高频电子线路重点

合集下载

高频电子电路复习要点

高频电子电路复习要点

《高频电子线路》
(2)、放大器的频率特性
A 1 N ( jf ) A 0 1 jQ 2f e f0
A N( f ) Ao 1 2fQe 2 1 ( ) f0
图2.2.7 放大器的谐振曲线
2.2.2
《高频电子线路》
(3)放大器的通频带
BW0.7 f1 f2 f0 Qe
《高频电子线路》
发射机的组成框图
0.2
《高频电子线路》
典型的接收机框图(超外差式)
0.2
《高频电子线路》
无线电信号的传播 1、无线电波的划分
超长波 10km-30km
无线电波划分为
长 波 中 波
短 波 超短波
1km-10km 100m-1km
10m—100m 0.3mm-10m
2、无线电波的传播方式
2f ) fo
1.1.1
《高频电子线路》
Байду номын сангаас
1.1.1
《高频电子线路》
通频带: BW0.7 f 2 - f1 f 0 Q0 矩形系数:
BW0.1 K 0.1 99 BW0.7
K0.1 = 1
通常理想情况下
1.1.1
《高频电子线路》
串联谐振回路
阻抗
谐振频率
1 Z S r j ( L ) C
(2)波形图
VAM (t ) Vcm (1 M a cos t )cos ct
4.1.1
《高频电子线路》
(3)频谱图:
VAM (t ) Vcm (1 M a cos t )cos ct
M aVcm AM (t ) Vcm cos ct cos(c )t cos(c )t 2

高频电子线路重点..

高频电子线路重点..

高频电子线路重点内容第一章1.1通信与通信系统1. 信息技术两大重要组成部分——信息传输和信息处理信息传输的要求主要是提高可靠性和有效性。

信息处理的目的就是为了更有效、更可靠地传递信息。

2. 高频的概念所谓“高频”,广义上讲就是适于无线电传播的无线电频率,通常又称为“射频”。

一、基本概念1. 通信:将信息从发送者传到接收者的过程2. 通信系统:实现传送过程的系统3. 通信系统基本组成框图信息源是指需要传送的原始信息,如语言、音乐、图像、文字等,一般是非电物理量。

原始信息经换能器转换成电信号(称为基带信号)后,送入发送设备,将其变成适合于信道传输的信号,然后送入信道。

信道是信号传输的通道,也就是传输媒介。

有线信道,如:架空明线,电缆,波导,光纤等。

无线信道,如:海水,地球表面,自由空间等。

不同信道有不同的传输特性,同一信道对不同频率信号的传输特性也是不同的。

接收设备把有用信号从众多信号和噪声中选取出来,经换能器恢复出原始信息。

4.通信系统的分类按传输的信息的物理特征,可以分为电话、电报、传真通信系统,广播电视通信系统,数据通信系统等;按信道传输的信号传送类型,可以分为模拟和数字通信系统;而按传输媒介(信道)的物理特征,可以分为有线通信系统和无线通信系统。

二、无线电发送与接收设备1. 无线通信系统的发射设备(1)振荡器:产生f osc 的高频振荡信号,几十 kHz 以上。

(2)高频放大器:一或多级小信号谐振放大器,放大振荡信号,使频率倍增至f c,并提供足够大的载波功率。

(3)调制信号放大器:多级放大器组成,前几级为小信号放大器,用于放大微音器的电信号;后几级为功放,提供功率足够的调制信号。

(4)振幅调制器:实现调幅功能,将输入的载波信号和调制信号变换为所需的调幅波信号,并加到天线上。

2. 无线通信系统的接收设备(1)高频放大器:由一级或多级小信号谐振放大器组成,放大天线上感生的有用信号;并利用放大器中的谐振系统抑制天线上感生的其它频率的干扰信号。

高频电子线路总复习课件

高频电子线路总复习课件

混频器特点
混频器的主要特点是能够 将输入信号的频率进行变 换,从而得到所需的输出 信号。
混频器应用
混频器在通信、雷达、导 航、测量等领域有着广泛 的应用。
调制解调器的分类与特点
调制解调器分类
按照调制方式,调制解调器可以 分为调频解调器、调相解调器和
调幅解调器等。
调制解调器特点
调制解调器的特点是能频信号解调出低频信号。
详细描述
高频电子线路通常是指工作频率在数百兆赫兹甚至数千兆赫兹以上的电子线路,其信号频率远高于普 通低频电子线路。由于信号频率较高,高频电子线路的信号幅度通常较小,同时信号波形变化较快。 这些特点对高频电子线路的设计和实现提出了特殊的要求。
高频电子线路的应用与发展
总结词
高频电子线路广泛应用于通信、雷达、导航、广播等领域,随着科技的发展,高频电子 线路的应用范围不断扩大,技术水平也不断提高。
高频电子线路的基本元件与电路
要点一
总结词
要点二
详细描述
高频电子线路的基本元件包括电阻、电容、电感等,其电 路形式包括振荡电路、滤波电路、放大电路等。
在高频电子线路中,常用的基本元件包括电阻、电容、电 感等。这些元件在高频电路中的性能与低频电路有所不同 ,因此在设计高频电路时需要考虑这些元件的高频特性。 高频电子线路的电路形式包括振荡电路、滤波电路、放大 电路等,这些电路在高频率下具有不同的性能特点,适用 于不同的应用场景。
通信系统
用于产生本机振荡信号,提供调制和解调所需的 载波信号。
测量仪器
作为信号源,提供标准频率和时间基准,广泛应 用于频谱分析仪、示波器等测量仪器中。
控制系统
用于产生时钟信号或脉冲信号,控制系统的时序 逻辑和运行状态。

基础知识-高频电子线路

基础知识-高频电子线路
高频电子线路的稳定性和可靠性对于 雷达系统的探测精度和抗干扰能力至 关重要。
卫星通信系统中的高频电子线路
卫星通信系统中的高频电子线路主要负责信号的发射和 接收。
同时,高频电子线路也负责接收卫星转发器下行的信号, 进行变频和放大后发送给地面终端。
在卫星转发器中,高频电子线路将地面终端发射的信号 进行变频和放大,再通过天线发射到卫星上。
高频电子线路的性能直接影响到卫星通信系统的覆盖范 围和传输质量。
THANKS FOR WATCHING
感谢您的观看
基础知识-高频电子线路
目录
• 高频电子线路概述 • 高频电子线路基础知识 • 高频电子线路基本元件 • 高频电子线路中的噪声与干扰 • 高频电子线路的设计与优化 • 高频电子线路的应用实例
01 高频电子线路概述
高频电子线路的定义与特点
定义
高频电子线路是指工作频率在较 高频率范围的电子线路,通常指 工作频率在10kHz以上的电子线 路。
特点
高频电子线路具有较高的工作频 率,信号传输速度快,信号失真 小,能够实现信号的高效传输和 处理。
高频电子线路的应用领域
通信领域
高频电子线路广泛应用于 通信领域,如无线通信、 卫星通信、移动通信等。
雷达与导航领域
雷达与导航系统需要高 频电子线路来实现信号 的发射、接收和处理。
广播与电视领域
广播和电视信号的传输 和处理需要高频电子线
集成电路技术
集成电路技术的发展使得高频电子线 路能够更加紧凑和高效地实现各种功 能。
02 高频电子线路基础知识
信号与系统
信号的分类
信号可以根据其特性分为连续信 号和离散信号。连续信号在时间 上连续变化,而离散信号在时间

高频电子线路考试重点

高频电子线路考试重点

阻抗变换:Q=||||p p s S X R R X =s p R Q R )1(2+=;s p X QX )11(2+= 并联LC 谐振回路:回路总导纳:)1(0LC j g Y e ωω-+= 谐振频率:LCf π210=回路空载Q 值:000001e e g CLg Q ωω==通频带:07.0Q f BW =矩形系数:7.01.01.0BW BW K =串联LC 谐振回路:回路总阻抗:)1(CL j r Z ωω-+= 谐振频率:LCf π210=回路空载Q 值:Cr rLQ 0001ωω==通频带:07.0Q f BW =矩形系数:7.01.01.0BW BW K =有载e Q 值:Lg Q e 01ω∑=(并联);eQ f BW 07.0=变压器阻抗变换:接入系数n (次级比初级,次级向初级变换)L L R nR 21'=电容分压式:211C C C n +=;L L R nR 21'=电感分压式:212L L L n +=;L L R nR 21'=L 型选频匹配:(Rs>RL)11-=L S S R R R C ω;1-=LSL R R R L ω (Rs<RL)11-=S L L R R R C ω;1-=SLS R R R L ω高频小信号放大:(将负载和晶体管均匹配到LC 并联谐振回路中分析)谐振回路总导纳:ie e L y n Lj C j g Y 220)1(+++=ωω电压放大倍数:Lj C j g y n n A feu ωω121++-=∑∑谐振电压放大倍数:∑-=g y n n A feu 21谐振回路总电导:02221e ie oe g g n g n g ++=∑谐振回路总电容:C C n C n C ie oe ++=∑2221 谐振频率:∑=LC f π210有载Q 值:∑∑∑==g C Lg Q e 001ωω通频带带宽:e Q f BW 07.0==∑∑C g π2 多级单调谐放大器:总电压增益:un u u u A A A A ...21= n 级通频带:7.0112BW BW n n ⋅-=展宽放大器频带的方法:1.组合电路法 2.负反馈法 3.电感串并联补偿法丙类(on BB U U <)谐振功率放大电路: 导通角:bmonBB U U U -=arccosθ)cos 1(θ-=g I U cmbm (g 为晶体管受控电流源系数)分解系数:)cos 1(cos sin )(0θπθθθθα--=;)cos 1(cos sin )(1θπθθθθα--=集电极电流分量:)(00θαCm C I I = ; )(11θαCm m C I I =效率:CC C cm m c c U I U I 0121=η 输出功率:∑=R I P Cm )(212120θα负载特性:随着∑R 的逐渐增大,动态线斜率逐渐减小,由欠压状态-临界状态-过压状态,在临界状态时,输出功率最大,集电极效率接近最大,为最佳工作状态。

高频电子线路(知识点整理).doc

高频电子线路(知识点整理).doc

高频电子线路(知识点整理).doc
高频电子线路是指在射频或超高频范围内工作的电子线路,通常涉及到信号的传输、
处理和放大。

这种电子线路在通信、雷达、卫星通信、无线电等领域中被广泛应用,它有
着复杂的工作原理和设计技术。

下面就是对于高频电子线路的几个知识点整理和介绍。

1.谐振器:谐振器是高频电子线路中经常用到的一个组件,其作用是让电路产生特定
的共振频率,以便信号能够在电路中传输。

谐振器通常由其结构和材料决定,比如管型谐
振器、光纤谐振器、奇异谐振器等。

2.混频器:混频器是将两个输入频率进行混合,产生出一个输出频率的高频电子组件。

混频器主要用于转换信号的频率和增强信号的强度,比如在雷达和无线电通信中,混频器
通常用于将信号从中频转换到基带。

3.射频放大器:射频放大器是一种将低功率信号转化为高功率信号的电子器件,主要
用于放大和传输高频信号。

射频放大器的工作原理是通过对输入信号进行放大使得输出信
号的功率增大,它可以是单通道或多通道的,通常由功率放大器、隔离器等组成。

4.发射机:发射机是将信号转换成无线电波并进行发送的高频电子设备。

发射机通常
包括调制器、调谐器、放大器、射频发生器、天线等组件。

它主要将信号转化成无线电波
传输到接收机,以便实现通信或雷达探测等功能。

以上就是对于高频电子线路的几个知识点简要介绍,高频电子线路在通信、雷达、卫
星通信、无线电等领域中轮廓巨大,其涉及到很多的基础理论和设计技术,需要深入钻
研。

高频电子线路重点知识总结3

高频电子线路重点知识总结3

第一章绪论1.1 主要设计内容1. 无线通信系统的组成2. 无线通信系统的类型3. 无线通信系统的要求和指标4. 无线电信号的主要特性1.2 关键名词解释1. 基带信号:未调制的信号2. 调制信号:调制后的信号3. 载波:单一频率的正弦信号或脉冲信号4. 调制:用调制信号去控制高频载波的参数,是载波信号的某一个或者几个参数(振幅、频率或相位)按照调制信号的规律变化。

1.3 知识点1. 无线通信系统的组成(P1框图)详细了解一下无线通信系统的促成部分和每个部分的作用1)高频振荡器(信号源、载波信号、本地振荡信号)2)放大器(高频小信号放大器及高频放大器)3)混频和变频(高频信号变换和处理)4)调制和解调(高频信号变换和处理)2. 无线通信系统的分类1)按照工作频率和传输手段分为:中波信号、短波信号、超短波信号、微波信号、卫星通信2)按照通信方式分:全双工、半双工、单工方式3)按照调制方式分:调幅、调频、调相、混合调制4)按照传输发送信息的类型:模拟通信、数字通信3. 无线信号的特性:时间特性、频率特性、频谱特性、调制特性、传播特性4. 无线通信采用高频信号的原因:1) 频率越高,可利用的频带宽度越宽,可以容纳更多许多互不干扰的信道,实现频分复用或频分多址,方便某些宽频带的消息信号(如图像信号 2) 同时适合于天线辐射和无线传播。

5. 调制的作用:1) 通过调制将信号频谱搬至高频载波频率,使收发天线的尺寸大可缩小 2) 实现信道的复用,提高信道利用率。

第二章 高频电路基础与系统问题2.1 主要设计内容1. 高频电路中的元器件2. 高频率电路中的组件2.2 关键名词解释1. 参数效应:在高频信号中,随着信号的提高,元件(包括导线)产生的分布参数效应和由此产生的寄生参数(如导体间、导体或元件与地之间、元件之间的杂散电容,连接元件的导线的垫高和元件自身的寄生电感)。

2. 趋肤效应:在频率升高时,电流只集中在导体的表面,导致有效导电面积减小,交流电阻可能远大于直流电阻,从而是导体损耗增加,电路性能恶化。

高频电子线路

高频电子线路
图2.2.3 双口网络
2.2.1
I1 (S ) y11 V1 V 0 2 y I1 ( S ) 12 V2 V 0 1
I1 y11V1 y12V2 I 2 y21V1 y22V2
y21 y22
《高频电子线路》
I2 V1 I2 V2
《高频电子线路》
第二章
本章重点:
高频小信号放大器
高频小信号谐振放大器的工作原理及
性能指标计算。 难 点:谐振放大器的性能分析。
《高频电子线路》
2.1
概述
一、高频放大器的作用与分类
高频放大器的作用:放大高频信号。
工作频率范围:(300K-300M)Hz 。 高频放大器的分类 1、按信号大小分: 高频功率放大器,(大信号,通常用于发射机中); 高频小信号放大器(接收机前端的主要部分); 2、按负载分 谐 振 放大器:LC谐振回路作负载。 非谐振放大器:以传输线变压器作负载。
3. 最高振荡频率fmax
晶体管的功率增益 GP 1时的最高工作频率。
f ≥fmax后, Gp<1,晶体管已经不能得到功率放大。
由于晶体管输出功率恰好等于其输入功率是保证它作为 自激振荡器的必要条件,所以也不能使晶体管产生振荡。
频率参数的关系:f T fβ
《高频电子线路》
2.2.2
单管单调谐放大器
图解分析
B ib + ube - ic + uce - C B + ube - ib rbe
β ib
ic
C + uce -
E (a) 三极管
E (b) 三极管的微变等效电路
《高频电子线路》
放大电路:

高频电子线路要点

高频电子线路要点

高频电子线路第一章高频电路基础1.基本内容高频电路基本上是由无源元件、有源器件和无源网络组成的。

高频电路中使用的元器件与低频电路中使用的元器件频率特性是不同的。

高频电路中无源线性元件主要是电阻(器)、电容(器)和电感(器)。

掌握本章内容是非常重要的。

2.基本要求(1) 充分了解高频电路基本元件。

(2) 掌握电阻(器)、电容(器)和电感(器)的物理特性 ,等效电路和电阻(器)、电容(器)和电感(器)。

电阻(器)、电容(器)和电感(器)与基本计算方法。

第一节高频电路中的元器件一、高频电路中的元件(一)电阻一个实际的电阻器,在低频时主要表现为电阻特性,但在高频使用时不仅表现有电阻特性的一面, 而且还表现有电抗特性的一面。

电阻器的电抗特性反映的就是其高频特性。

一个电阻 R 的高频等效电路如图 1—1 所示 , 其中,C R 为分布电容, L R 为引线电感,R 为电阻。

图 1—1 电阻的高频等效电路(二)电容由介质隔开的两导体构成电容。

一个理想电容器的容抗为 1/(j ωC), 电容器的容抗与频率的关系如图 1—2(b)虚线所示, 其中 f 为工作频率,ω =2πf 。

一个实际电容 C 的高频等效电路如图 1—2(a) 所示, 其中 Rc 为损耗电阻, Lc 为引线电感。

容抗与频率的关系如图 1—2(b)实线所示, 其中f为工作频率,ω =2πf 。

图 1 — 2 电容器的高频等效电路(a) 电容器的等效电路 ; ( b )电容器的阻抗特性(三)电感理想高频电感器L的感抗为jωL,其中ω为工作角频率。

实际高频电感器存在分布电容和损耗电阻,自身谐振频率SRF。

在SRF上,高频电感阻抗的幅值最大,而相角为零,特性如图1—3所示。

图1—3高频电感器的自身谐振频率SRF二、高频电路中的有源器件(一)二极管半导体二极管在高频中主要用于检波、调制、解调及混频等非线性变换电路中。

(二)晶体管与场效应管(FET)在高频中应用的晶体管仍然是双极型晶体管和各种场效应管,在外形结构方面有所不同。

高频电子线路重点

高频电子线路重点

高频电子线路重点————————————————————————————————作者:————————————————————————————————日期:高频电子线路重点内容第一章1.1通信与通信系统1. 信息技术两大重要组成部分——信息传输和信息处理信息传输的要求主要是提高可靠性和有效性。

信息处理的目的就是为了更有效、更可靠地传递信息。

2. 高频的概念所谓“高频”,广义上讲就是适于无线电传播的无线电频率,通常又称为“射频”。

一、基本概念1. 通信:将信息从发送者传到接收者的过程2. 通信系统:实现传送过程的系统3. 通信系统基本组成框图信息源是指需要传送的原始信息,如语言、音乐、图像、文字等,一般是非电物理量。

原始信息经换能器转换成电信号(称为基带信号)后,送入发送设备,将其变成适合于信道传输的信号,然后送入信道。

信道是信号传输的通道,也就是传输媒介。

有线信道,如:架空明线,电缆,波导,光纤等。

无线信道,如:海水,地球表面,自由空间等。

不同信道有不同的传输特性,同一信道对不同频率信号的传输特性也是不同的。

接收设备把有用信号从众多信号和噪声中选取出来,经换能器恢复出原始信息。

4.通信系统的分类按传输的信息的物理特征,可以分为电话、电报、传真通信系统,广播电视通信系统,数据通信系统等;按信道传输的信号传送类型,可以分为模拟和数字通信系统;而按传输媒介(信道)的物理特征,可以分为有线通信系统和无线通信系统。

二、无线电发送与接收设备1. 无线通信系统的发射设备(1)振荡器:产生f osc 的高频振荡信号,几十 kHz 以上。

(2)高频放大器:一或多级小信号谐振放大器,放大振荡信号,使频率倍增至f c,并提供足够大的载波功率。

(3)调制信号放大器:多级放大器组成,前几级为小信号放大器,用于放大微音器的电信号;后几级为功放,提供功率足够的调制信号。

(4)振幅调制器:实现调幅功能,将输入的载波信号和调制信号变换为所需的调幅波信号,并加到天线上。

高频电子线路重点终极版

高频电子线路重点终极版

如果您需要使用本文档,请点击下载按钮下载!127.02ωωω-=∆ 高频电子线路重点第二章 选频网络一. 基本概念:所谓选频(滤波),就是选出需要的频率分量和滤除不需要的频率分量。

阻抗=电阻+j 电抗;电抗(X)=容抗+感抗 二.串联谐振电路 1. 谐振条件(电抗) ;谐振频率: ,此时|Z|最小=R ,电流最大2.当w<w 0时,X<0阻抗是容性;当w=w 0时,X=0阻抗是纯阻性;当w>w 0时,X>0阻抗是感性;3.回路的品质因素数 ,增大回路电阻,品质因数下降,谐振时,电感和电容两端的电压模值大小相等,且等于外加电压的Q 倍。

特性阻抗4.谐振曲线:回路电流与谐振时回路电流之比 (幅频),品质因数越高,谐振时的电流越大,比值越大,曲线越尖,选频作用越明显,选择性越好5.失谐量△w=w-w 0,当w 和w 0很相近时,ξ=X/R=Q ×2△w/w 0是广义失谐,回路电流与谐振时回路电流之比 6.当外加电压不变,w=w 1=w 2时,其值为1/√2,w 2-w 1为通频带,w 2,w 1为边界频率/半功率点,广义失谐为±17. ,品质因数越高,选择性越好,通频带越窄8.通频带绝对值 (串并联一样)通频带相对值 9.相位特性 Q 越大,相位曲线在w 0处越陡峭 三. 并联谐振回路1.一般无特殊说明都考虑wL>>R ,Z 反之w p =√[1/LC-(R/L)2]=1/√RC ·√1-Q 22.Y(导纳)= 电导(G)= 电纳(B)= . 特性阻抗3.谐振时 ,回路谐振电阻4.品质因数 (并联电阻减小品质因数下降通频带加宽,选择性变坏)5.当w<w p 时,B<0呈感性;当w=w p 时,B=0呈纯阻性;当w>w p 时,B>0呈容性。

电感和电容支路的电流等于外加电流的Q 倍,相位相反 6.信号源内阻和负载电阻的影响由此看出,考虑信号源内阻及负载电阻后,品质因数下降,并联谐振回路的选择性变坏,通频带加宽。

高频电子线路重点公式总结

高频电子线路重点公式总结

单边带
(上边带)uSSB =
不失真条件
R LCL ≤
1 maU cm cos(ω c + Ω)t 2 2 1 − ma
2πFmax ma
调频波与调相波的比较 调制信号
u Ω (t ) = U Ωm cos Ωt
载波信号
u c (t ) = U cm cos ω c t
调频信号 瞬时角频率
调相信号
ω (t ) = ω c + k f u Ω (t )
∆f = f − f 0
相对准确度
f − f 0 ∆f ∆f = ( 称为相对频率准确度或相对频率偏差) f0 f0 f0
∆f max / 时间间隔 f0
振荡频率的稳定度= 电容三点式振荡器 振荡频率 f 0 振荡反馈系数
f0 ≈ f p =
1 2π LC
其中 C =
C1C 2 C1 + C 2
&= U & /U & = −C1 / C2 F f o
1 ) RC
相频特性
ω ω0 ω0 ω ϕ F = − arctan 3
调幅波的基本性质 低频调制信号 高频载波信号 调幅信号
u Ω (t ) = U Ωm cos Ωt = U Ωm cos 2πFt u c (t ) = U cm cos ω c t = U cm cos 2πf c t
uAM (t ) = (U Cm + k aU Ωm cos Ωt ) cos ω c t
= U cm (1 + ma cos Ωt ) cos ω c t
调幅系数
ma =
U max − U min U max + U min
双边带

高频电子线路知识点总结

高频电子线路知识点总结
2
互感耦合LC振荡电路
3
三点式LC振荡电路 频率稳定度 晶体振荡器
第三章 正弦波振荡器
非线性器件的基本特性
01
非线性器件的工程分析 幂级数分析法 线性时变电路分析法 开关函数分析法
02
模拟相乘器
03
第四章 频率变换电路基础
AM信号的表达式、波形、频谱、功率分配
01
DSB的表达式、波形、频谱

第一章 高频小信号谐振放大器
信号源内阻及负载对LC回路的影响
LC阻抗变换网络 串并阻抗等效互换 变压器阻抗变换电路 部分接入回路的阻抗变换
第一章 高频小信号谐振放大器
高频小信号调谐放大器 特点、电路结构、晶体管等效模型、高频参数、性能参数分析(输入输出导纳、电压增益、功率增益)
谐振放大器的稳定性(定义、方法)
02
振幅调制电路
03
解调(性能指标计算)
04
混频(原理、与调制和检波的关系)
05
第五章 振幅调制、解调及混频
解调频(鉴频特性曲线)
3
调角信号的表达式、波形、频谱、带宽
1
调频电路
2
第六章 角度调制与解调
电噪声(电阻热噪声的计算)
第一章 高频小信号谐振放大器
工作原理(电路结构、iC的傅立叶分析、电压与电流波形图、功率和效率)
1
动态分析(动态特性曲线、负载特性、调制特性、放大特性)
2
实用电路(直流馈电电路、滤波匹配网络)
3
第二章 高频功率放大器
1
工作原理(方框图、振荡条件、判断) LC正弦波振荡电路
高频电子线路的定义、高频的范围 现代通信系统由哪些部分组成?各组成部分的作用是什么? 发送设备的任务? 无线通信为什么要进行调制? 接收设备的任务? 超外差接收机结构有什么特点?

高频电子线路-课程学习重点

高频电子线路-课程学习重点

课程学习重点(注:★表示重点要求内容△表了解性内容 * 表示不作要求内容)1.绪论★通信系统概述;★信号与频谱、电磁波及其频段划分;★非线性电子线路的基本概念。

2.谐振与小信号选频放大器★LC谐振回路选频特性分析;★阻抗变换网络;★选频电路的计算与设计。

△高频小信号放大器;△集成谐振放大器;3.高频功率放大器★谐振功放的电路组成及工作原理;★能量关系△谐振功放的动特性曲线的由来;△工作状态的分类;★负载特性;△其它参数对功放性能的影响。

* 谐振功放的高频特性★谐振功放直流馈电电路;△输出匹配网络;△实用电路。

△高效率高频功放及频率合成技术:△传输线变压器的基本特性;△几种常用传输线变压器;△宽频带功率合成技术。

△倍频器的功能;△丙类倍频器的组成及特点。

4.正弦波振荡器★反馈振荡器的工作原理:★平衡条件;★起振条件;★稳定条件。

★三点式LC 振荡器的组成原则;△电路分析;△其它LC振荡器电路分析;* 振荡器频率稳定的意义和表征;* 振荡器振荡器的稳频原理与措施。

△石英晶体的电特性;★晶体振荡器的电路分析。

* 负阻振荡器的典型电路及分析。

* 振荡器中的几种现象分析:寄生振荡;间歇振荡现象。

5.噪声与高频小信号放大器* 电子噪声的产生机理及分类;* 电子噪声与噪声系数;* 衡量噪声大小的计算方法。

* 晶体管的共发射极混合π参数等效电路、y 参数等效电路。

△小信号谐振放大器的组成、功能与性能指标。

* 集中选频放大器的组成及原理;几种滤波器的电路形式及电气性能。

6.振幅调制及解调★连续波调制的概念;△脉冲调制的概念。

★振幅调制信号的分类及各类调幅信号的表达方式。

★调幅信号的产生方法;★几种振幅调制电路的组成、工作原理及电路分析。

★调幅信号的解调方法:★包络检波器、同步检波器、模拟乘法器解调器的组成、工作原理及电路分析。

7.混频★变频器的功能、原理框图及性能指标。

★三极管混频器的典型电路、变频原理、工作状态的选择及实际电路。

高频电子线路知识点

高频电子线路知识点

高频电子线路知识点高频电子线路在现代通信和无线电技术中起着至关重要的作用。

它们被广泛应用于手机、无线电、卫星通信、雷达等设备中。

理解高频电子线路的基本原理和常见知识点是从事相关领域工作的基础。

本文将介绍一些高频电子线路的重要知识点。

1. 传输线理论传输线是高频电子线路中常用的元件,它用于将信号从发射端传输到接收端。

了解传输线的特性对于设计和分析高频电子线路至关重要。

传输线理论涉及电缆、微带线和同轴电缆等不同类型的传输线。

了解它们的特性阻抗、传播常数和损耗等等是必要的。

2. 双端口网络理论双端口网络是高频电子线路中用于表示电路、分析和设计的重要工具。

双端口网络表示复杂电路的传输特性,如滤波器、功率放大器等。

对双端口网络的理解包括参数矩阵、S参数和Y参数等。

这些参数描述了双端口网络的敏感度和功率传输性能。

3. 高频电源和信号分布在高频电子线路中,电源和信号分布是必不可少的。

了解高频电源的供电要求和电容、电感元件的选择是保证电路功能稳定和性能优异的关键。

同时,信号分布的设计和布线决定了电路中信号的准确传输和最小损耗。

4. 高频放大器设计高频放大器是用于增强电路中信号的电子设备。

设计高频放大器需要考虑信号输入输出的匹配性、增益、稳定性和线性度等因素。

传统的放大器电路设计方法需要和高频电路设计结合起来,通过使用适当的元件和电路结构来提高线路的性能。

5. 射频阻抗匹配在高频电子线路中,阻抗匹配非常重要,以确保信号的能量传输和最小损耗。

对于恒定驻波比的高频线路,正确的阻抗匹配可以使传输更有效。

阻抗匹配的方法包括L型匹配和T型匹配电路等。

6. 射频滤波器设计射频滤波器用于对特定频率范围的信号进行选择性的通过或衰减。

设计和分析射频滤波器需要考虑频率响应、带宽、阻带衰减等参数。

滤波器的类型包括带通滤波器、低通滤波器和高通滤波器等。

7. 射频混频器设计射频混频器是用于将不同频率的信号混合产生新频率的装置。

混频器广泛应用于信号调制和解调、频率合成等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高频1-4章重点2011.12.13阅读(98)
第一章绪论:
1. 为什么要进行调制?
基本语言的频率范围:300~3000Hz音频信号不适合在信道远距离传输,
天线的尺寸与什么有关?
同时传输多路音频信号的需求。

2. 连续波调制的三种方式:AM FM PM
3. 中波广播频率范围535—1605KHz 短波广播频率范围1.6MHz- 30MHz
调频广播频率范围88MHz—108MHz
4. 图1.2.8调幅发射机的方框图及各部分作用,各单元波形。

5. 图1.2.11超外差式接收机的方框图及各部分作用,各单元波形。

第2章选频网络
1. 串联谐振回路为什么称为电压谐振?
2. 串联振荡电路电抗和频率的关系,图2.1.2 。

大于小于谐振频率呈现何种阻抗性质?
3 .公式2.1.7 及2.1.8 ,电容和电感电压表达式。

品质因素Q 的两种计算公式。

4. 图2.1.4 不同的Q 值对谐振曲线的影响:Q 越大,曲线越陡峭,选择性越好。

5. 绝对失谐Δω,相对失谐,广义失谐ξ的概念。

掌握公式2.1.13 的意义。

6. 公式2.1.14 ,通频带的定义。

通频带与Q 值的关系,即选择性与通频带的关系。

7 .并联谐振回路为什么称为电流谐振。

9. 公式2.2.9 ,并联谐振回路品质因素的三种表示方法。

10. 公式2.2.10 谐振电阻的五种表示方式。

(重点!)。

注意R 和R P代表什么电阻?
11. 图2.2.2 并联谐振回路频率与阻抗的关系。

大于小于谐振频率呈现何种阻抗性质?
12. 公式2.2.11 和公式2.2.12 电感和电流支路的电流公式的理解。

13 .公式2.2.18 通频带公式。

15. 公式2.3.12 及2.3.13 串联阻抗到并联阻抗的变换公式的含义。

16. 电感电容组成的LC回路谐振的条件是什么?
16. 为什么要用到抽头式阻抗变换电路,低端折合到高端阻抗如何变化?
第3章高频信号放大器
1. 高频信号放大器的5 个主要质量指标:
增益、通频带、选择性、工作稳定性、噪声系数
2. 公式
3.2.10 电压增益的表示方法,P61 四个Y参数的定义,量纲。

3. 图3.2.4 混π等效电路中各元件的含义。

对高频影响的元件是那些?
4. 混π参数与Y参数的主要区别是什么?
5.三极管三个频率参数的大小顺序关系
6 . 图3.3.1 (b )等效电路中各元件代表的意义。

7 . 公式3.3.3 及3.3.4 及3.3.8 电压增益公式的含义。

8 . 公式3.3.10 及3.3.11 功率增益公式的含义。

9 . 公式3.3.20 的含义。

电压放大倍数与回路总电容的关系。

是不是为了提高增益总电容越
小越好?
10 . 公式3.3.21 单级放大器的矩形系数是多少?
11 . 多级单调谐回路放大器较单级放大器,增益,选择性有何变化
12,. P120 习题3.9
第4章非线性电路时变参量电路和变频器
1.非线性元件为什么有频率变换作用?
2.公式4.
3.9 及
4.3.10及4.3.11说明非线性元件产生新的的频率成分的5点规律。

3.图
4.
5.1说明变频器的工作原理。

图4.5.2变频前后的频谱关系。

5.图4.
6.6自激变频器的简单工作原理。

6.变频器和混频器有何区别?
7.二极管平衡混频器及环形混频器较晶体管混频器有何优缺点?
8.镜像干扰的计算方法:P160例子所示。

9.P168习题4.94.19 4.20
高频5-8章重点2011.12.14阅读(36)
第5章高频功率放大器(重点章节)
1.为什么高频功放一般工作在丙类状态?为什么丙类功放要采用调谐回路作为负载?
调谐回路失谐会产生什么后果?
丙类工作状态输出功率和效率都比较高。

效率>87.5%
2.公式5.2.1 及5.2.2及5.2.3。

三个功率及效率之间的关系
3.公式5.2.4 根据三个电压求导通角或求解V bm
4.公式
5.2.5及5.2.6基极和集电极的两个电压方程。

5.公式5.2.9输出功率的三种表达式。

6.公式5.2.10回路阻抗的表达式。

7.公式5.2.12效率的表达式。

8.公式5.3.15各次谐波分量的计算方法。

9 .图5.3.4各条曲线的含义。

为什么兼顾功率和效率选择70度通角。

10.高频功率放大器三种工作状态。

三种状态优缺点(P190)
11.图5.3.7负载特性曲线。

增减Rp对电流电压功率效率的影响。

(图形重点掌握)
12.图5.3.8电源电压Vcc对工作状态的影响。

注意何时进入过压和欠压状态。

为什么集电极调幅需要在过压状态。

13.图5.3.9分析同上。

14. 图 5.3.7 5.3.8 5.3.9 的区别。

各个状态的调整变化应该如何调整参数。

15. P192例5.3.1
16 .P242习题5.4(重点掌握)
第 6 章正弦波振荡器
1. 反馈正弦波振荡器主要包络哪三部分?
放大器,反馈网络、选频网络。

2.. 振荡器的起振条件,平衡条件。

(公式6.5.5 – 6.5.6 -6.5.7 )
3. 振荡器的稳定条件(公式6.5.16 -6.5.21 )
4. 电感及电容反馈式三端振荡器的优缺点比较
5. LC 三端式振荡器相位平衡条件判断准则:射同余异
6 影响振荡器振荡频率的三种因素是什么?.
7. 晶体振荡电路分为哪两类?分别用到晶体振荡器的什么特性?
8. 图6.8.3 并联谐振晶体振荡器电路的工作原理。

8. P299 习题6.5 a b d e f g
第7章振幅调制与解调
1.为什么要信号要进行调制才发送?三个原因
2.常用实现调幅的方式:低电平和高电平调幅
3.图7.1.2检波原理的频谱表示。

4.图7.2.1调幅波形成原理。

5.公式7.2.3已调波的表达式。

注意调幅指数的定义公式7.2.4。

6.公式
7.2.5调幅波展开式,参考图7.2.4. 上下边频和载波的幅度关系。

7.公式7.2.11 -7.2.14 调幅波的功率关系
8.公式7.3.3 -7.3.5 平方律调幅的原理。

9. AM 标准调幅,DSB双边带调幅,SSB单边带调幅的区别。

9.图7.9.1二极管包络检波的工作原理:二极管单向导电+低通滤波10.P351 习题 7.1 7.5 7.8
第8 章角度调制与解调
1. 图8.1.1 波形变换电路鉴频的工作原理。

2. 图8.4.1 8.4.2 变容二极管调频的原理: 其中主要元件的作用。

相关文档
最新文档