软件是一种有效的教学和研究工具,可以帮助学生更好地理解复杂的物理概念。

此外,仿真实验的可重复性和可控性为深入研究提供了便利。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理仿真实验
姓名:索玉昌
班级:信息54
学号:2150508187
实验名称:不良导体热导率的测量
一、实验目的
1、学会用稳态平板法测定不良导体的导热系数;
2、学会用作图法求出冷却速率。

二、仪器用具及使用方法
仪器:自耦调压器,数字电压表,杜瓦瓶,游标卡尺,电子秒表。

使用方法:
(1)开始实验后,从实验仪器栏将橡胶盘、电子秒表和游标卡尺拖至实验台上。

(2)测量铜盘、橡胶盘的直径及厚度并记录到实验表格中。

(3)将橡胶盘拖至主仪器的支架上
(4) 连接好线路,调节自耦调压器,开始加热。

(5) 移走橡胶盘,加热铜盘A、C。

(6) 移走上铜盘,让下铜盘独立散热。

(7) 记录数据。

三、测量内容及数据处理
测量铜盘直径(单位:mm)
测量铜盘厚度(单位:mm)
测量橡胶盘直径(单位:mm )
测量橡胶盘厚度(单位:mm )
A 盘加热到平衡温度时的温差电动势的绝对值: 3.25mv C 盘加热到平衡温度时的温差电动势的绝对值: 2.35mv
C 盘降温过程中不同时刻温度对应的温差电动势(每隔30s 记录一次):
由逐差法可得
散热盘散热速率测定:0.0015(mv/s ) 由导热系数的公式:
λ=0.151
)(k m w
(3)
由题意可知,
0357.0=⨯=dt
dmv
dmv dT dt dT 。

(4)由逐差法求得的dt
dT
与线性拟合出的数据均为0.0357,
误差为0%,故橡胶盘的热导系数为0.151)(k m w

四、小结
结论:橡胶盘的热导系数为0.151)(k m w
⋅,dt
dT
=0.0357,冷却速
率误差为0。

误差分析:(1)仪器误差使得测量不精确 (2)游标卡尺读数误差
建议:用更精确的仪器或者等仪器稳定后读数,多次测量取平均
值。

五、思考题
1 试分析实验中产生误差的主要因素以及实验中是如何减小误差的?
误差分析:(1)仪器误差使得测量不精确
(2)游标卡尺读数误差
建议:用更精确的仪器或者等仪器稳定后读数,多次测量取平均值。

2. 傅里叶定律dQ(传热速率)是不易测准的量。

本实验如何巧妙地避开了这一难题?
答:本实验中利用了稳态下铜板散热量与待测板传热量相等这一条件,将测不良导体传热速率的问题转化为了测良导体散热速率的问题,而对于铜板这一良导体,其质量与比热是可知的,故测热量的变化又可转化为测量铜板温度的变化,又根据温差产生电压,并且电压大小同温差成正比,从而只需测量一些简单的量即可得出不良导体的传热速率。

相关文档
最新文档