传输线巴伦的原理设计、制作及测试8页
传输线巴伦的原理设计、制作及测试
传输线平衡器(巴伦)的原理、设计、制作及测试一、平衡器(巴伦)的由来平衡器即Balancing Device,其主要作用是完成由单端传输(如:同轴线、微带线等)变换为差分传输(如:半波振子天线,推挽电路等)之间的变换,又称为平衡-不平衡变换器即Balance-Unbalance,英文将其合并缩写成一个新词Balun,音译为巴伦。
以下文中所提到的平衡器、平衡-不平衡变换器、巴伦,都是指这一类器件。
巴伦在无线电中有着广泛的用途,由于其原理结构多种多样,并且可以互相组合,使得许多朋友在自制巴伦时有无从下手的感觉,哪种结构适合?如何选择材料?如何计算制作参数?如何衡量巴伦的性能?对于我们业余爱好者,主要就是用在天线的馈电和高频功放中,完成平衡-不平衡及阻抗变换的作用,工作在短波1.8MHZ~30MHZ,并要求取材和制作容易。
结合我对巴伦的认识理解,认为传输线结构的巴伦,更适合短波通信,其性能好、取材方便、制作容易,但其理论不易理解,造成很多朋友将其搞成了磁耦合变压器结构,出现频带窄、功率容量小、驻波不平坦的问题,结果当然达不到传输线变换器的效果。
下面就我个人对传输线变换器的粗浅理解,简单描述一下做巴伦的情况,如需要更深入的了解可以参考有关文献资料,有不当之处,还请各位前辈指正,谢谢!二、传输线平衡器(巴伦)的简单原理平衡器有很多种,按平衡条件可以分为四大类:扼流式(扼制不平衡电流)、对称式(对地阻抗平衡)、倒相式(电压倒相)、磁耦合式(电流共扼)。
我这里主要描述一下基于传输线变换器的平衡-不平衡变换,同时具备阻抗变换作用的巴伦,兼有扼流式和磁耦合式的特征。
传输线变换器的结构如上图,它是在高频磁环上缠绕一组或几组传输线,利用不同的连接方法来完成阻抗变换和平衡-不平衡变换作用。
能量从变换器的始端到终端是通过传输线的分布电容、分布电感以及电磁能量交换的形式来传送的,这和通常的绕匝变压器不同,它克服了绕匝变压器在高频时由于线圈的分布电容所带来的不利影响,改善了高频特性。
巴伦制作方法
巴伦制作方法? ?? ???巴伦是平衡不平衡转换器的英文音译,原理是按天线理论,偶极天线属平衡型天线,而同轴电缆属不平衡传输现,若将其直接连接,则同轴电缆的外皮就有高频电流流过(按同轴电缆传输原理,高频电流应在电缆内部流动,外皮是屏蔽层,是没有电流的),这样一来,就会影响天线的辐射(可以想象成电缆的屏蔽层也参与了电波的辐射)。
因此,就要在天线和电缆之间加入平衡不平衡转换器,把流入电缆屏蔽层外部的电流扼制掉,也就是说把从振子流过电缆屏蔽层外皮的高频电流截断。
要达到这样的目的有很多种办法,一种是高频开路法,在电缆屏蔽层外皮四分之一波长处接一个四分之一波长的套筒(等于效四分之一波长的开路线),因四分之一波长开路线对该频率视为开路,达到截断高频电流的作用,这种办法,工作带宽窄,频率低时四分之一波长套筒就显得很长,适合大功率高频率使用。
另一种是抵消法,想办法使流入的电流大小相等方向相反而互相抵消,应用较多的用磁环三线绕的平衡不平衡转换器就属这种,这种频带较宽,使用但大功率时受磁环磁饱和的限制,适合低频率小功率使用。
再一种是变压器法,通过高频变压器实现平衡不平衡转换,原理就像推挽输出变压器一样,把双向平衡电流变换成但向不平衡电流。
变压器可采用磁心或空心绕成,适用大功率使用。
还有一种是抑制法,振子经过一高频扼流圈接电缆屏蔽层外皮,阻止高频电流流向电缆屏蔽层外皮,此法比较简单,就是把电缆绕十圈左右,绕在磁环上更好,空心也没关系,一般是频率低绕多几圈,频率高小绕几圈。
但抑制效果没有前述几种好,因此前面几种多用于专业应用,这种业余应用较多。
要记住的是我们只是截断屏蔽层外皮的高频电流,并不是截断流向屏蔽层的所有高频电流(要这样的话把振子和电缆皮断开就得了),高频电流是在屏蔽层的里面流的。
形象一点可以把电缆想象成水管,本来应该是水都在水管里流,如不加巴伦,水不单在水管里流,而且有一部分还流到管子的外皮。
巴伦的作用就是防止跑、冒、滴、漏,迫使水都在水管里流,难言之隐,一用了之!1:4巴伦制作空心巴伦比较容易做,40mm直径的PVC管上面双线并绕8圈接线图:?其他图纸:磁环做的巴伦,这个图是1:1的,4:1用双线并绕,按上面的图接线即可。
巴伦
巴伦是平衡不平衡转换器的英文音译,原理是按天线理论,偶极天线属平衡型天线,而同轴电缆属不平衡传输现,若将其直接连接,则同轴电缆的外皮就有高频电流流过(按同轴电缆传输原理,高频电流应在电缆内部流动,外皮是屏蔽层,是没有电流的),这样一来,就会影响天线的辐射(可以想象成电缆的屏蔽层也参与了电波的辐射)因此,就要在天线和电缆之间加入平衡不平衡转换器,把流入电缆屏蔽层外部的电流扼制掉,也就是说把从振子流过电缆屏蔽层外皮的高频电流截断。
要达到这样的目的有很多种办法,一种是高频开路法,在电缆屏蔽层外皮四分之一波长处接一个四分之一波长的套筒(等于效四分之一波长的开路线),因四分之一波长开路线对该频率视为开路,达到截断高频电流的作用,这种办法,工作带宽窄,频率低时四分之一波长套筒就显得很长,适合大功率高频率使用。
另一种是抵消法,想办法使流入的电流大小相等方向相反而互相抵消,应用较多的用磁环三线绕的平衡不平衡转换器就属这种,这种频带较宽,使用但大功率时受磁环磁饱和的限制,适合低频率小功率使用。
再一种是变压器法,通过高频变压器实现平衡不平衡转换,原理就像推挽输出变压器一样,把双向平衡电流变换成但向不平衡电流。
变压器可采用磁心或空心绕成,适用大功率使用。
还有一种是抑制法,振子经过一高频扼流圈接电缆屏蔽层外皮,阻止高频电流流向电缆屏蔽层外皮,此法比较简单,就是把电缆绕十圈左右,绕在磁环上更好,空心也没关系,一般是频率低绕多几圈,频率高小绕几圈。
但抑制效果没有前述几种好,因此前面几种多用于专业应用,这种业余应用较多。
要记住的是我们只是截断屏蔽层外皮的高频电流,并不是截断流向屏蔽层的所有高频电流(要这样的话把振子和电缆皮断开就得了),高频电流是在屏蔽层的里面流的。
形象一点可以把电缆想象成水管,本来应该是水都在水管里流,如不加巴伦,水不单在水管里流,而且有一部分还流到管子的外皮。
巴伦的作用就是防止跑、冒、滴、漏,迫使水都在水管里流,难言之隐,一用了之!倒V天线的制作,一是要求架设得尽量高,二是架设的地方要尽量开阔,三是尽量远离干扰源架设。
巴伦的制作
巴伦巴伦是平衡不平衡转换器的英文音译,原理是按天线理论,偶极天线属平衡型天线,而同轴电缆属不平衡传输现,若将其直接连接,则同轴电缆的外皮就有高频电流流过(按同轴电缆传输原理,高频电流应在电缆内部流动,外皮是屏蔽层,是没有电流的),这样一来,就会影响天线的辐射(可以想象成电缆的屏蔽层也参与了电波的辐射)。
因此,就要在天线和电缆之间加入平衡不平衡转换器,把流入电缆屏蔽层外部的电流扼制掉,也就是说把从振子流过电缆屏蔽层外皮的高频电流截断。
要达到这样的目的有很多种办法,一种是高频开路法,在电缆屏蔽层外皮四分之一波长处接一个四分之一波长的套筒(等于效四分之一波长的开路线),因四分之一波长开路线对该频率视为开路,达到截断高频电流的作用,这种办法,工作带宽窄,频率低时四分之一波长套筒就显得很长,适合大功率高频率使用。
另一种是抵消法,想办法使流入的电流大小相等方向相反而互相抵消,应用较多的用磁环三线绕的平衡不平衡转换器就属这种,这种频带较宽,使用但大功率时受磁环磁饱和的限制,适合低频率小功率使用。
再一种是变压器法,通过高频变压器实现平衡不平衡转换,原理就像推挽输出变压器一样,把双向平衡电流变换成但向不平衡电流。
变压器可采用磁心或空心绕成,适用大功率使用。
还有一种是抑制法,振子经过一高频扼流圈接电缆屏蔽层外皮,阻止高频电流流向电缆屏蔽层外皮,此法比较简单,就是把电缆绕十圈左右,绕在磁环上更好,空心也没关系,一般是频率低绕多几圈,频率高小绕几圈。
但抑制效果没有前述几种好,因此前面几种多用于专业应用,这种业余应用较多。
要记住的是我们只是截断屏蔽层外皮的高频电流,并不是截断流向屏蔽层的所有高频电流(要这样的话把振子和电缆皮断开就得了),高频电流是在屏蔽层的里面流的。
形象一点可以把电缆想象成水管,本来应该是水都在水管里流,如不加巴伦,水不单在水管里流,而且有一部分还流到管子的外皮。
巴伦的作用就是防止跑、冒、滴、漏,迫使水都在水管里流,难言之隐,一用了之!1:4巴伦制作空心巴伦比较容易做,40mm直径的PVC管上面双线并绕8圈接线图:其他图纸:磁环做的巴伦,这个图是1:1的,4:1用双线并绕,按上面的图接线即可。
传输线巴伦的原理设计制作及测试
传输线平衡器(巴伦)的原理、设计、制作及测试一、平衡器(巴伦)的由来平衡器即Balancing Device,其主要作用是完成由单端传输(如:同轴线、微带线等)变换为差分传输(如:半波振子天线,推挽电路等)之间的变换,又称为平衡-不平衡变换器即Balance-Unbalance,英文将其合并缩写成一个新词Balun,音译为巴伦。
以下文中所提到的平衡器、平衡-不平衡变换器、巴伦,都是指这一类器件。
巴伦在无线电中有着广泛的用途,由于其原理结构多种多样,并且可以互相组合,使得许多朋友在自制巴伦时有无从下手的感觉,哪种结构适合?如何选择材料?如何计算制作参数?如何衡量巴伦的性能?对于我们业余爱好者,主要就是用在天线的馈电和高频功放中,完成平衡-不平衡及阻抗变换的作用,工作在短波1.8MHZ~30MHZ,并要求取材和制作容易。
结合我对巴伦的认识理解,认为传输线结构的巴伦,更适合短波通信,其性能好、取材方便、制作容易,但其理论不易理解,造成很多朋友将其搞成了磁耦合变压器结构,出现频带窄、功率容量小、驻波不平坦的问题,结果当然达不到传输线变换器的效果。
下面就我个人对传输线变换器的粗浅理解,简单描述一下做巴伦的情况,如需要更深入的了解可以参考有关文献资料,有不当之处,还请各位前辈指正,谢谢!二、传输线平衡器(巴伦)的简单原理平衡器有很多种,按平衡条件可以分为四大类:扼流式(扼制不平衡电流)、对称式(对地阻抗平衡)、倒相式(电压倒相)、磁耦合式(电流共扼)。
我这里主要描述一下基于传输线变换器的平衡-不平衡变换,同时具备阻抗变换作用的巴伦,兼有扼流式和磁耦合式的特征。
传输线变换器的结构如上图,它是在高频磁环上缠绕一组或几组传输线,利用不同的连接方法来完成阻抗变换和平衡-不平衡变换作用。
能量从变换器的始端到终端是通过传输线的分布电容、分布电感以及电磁能量交换的形式来传送的,这和通常的绕匝变压器不同,它克服了绕匝变压器在高频时由于线圈的分布电容所带来的不利影响,改善了高频特性。
一文看懂巴伦(功能原理、性能参数、基本类型)
一文看懂巴伦(功能原理、性能参数、基本类型)本文转自微波射频网概述巴伦(英语为“balun”,由balanced(平衡)”的前三个字母“bal”与“unbalanced(不平衡)”的两个字母“un”组合而成)为一种三端口器件,或者说是一种通过将匹配输入转换为差分输出而实现平衡传输线电路与不平衡传输线电路之间的连接的宽带射频传输线变压器。
巴伦的功能在于使系统具有不同阻抗或与差分/单端信令兼容,并且用于手机和数据传输网络等现代通信系统。
功能巴伦具有如下三项基本功能:1. 将电流或电压从不平衡转换至平衡2. 通过某些构造进行共模电流抑制3. 通过某些构造进行阻抗转换(阻抗比不等于1:1)巴伦分为多种类型,其中的某些用于阻抗转换,还有某些用于连接具有不同阻抗的传输线。
阻抗转换巴伦可实现阻抗匹配、直流隔离以及将平衡端口与单端端口匹配。
共模扼流圈因为可消除共模信号,因此在某种意义上说也是一种巴伦。
巴伦用于推挽放大器、宽带天线、平衡混频器、平衡倍频器及调制器、移相器以及任何需要在两条线路上传输幅度相等且相位相差180度的电路设计。
用途巴伦的最常见用途为将不平衡信号连入用于长距离传输的平衡传输线。
与采用同轴电缆的单端信令相比,采用平衡传输线的差分信令受噪声和串扰的影响更小,可使用更低的电压,而且成本效益更高。
因此,巴伦可用作本地视频、音频及数字信号与长距离传输线之间的接口。
巴伦的用途包括:–无线电及基带视频–雷达、发射机、卫星–电话网络、无线网络调制解调器/路由器原理巴伦的理想S参数如下:S12 = – S13 = S21 = – S31S11 = -∞巴伦的两个输出幅度相等,相位相反:–在频域中,这表示两个输出之间具有180°的相位偏移;–在时域中,这表示一个平衡输出的电压为另一平衡输出的负值。
此外,两条线路当中的一条的导体须明确接地。
举例而言,平衡线路由电位幅度相等且相位相反的导体构成。
由于微带线和同轴电缆采用不同尺寸的导体,因此可谓不平衡线路。
bergeron传输线原理 -回复
bergeron传输线原理-回复Bergeron传输线原理引言:Bergeron传输线原理是一种广泛应用于电信、电力系统和射频工程中的传输线设计原理。
通过选择适当的材料和几何参数,Bergeron传输线可以达到高效的信号传输和最小的能量损耗。
在本文中,我们将一步一步地回答有关Bergeron传输线原理的关键问题。
第一部分:传输线基础知识1. 什么是传输线?传输线是一种用于在电力和通信领域中传输电信号或电能的导体。
传输线由导体和绝缘材料构成,如电缆或导线。
2. 为什么需要传输线?传输线的引入是为了解决电力或信号传输过程中的能量损耗和信号衰减问题。
通过合理设计的传输线可以减小能量损耗并提高信号传输效率。
3. 传输线的特性是什么?传输线具有以下特性:- 电容性:传输线的导体之间会形成电容,影响信号传输速度。
- 电感性:传输线的导体之间会形成电感,影响信号传播时间。
- 传输特性阻抗:传输线具有一定的特性阻抗,决定了信号在传输线上的行为。
第二部分:Bergeron传输线原理1. 什么是Bergeron传输线原理?Bergeron传输线原理是一种特定的传输线设计方法,旨在最小化能量损耗并提高信号传输效率。
它通过选择合适的材料和几何结构来实现这一目标。
2. Bergeron传输线的工作原理是什么?Bergeron传输线通过将传输线的电容与电感匹配,使得传输线内部的能量在信号传输过程中最小损失。
它使用了特定的传输线结构和材料,如空芯或泡沫介质,以减小能量损耗。
3. Bergeron传输线的关键设计参数有哪些?Bergeron传输线的关键设计参数包括:- 传输线的电容和电感值:通过设计合适的电容和电感值,可以实现能量传输的最佳平衡。
- 传输线的几何结构:选择合适的导线直径、间距和布局,以最大程度地减小传输线的能量损耗。
第三部分:Bergeron传输线的应用1. Bergeron传输线在通信领域中的应用有哪些?Bergeron传输线在通信领域中广泛应用于数据中心网络、网络互连和传感器网络等领域。
巴伦的原理、设计、制作
一、平衡器(巴伦)的由来平衡器即Balancing Device,其主要作用是完成由单端传输(如:同轴线、微带线等)变换为差分传输(如:半波振子天线,推挽电路等)之间的变换,又称为平衡-不平衡变换器即Balance-Unbalance,英文将其合并缩写成一个新词Balun,音译为巴伦。
以下文中所提到的平衡器、平衡-不平衡变换器、巴伦,都是指这一类器件。
巴伦在无线电中有着广泛的用途,由于其原理结构多种多样,并且可以互相组合,使得许多朋友在自制巴伦时有无从下手的感觉,哪种结构适合?如何选择材料?如何计算制作参数?如何衡量巴伦的性能?对于我们业余爱好者,主要就是用在天线的馈电和高频功放中,完成平衡-不平衡及阻抗变换的作用,工作在短波1.8MHZ~30MHZ,并要求取材和制作容易。
结合我对巴伦的认识理解,认为传输线结构的巴伦,更适合短波通信,其性能好、取材方便、制作容易,但其理论不易理解,造成很多朋友将其搞成了磁耦合变压器结构,出现频带窄、功率容量小、驻波不平坦的问题,结果当然达不到传输线变换器的效果。
下面就我个人对传输线变换器的粗浅理解,简单描述一下做巴伦的情况,如需要更深入的了解可以参考有关文献资料,有不当之处,还请各位前辈指正,谢谢!二、传输线平衡器(巴伦)的简单原理平衡器有很多种,按平衡条件可以分为四大类:扼流式(扼制不平衡电流)、对称式(对地阻抗平衡)、倒相式(电压倒相)、磁耦合式(电流共扼)。
我这里主要描述一下基于传输线变换器的平衡-不平衡变换,同时具备阻抗变换作用的巴伦,兼有扼流式和磁耦合式的特征。
传输线变换器的结构如上图,它是在高频磁环上缠绕一组或几组传输线,利用不同的连接方法来完成阻抗变换和平衡-不平衡变换作用。
能量从变换器的始端到终端是通过传输线的分布电容、分布电感以及电磁能量交换的形式来传送的,这和通常的绕匝变压器不同,它克服了绕匝变压器在高频时由于线圈的分布电容所带来的不利影响,改善了高频特性。
巴伦的原理、设计、制作
一、平衡器(巴伦)的由来平衡器即Balancing Device,其主要作用是完成由单端传输(如:同轴线、微带线等)变换为差分传输(如:半波振子天线,推挽电路等)之间的变换,又称为平衡-不平衡变换器即Balance-Unbalance,英文将其合并缩写成一个新词Balun,音译为巴伦。
以下文中所提到的平衡器、平衡-不平衡变换器、巴伦,都是指这一类器件。
巴伦在无线电中有着广泛的用途,由于其原理结构多种多样,并且可以互相组合,使得许多朋友在自制巴伦时有无从下手的感觉,哪种结构适合?如何选择材料?如何计算制作参数?如何衡量巴伦的性能?对于我们业余爱好者,主要就是用在天线的馈电和高频功放中,完成平衡-不平衡及阻抗变换的作用,工作在短波1.8MHZ~30MHZ,并要求取材和制作容易。
结合我对巴伦的认识理解,认为传输线结构的巴伦,更适合短波通信,其性能好、取材方便、制作容易,但其理论不易理解,造成很多朋友将其搞成了磁耦合变压器结构,出现频带窄、功率容量小、驻波不平坦的问题,结果当然达不到传输线变换器的效果。
下面就我个人对传输线变换器的粗浅理解,简单描述一下做巴伦的情况,如需要更深入的了解可以参考有关文献资料,有不当之处,还请各位前辈指正,谢谢!二、传输线平衡器(巴伦)的简单原理平衡器有很多种,按平衡条件可以分为四大类:扼流式(扼制不平衡电流)、对称式(对地阻抗平衡)、倒相式(电压倒相)、磁耦合式(电流共扼)。
我这里主要描述一下基于传输线变换器的平衡-不平衡变换,同时具备阻抗变换作用的巴伦,兼有扼流式和磁耦合式的特征。
传输线变换器的结构如上图,它是在高频磁环上缠绕一组或几组传输线,利用不同的连接方法来完成阻抗变换和平衡-不平衡变换作用。
能量从变换器的始端到终端是通过传输线的分布电容、分布电感以及电磁能量交换的形式来传送的,这和通常的绕匝变压器不同,它克服了绕匝变压器在高频时由于线圈的分布电容所带来的不利影响,改善了高频特性。
一文看懂巴伦(功能原理、性能参数、基本类型)
⼀⽂看懂巴伦(功能原理、性能参数、基本类型)概述巴伦 (英语为“balun”,由balanced (平衡)”的前三个字母“bal”与“unbalanced (不平衡)”的两个字母“un”组合⽽成)为⼀种三端⼝器件,或者说是⼀种通过将匹配输⼊转换为差分输出⽽实现平衡传输线电路与不平衡传输线电路之间的连接的宽带射频传输线变压器。
巴伦的功能在于使系统具有不同阻抗或与差分/单端信令兼容,并且⽤于⼿机和数据传输⽹络等现代通信系统。
功能巴伦具有如下三项基本功能:1. 将电流或电压从不平衡转换⾄平衡2. 通过某些构造进⾏共模电流抑制3. 通过某些构造进⾏阻抗转换(阻抗⽐不等于1:1)巴伦分为多种类型,其中的某些⽤于阻抗转换,还有某些⽤于连接具有不同阻抗的传输线。
阻抗转换巴伦可实现阻抗匹配、直流隔离以及将平衡端⼝与单端端⼝匹配。
共模扼流圈因为可消除共模信号,因此在某种意义上说也是⼀种巴伦。
巴伦⽤于推挽放⼤器、宽带天线、平衡混频器、平衡倍频器及调制器、移相器以及任何需要在两条线路上传输幅度相等且相位相差180度的电路设计。
⽤途巴伦的最常见⽤途为将不平衡信号连⼊⽤于长距离传输的平衡传输线。
与采⽤同轴电缆的单端信令相⽐,采⽤平衡传输线的差分信令受噪声和串扰的影响更⼩,可使⽤更低的电压,⽽且成本效益更⾼。
因此,巴伦可⽤作本地视频、⾳频及数字信号与长距离传输线之间的接⼝。
巴伦的⽤途包括:– ⽆线电及基带视频– 雷达、发射机、卫星– 电话⽹络、⽆线⽹络调制解调器/路由器原理巴伦的理想S 参数如下:S = – S = S = – S S= -∞巴伦的两个输出幅度相等,相位相反:– 在频域中,这表⽰两个输出之间具有180°的相位偏移;– 在时域中,这表⽰⼀个平衡输出的电压为另⼀平衡输出的负值。
此外,两条线路当中的⼀条的导体须明确接地。
举例⽽⾔,平衡线路由电位幅度相等且相位相反的导体构成。
由于微带线和同轴电缆采⽤不同尺⼨的导体,因此可谓不平衡线路。
巴伦的原理以及制作过程
关于巴仑Balun 巴仑Balun是英文“平衡不平衡变换器”缩写的音译。
它的作用除了平衡不平衡变换之外同时还视乎巴仑的形式、结构可以进行1:1、4:1、6:1、9:1、25:1等比值的阻抗转换。
原理是按天线理论偶极天线属平衡型天线而同轴电缆属不平衡传输线若将其直接连接则同轴电缆的外皮就有高频电流流过按同轴电缆传输原理高频电流应在电缆内部流动外皮是屏蔽层是没有电流的这样一来就会影响天线的辐射可以想象成电缆的屏蔽层也参与了电波的辐射。
因此就要在天线和电缆之间加入平衡不平衡转换器把流入电缆屏蔽层外部的电流扼制掉也就是说把从振子流过电缆屏蔽层外皮的高频电流截断。
要达到这样的目的有很多种办法一种是高频开路法在电缆屏蔽层外皮四分之一波长处接一个四分之一波长的套筒等于效四分之一波长的开路线因四分之一波长开路线对该频率视为开路达到截断高频电流的作用这种办法工作带宽窄频率低时四分之一波长套筒就显得很长适合大功率高频率使用。
另一种是抵消法想办法使流入的电流大小相等方向相反而互相抵消应用较多的用磁环三线绕的平衡不平衡转换器就属这种这种频带较宽使用但大功率时受磁环磁饱和的限制适合低频率小功率使用。
再一种是变压器法通过高频变压器实现平衡不平衡转换原理就像推挽输出变压器一样把双向平衡电流变换成但向不平衡电流。
变压器可采用磁心或空心绕成适用大功率使用。
还有一种是抑制法振子经过一高频扼流圈接电缆屏蔽层外皮阻止高频电流流向电缆屏蔽层外皮此法比较简单就是把电缆绕十圈左右绕在磁环上更好空心也没关系一般是频率低绕多几圈频率高小绕几圈。
但抑制效果没有前述几种好因此前面几种多用于专业应用这种业余应用较多。
要记住的是我们只是截断屏蔽层外皮的高频电流并不是截断流向屏蔽层的所有高频电流要这样的话把振子和电缆皮断开就得了高频电流是在屏蔽层的里面流的。
形象一点可以把电缆想象成水管本来应该是水都在水管里流如不加巴伦水不单在水管里流而且有一部分还流到管子的外皮。
巴伦制作方法
巴伦制作方法巴伦是平衡不平衡转换器的英文音译,原理是按天线理论,偶极天线属平衡型天线,而同轴电缆属不平衡传输现,若将其直接连接,贝U同轴电缆的外皮就有咼频电流流过(按同轴电缆传输原理,咼频电流应在电缆内部流动,外皮是屏蔽层,是没有电流的),这样一来, 就会影响天线的辐射(可以想象成电缆的屏蔽层也参与了电波的辐射)因此,就要在天线和电缆之间加入平衡不平衡转换器,把流入电缆屏蔽层外部的电流扼制掉,也就是说把从振子流过电缆屏蔽层外皮的高频电流截断。
要达到这样的目的有很多种办法,一种是高频开路法,在电缆屏蔽层外皮四分之一波长处接一个四分之一波长的套筒(等于效四分之一波长的开路线),因四分之一波长开路线对该频率视为开路,达到截断高频电流的作用,这种办法,工作带宽窄,频率低时四分之一波长套筒就显得很长,适合大功率高频率使用。
另一种是抵消法,想办法使流入的电流大小相等方向相反而互相抵消,应用较多的用磁环三线绕的平衡不平衡转换器就属这种,这种频带较宽,使用但大功率时受磁环磁饱和的限制,适合低频率小功率使用。
再一种是变压器法,通过高频变压器实现平衡不平衡转换,原理就像推挽输出变压器一样,把双向平衡电流变换成但向不平衡电流。
变压器可采用磁心或空心绕成,适用大功率使用。
还有一种是抑制法,振子经过一高频扼流圈接电缆屏蔽层外皮,阻止高频电流流向电缆屏蔽层外皮,此法比较简单,就是把电缆绕十圈左右,绕在磁环上更好,空心也没关系,一般是频率低绕多几圈,频率高小绕几圈。
但抑制效果没有前述几种好,因此前面几种多用于专业应用,这种业余应用较多。
要记住的是我们只是截断屏蔽层外皮的高频电流,并不是截断流向屏蔽层的所有高频电流(要这样的话把振子和电缆皮断开就得了),高频电流是在屏蔽层的里面流的。
形象一点可以把电缆想象成水管,本来应该是水都在水管里流,如不加巴伦,水不单在水管里流,而且有一部分还流到管子的外皮。
巴伦的作用就是防止跑、冒、滴、漏,迫使水都在水管里流,难言之隐,一用了之!1:4巴伦制作空心巴伦比较容易做,40mn直径的PVC管上面双线并绕8圈wmuf MCfiR con.匚Np$CUE|EqUJHO QQZM3 mtJB-wax mflfflUl£33 Ufi3N ffifllinwaxU UU .MCflR. EDNT1E N (**)何磁环做的巴伦,这个图是 1:1的,4: 1用双线并绕,按上面的图接线即可。
巴伦的原理以及制作过程
常会有T V I、T E L-I等R F I。
会改变天线的驻波比。
由于馈线辐射的存在�接近接电台馈线的电视、电话等�质为三条辐射振子的辐射体。
这将会导致天线辐射图的改变�改变馈线的长度就明显劣化�但是馈线外层网线会有电流�馈线外层网线也参与辐射�形成一个实省去常见的倒V天线的巴仑�直接对天线馈电�虽然有时未必会造成驻波比的的谐振在目标频率上的倒V天线的阻抗调整�一般通过改变天线的夹角来实现。
巴仑来说�它只起到不平衡�>平衡变换的作用�它的阻抗比是1:1。
特定高度调整�地网和天线振子夹角的变化也能影响输入阻抗。
对于常见的倒V天线用的直极化的偶极天线等是平衡输入)一般不用巴仑�阻抗匹配主要通过匹配电路来常见电台输出常为不平衡型�常见垂直天线也为不平衡型�如R7000等(垂是防止跑、冒、滴、漏�迫使水都在水管里流�难言之隐�一用了之�不加巴伦�水不单在水管里流�而且有一部分还流到管子的外皮。
巴伦的作用就的里面流的。
形象一点可以把电缆想象成水管�本来应该是水都在水管里流�如所有高频电流�要这样的话把振子和电缆皮断开就得了��高频电流是在屏蔽层要记住的是我们只是截断屏蔽层外皮的高频电流�并不是截断流向屏蔽层的前述几种好�因此前面几种多用于专业应用�这种业余应用较多。
好�空心也没关系�一般是频率低绕多几圈�频率高小绕几圈。
但抑制效果没有流流向电缆屏蔽层外皮�此法比较简单�就是把电缆绕十圈左右�绕在磁环上更还有一种是抑制法�振子经过一高频扼流圈接电缆屏蔽层外皮�阻止高频电心绕成�适用大功率使用。
出变压器一样�把双向平衡电流变换成但向不平衡电流。
变压器可采用磁心或空再一种是变压器法�通过高频变压器实现平衡不平衡转换�原理就像推挽输率时受磁环磁饱和的限制�适合低频率小功率使用。
较多的用磁环三线绕的平衡不平衡转换器就属这种�这种频带较宽�使用但大功另一种是抵消法�想办法使流入的电流大小相等方向相反而互相抵消�应用长套筒就显得很长�适合大功率高频率使用。
巴伦制作方法
巴伦制作方法巴伦是平衡不平衡转换器的英文音译,原理是按天线理论,偶极天线属平衡型天线,而同轴电缆属不平衡传输现,若将其直接连接,则同轴电缆的外皮就有高频电流流过(按同轴电缆传输原理,高频电流应在电缆内部流动,外皮是屏蔽层,是没有电流的),这样一来,就会影响天线的辐射(可以想象成电缆的屏蔽层也参与了电波的辐射)。
因此,就要在天线和电缆之间加入平衡不平衡转换器,把流入电缆屏蔽层外部的电流扼制掉,也就是说把从振子流过电缆屏蔽层外皮的高频电流截断。
要达到这样的目的有很多种办法,一种是高频开路法,在电缆屏蔽层外皮四分之一波长处接一个四分之一波长的套筒(等于效四分之一波长的开路线),因四分之一波长开路线对该频率视为开路,达到截断高频电流的作用,这种办法,工作带宽窄,频率低时四分之一波长套筒就显得很长,适合大功率高频率使用。
另一种是抵消法,想办法使流入的电流大小相等方向相反而互相抵消,应用较多的用磁环三线绕的平衡不平衡转换器就属这种,这种频带较宽,使用但大功率时受磁环磁饱和的限制,适合低频率小功率使用。
再一种是变压器法,通过高频变压器实现平衡不平衡转换,原理就像推挽输出变压器一样,把双向平衡电流变换成但向不平衡电流。
变压器可采用磁心或空心绕成,适用大功率使用。
还有一种是抑制法,振子经过一高频扼流圈接电缆屏蔽层外皮,阻止高频电流流向电缆屏蔽层外皮,此法比较简单,就是把电缆绕十圈左右,绕在磁环上更好,空心也没关系,一般是频率低绕多几圈,频率高小绕几圈。
但抑制效果没有前述几种好,因此前面几种多用于专业应用,这种业余应用较多。
要记住的是我们只是截断屏蔽层外皮的高频电流,并不是截断流向屏蔽层的所有高频电流(要这样的话把振子和电缆皮断开就得了),高频电流是在屏蔽层的里面流的。
形象一点可以把电缆想象成水管,本来应该是水都在水管里流,如不加巴伦,水不单在水管里流,而且有一部分还流到管子的外皮。
巴伦的作用就是防止跑、冒、滴、漏,迫使水都在水管里流,难言之隐,一用了之!1:4巴伦制作空心巴伦比较容易做,40mm直径的PVC管上面双线并绕8圈接线图:其他图纸:磁环做的巴伦,这个图是1:1的,4:1用双线并绕,按上面的图接线即可。
一文看懂巴伦(功能原理、性能参数、基本类型)
一文看懂巴伦(功能原理、性能参数、基本类型)巴伦(英语为balun)为一种三端口器件,或者说是一种通过将匹配输入转换为差分输出而实现平衡传输线电路与不平衡传输线电路之间的连接的宽带射频传输线变压器。
巴伦的功能在于使系统具有不同阻抗或与差分/单端信令兼容,并且用于手机和数据传输网络等现代通信系统。
巴伦具有如下三项基本功能:1. 将电流或电压从不平衡转换至平衡2. 通过某些构造进行共模电流抑制3. 通过某些构造进行阻抗转换(阻抗比不等于1:1)巴伦分为多种类型,其中的某些用于阻抗转换,还有某些用于连接具有不同阻抗的传输线。
阻抗转换巴伦可实现阻抗匹配、直流隔离以及将平衡端口与单端端口匹配。
共模扼流圈因为可消除共模信号,因此在某种意义上说也是一种巴伦。
巴伦用于推挽放大器、宽带天线、平衡混频器、平衡倍频器及调制器、移相器以及任何需要在两条线路上传输幅度相等且相位相差180度的电路设计。
巴伦的最常见用途为将不平衡信号连入用于长距离传输的平衡传输线。
与采用同轴电缆的单端信令相比,采用平衡传输线的差分信令受噪声和串扰的影响更小,可使用更低的电压,而且成本效益更高。
因此,巴伦可用作本地视频、音频及数字信号与长距离传输线之间的接口。
巴伦的用途包括:•无线电及基带视频•雷达、发射机、卫星•电话网络、无线网络调制解调器/路由器巴伦的基本原理巴伦的理想S参数如下:S12 = – S13 = S21 = – S31S11 = -∞巴伦的两个输出幅度相等,相位相反:–在频域中,这表示两个输出之间具有180°的相位偏移;–在时域中,这表示一个平衡输出的电压为另一平衡输出的负值。
此外,两条线路当中的一条的导体须明确接地。
举例而言,平衡线路由电位幅度相等且相位相反的导体构成。
由于微带线和同轴电缆采用不同尺寸的导体,因此可谓不平衡线路。
巴伦的设计目的正是在于解决此类不平衡线路导致的问题——巴伦可在电流以相反相位传输的平衡(或差分)传输线与返回电流经地下传输的不平衡(或单端)传输线之间转换。
巴伦设计知识
传输线平衡器(巴伦)的原理、设计、制作及测试BG1LQX/ceeliu/刘辉一、平衡器(巴伦)的由来平衡器即Balancing Device,其主要作用是完成由单端传输(如:同轴线、微带线等)变换为差分传输(如:半波振子天线,推挽电路等)之间的变换,又称为平衡-不平衡变换器即Balance-Unbalance,英文将其合并缩写成一个新词Balun,音译为巴伦。
以下文中所提到的平衡器、平衡-不平衡变换器、巴伦,都是指这一类器件。
巴伦在无线电中有着广泛的用途,由于其原理结构多种多样,并且可以互相组合,使得许多朋友在自制巴伦时有无从下手的感觉,哪种结构适合?如何选择材料?如何计算制作参数?如何衡量巴伦的性能?对于我们业余爱好者,主要就是用在天线的馈电和高频功放中,完成平衡-不平衡及阻抗变换的作用,工作在短波1.8MHZ~30MHZ,并要求取材和制作容易。
结合我对巴伦的认识理解,认为传输线结构的巴伦,更适合短波通信,其性能好、取材方便、制作容易,但其理论不易理解,造成很多朋友将其搞成了磁耦合变压器结构,出现频带窄、功率容量小、驻波不平坦的问题,结果当然达不到传输线变换器的效果。
下面就我个人对传输线变换器的粗浅理解,简单描述一下做巴伦的情况,如需要更深入的了解可以参考有关文献资料,有不当之处,还请各位前辈指正,谢谢!二、传输线平衡器(巴伦)的简单原理平衡器有很多种,按平衡条件可以分为四大类:扼流式(扼制不平衡电流)、对称式(对地阻抗平衡)、倒相式(电压倒相)、磁耦合式(电流共扼)。
我这里主要描述一下基于传输线变换器的平衡-不平衡变换,同时具备阻抗变换作用的巴伦,兼有扼流式和磁耦合式的特征。
传输线变换器的结构如上图,它是在高频磁环上缠绕一组或几组传输线,利用不同的连接方法来完成阻抗变换和平衡-不平衡变换作用。
能量从变换器的始端到终端是通过传输线的分布电容、分布电感以及电磁能量交换的形式来传送的,这和通常的绕匝变压器不同,它克服了绕匝变压器在高频时由于线圈的分布电容所带来的不利影响,改善了高频特性。
巴伦传输线平衡器巴伦的原理设计制作及测试平衡器巴伦
巴伦传输线平衡器巴伦的原理设计制作及测试平衡器巴伦巴伦传输线平衡器(Balun)是一种用于不平衡线和平衡线之间的信号转换的装置。
它能够将不平衡信号在输入端转换为平衡信号,并在输出端将平衡信号转换为不平衡信号。
巴伦广泛应用于通信系统、射频级电路、天线等领域,以提高信号传输的质量和效率。
巴伦的工作原理是基于亥姆霍兹定理,通过将两个互体缠绕的线圈(通常是一个同轴电缆和一个平衡线圈)作为巴伦的核心。
其中,不平衡信号通过同轴电缆输入,经过巴伦平衡器的平衡线圈,使其在输出端成为平衡信号。
平衡信号经过平衡线圈后,再经过同轴电缆输出为不平衡信号。
巴伦的设计制作涉及到三个主要方面:线圈的设计、平衡线圈与同轴电缆的连接和外壳的设计。
首先,线圈的设计应根据巴伦的应用需求和工作频率进行选择。
通常情况下,线圈的匝数越多,转换效果越好。
根据线圈的设计参数,可以计算得到线圈的物理尺寸和参数。
其次,平衡线圈与同轴电缆的连接需要确保有效的信号传输和接地。
一种常见的连接方式是使用滑动接点,使平衡线圈与同轴电缆的内导体相连,外导体则连接到地面上。
这种连接方式可以提供良好的传输和接地效果。
最后,外壳的设计需要考虑到巴伦的应用环境和保护要求。
通常情况下,巴伦的外壳应具备防水、防尘、抗干扰等功能。
外壳的材料应选择具备良好的绝缘性能和耐用性,如铝合金或塑料。
在制作巴伦时,需要通过实验测试来验证其性能。
测试时可以使用信号发生器输入不同频率的信号,然后通过巴伦进行信号转换,并使用示波器观察输出信号的波形和频谱。
测试结果应与设计要求相符,说明巴伦的性能良好。
总结来说,巴伦传输线平衡器是一种用于不平衡线和平衡线之间的信号转换装置。
它通过亥姆霍兹定理的原理,在输入端将不平衡信号转换为平衡信号,在输出端将平衡信号转换为不平衡信号。
巴伦的设计制作需要考虑线圈的设计、平衡线圈与同轴电缆的连接和外壳的设计。
通过实验测试,可以验证巴伦的性能是否符合设计要求。
巴伦电路的工作原理
巴伦电路的工作原理
巴伦电路利用电容和电感的相互作用来实现信号的滤波和频率选择。
在巴伦电路中,电容和电感被连接在一起,形成一个共振电路。
当电路中的电容和电感达到共振频率时,电路的阻抗达到最小值,从而形成特定的频率响应。
巴伦电路的特点是可以实现高品质因数和较陡的频率响应,因此在无线电和音频系统中广泛应用。
巴伦电路可以被用于设计低通滤波器、带通滤波器和高通滤波器等,同时也可以被用于选频放大器和振荡器的设计。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据以上计算结果,制作的传输线巴伦,基本可以达到预期的效果,但在实际制作中由于选材和制作工艺的差异,会有些出入,请大家依据自己的实际情况适当增减圈数就应该可以达到要求,一般磁环不用试来试去的,这里推荐大家主要选择以下三种常用规格,基本可以满足大部分做天线巴伦的需要。
NH2246:200W以下,频带偏高些(6MHz~30MHz),外形22X11X5
传输线平衡器(巴伦)的原理、设计、制作及测试
一、平衡器(巴伦)的由来
平衡器即Balancing Device,其主要作用是完成由单端传输(如:同轴线、微带线等)变换为差分传输(如:半波振子天线,推挽电路等)之间的变换,又称为平衡-不平衡变换器即Balance-Unbalance,英文将其合并缩写成一个新词Balun,音译为巴伦。以下文中所提到的平衡器、平衡-不平衡变换器、巴伦,都是指这一类器件。
三、传输线平衡器(巴伦)计算软件的使用
基于前述原理,可以给出若干相关的计算公式,但计算是一个试算-调整参数-再算-再调整,反反复复多次寻找最适合结果的过程,同时对磁芯的各项参数都要熟悉,因此,我结合自己对传输线变换器的理解和巴伦的特点以及对磁芯的了解,试写了一个用于计算传输线巴伦的小软件,希望能解决手工计算的麻烦。
四、传输线平衡器(巴伦)的制作实例
例1:最低工作频率1.8MHZ,最高工作频率40MHZ,
最大功率:1000W,电压比1:1,即阻抗比1:1
将以上参数输入,试绕匝数按缺省的10,随便先选择一款磁环如:NH2246(外径22mm的磁环),“计算”后,建议“增加圈数”,
将试绕匝数改为18,“计算”后,建议“减少圈数”,按平衡条件可以分为四大类:扼流式(扼制不平衡电流)、对称式(对地阻抗平衡)、倒相式(电压倒相)、磁耦合式(电流共扼)。我这里主要描述一下基于传输线变换器的平衡-不平衡变换,同时具备阻抗变换作用的巴伦,兼有扼流式和磁耦合式的特征。
传输线变换器的结构如上图,它是在高频磁环上缠绕一组或几组传输线,利用不同的连接方法来完成阻抗变换和平衡-不平衡变换作用。能量从变换器的始端到终端是通过传输线的分布电容、分布电感以及电磁能量交换的形式来传送的,这和通常的绕匝变压器不同,它克服了绕匝变压器在高频时由于线圈的分布电容所带来的不利影响,改善了高频特性。此外,每对传输线的两导线电流的幅度相等方向相反,因而他们在磁芯中产生的磁通相互抵消,这样磁芯的损耗很小,即使磁芯截面积很小,也具有较大的功率容量。所以,它具有频带宽、体积小、功率容量大等优点,
将试绕匝数改为17,“计算”后,建议“更换磁环”。
更换磁环为NH4578,“计算”后,试绕匝数为8,获得满足条件的结果。
例2:最低工作频率1.5MHZ,最高工作频率50MHZ
最大功率:500W,电压比1:2,即阻抗比1:4
例3:最低工作频率6MHZ,最高工作频率30MHZ
最大功率:200W,电压比1:3,即阻抗比1:9
经过反复计算得到的结果是一个传输线变换基本单元的数据(磁环编号,穿绕匝数),然后根据所需巴伦的阻抗变换比(电压比的平方=阻抗比),选择适当接线结构,软件中给出了部分常用的电压比的结构图供参考,右上方的按钮上的是电压比,图中写出了相应的阻抗比。
另外请注意,本软件在计算最大磁通时是按最差情况估算的,实际承受的功率要高的多,共模抑制是按不小于20db计算的,即不平衡功率<1%,这两项约束条件体现在共模阻抗和最大磁通,可以根据自己的需要选择,而不必理会给出的建议,但若不知道如何选择,还是按建议调整计算为好。插损、驻波和带宽与穿绕匝数和线径有一定影响,需要在实际试制中加以考虑。还有就是只能以我提供的磁环进行计算,其他磁环没有详尽的特性参数,无法给与计算。
NH3158:中高功率,频带覆盖宽(1MHz~50MHz),外形31X18X7
传输线变换器在低频端可以等效为传统的低频变换器,其低频响应的恶化是由于传输线两导体之间由于磁化电感引起的并联电纳,它决定了变换器的最低工作频率。
在高频端它是具有一定特征阻抗的传输线,为避免产生任何谐振现象,特别是对于复数负载,它会引起实质上的幅度波动增加,传输线的长度不超过上限频率波长的八分之一,过短低频特性会变差。
为了选择用于RF变换的磁芯,需要知道磁芯的饱和磁通和它的非线性特性,按最低工作频率的最大功率计算最大磁通密度。
既然是用传输线变换器做平衡-不平衡变换,那么在平衡端含有的不平衡分量的多少,就是平衡-不平衡变换的重要指标,可以用类似电路中的共模信号和差模信号来描述不平衡信号和平衡信号,那就可以用共模抑制比来描述这个指标了,我觉得也可以称做不平衡抑制。它即受阻抗变换比例的影响,也受共模电感量的影响。
软件运行后出现如图窗口,请输入所设计的传输线巴伦的最高工作频率、最低工作频率、最大功率并选择一款磁环和试绕匝数,磁环编号中前两位数字是磁环的外径后两位代表不同性能的磁材,第一次计算可以随便选择一个,试绕匝数也可以随便写个整数,如10,然后点击“计算”按钮,右下角会根据计算的结果给出需要调整的参数,调整后继续计算,直到获得满意的结果,如果始终不能获得有意义的结果,则可能是频率覆盖范围太宽,或功率太大,适当降低一些在试试。