图像边缘检测课程设计报告书

合集下载

图像边缘检测课程设计报告

图像边缘检测课程设计报告

图像边缘的检测提取设计(陕西理工学院物理与电信工程学院通信1102班,陕西汉中723003)指导教师:陈莉【摘要】边缘是图像最基本的特征,包含图像中用于识别的有用信息,边缘检测是数字图像处理中基础而重要的内容。

该课程设计具体考察了五种最常用的边缘检测算子并运用MATLAB进行图像处理比较。

梯度算子简单有效,LOG算法和canny边缘检测器能产生较细的边缘。

【关键字】:MATLAB、边缘检测、图像处理Image edge detection to extract the design(Grade11,Class2,Major of Communication Engineering,School of Physics and telecommunication Engineering of Shaanxi University of Technology, Hanzhong723003,China)Tutor:chen li[Abstract]the basic features of the image edge,contains useful information in the image recognition,edge detection is a basicand important content of digital image processing.Thecurriculum design of the specific study of the five most commonedge detection operator and the use of MATLAB for comparison of image processing.Gradient operator is simple and effective,the LOG algorithm and the canny edge detector can producethinner edges.[keyword]:MATLAB,edge detection,image processing目录1绪论 (1)1.1边缘检测的背景 (1)1.2边缘检测的定义 (1)1.3图像边缘检测算法的研究内容 (2)1.4边缘检测的发展趋势 (3)2边缘检测的算法分析与描述 (3)2.1 Roberts算子 (3)2.2 Prewitt算子 (4)2.3 Sobel算子 (5)2.4 Laplacian算子 (6)2.5 Canny算子 (7)3算子性能分析比较 (8)4 算法的选择和实现 (9)4.1ssobel算子 (10)4.2sobel算子 (10)4.3prewitt算子 (12)设计总结 (12)致谢 (14)参考资料 (15)1绪论1.1边缘检测的背景在实际图像处理问题中,图像的边缘作为图像的一种基本特征,经常被应用到较高层次的图像应用中去。

边缘检测实验报告

边缘检测实验报告

边缘检测实验报告边缘检测实验报告引言:边缘检测是图像处理中的一项重要任务,它能够有效地提取图像中物体的边界信息,为后续的图像分割、物体识别等任务提供基础。

本实验旨在探究不同的边缘检测算法在不同场景下的表现,并对其进行评估和比较。

一、实验背景边缘检测是图像处理领域的经典问题,早期的边缘检测算法主要基于梯度的计算,如Sobel、Prewitt等。

随着深度学习的发展,基于卷积神经网络的边缘检测方法也取得了显著的进展。

本实验将选择传统的Sobel算子和基于深度学习的Canny算法进行对比。

二、实验步骤1. 数据准备:选择一组包含不同场景、不同复杂度的图像作为实验数据集,确保数据集的多样性和代表性。

2. 算法实现:使用Python编程语言,利用OpenCV库实现Sobel算子和Canny 算法。

对于Sobel算子,我们将尝试不同的卷积核大小和阈值设置。

对于Canny算法,我们将调整高低阈值的取值范围。

3. 实验评估:使用评估指标来衡量不同算法的性能,如准确率、召回率、F1值等。

同时,我们还可以通过可视化的方式来比较不同算法的边缘检测效果。

三、实验结果在实验中,我们选择了10张不同类型的图像进行边缘检测,并使用Sobel算子和Canny算法进行处理。

通过对比实验结果,我们得出以下结论:1. Sobel算子:- 当卷积核大小较小(如3x3)时,Sobel算子能够较好地检测到图像中的细节边缘,但对于噪声较多的图像效果较差。

- 当卷积核大小较大(如7x7)时,Sobel算子能够更好地抑制噪声,但会导致边缘检测结果的模糊。

- 阈值的设置对Sobel算子的效果也有较大影响,较低的阈值可以提高边缘检测的敏感性,但也容易引入噪声。

2. Canny算法:- Canny算法基于梯度的计算和非极大值抑制,能够有效地检测到图像中的边缘,并且对噪声有较好的鲁棒性。

- 高低阈值的设置对Canny算法的效果影响较大,合适的阈值范围可以提高边缘检测的准确性和稳定性。

(完整word版)图像边缘检测任务书及开题报告

(完整word版)图像边缘检测任务书及开题报告

重庆邮电大学毕业设计(论文)任务书学生姓名_A_学院_计算机学院_专业_地理信息系统_年级班别_1 _指导教师 —b__职 称—副教授—下达任务日期_2009_年_ 1_月_ 10_日研究内容 1•收集相关的相关学术报告,对其进行深入的学习了解及分析,了 解各种处理图像的过程和方法,了解常用的边缘检测算法,如图像的数 字化和离散图像的数学描述;数学形态学与二值图像的数学形态学运算; 图像分割和特征提取中的分割技术;边缘提取的经典方法;图像特征提 2.对经典边缘检测算法进行学习、分析和比较,如 Roberts 算子、 Sobel 算子、Prewitt 算子、Laplacian 算子、Marr 算子、Canny 算子等;3.用VC++实现这些算法,对边缘检测算法进行理解和加深,并通 过比较找出每种算法的优缺点和各自适用的范围;4.对上述算法融合自己的想法,并初步提出改进,让算法更实用。

研究方法和要求一个好的边缘检测算子应该具有三个指标: 1•低失误率,既要少将真正的边缘丢失也要少将非边缘判为边缘;2•高位置精度,检测出的边缘应在真正的边界上; 3.对每个边缘有唯一的响应,得到的边界为单像素宽;要做好边缘检测,首先,清楚待检测的图像特性变化的形式,从而使用适应这类变化的检测方法。

其次,要知道特性变化总是发生在一定 的空间范围内,不能期望用一种检测算子就能最佳检测出发生在图像上的所有特性变化。

当需要提取多空间范围内的变化特性时,要多考虑算子的综合应用。

第三,要考虑噪声的影响,其中的一个办法就是滤除噪设计(论文)题目 ____图象边缘检测算法研究与实现主要研究内容取等;方法和要求声,但这有一定的局限性。

第四,可以考虑各种方法的组合;第五,在正确检测边缘的基础上,要考虑精确定位的问题。

进度计划4月 2号-4月19号:4月on C R -7 县.20号5月7号:5月Q县8号5月23号.5月 24号一—5月31号:查阅相关资料,写出开题报告,熟悉VC++开发工具,并用VC++实现一些经典的算法测试,编写文档,完成毕业设计论文初稿对毕业设计论文进行修改,并最终完成毕业设计论文主要参考文献[1][2][3][4][7][8][9]谢凤英等.VC++数字图像处理[M].电子工业出版社,2008. 9.K. R. Castlemen, 朱志刚等(译).数字图象处理[M].北京.电子工业出版社.1998. 387-422.张凯丽,刘辉.边缘检测技术的发展研究[J].昆明理工大学学报,2000, 25(5): 36-39章毓晋.图象分割[M].北京:科学出版社,2001. 116-119. 何斌,马天予等编著.Visual C++数字图像处理[M], 2001.4.刘曙光,刘明远等.基于Canny准则的基数B样条小波边缘检测[J].信号处理,2001,17(5):418-423.赵志刚,管聪慧.基于多尺度边缘检测的自适应阈值小波图像降噪[J+].仪器仪表学报,2007,(2): 288-292田岩岩,齐国清.基于小波变换模极大值的边缘检测方法[J].大连海事大学学报:自然科学版,2007, (1): 102-106Mallat Stephane, Zhong Sifen. Characterization of Signals fromMultiscale EdgesJ]. IEEE Trans. on Pattern Analysis and MachineIn tellige nee, 1992, 14(7): 710-733[10]王文庆,支华.基于统计的边缘阈值检验方法[J].测绘科学,2007(2):71-72.指导教师签字教学部主任签字备注:此任务书由指导教师填写,并于毕业设计(论文)开始前下达给学生。

数字图像处理实验报告(图像边缘检测)

数字图像处理实验报告(图像边缘检测)

实验报告实验名称实验三图像边缘检测课程名称数字图像处理某成绩班级学号日期地点备注:1、实验目的(1)了解并掌握使用微分算子进行图像边缘检测的基本原理;(2)编写程序使用Laplacian 算子(二阶导数算子)实现图像锐化,进一步理解图像锐化的实质;(3)掌握使用不同梯度算子(一阶导数算子)进行图像边缘检测的原理、方法,根据实验结果分析各种算子的工作效果;(4)总结实验过程(实验报告,左侧装订):方案、编程、调试、结果、分析、结论。

2、实验环境(1)Windows XP/7(2)Matlab 7.1/7.143、实验方法本次实验要求对256×256大小,256级灰度的数字图像lena.img进行处理。

(1)对该图像进行锐化处理,要求采用Laplacian算子进行锐化,分α=1和α=2两种情况,按如下不同情况进行处理:①g1(m,n)=f(m,n)-α∇f②g2(m,n)=4αf(m,n)-α[f(m-1,n)+f(m+1,n)+f(m,n-1)+f(m,n+1)]I、要对图像进行处理,要先读取该图像,实验代码如下:close all;clear all;fid=fopen('lena.img','r');image=fread(fid,[256,256],'uint8');fclose(fid);II、读取图像后,对该图像的每一像素(不考虑图像的边界部分)进行遍历,根据公式①(公式①相当于做差分)对每一灰度进行计算,将所得的结果存入一矩阵g1中(矩阵g1初始化为该图像的矩阵),代码如下(仅以ɑ=1为例):g1=image;a=1;[x,y]=size(image);for i=2:(x-1)for j=2:(y-1) g1(i,j)=(1+4*a)*image(i,j)-a*(image(i+1,j)+image(i-1,j)+image(i,j+1)+image(i,j-1));endendIII、根据公式②对图像的每一个像素(不考虑图像的边界部分)进行计算,将所得之存入矩阵g2中(g2初始化值为该图像的矩阵值),具体方法与上一步类似,代码如下(仅以ɑ=1为例):g2=image;a=1;[x,y]=size(image);for i=2:(x-1)for j=2:(y-1)g2(i,j)=4*a*image(i,j)-a*(image(i+1,j)+image(i-1,j)+image(i,j+1)+image(i,j-1));endend(2)分别利用Roberts、Prewitt 和Sobel 边缘检测算子,对原图像进行边缘检测,显示处理前、后图像。

实验四 图像的边缘检测1

实验四  图像的边缘检测1
结果:
3、用不同方向(‘水平’、‘垂直’、‘水平和垂直’)的Sobel算子对图像进行边缘检测。比较三种情况的结果。
代码:
I=imread('rice.png');
subplot(2,2,1)
imshow(I)
BW2=edge(I,'sobel',[] ,'horizontal');
subplot(2,2,2)
代码:
I=imread(‘cameraman.tif’);
imshow(I);
结果:
2、分别用Roberts、Sobel和拉普拉斯高斯算子对图像进行边缘检测。比较三种算子处理的结果。
代码:
I=imread('rice.png');
subplot(2,2,1)
imshow(I)
BW1=edge(I,'roberts');
掌握了用MATLAB语言进行图像边缘提取的方法。
imshow(BW2), title('水平方向的Sobel算子')
BW2=edge(I,'sobel',[] ,'vertical');
subplot(2,2,3)
imshow(BW2), title('´垂直方向的Sobel算子')
BW2=edge(I,'sobel',[] ,'both');
subplot(2,2,4)
20122013学年第一学期医学图像处理实验报告班级学号姓名实验时间20121030实验地点4601实验成绩实验题目图像的边缘检测一实验目的1理解图像边缘提取的基本概念
2012-2013学年第一学期《医学图像处理》实验报告

数字图像课程设计报告:边缘检测算子的比较

数字图像课程设计报告:边缘检测算子的比较

数字图像处理课程设计报告题目数字图像课程设计—各边缘检测算子的对比系别电气系班级xxxxxxxxxxxxx 学号xxxxxxxxxxxx姓名xxxx 指导老师xxxx时间xxxxxxx目录一、课题设计的任务 (3)1.1 课题选择 (3)1.2 课题设计的背景 (3)二、课题原理简介 (3)三、经典边缘检测算子性能比较及程序 (6)3.1MATLAB程序仿真 (6)3.2实验结果的比较 (10)四、实验结论 (11)五、参考文献 (11)一、课题设计的任务1.1课题选择各边缘检测的对比1.2 课题设计的背景我们感知外部世界的途径主要是听觉和视觉。

而视觉主要是获取图像的信息,例如图片的特征和周围的背景区域的差别。

这种灰度或结构等信息的突变,就称之为边缘。

图像的边缘对人类视觉而言具有重要意义,有些差别很细微,人眼很难观察,这时就需要计算机图像处理技术,物体边缘上的这种变化可以用微分算子检测出来,通常用一阶或两阶导数来检测边缘。

本次我的课程设计就利用了MATLAB软件,通过实验,对各边缘检测算子进行了对比和研究,例如基于一阶导数的边缘检测算子Roberts算子、Sobel算子,基于二阶导数的拉普拉斯算子,canny边缘检测算子等。

并且在4天内完成了课程设计作业,基本达到既定要求。

二、课题原理简介边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。

检测出的边缘并不等同于实际目标的真实边缘。

图像的边缘有方向和幅度两个属性,沿边缘方向像素变化平缓,垂直于边缘方向像素变化剧烈。

边缘上的这种变化可以用微分算子检测出来,通常用一阶或两阶导数来检测边缘,如下图所以。

不同的是一阶导数认为最大值对应边缘位置,而二阶导数则以过零点对应边缘位置。

(a)图像灰度变化(b)一阶导数(c)二阶导数下面是一些主要的边缘检测算子的原理介绍1 Roberts(罗伯特)边缘检测算子景物的边缘总是以图像中强度的突变形式出现的,所以景物边缘包含着大量的信息。

详细的图像分割之边缘检测实验报告

详细的图像分割之边缘检测实验报告

边缘检测实验报告一、实验目的通过课堂的学习,已经对图像分割的相关理论知识已经有了全面的了解,知道了许多图像分割的算法及算子,了解到不同的算子算法有着不同的优缺点,为了更好更直观地对图像分割进行深入理解,达到理论联系实际的目的,特制定如下的实验。

二、实验原理:图像处理有两大类目的:1.改善像质(增强、恢复);2.图像分析:对图像内容作出描述;其一般的图像处理过程如下:图像分割的算法有:(1)阈值分割原理:(,)(,)(,)EBLf x y Tg x y L f x y T≥⎧=⎨<⎩(2)边缘检测:梯度对应一阶导数,对于一个连续图像函数f(x,y):梯度矢量定义:梯度的幅度:梯度的方向:a) Roberts 算子b) Sobel 算子Roberts 算子[]TTyxy f x f G G y x f ⎦⎤⎢⎣⎡∂∂∂∂==∇),(122)()),((),(y x G G y x f mag y x f +=∇=∇)arctan(),(x y G y x =φ()()()[]()()[]{}21221,,11,1,,+-++++-=j i f j i f j i f j i f j i gc) Prewitt 算子d) Kirsch 算子由K 0~K 7八个方向模板组成,将K0~K7的模板算法分别与图像中的3×3区域乘,选最大一个值,作为中央像素的边缘强度(3)区域分割1 区域生长法 算法描述先对每个需要分割的区域找一个种子像素作为生长的起点,然后将种子像素周围邻域中与种子像素有相似性质的像素合并到种子像素所在的区域中。

将这些新像素当作新的种子像素继续进行上面的过程,直到再没有满足条件的像素可被包括进来。

2 分裂合并法实际中常先把图像分成任意大小且不重叠的区域,然后再合并或分裂这些区域以满足分割的要求,即分裂合并法.一致性测度可以选择基于灰度统计特征(如同质区域中的方差),假设阈值为T ,则算法步骤为:① 对于任一Ri ,如果 ,则将其分裂成互不重叠的四等分; ② 对相邻区域Ri 和Rj ,如果 ,则将二者合并; ③ 如果进一步的分裂或合并都不可能了,则终止算法。

数字图像处理实验报告-图像边缘检测和特征提取

数字图像处理实验报告-图像边缘检测和特征提取

华南师范大学实验报告一、实验目的1、.掌握边缘检测的Matlab实现方法2、了解Matlab区域操作函数的使用方法3、了解图像分析和理解的基本方法4、了解纹理特征提取的matlab实现方法二、实验平台计算机和Matlab软件环境三、实验内容1、图像边缘检测2、图像纹理特征提取四、实验原理1、图像边缘检测图像理解是图像处理的一个重要分支,它研究的是为完成某一任务需要从图像中提取哪些有用的信息,以及如何利用这些信息解释图像。

边缘检测技术对于处理数字图像非常重要,因为边缘是所要提取目标和背景的分界线,提取出边缘才能将目标和背景区分开来。

在图像中,边界表明一个特征区域的终结和另一个特征区域的开始,边界所分开区域的内部特征或属性是一致的,而不同的区域内部的特征或属性是不同的,边缘检测正是利用物体和背景在某种图像特性上的差异来实现的,这些差异包括灰度,颜色或者纹理特征。

边缘检测实际上就是检测图像特征发生变化的位置。

由于噪声和模糊的存在,检测到的边界可能会变宽或在某些点处发生间断,因此,边界检测包括两个基本内容:首先抽取出反映灰度变化的边缘点,然后剔除某些边界点或填补边界间断点,并将这些边缘连接成完整的线。

边缘检测的方法大多数是基于方向导数掩模求卷积的方法。

导数算子具有突出灰度变化的作用,对图像运用导数算子,灰度变化较大的点处算得的值比较高,因此可将这些导数值作为相应点的边界强度,通过设置门限的方法,提取边界点集。

一阶导数fx∂∂与fy∂∂是最简单的导数算子,它们分别求出了灰度在x和y方向上的变化率,而方向α上的灰度变化率可以用下面式子计算:cos sin (cos sin )f f f G i j x yααααα∂∂∂=+=+∂∂∂ 对于数字图像,应该采用差分运算代替求导,相对应的一阶差分为:(,)(,)(1,)(,)(,)(,1)x y f i j f i j f i j f i j f i j f i j ∆=--∆=--方向差分为: (,)(,)cos (,)sin x y f i j f i j f i j ααα∆=∆+∆函数f 在某点的方向导数取得最大值的方向是1tan /f f y x α-⎡⎤∂∂=⎢⎥∂∂⎣⎦,方向导数的最大值是1222f f G x y ⎡⎤⎛⎫∂∂⎛⎫=+⎢⎥ ⎪ ⎪∂∂⎝⎭⎢⎥⎝⎭⎣⎦称为梯度模。

图像的边缘检测实验报告

图像的边缘检测实验报告

图像的边缘检测实验报告
《图像的边缘检测实验报告》
图像的边缘检测是计算机视觉领域中的重要技术之一,它可以帮助我们识别图
像中物体的边缘和轮廓,从而实现图像分割、特征提取和目标识别等应用。


本次实验中,我们将对几种常用的边缘检测算法进行比较和分析,以评估它们
在不同场景下的性能和适用性。

首先,我们使用了Sobel算子进行边缘检测。

Sobel算子是一种基于梯度的边缘检测方法,它通过对图像进行卷积操作来寻找像素值变化最大的地方,从而找
到图像中的边缘。

实验结果显示,Sobel算子在一些简单场景下表现良好,但
在复杂背景和噪声干扰较大的情况下效果不佳。

接着,我们尝试了Canny边缘检测算法。

Canny算法是一种多阶段的边缘检测
方法,它通过对图像进行高斯滤波、计算梯度、非极大值抑制和双阈值处理等
步骤来检测图像中的边缘。

实验结果显示,Canny算法在复杂场景下表现出色,能够有效地抑制噪声并找到图像中的真实边缘。

最后,我们还尝试了Laplacian算子和Prewitt算子等其他边缘检测算法,并对
它们的性能进行了比较和分析。

实验结果显示,不同的边缘检测算法在不同场
景下表现出各自的优势和劣势,需要根据具体的应用需求来选择合适的算法。

总的来说,本次实验对图像的边缘检测算法进行了全面的比较和分析,为我们
进一步深入理解和应用这些算法提供了重要的参考和指导。

希望通过这些实验
结果,我们能够更好地利用边缘检测技术来解决实际的图像处理问题,为计算
机视觉领域的发展做出更大的贡献。

图像边缘检测课程设计报告

图像边缘检测课程设计报告

图像边缘的检测提取设计(陕西理工学院物理与电信工程学院通信1102班,陕西汉中 723003)指导教师:陈莉【摘要】边缘是图像最基本的特征,包含图像中用于识别的有用信息,边缘检测是数字图像处理中基础而重要的内容。

该课程设计具体考察了五种最常用的边缘检测算子并运用MATLAB进行图像处理比较。

梯度算子简单有效,LOG算法和canny边缘检测器能产生较细的边缘。

【关键字】:MATLAB、边缘检测、图像处理Image edge detection to extract the design(Grade11,Class2,Major of Communication Engineering,School of Physics and telecommunication Engineering of Shaanxi University of Technology, Hanzhong 723003,China)Tutor:chen li[Abstract]the basic features of the image edge, contains useful information in the image recognition, edge detection is a basicand important content of digital image processing. Thecurriculum design of the specific study of the five most commonedge detection operator and the use of MATLAB for comparison of image processing. Gradient operator is simple and effective,the LOG algorithm and the canny edge detector can producethinner edges.[keyword]: MATLAB, edge detection, image processing目录1绪论 (1)1.1边缘检测的背景 (1)1.2边缘检测的定义 (1)1.3图像边缘检测算法的研究内容 (2)1.4边缘检测的发展趋势 (3)2边缘检测的算法分析与描述 (3)2.1 Roberts算子 (3)2.2 Prewitt算子 (4)2.3 Sobel算子 (5)2.4 Laplacian算子 (6)2.5 Canny算子 (7)3算子性能分析比较 (8)4 算法的选择和实现 (9)4.1s sobel算子 (10)4.2sobel算子 (10)4.3prewitt算子 (11)设计总结 (12)致谢 (13)参考资料 (14)1绪论1.1边缘检测的背景在实际图像处理问题中,图像的边缘作为图像的一种基本特征,经常被应用到较高层次的图像应用中去。

图像的边缘检测(实验报告)

图像的边缘检测(实验报告)

数字信号处理实验图像的边缘检测图像的边缘检测一,原理本实验主要是对图像的边缘进行提取,通过对边缘的分析来分析图像的特征。

首先,了解一些术语的定义:边缘点:图像中具有坐标[i,j]且处在强度显著变化的位置上的点。

边缘段:对应于边缘点坐标[i,j]及其方位 ,边缘的方位可能是梯度角。

边缘检测器:从图像中提取边缘(边缘点和边缘段)集合的算法。

轮廓:边缘列表,或者是一条表示边缘列表的拟合曲线。

边缘连接:从无序边缘表形成有序边缘表的过程,习惯上,边缘表的表示采用顺时针方向来排序。

边缘跟踪:一个用来确定轮廓的图像(指滤波后的图像)搜索过程。

边缘就是图像中包含的对象的边界所对应的位置。

物体的边缘以图像局部特性的不连续性的形式出现的,例如,灰度值的突变,颜色的突变,纹理结构的突变等。

从本质上说,边缘就意味着一个区域的终结和另外一个区域的开始。

图像边缘信息在图像分析和人的视觉中十分重要,是图像识别中提取图像特征的一个重要属性。

边缘检测(edge detection)在图像处理和对象识别领域中都是一个重要的基本问题。

由于边缘的灰度不连续性,可以使用求导数的方法检测到。

最早的边缘检测方法都是基于像素的数值导数的运算。

本实验主要是对图像依次进行Sobel算子,Prewitt算子,Roberts算子,Laplace算子和Canny算子运算,比较处理结果。

边缘检测有三个共性准则,1,好的检测结果,或者说对边缘的误测率尽可能低,就是在图像边缘出现的地方检测结果中不应该没有;另一方面不要出现虚假的边缘。

2,对边缘的定位要准确,也就是我们标记出的边缘位置要和图像上真正边缘的中心位置充分接近。

3,对同一边缘要有尽可能低的响应次数,也就是检测响应最好是单像素的。

二,对图像进行各种算子运算本实验中主要是对图像依次进行Sobel算子,Prewitt算子,Roberts算子,Laplace算子和Canny 算子运算。

由于MATLAB对彩色图像不能进行分析。

图像边缘检测实验报告

图像边缘检测实验报告

图像边缘检测实验报告图像边缘检测实验报告引言:图像边缘检测是计算机视觉领域中一项重要的任务,它在许多应用中都起到关键作用。

边缘是图像中不同区域之间的分界线,它们包含了图像中物体的轮廓和形状信息。

因此,准确地检测和提取图像边缘对于目标识别、图像分割和特征提取等任务至关重要。

实验目的:本实验旨在通过实践探索和理解常用的图像边缘检测算法,并对其性能进行评估。

我们将使用不同的算法对一组测试图像进行边缘检测,并比较它们的结果,以了解它们的优缺点和适用场景。

实验方法:1. 数据准备:我们从公开的图像数据库中选择了一组具有不同特征和复杂度的测试图像。

这些图像包括自然风景、人物肖像和建筑物等多种场景,以覆盖不同的应用场景。

2. 算法选择:我们选择了三种常用的图像边缘检测算法进行实验:Sobel算子、Canny算子和Laplacian算子。

这三种算法在实践中被广泛应用,并且具有不同的特点和适用范围。

3. 实验步骤:a) Sobel算子:我们首先将测试图像转换为灰度图像,然后使用Sobel算子对其进行边缘检测。

Sobel算子是一种基于梯度的算法,它通过计算图像中每个像素点的梯度值来检测边缘。

b) Canny算子:接下来,我们使用Canny算子对同一组测试图像进行边缘检测。

Canny算子是一种基于多阶段处理的算法,它首先使用高斯滤波器对图像进行平滑处理,然后计算梯度和非最大抑制,最后进行边缘连接和阈值处理。

c) Laplacian算子:最后,我们使用Laplacian算子对测试图像进行边缘检测。

Laplacian算子是一种基于二阶导数的算法,它通过计算图像中每个像素点的二阶导数值来检测边缘。

实验结果:通过对实验图像的边缘检测,我们得到了以下结果:1. Sobel算子产生了较为明显的边缘线,但在一些复杂场景下容易产生噪声,并且边缘线有时会断裂。

2. Canny算子在平滑处理后能够准确地检测到图像中的边缘,并且能够消除噪声和断裂的边缘线。

opencv实现canny边缘检测实验报告

opencv实现canny边缘检测实验报告

//
//+Smooth[(i+1)*nWidth+(j+1)]-Smooth[(i+1)*nWidth+j])/2;
//
//Q[i*nWidth+j]=(double)(Smooth[i*nWidth+j]-Smooth[(i+1)*nWidth+j]
//
//+Smooth[i*nWidth+(j+1)]-Smooth[(i+1)*nWidth+(j+1)])/2;
图像边缘检测实验报告 一、实验任务
熟悉opencv,实现canny边缘检测算法,比较canny算子,Sobel算子,Prewitt算子。
二、实验原理
1)滤波:边缘检测的算法主要是基于图像强度的一阶和二阶导数,但导数通常对噪声很敏感, 因此必须采用滤波器来改善与噪声有关的边缘检测器的性能。常见的滤波方法主要有高斯滤波,即 采用离散化的高斯函数产生一组归一化的高斯核,然后基于高斯核函数对图像灰度矩阵的每一点进 行加权求和。
pdkernal_2[i+j*nWindowSize]/=dSum_2; } } //************************************************************************* //高斯滤波 for(int i=0;i<nHeight;i++) { for(int j=0;j<nWidth;j++) {
data3 =(256+img->imageData[j*img->widthStep + i*3 + 2])%256; //R分量

图像的边缘检测实验处理报告

图像的边缘检测实验处理报告

数字视频图像处理与通信实验实验项目:图像的边缘检测指导老师:***班级:姓名:学号:图像的边缘检测实验报告一;实验目的:1.掌握图像边缘检测的基本概念以及边缘检测的基本方法;2.通过matlab 实验的具体操作来具体掌握空间图像边缘检测的方法;3.通过matlab 实验来验证所学知识,达到学以致用;4.通过matlab 实验来理解roberts 、sobel 、canny 、log 几种算子的原理以及各个算法的优缺点,并加以比较。

二;实验原理:图像的边缘是图像最基本的特征之一。

所谓边缘(或边沿)是指周围像素灰度有阶跃性变化或“屋顶”变化的那些像素的集合。

边缘广泛存在于物体与背景之间、物体与物体之间、基元与基元之间,因此它是图像分割依赖的重要特征。

图像边缘对图像识别和计算机分析十分有用,边缘能勾划出目标物体,使观察者一目了然;边缘蕴含了丰富的内在信息(如方向、阶跃性质、形状等)。

从本质上说,图像边缘是图像局部特性不连续性(灰度突变、颜色突变、纹理结构突变等)的反应,它标志着一个区域的终结和另一个区域的开始。

边缘检测技术是所有基于边界分割的图像分析方法的第一步,首先检测出图像局部特性的不连续性,再将它们连成边界,这些边界把图像分成不同的区域,检测出边缘的图像就可以进行特征提取和形状分析,但各算子有自己的优缺点和适用领域。

Roberts 算子Roberts 算子是一种利用局部差分算子寻找边缘的算子,由下式给出: g(x,y)={[y x f ,(-)1,1(++y x f ]2+[y x f ,(- )1,1(++y x f ]2}21 ,其中f(x,y)是具有整数像素坐标的输入图像,平方根运算使该处理类似于在人类视觉系统中发生的过程。

Roberts 算子边缘定位准,但是对噪声敏感。

适用于边缘明显而且噪声较少的图像分割,在应用中经常用Roberts 算子来提取道路。

Prewitt 边缘算子Prewitt 边缘算子的卷积和如图所示,图像中的每个像素都用这两个核做卷积,取最大值作为输出,也产生一幅边缘幅度图像。

边缘检测实验报告

边缘检测实验报告

Marr-Hildrech的LOG边缘检测算法:Canny检测子Canny算子采用和数据内容相关的滤波技术。

Canny算子求边缘点具体算法步骤如下:1.用高斯滤波器平滑图像.2.用一阶偏导有限差分计算梯度幅值和方向.3.对梯度幅值进行非极大值抑制.4.用双阈值算法检测和连接边缘.步1.图像与高斯平滑滤波器卷积:步3.对梯度幅值进行非极大值抑制(non_maxima suppression,NMS):仅仅得到全局的梯度并不足以确定边缘,因此为确定边缘,必须保留局部梯度最大的点,而抑制非极大值。

解决方法:利用梯度的方向:步4.用双阈值算法检测和连接边缘:对非极大值抑制图像作用两个阈值th1和th2,两者关系th1=0.4th2。

我们把梯度值小于th1的像素的灰度值设为0,得到图像1。

然后把梯度值小于th2的像素的灰度值设为0,得到图像2。

由于图像2的阈值较高,去除大部分噪音,但同时也损失了有用的边缘信息。

而图像1的阈值较低,保留了较多的信息,我们可以以图像2为基础,以图像1为补充来连结图像的边缘。

链接边缘的具体步骤如下:对图像2进行扫描,当遇到一个非零灰度的像素p(x,y)时,跟踪以p(x,y)为开始点的轮廓线,直到轮廓线的终点q(x,y)。

考察图像1中与图像2中q(x,y)点位置对应的点s(x,y)的8邻近区域。

如果在s(x,y)点的8邻近区域中有非零像素s(x,y)存在,则将其包括到图像2中,作为r(x,y)点。

从r(x,y)开始,重复第一步,直到我们在图像1和图像2中都无法继续为止。

当完成对包含p(x,y)的轮廓线的连结之后,将这条轮廓线标记为已经访问。

回到第一步,寻找下一条轮廓线。

重复第一步、第二步、第三步,直到图像2中找不到新轮廓线为止。

至此,完成canny算子的边缘检测。

3、具体过程Log算子阈值取0.01 Canny算子阈值取0.2Log算子阈值取0.01Canny算子阈值取0.254、实验分析通过对上述几种算子的研究,我们可以发现,Prewit t算子和Sobel算子都是对图像进行差分和滤波运算,仅在平滑部分的权值选择上有些差异,但是图像产生了一定的模糊,而且有些边缘还检测不出来,所以检测精度比较低,该类算子比较适用于图像边缘灰度值比较明显的情况。

医学图像处理实验报告——边缘检测

医学图像处理实验报告——边缘检测

医学图像处理实验报告班级 专业 姓名 学号实验八 用Vc++实现医学图像的边缘检测一、实验目的(1)了解VC++在医学图像处理中的应用。

(2)熟悉用VC++进行医学图像边缘检测的编程方法。

二、实验设备 微机。

三、实验内容(1)应用VC++进行医学图像的边缘检测。

四、实验步骤1、开启VC++6.0,在菜单中选中File 单击鼠标左键,在下拉菜单中选中Open Workspce 单击鼠标左键,在打开的对话框中,根据路径:D:\WorkSpace\MedicalImageProcessingDLL\ MedicalImageProcessingDLL.dsw 打开工作空间。

2、在打开的VC 工作空间中首先找到类XH_MedicalImageProcessing,然后,在类中找到函数KirschEdgDetectBuf 。

3、在函数体内根据图所示的Kirsch 滤波模板和边缘检测的数学表达式(1),进行医学图像边缘检测的VC 编程。

()()()()()()(){}1111128,,,,max ,,,,,,m m i j f x y g x i y j M i j FI x y f x y f x y f x y =-=-=++=∑∑L (1)4、编程完毕,调试和运行程序,运行无误后,改变边缘检测的阈值并拷贝所得图像。

5、整理所得图像,对实验结果进行分析。

53-553-3-3-3-053-553-3-3-3-053-553-3-3-3-053-553-3-3-3-053-553-3-3-3-053-553-3-3-3-053-553-3-3-3-053-553-3-3-3-图1 Kirsch 边缘检测算子的滤波模板五、实验结果和分析EdgImgT85 EdgImgT254 EdgImgT502 EdgImgT615六、思考题1、Kirsch 边缘检测算子有什么优点?。

图像边缘检测 毕业设计开题报告

图像边缘检测 毕业设计开题报告

毕业设计开题报告
学生: 班级: 指导老师:
课题的研究目的和意义 国内外该方向的研究现状及分析 课题研究内容 进度安排
第一部分: 第一部分:选题背景及意义
边缘检测技术对于数字图像处理非常重要, 因 为边缘是所要提取目标和背景的分界线, 提取出边 缘才能将目标和背景区分开。在图像中, 边界表明 一个特征区域的终结和另一个特征区域的开始, 边 界所分开的内部特征或属性是一致的, 而不同区域 内部的特征或属性是不同的, 边缘的检测正是利用 物体和背景在某种图像特性上的差异来实现, 这些 差异包括灰度、颜色或者纹理特征。边缘检测实际 上就是检测图像特性发生变化的位置。
第三部分: 第三部分:主要研究内容
图像边缘检测方法组成示意图:
图像边缘 检测方法
ts 算子法
Sobel 算子法
Prewitt 算子法
Canny 算子法
小波边缘 变换算法
其他方法 ……
第四部分: 第四部分:进度安排
(1)2011年12月初:理解论文题目的内涵,初步拟订查阅文献 的计划; (2)2011年12月1日-2011年12月20日:查阅文献,写出开题 报告; (3)2011年12月20日-2012年4月13日:深入研究相关文献, 开始进入论文写作; (4)2012年3月24日-2012年3月28日:毕业论文中期检查,向 教务处上交检查报告; (5)2011年4月初:完成毕业论文的初稿; (6)2011年4月14日前:修改初稿,提交论文定稿,申请答辩; (7)2011年4月19日—2011年4月26日:论文答辩。
第二部分: 第二部分:国内外研究动态
如何快速地、精确地提取图像边缘信息,一直 是国内外研究的热点,然而边缘检测又是图像处理 中的一个难题。早期经典算法包括边缘算子法,曲 面拟合法,模版匹配法,门限化方法等等。近年来 随着数学理论及人工智能的发展,又涌现出许多新 的边缘检测方法,如小波变换和小波包的边缘检测 法、基于数学形态学、模糊理论和神经网络的边缘 检测法有Roberts算子、Sobel算子、Prewitt算子、 Laplacian算子、LOG 算子、Canny 算子等。

图像的边缘检测实验报告

图像的边缘检测实验报告

图像的边缘检测实验报告图像的边缘检测实验报告一、引言图像处理是计算机科学领域中的一个重要研究方向,而边缘检测作为图像处理的基础任务之一,具有广泛的应用价值。

边缘是图像中灰度或颜色变化较为剧烈的地方,通过检测图像中的边缘可以提取出物体的轮廓、形状等重要信息,从而为后续的图像分析和识别提供基础。

二、实验目的本次实验旨在探究不同的边缘检测算法在图像处理中的应用效果,并通过实验结果分析和比较各算法的优缺点,从而为图像处理领域的研究和应用提供参考。

三、实验方法1. 实验环境:使用Python编程语言,结合OpenCV图像处理库进行实验。

2. 实验数据:选择了包含多种物体和复杂背景的图像作为实验数据,以保证实验的可靠性和准确性。

3. 实验步骤:(1) 读取图像数据,并将其转化为灰度图像。

(2) 对图像进行预处理,如降噪、平滑等操作,以提高边缘检测的效果。

(3) 使用不同的边缘检测算法对图像进行处理,如Sobel算子、Canny算法等。

(4) 分析和比较不同算法的实验结果,评估其优缺点。

四、实验结果与分析1. Sobel算子:Sobel算子是一种基于梯度的边缘检测算法,通过对图像进行卷积操作,提取出图像中的边缘信息。

实验结果显示,Sobel算子能够较好地检测出图像中的边缘,但对于噪声较多的图像效果较差。

2. Canny算法:Canny算法是一种经典的边缘检测算法,通过多步骤的处理过程,包括高斯滤波、计算梯度、非极大值抑制和双阈值处理等,最终得到清晰准确的边缘信息。

实验结果显示,Canny算法能够有效地检测出图像中的边缘,并具有较好的抗噪性能。

3. 其他算法:除了Sobel算子和Canny算法外,还有许多其他的边缘检测算法,如拉普拉斯算子、Roberts算子等,它们各自具有不同的特点和适用范围。

在实验中,我们也对这些算法进行了尝试和比较,发现它们在不同的图像场景下有着各自的优势和局限性。

五、实验总结与展望通过本次实验,我们对图像的边缘检测算法进行了探究和比较。

图像边缘检测

图像边缘检测

数字图像处理实验报告姓名:冯玉平学号: 1203210014 指导老师:吕建平完成时间: 2013年6月实验四图像边缘检测一、实验任务⑴了解图像边缘提取的基本概念;⑵了解进行边缘提取的基本方法;⑶掌握用不同算子对图像进行边缘检测的方法.⑷在Matlab或VC++环境下,编写程序分别用Roberts,Sobel和拉普拉斯高斯算子对图像进行边缘检测,比较三种算子处理的不同之处。

二、实验条件微机一台、vc++6.0集成开发环境。

三、实验原理图像的边缘是图像的最基本特征,它指的是周围像素灰度有阶跃变化或屋顶变化的那些像素的集合。

物体的边缘是由灰度的不连续性反映的。

阶跃性边缘是指它两边的像素的灰度值有着显著的不同,屋顶状边缘位于灰度值从增加到减少的变化转折点。

经典的边缘提取方法是考察图像的每个像素在某个领域内灰度的变换,利用边缘邻近一阶或二阶方向导数变换规律,用简单的方法检测边缘,这种方法称为边缘检测局部算子法。

常用的梯度算子如下表所示:算子名称H1 H2 特点Roberts 边缘定位准,对噪声敏感。

Prewitt 平均、微分对噪声有抑制作用。

Sobel加权平均边宽≥2象素。

Isotropic Sobel权值反比于邻点与中心点的距离,检测沿不同方向边缘时梯度幅度一致。

拉普拉斯高斯(loG )算法是一种二阶边缘检测方法。

它通过寻找图像灰度值中二阶微分中的过零点(Zero Crossing )来检测边缘点。

其原理为,灰度级变形成的边缘经过微风算子形成一个单峰函数,峰值位置对应边缘点;对单峰函数进行微分,则峰值处的微分值为0,峰值两侧符号相反,而原先的极值点对英语二阶微分中的过零点,通过检测过零点即可将图像的边缘提取出来。

Laplacian 算子为:近似计算为:常用的LOG 算子是5*5的模板,如下所示:四、实验步骤⑴实现灰度图像读取、保存模块;⑵读入灰度图像并用Roberts算子检测边缘。

五、实验程序:b=imread('图片1.bmp');%读取图片c=imresize(b,[256 256]);%转换成要求大小e=rgb2gray(c); %转换成二维灰度图imshow(e); %显示原图像b1=edge(e,'sobel'); %使用sobel方法检测边缘b2=edge(e,'prewitt');%使用prewitt方法检测边缘b3=edge(e,'roberts');%使用roberts方法检测边缘b4=edge(e,'log'); %使用拉普拉斯方法检测边缘figure %显示检测边缘后的各个图像subplot(221),imshow(b1);subplot(222),imshow(b2);subplot(223),imshow(b3);subplot(224),imshow(b4)(程序补充说明:由于我的电脑保存下来的原图是三维的,所以要先转换成二维的)六、实验结果图原图sobel方法检测边缘图、prewitt方法检测边缘图、roberts方法检测边缘图、拉普拉斯方法检测边缘图七、实验心得:1、多动手,多查阅有关书2、编程过程中要细心,认真修改出错的地方3、数字图像处理是一门很趣的学科,我个人很喜欢。

图像边缘检测系统设计

图像边缘检测系统设计

学号数字图像处理课程设计说明书图像边缘检测系统设计起止日期:2016 年12 月5 日至2016 年12 月9 日学生姓名班级13电信科1班成绩指导教师(签字)计算机与信息工程学院电子信息工程系2016年12月9日课程设计任务书2016—2017学年第一学期计算机与信息工程学院电子信息与科学技术专业 1 班级课程设计名称:数字图像处理课程设计设计题目: 图像边缘检测系统设计完成期限:自2016 年12 月 5 日至2016 年12 月9 日共 1 周一、课程设计依据在掌握数字图像处理基本算法的基础上,利用MATLAB、VC++、Java等编程语言设计具有指定功能的图形用户界面。

二、课程设计内容1、设计一个实现图像边缘检测功能的界面2、界面可以采用MATLAB、VC++、Java等编程语言设计3、要求界面能够读入并显示图片,通过各种控件选择并进行图像的边缘检测操作,操作结果在对比窗口中显示4、图像边缘检测功能至少包括单方向一阶微分检测(水平/垂直方向)、无方向微分检测(Roberts算子、Sobel算子、Prewitt算子、Laplacian算子、LOG算子)等,每项功能可采用一个或多个算法实现三.课程设计要求1、要求每个同学独立完成设计任务。

2、课程设计说明书封面格式要求见《课程设计说明书格式要求》。

3、课程设计的说明书要求简洁、通顺,图像表达内容完整、清楚、规范。

4、课程设计说明书要求:1)说明题目的设计原理和思路、采用方法及设计流程.2)可采用图表或文字对图形用户界面各子模块的功能以及各子模块之间的关系做较详细的描述。

3)详细说明代码的编写流程。

4)采用图像及文字详细说明各功能的演示结果。

指导教师(签字):系主任(签字):批准日期:2016年12月1日目录第1章总体设计 (1)1.1 设计目的 (1)1.2 设计方案 (1)第2章GUI界面设计 (3)2.1 启动GUI界面 (3)2.2 控件设计 (4)第3章运行结果及主要程序 (8)3.1 边缘检测的步骤及结果 (8)3.2 主要程序 (10)总结 (15)参考文献 (16)第1章总体设计1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

*******************实践教学*******************理工大学计算机与通信学院2012年秋季学期图像处理综合训练题目:图像边缘检测课程设计专业班级:姓名:学号:指导教师:成绩:目录摘要 (1)一、前言 (2)二、算法分析与描述 (3)三、详细设计过程 (8)四、调试过程中出现的问题及相应解决办法 (10)五、程序运行截图及其说明 (11)六、简单操作手册 (14)设计总结 (16)参考资料 (17)致 (18)附录 (19)摘要在实际图像处理问题中,图像的边缘作为图像的一种基本特征,经常被应用到较高层次的图像应用中去。

它在图像识别,图像分割,图像增强以及图像压缩等的领域中有较为广泛的应用,也是它们的基础。

边缘检测是图像处理与分析中最基础的容之一,也是至今仍没有得到圆满解决的一类问题。

图像的边缘包含了图像的位置、轮廓等特征,是图像的基本特征之一,广泛地应用于特征描述、图像分割、图像增强、图像复原、模式识别、图像压缩等图像分析和处理中。

因此,图像边缘和轮廓特征的检测与提取方法,一直是图像处理与分析技术中的研究热点,新理论、新方法不断涌现。

本文研究了一些边缘检测算法,包括传统的Roberts、Sobel、Prewitt、Canny等算法。

经典边缘检测方法的抗噪声性能都较差,解决该问题的主要方法就是设置阈值,把得到的图像高频部分与阈值相比较以达到去噪的目的,所以阈值的选取显得尤为重要。

传统方法中的阈值都是通过实验确定的,没有统一的阈值选取方法。

本文利用边缘的最大后验概率估计,介绍一种新的边缘估计方法,从理论上说明了怎样选取最佳阈值。

文章中关于这些方法都有较详细的介绍,以及算法的实现步骤,对算法均进行了仿真实验。

关键词:边缘检测;图像处理;Matlab;Sobel;检测算法一、前言随着信息技术的不断发展和用户需求的不断增长,嵌入式系统逐渐走进国民生产的方方面面,其应用也日益广泛。

目前国一个普遍被认同的定义是:以应用为中心、以计算机技术为基础、软件硬件可裁剪、适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。

嵌入式系统的应用领域也非常广泛。

嵌入式系统几乎包括了生活中的所有电器设备,如掌上PDA 、移动计算设备、手机上网、数字电视、多媒体、汽车、数字相机、电梯、空调、安全系统、自动售货机、工业自动化仪表与医疗仪器等。

而图像边缘检测则是图像处理中非常基础但是及其重要步骤。

边缘是两个不同区域之间的边界。

图像边缘检测是图像处理,图像分析,模式识别等一系列图像处理过程中最重要的步骤。

目前,学界上已经有许多种不同点的方法来实现边缘检测的功能,比如说差分法(Kirsch,1971)和曲线拟合法(Haralick,1984)。

传统的边缘检测方法,比如Sobel、Prewitt、Kirsch算法,通过计算第一阶方向导数来决定边缘的位置。

零点交叉边缘检测法(Bovik,1998)运用了二阶导数和拉普拉斯算符。

而Canny算法(Canny,1986)是目前学界最流行并且应用最广泛的的高斯边缘检测算法。

尽管高斯检测算法(Yuksel,2007)相对来说有更好的性能表现,但是所需要的计算也比传统基于求导的检测算法复杂的多。

近些年来,对于图像处理在许多不同的科学和工程领域应用的研究越来越火热。

在嵌入式系统上实现图像处理能够很好的解决在一般PC或者工控机上实现图像处理的不足之处,比如说便携性差,功耗大,移动性,灵活性不强等。

同时加之以集成度高,与网络的耦合也越来越紧密等特点。

嵌入式系统将是未来工业控制和其他一些行业的主要发展方向。

本文主要阐述了图像边缘检测算法的一些理论,并对检测的效果加以比较,同时介绍了嵌入式系统开发的流程,为图像类嵌入式开发系统开发提出可行的方案。

最后设计实现了边缘检测系统。

二、算法分析与描述2.1 Roberts算子由Roberts提出的算子是一种利用局部差分算子寻找边缘的算子,对于边界陡峭且噪比较小的图像检测效果比较好,它在2×2邻域上计算对角导数,[],G i jG[i,j]又称为Roberts交叉算子。

在实际应用中,为简化运算,用梯度函数的Roberts绝对值来近似:[][][][][]-++++-+,=,1,11,,1G i j f i j f i j f i j f i j用卷积模板,上式变成:[],x y=+G i j G G其中G x和G y由下面图1所示的模板计算:图1 Robert边缘检测算子的模板Roberts算子是该点连续梯度的近似值,而不是所预期的点处的近似值。

由上面两个卷积算子对图像运算后,代入2式,可求得图像的梯度幅度值G[i,j],然后选取适当的门限TH,作如下判断:G[i,j]>TH,[i,j]为阶跃状边缘点,{G[i,j]}为一个二值图像,也就是图像的边缘。

由于利用局部差分检测比较陡峭的边缘,但对于噪声比较敏感,经常会出现孤立点,于是人们又提出了Prewitt算子[4]。

通过分析可知,Sobel算子法对高频成分丰富的图像处理效果好,对中低频成分的图像效果差。

2.2 Prewitt算子为在检测边缘的同时减少噪声的影响,Prewitt算子从加大边缘检测算子出发。

由2×2扩大到3×3来计算差分算子,所以其卷积模板为图2所示:图2 Prewitt边缘检测算子的模板在图像中的每个像素位置都用这2个模板做卷积,Prewitt算子将方向差分运算与局部平均结合起来,表达式如下:()()()()()() 1,1,11,11,1,11,1 xf f x y f x y f x y f x y f x y f x y'=-++++++------+-()()()()()()1,11,1,11,11,1,1 yf f x y f x y f x y f x y f x y f x y'=+-+++++-------+根据两式可以计算Prewitt梯度,选取适当的阈值T,对梯度图像二值化,得到一幅边缘二值图像。

采用Prewitt算子不仅能检测边缘点,而且还能抵制噪声的影响[5]。

通过分析可知,Prewitt算子法对高频成分丰富的图像处理效果好,对中低频成分的图像效果差。

2.3 Sobel算子传统的Sobel图像边缘检测方法,是在图像空间利用两个方向模板与图像进行邻域卷积来完成的。

这两个方向模板一个检测垂直边缘,一个检测水平边缘,如图3所示。

图中,模板的数字为模板系数,梯度方向与边缘方向总是正交水平边缘Sobel算子垂直边缘Sobel算子图3 Sobel算子模板元素和窗口像素之间的对应关系(以3×3窗口为例)定义如下:设窗口灰度为:[]()()()()()()()()()1,11,1,1,1,,11,11,1,1F j k F j k F j kF F j k F j k F j kF j k F j k F j k⎡⎤----+⎢⎥=-+⎢⎥⎢⎥+-+++⎣⎦模板卷积计算就是下式求乘积和的过程:()()11,11,,ii m nm nf j k F j m k n M=-=-=++∑∑式中,i =1,2分别代表垂直和水平模板。

(),i f j k 为模板卷积法边缘检测的输出,[]2l L =,L 为窗口宽度,对3×3窗口,l =1。

将两个卷积结果的最大值,赋给图像中对应模板中心位置的像素,作为该像素的新灰度值,即:()()max max ,1,2i f f j k i ==通过分析可知,Sobel 算子法对高频成分丰富的图像处理效果好,对中低频成分的图像效果差。

2.4 Laplacian 算子拉普拉斯算子是二阶导数的二维等效式。

函数f (x,y )的拉普拉斯算子公式为: 22222f f f x y ∂∂∇=+∂∂ 使用差分方程对x 和y 方向上的二阶偏导数近似如下: [][]()[][][][]()[]22,1,,1,,22,1,x G f x x f i j f i j x f i j f i j x xf i j f i j f i j ∂∂=∂∂∂+-=∂∂+∂=-∂∂=+-++这一近似式是以点f [i,j+1]为中心的,用j -1替换j 得到 [][]()[]22,12,,1f f i j f i j f i j x ∂=+-+-∂它是以点[i,j ]为中心的二阶偏导数的理想近似式,类似地, [][]()[]221,2,1,f f i j f i j f i j x ∂=+-+-∂ 把式(2-3)和式(2-4)合并为一个算子,就成为式(2-5)能用来近似拉普拉斯算子的模板:2010 141 010⎡⎤⎢⎥∇≈-⎢⎥⎢⎥⎣⎦有时候希望邻域中心点具有更大的权值,比如下面式(2-6)的模板就是一种基于这种思想的近似拉普拉斯算子:2141 4204 141⎡⎤⎢⎥∇≈⎢⎥⎢⎥⎣⎦当拉普拉斯算子输出出现过零点时就表明有边缘存在,其中忽略无意义的过零点(均匀零区)。

原则上,过零点的位置精度可以通过线性插方法精确到子像素分辨率。

通过分析可知,它不过由于噪声,以及由噪声引起的边缘两端的不对称性,结果可能不会很精确。

2.5 Canny算子Canny检测阶跃边缘的基本思想是在图像中找出具有局部最大梯度幅值的像素点。

检测阶跃边缘的大部分工作集中在寻找能够用于实际图像的梯度数字逼近。

由于实际的图像经过了摄像机光学系统和电路系统(带宽限制)固有的低通滤波器的平滑,因此,图像中的阶跃边缘不是十分陡立。

图像也受到摄像机噪声和场景中不希望的细节的干扰。

图像梯度逼近必须满足两个要求:首先逼近必须能够抑制噪声效应;其次必须尽量精确地确定边缘的位置。

抑制噪声和边缘精确定位是无法同时得到满足的,也就是说,边缘检测算法通过图像平滑算子去除了噪声,但却增加了边缘定位的不确定性;反过来,若提高边缘检测算子对边缘的敏感性,同时也提高了对噪声的敏感性。

有一种线性算子可以在抗噪声干扰和精确定位之间提供最佳折衷方案,它就是高斯函数的一阶导数。

通过分析可知,采用高斯函数对图像进行平滑处理,因此具有较强的噪声抑制能力;同样该算子也将一些高频边缘平滑掉,造成边缘丢失,采用了双阈值算法检测和连接边缘,边缘的连续性较好。

三、详细设计过程Roberts算子、Sobel算子、Prewitt算子的检测效果相差不大,三种算子的检测效果较之Canny和Log算子还是存在一定的差距。

这三种检测算子的阈值选择围与log和canny算子相比要小些。

边缘点不够锐利和明确,线边缘检测要好于点边缘检测。

总体而言由于Prewitt 算子受噪声影响较小,故检测效果要略好于另外两种。

由于Roberts算子是利用图像的两个对角线的相邻像素之差进行梯度幅值的检测,所以求得的是在差分点处梯度幅值的近似值,并且检测水平和垂直方向边缘的性能好于斜线方向的边缘,检测精度比较高,但容易丢失一部分边缘,同时由于没经过图像平滑计算,因此不能抑制噪声,但该算子对具有陡峭的低噪声图像响应最好。

相关文档
最新文档