大学物理(第二版)下册答案-马文蔚剖析

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理学教程(二)下册

答案9—13

马文蔚

第九章 静 电 场

9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图

(B )中的( )

题 9-1 图

分析与解 “无限大”均匀带电平板激发的电场强度为0

2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).

9-2 下列说法正确的是( )

(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷

(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零

(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零

(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零

分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电

场强度都不可能为零,因而正确答案为(B ).

9-3 下列说法正确的是( )

(A ) 电场强度为零的点,电势也一定为零

(B ) 电场强度不为零的点,电势也一定不为零

(C ) 电势为零的点,电场强度也一定为零

(D ) 电势在某一区域内为常量,则电场强度在该区域内必定为零

分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D ).

*9-4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( )

(A ) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止

(B ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动

(C ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动

(D ) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动

题 9-4 图

分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B ).

9-5 精密实验表明,电子与质子电量差值的最大范围不会超过±10

-21 e ,而中子电量与零差值的最大范围也不会超过±10

-21e ,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.

分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10

-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.

解 一个氧原子所带的最大可能净电荷为

()e q 21max 10821-⨯⨯+=

二个氧原子间的库仑力与万有引力之比为

1108.2π46202max <<⨯==-Gm

εq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e

范围内时,对于

像天体一类电中性物体的运动,起主要作用的还是万有引力.

9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带

e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10

-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.

解 由于夸克可视为经典点电荷,由库仑定律

()r r r r

e r q q e e e F N 78.3π41π412202210===εε F 与径向单位矢量e r 方向相同表明它们之间为斥力.

9-7 点电荷如图分布,试求P 点的电场强度.

分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度.

解 根据上述分析

2020π1)2/(2π41a

q a q E P εε==

题 9-7 图

9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为 2

204π1L r Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为

2204π21L

r r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.

题 9-8 图

分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为

r r q εe E 2

0d π41d '=

整个带电体在点P 的电场强度 ⎰=E E d

接着针对具体问题来处理这个矢量积分.

(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,

⎰=L E i E d

(2) 若点P 在棒的垂直平分线上,如图(a )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是

⎰⎰==L y E E j j E d sin d α

证 (1) 延长线上一点P 的电场强度⎰'

=L r q E

20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则 ()220022

204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.

(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为

E r εq αE L d π4d sin 20⎰

'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则

()2202/32222

041π2d π41L

r r Q r x L x rQ E L/-L/+=+=⎰εε

相关文档
最新文档