初中数学知识点全总结材料
初中数学知识点归纳总结(全)
初中数学知识点1、一元一次方程根的情况△=b2-4ac当△〉0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△〈0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线.③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形.矩形与正方形:①有一个内角是直角的平行四边形叫做矩形.②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形.④正方形具有平行四边形,矩形,菱形的一切性质.⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N—2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…X N,我们把(X1+X2+…+X N)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS)有三边对应相等的两个三角形全等26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆.110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2 圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1 经过圆心且垂直于切线的直线必经过切点125、推论2 经过切点且垂直于切线的直线必经过圆心126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d﹥R+r ②两圆外切d=R+r ③两圆相交R-r﹤d﹤R+r(R﹥r) ④两圆内切d=R—r(R﹥r)⑤两圆内含d﹤R—r(R﹥r)136、定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长142、正三角形面积√3a/4 a表示边长143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n—2)180°/n=360°化为(n—2)(k—2)=4144、弧长计算公式:L=n兀R/180145、扇形面积公式:S扇形=n兀R^2/360=LR/2 146、内公切线长= d—(R—r) 外公切线长= d-(R+r)三、常用数学公式公式分类公式表达式乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2) a3-b3=(a—b(a2+ab+b2)一元二次方程的解-b+√(b2—4ac)/2a -b-√(b2—4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a 注:韦达定理某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2—2accosB注:角B是边a和边c的夹角。
(完整版) 初中数学必背知识点总结
(完整版) 初中数学必背知识点总结初中数学必背知识点总结(完整版)
初中数学是建立中学数学基础的重要阶段,掌握必背知识点对学生的数学研究起到关键性的作用。
以下是初中数学的必背知识点总结。
代数与函数
- 一次函数和二次函数的基本性质
- 幂的运算规律
- 根式的求值及简化
- 四则运算的规则与性质
- 方程与不等式的解法及应用
- 比例与相似的概念与计算
- 函数的定义与性质
几何
- 图形的基本要素和表示方法
- 二维图形的性质、分类和计算
- 三维图形的性质、分类和计算
- 直线、角及其性质的研究
- 圆及其性质的研究
- 三角形及其性质的研究
- 相交线、平行线和垂线的研究
- 平面中的几何关系和判定
- 同位角、对顶角、全等三角形的性质- 平行四边形和梯形的性质
概率与统计
- 实际问题中的统计方法和应用
- 随机事件及其概率计算
- 范围、均值和中位数的计算与分析- 正态分布及其应用
数据与函数
- 数据的收集、整理和表示方法
- 统计数据的分析和解读
- 相关性和回归线的探究
- 折线图、饼图和柱状图的构建与解读
- 函数的图像与性质
这些初中数学的必背知识点涵盖了代数、几何、概率与统计以及数据与函数等重要内内容,掌握这些知识点将为学生在数学学习中打下坚实的基础。
初中数学知识点 初中数学知识点总结归纳(完整版)
初中数学知识点初中数学知识点总结归纳(完整版)初中数学知识点1一、数与式易错点1:有理数、无理数以及实数的有关概念理解错误;相反数、倒数、绝对值的意义概念混淆,以及绝对值与数的分类。
每年选择必考。
易错点2:实数的运算,要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:平方根、算术平方根、立方根的区别。
填空题必考。
易错点4:求分式值为零时,易忽略分母不能为零。
易错点5:分式运算时要注意运算法则和符号的变化。
当分式的分子、分母是多项式时要先因式分解,因式分解要分解到不能再分解为止。
注意计算方法,不能去分母,把分式化为最简分式。
填空题必考。
易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
易错点7:计算第一题必考。
五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。
易错点8:科学记数法。
精确度,有效数字。
易错点9:代入求值要使式子有意义。
各种数式的计算方法要掌握,一定要注意计算顺序。
二、方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。
(消元降次)主要陷阱是消除了一个带未知数的公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目,易忽视二次项系数不为0导致出错。
易错点5:关于一元一次不等式组有解无解的条件,易忽视相等的情况。
易错点6:解分式方程时首要步骤是去分母,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解的问题要先确定解集,确定解集的方法运用数轴。
易错点8:利用函数图象求不等式的解集和方程的解。
三、函数易错点1:各个待定系数表示的意义。
初中数学知识点全部归纳总结
初中数学知识点全部归纳总结一、数与代数1. 有理数- 整数:正整数、零、负整数- 有理数的概念:整数和分数统称为有理数- 有理数的加法、减法、乘法、除法运算规则- 有理数的大小比较2. 整式与分式- 单项式:定义、同类项、合并同类项- 多项式:定义、加减运算、乘法运算- 分式:定义、值、加减运算、乘除运算、通分、约分3. 代数方程- 一元一次方程:解法、解的性质- 二元一次方程组:代入法、消元法- 一元二次方程:定义、解法(开平方法、配方法、公式法、因式分解法)4. 不等式- 不等式的概念:定义、基本性质- 一元一次不等式:解法、解集表示- 一元一次不等式组:解法、解集的确定5. 函数- 函数的概念:定义、函数图像- 线性函数:解析式、图像、性质- 二次函数:解析式、图像、顶点、对称轴、最值二、几何1. 平面图形- 点、线、面的基本性质- 角:分类、性质、角的计算- 三角形:分类、性质、内角和定理、海伦公式- 四边形:分类、性质、面积计算- 圆:基本概念、性质、圆周角定理、垂径定理、弧长计算2. 空间图形- 立体图形的基本概念- 柱、锥、台、球的体积和表面积计算- 棱柱、棱锥的体积计算3. 几何变换- 平移:定义、性质、坐标变化- 旋转:定义、性质、坐标变化- 轴对称:定义、性质、坐标变化4. 相似与全等- 全等三角形的判定条件- 相似三角形的判定条件- 相似比的概念及计算- 三角形的相似性质5. 解析几何- 坐标系:直角坐标系、坐标点的性质- 点的坐标表示、距离公式- 直线方程:点斜式、斜截式、两点式、一般式- 圆的方程:标准式、一般式三、统计与概率1. 统计- 数据的收集、整理、描述- 频数、频率、频数分布表- 平均数、中位数、众数的计算- 方差、标准差的计算2. 概率- 随机事件的概念- 事件的概率定义及计算- 等可能事件的概率- 条件概率、独立事件的概率四、数列1. 等差数列- 等差数列的定义- 通项公式、求和公式- 等差数列的性质2. 等比数列- 等比数列的定义- 通项公式、求和公式- 等比数列的性质以上是初中数学的主要知识点归纳总结。
全部初中数学知识点总结(整理)
全部初中数学知识点总结(整理)初中数学是数学学习的基础阶段,它涵盖了许多重要的数学概念和技能。
以下是对初中数学知识点的全面总结:1. 数与式- 有理数:包括正数、负数和零,以及它们的加减乘除运算。
- 无理数:不能表示为两个整数的比值的实数,例如π和根号2。
- 代数式:用字母表示数的表达式,如ax+b。
- 整式与分式:整式是分母中不含字母的代数式,分式则是分母中含有字母的代数式。
2. 方程与不等式- 一元一次方程:只含有一个未知数,且未知数的最高次数为1的方程。
- 二元一次方程组:由两个含有两个未知数的一次方程组成的方程组。
- 不等式:表示不等关系的式子,如x > 3。
- 一元二次方程:只含有一个未知数,且未知数的最高次数为2的方程。
3. 函数- 函数的定义:从一个集合到另一个集合的对应关系。
- 一次函数:形如y=kx+b的函数,其中k和b是常数。
- 二次函数:形如y=ax^2+bx+c的函数,其中a、b和c是常数,且a≠0。
4. 几何- 线段、射线和直线:线段有长度,射线有一个端点,直线无限长。
- 角:由两条射线组成的图形,如锐角、直角和钝角。
- 三角形:由三条线段组成的封闭图形,包括等边、等腰和直角三角形。
- 四边形:由四条线段组成的封闭图形,如平行四边形、矩形和正方形。
- 圆:平面上所有与给定点(圆心)距离相等的点的集合。
5. 统计与概率- 数据的收集和整理:包括数据的分类、排序和图表表示。
- 平均数、中位数和众数:描述数据集中趋势的统计量。
- 方差和标准差:描述数据分散程度的统计量。
- 概率:事件发生的可能性,用0到1之间的数表示。
6. 解题技巧- 因式分解:将多项式表示为几个多项式的乘积。
- 配方法:将二次方程转化为完全平方的形式。
- 换元法:通过引入新的变量来简化复杂的代数表达式。
- 图形法:利用图形来解决数学问题,如利用函数图像求解方程的根。
初中数学的学习不仅仅是对知识点的记忆,更重要的是理解和应用这些知识点来解决实际问题。
初中数学知识点全总结(完美打印版)
初中数学知识点全总结(完美打印版)初中数学知识点全总结(完美打印版)有理数一、知识框架二.知识概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a 也不一定是正数;?不是有理数;(2)有理数的分类: ① ②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .。
(完整版)初中数学知识点归纳总结(精华版)
第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类 正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:32,7,3π+8,sin60o . 第二章 整式的加减考点一、整式的有关概念 (3分)1、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a 235-是6次单项式。
考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项.第三章 一元一次方程考点一、一元一次方程的概念 (6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。
第四章 图形的初步认识考点一、直线、射线和线段 (3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线.线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
初中数学知识点全总结(完美打印版)
七年级数学上第一章有理数1.有理数2.数轴3.相反数4.绝对值5.有理数比大小6.互为倒数7. 有理数加法法则8.有理数加法的运算律9.有理数减法法则10 有理数乘法法则11 有理数乘法的运算律:12.有理数除法法则13.有理数乘方的法则:14.乘方的定义15.科学记数法16.近似数的精确位17.有效数字18.混合运算法则第二章整式的加减1.单项式2.单项式的系数与次数3.多项式4.多项式的项数与次数第三章一元一次方程1.一元一次方程2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).3.一元一次方程解法的一般步骤4.列一元一次方程解应用题:(1)读题分析法:…………多用于“和,差,倍,分问题”(2)画图分析法: …………多用于“行程问题”4.列方程解应用题的常用公式:(1)行程问题:距离=速度·时间;(2)工程问题:工作量=工效·工时;(3)比率问题:部分=全体·比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C 正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥=πR2h.七年级数学下第五章相交线与平行线1.邻补角2.对顶角3.垂线4.平行线5.同位角、内错角、同旁内角:6.命题7.平移8.对应点9.定理与性质10垂线的性质:11.平行公理12.平行线的性质:13.平行线的判定:第六章平面直角坐标系1.有序数对2.平面直角坐标系3.横轴、纵轴、原点4.坐标5.象限第七章三角形1.三角形2.三边关系3.高4.中线5.角平分线6.三角形的稳定性6.多边形7.多边形的内角8.多边形的外角9.多边形的对角线10.正多边形11.平面镶嵌12.公式与性质三角形的内角和:三角形的内角和为180°三角形外角的性质,多边形内角和公式,多边形的外角和多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
初中数学知识点总结最全版
初中数学知识点总结最全版一、数与代数1. 有理数- 整数和分数的概念- 正数、负数、零- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值的概念和性质2. 整数的性质- 素数和合数- 奇数和偶数- 整数的因数和倍数- 最大公约数和最小公倍数3. 代数表达式- 单项式和多项式- 同类项和合并同类项- 代数式的加减运算4. 一元一次方程- 方程的建立和解法- 方程的解的定义- 解一元一次方程的应用题5. 二元一次方程组- 代入法和消元法- 方程组的解的概念- 解二元一次方程组的应用题6. 不等式- 不等式的基本性质- 解一元一次不等式- 解一元一次不等式组7. 函数- 函数的概念- 函数的表示方法:表格、图像、解析式- 线性函数和二次函数的图像及性质- 函数的应用题二、几何1. 平面图形- 点、线、面的基本性质- 角的概念:邻角、对角、同位角- 三角形的分类和性质- 四边形的分类和性质- 圆的性质和圆周角2. 几何图形的计算- 面积的计算:长方形、正方形、三角形、梯形、圆 - 周长的计算:三角形、四边形、圆- 体积的计算:长方体、正方体、圆柱、圆锥3. 几何变换- 平移、旋转、对称(轴对称和中心对称)- 几何变换的性质和应用4. 解析几何- 坐标系的基本概念- 点的坐标和几何图形的坐标表示- 直线和曲线的解析表达式三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制:条形图、折线图、饼图 - 算术平均数、中位数和众数2. 概率- 概率的基本概念- 等可能事件的概率- 概率的加法和乘法法则- 简单事件和复合事件的概率计算四、综合应用题1. 数列- 等差数列的概念和性质- 等比数列的概念和性质- 数列的求和2. 应用题- 利用初中数学知识解决实际问题- 列方程解应用题- 统计与概率在实际问题中的应用3. 综合题- 结合数与代数、几何、统计与概率的知识点 - 解决综合性问题的能力培养以上总结了初中数学的主要知识点,学生在学习过程中应注重理解和应用,通过大量的练习来巩固所学知识,提高解题能力和数学思维。
初中数学知识点总结归纳(完整版)
初中数学知识点总结归纳(完整版)一、数的概念与运算1.自然数:正整数,包括0和正数。
2.整数:正整数、负整数和0的集合。
3.分数:约分、通分、四则运算、化为整数、化为带分数。
4.小数:百分制数、百分数与小数的相互转换、小数的运算、小数的应用、有限小数和无限小数。
5.整式与分式:字母的代数运算,整式的加减乘除,约分、倒数、整式的应用。
6.乘方与开方:幂的概念与运算,方根的概念与运算。
7.实数:有理数与无理数的关系,实数集的完备性,视数的大小比较。
二、代数1.代数式与多项式:常数、变量、系数、次数、多项式的加减乘除。
2.等式与不等式:等式的性质,方程与解,不等式的性质与解集。
3.图示法与坐标方程:带有几何意义的代数式,平面直角坐标系,点、线、曲线、正比例关系及代数图象。
4.一次函数与方程:函数的概念,函数的图象,函数的增减性、奇偶性,线性函数与一次方程,一次不等式。
5.二次根式:二次根式的概念和性质,二次根式的加减乘除、化简,含有二次根式的一元二次方程。
三、几何1.平面图形:三角形、四边形、多边形、圆,它们的性质与判定,运用平面几何知识解决问题。
2.空间图形:正方体、长方体、棱柱、棱锥、球、圆柱、圆锥、解析几何的基本概念。
3.相似与全等:相似的概念与性质,全等的概念与性质,相似三角形的判定与性质,相似三角形的应用。
4.角与三角形:角的概念与性质,角的度量、角的平分线、角的比较大小,三角形的概念与性质,三角形的判定与性质。
5.圆与圆的运动:圆的性质与计算,正多边形与圆的内接外接,圆的切线与切圆,圆与直线的位置关系。
四、函数与方程1.线性方程组:二元一次方程组,三元一次方程组,多元一次方程组。
2.二次函数与方程:二次函数的概念、图象,二次方程的解法,解的判别式,根的性质。
3.不等式:一元一次不等式,一元二次不等式,含有绝对值的不等式。
4.平面向量:向量与点、向量的运算,向量的模、单位向量,向量的线性运算。
初中数学知识点总结全
初中数学知识点总结全一、整数与有理数1.自然数、整数的定义2.整数的加、减、乘、除运算规则3.整数的绝对值4.有理数的概念与性质5.有理数的加、减、乘、除运算规则6.有理数的大小比较7.有理数的化简与约分二、代数1.代数运算符号的含义2.集合论基本概念3.代数式的定义与性质4.代数式的等同与分配律5.立方公式与平方差公式6.一元一次方程与一元一次不等式的解法7.一元一次方程与不等式的应用8.二元一次方程与一元一次方程组的解法9.二元一次方程与一元一次方程组的应用10.平方根与完全平方公式11.有理数幂次三、函数与图象1.函数的定义与表示2.函数的性质(单调性、奇偶性、周期性)3.函数的运算(加、减、乘、除、复合)4.函数的图象与图像平移5.函数的图象与图像对称6.线性函数与一次函数的关系7.二次函数与一元二次方程的关系8.指数函数与指数运算法则9.对数与常用对数、自然对数10.幂函数与指数函数的图象与性质11.根式函数与分式函数四、数与式的简化与计算1.除法运算法则2.括号的去除与运算3.分数的加减乘除运算4.乘方与开方的运算法则5.分数幂与根的运算法则五、几何1.点、线、面等基本概念2.平行线与垂直线的判定与性质3.角度的概念与角的判定4.角的分类与运算5.三角形的分类与性质6.四边形的分类与性质7.圆与圆的判定与性质8.二维图形的对称与相似9.三维图形的平面展开10.空间点、直线、平面的相互位置关系11.平移、旋转、镜像与剪切六、统计与概率1.统计调查与数据处理2.数据的收集、整理与呈现3.数据的分析与解释4.概率的基本概念与计算5.事件与样本空间6.随机事件的概率与性质7.几何概率与统计概率的比较以上仅为初中数学的主要知识点,每个知识点都有更详细的内容与应用。
数学作为一门理论性强的学科,需要有充分的理解与练习才能掌握。
通过不断的学习与实践来加深对这些知识点的理解,将有助于提升数学能力。
初中数学知识点全面总结(完整版)
初中数学知识点全面总结(完整版)初中数学知识点全面总结(完整版)1. 数字与代数- 自然数:1,2,3,...- 整数:包括自然数及其负数和0- 有理数:可以表示为两个整数的比值的数- 实数:包括有理数和无理数- 代数运算:加法、减法、乘法、除法- 代数式:可以含有数、字母和运算符号的式子2. 几何与图形- 点、线、面:几何学的基本概念- 直线和线段:由无数个点连成的图形- 角度:由两条射线共享一个端点而形成的图形- 三角形:有三条边和三个角的图形- 四边形:有四条边和四个角的图形- 圆和圆周:由一条曲线上的所有点组成的图形3. 数据和统计- 数据收集:通过调查、观察或实验来获得数据- 数据处理:整理、分类和统计数据的过程- 平均数:一组数值的中间值- 概率:事件发生的可能性4. 函数与方程- 函数:将一个或多个输入值关联到一个输出值的规则- 线性函数:图像为一条直线的函数- 一次方程:含有未知数的等式,且未知数的最高次数为1 - 二次函数:含有未知数的等式,且未知数的最高次数为2 - 不等式:包含不等关系的方程式5. 测量与几何变换- 长度、面积和体积的测量- 几何变换:平移、旋转、翻转和对称6. 概率与统计- 抽样调查:通过从整体中选取一部分作为样本来进行调查- 频率分布表:将数据按一定规则整理并统计出现频率- 相对频率:某一事件发生的频率与总次数之比- 抽样误差:由于样本选择不足而引起的统计结果误差以上是初中数学的主要知识点总结,希望对你有帮助!(注意:每个知识点只是简短介绍,具体内容还需进一步研究和理解。
)。
初中数学知识点总结(完整版)
初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:任何一个有理数都可以用数轴上的一个点来表示。
如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
有理数的运算:①同号相加,取相同的符号,把绝对值相加。
异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
一个数与0相加不变。
两数相乘,同号得正,异号得负,绝对值相乘。
任何数与0相乘得0。
乘积为1的两个有理数互为倒数。
0不能作除数。
先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:一个正数有2个平方根/0的平方根为0/负数没有平方根。
立方根:正数的立方根是正数、0的立方根是0、负数的立方根是负数。
实数:实数分有理数和无理数。
每一个实数都可以在数轴上的一个点来表示。
3、代数式代数式:单独一个数或者一个字母也是代数式。
合并同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
在合并同类项时,把同类项的系数相加,字母和字母的指数不变。
4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N)(AM)N=AMN(A/B)N=AN/BN整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
初中数学知识点总结完整版
初中数学知识点总结完整版一、数与代数1、有理数有理数包括整数和分数。
整数又包括正整数、零和负整数;分数包括正分数和负分数。
有理数的运算包括加、减、乘、除、乘方。
加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得 0。
减法法则:减去一个数,等于加上这个数的相反数。
乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与 0 相乘都得 0。
除法法则:除以一个数等于乘以这个数的倒数;0 除以任何一个不等于 0 的数都得 0。
乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
2、实数实数包括有理数和无理数。
无理数是无限不循环小数,常见的无理数有π、\(\sqrt{2}\)等。
实数的运算性质和有理数的运算性质相同。
平方根:如果一个数的平方等于 a,那么这个数叫做 a 的平方根。
正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
算术平方根:正数 a 的正的平方根叫做 a 的算术平方根。
立方根:如果一个数的立方等于 a,那么这个数叫做 a 的立方根。
正数的立方根是正数,负数的立方根是负数,0 的立方根是 0。
3、代数式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
代数式的求值:把代数式中的字母用给定的值代入计算,求出代数式的值。
4、整式单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
单项式中的数字因数叫做这个单项式的系数,单项式中所有字母的指数的和叫做这个单项式的次数。
多项式:几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
多项式里次数最高项的次数,叫做这个多项式的次数。
整式的加减:整式加减的实质是合并同类项。
同类项是指所含字母相同,并且相同字母的指数也相同的项。
初中数学知识点总结归纳(6篇)
初中数学知识点总结归纳一、构建完整的知识框架2.正确理解和掌握数学的一些基本概念、法则、公式、定理,把握他们之间的内在联系。
由于数学是一门知识的连贯性和逻辑性都很强的学科,正确掌握学过的每一个概念、法则、公式、定理可以为以后的学习打下良好的基础,如果在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其有关的、以前的一些基本知识没有掌握好所造成的,因此要经常查缺补漏,找到问题并及时解决之,努力做到发现一个问题及时解决一个问题。
只有基础扎实,解决问题才能得心应手,成绩才会提高。
二、初中数学知识重难点分析1.函数(一次函数、反比例函数、二次函数)特别是二次函数经常出现在各阶段的考试中,也是考试中的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。
而且一道解答题一般会在试卷最后两题出现,二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。
如果在这一环节掌握不好,将会直接影响代数的基础,会对考试的分数会造成很大的影响。
2.应用题,在各阶段考试中占有较大的比重,包括方程(组)应用、一元一次不等式(组)应用、函数应用、解三角形应用、概率与统计应用几种题型。
一般会出现2~3道解答题(30分左右)及2~3道选择、填空题(10分~15分),占考试总分的30%左右。
现在数学考试对数学实际应用的考查会越来越多,数学与生活联系越来越紧密,应用题要求学生的理解辨别能力很强,能从问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法。
方程思想、函数思想、数形结合思想也是中学阶段一种很重要的数学思想、是解决很多问题的工具。
3.整式、分式、二次根式的化简运算。
整式的运算、因式分解、二次根式、科学记数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解、因式分解和整式乘法运算的关系、分式的运算是难点。
在考试中一般以选择、填空形式出现,但却是解答题完整解答的基础。
完整版初中数学知识点归纳总结精华版
初中数学知识点归纳总结一元一次方程1.概念:含有一个未知数,未知数的最高次数为1,这样的方程叫一元一次方程。
2.形式:ax + b = 0(a、b是常数,且a≠0)3.解法:移项、合并同类项、化简系数二元一次方程1.概念:含有两个未知数,未知数的最高次数为1,这样的方程叫二元一次方程。
2.形式:ax + by = c(a、b、c是常数,且a、b≠0)3.解法:消元法、代入法、行列式法一元一次不等式1.概念:含有一个未知数,未知数的最高次数为1,这样的不等式叫一元一次不等式。
2.形式:ax > b(a、b是常数,且a≠0)3.解法:同解一元一次方程,注意不等号的方向4.概念:分式是指形如a/b的表达式,其中a、b是整式,且b≠0。
5.性质:分式的分子、分母同时乘以(或除以)同一个非零整式,分式的值不变。
6.运算:加减乘除、分式的乘方点、线、面1.点:没有长度、宽度、高度的物体。
2.线:只有长度,没有宽度、高度的物体。
3.面:只有长度和宽度,没有高度的物体。
直线方程1.点斜式:y - y1 = k(x - x1)(k是直线的斜率,(x1, y1)是直线上的一点)2.截距式:y = kx + b(k是直线的斜率,b是直线在y轴上的截距)三角形1.概念:由三条线段首尾顺次连接所组成的图形叫三角形。
2.性质:三角形的内角和为180°,三角形的对边相等。
3.分类:不等边三角形、等腰三角形、等边三角形四边形1.概念:由四条线段首尾顺次连接所组成的图形叫四边形。
2.性质:四边形的内角和为360°,四边形的对边相等。
3.分类:矩形、平行四边形、梯形、菱形4.概念:平面上到一个固定点距离相等的所有点的集合叫圆。
5.性质:圆的半径相等,圆心到圆上任意一点的距离相等。
6.公式:圆的周长C = 2πr,圆的面积S = πr²概率与统计1.概念:事件发生的可能性叫概率。
2.求法:列举法、树状图法、列表法3.概念:统计学是研究数据收集、处理、分析、解释的科学。
初中数学知识点总结归纳(完整版)
初中数学知识点总结归纳(完整版)1. 数与式整数与有理数•整数与负数的概念•整数与有理数的关系•整数的加减乘除•有理数的加减乘除•有理数的绝对值与相反数分数与小数•分数的概念与性质•分数的化简与约分•分数的加减乘除•分数的比较大小•小数的概念与性质•小数与分数的相互转化•小数的加减乘除百分数与比例•百分数的概念与表示方法•百分数的转化与运算•比例的概念与性质•比例的表示与比例的简化•比例的四则运算•比例的应用:比例尺、利润、利率等平方根与立方根•平方根的概念与性质•平方根的计算与应用•立方根的概念与计算代数式与方程式•代数式的概念与性质•代数式的加减乘除与化简•方程式的概念与性质•方程式的解与解的唯一性•一元一次方程与解法•一元一次方程的应用2. 几何直线与角•直线与线段的概念与性质•直线与角的关系•角的分类与度量•角的加减运算•角的余角与补角•垂直角与同位角三角形•三角形的分类与性质•直角三角形的性质•等腰三角形的性质•等边三角形的性质•三角形的角平分线与垂直平分线•三角形的面积与周长的计算平行线与比例•平行线的性质与判定•平行线的应用:平行线的等与不等关系•比例线段与比例的概念•线段的延长、分割及等分•相似三角形与相似比例圆•圆的概念与性质•圆周角与弧长的关系•相切线与切线的性质•弦长与弧度制长方体与正方体•长方体与正方体的概念与性质•长方体与正方体的表面积与体积的计算•长方体与正方体的应用3. 数据分析与统计统计图表•统计图表的分类与绘制•条形图的绘制与应用•折线图的绘制与应用•饼图的绘制与应用•散点图的绘制与应用平均数与中位数•平均数的概念与计算•中位数的概念与计算•平均数与中位数的应用概率与事件•概率的概念与计算•事件的概念与运算•概率与事件的应用抽样调查•抽样调查的目的与方法•抽样调查的误差与样本容量•调查报告的撰写与分析4. 代数与函数一元一次方程•一元一次方程的解法•一元一次方程的应用二元一次方程组•二元一次方程组的解法•二元一次方程组的应用函数与图像•函数的概念与性质•函数的表示与计算•函数的图像与性质•平移、伸缩与翻折变换•函数的最大值与最小值幂与指数函数•幂函数与指数函数的概念与性质•幂函数与指数函数的应用图形与变化•图形的对称与性质•图形的平移、伸缩与翻折•图形的旋转与变化规律结语初中数学知识点的总结归纳,涵盖了数与式、几何、数据分析与统计以及代数与函数方面的内容。
初中数学知识点总结归纳(完整版)
初中数学知识点总结归纳(完整版)初中数学知识点总结归纳1.菱形的定义:一组相邻边相等的平行四边形称为菱形。
2、菱形的性质:⑴ 矩形具有平行四边形的一切性质;⑵ 菱形的四条边都相等;⑶ 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
⑷ 菱形是轴对称图形。
提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。
3.因式分解的定义:把一个多项式变换成几个代数表达式的乘积,叫做这个多项式的因式分解。
4、因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)5.公因式:多项式的每一项所包含的公因式称为这个多项式的每一项的公因式。
6、公因式确定方法:①系数是整数时取各项最大公约数。
②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
7、提取公因式步骤:①确定公因式。
②确定商式③公因式与商式写成积的形式。
8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。
a叫被开方数。
9、中被开方数的取值范围:被开方数a≥010、平方根性质:①一个正数的平方根有两个,它们互为相反数。
②0的平方根是它本身0。
③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。
11.平方根和算术平方根的区别:定义不同,表述不同,数字不同,取值范围不同。
12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是013、含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。
14、求正数a的算术平方根的方法;完全平方数类型:①想谁的平方是数a。
②所以a的平方根是多少。
③用式子表示。
求正数a的算术平方根,只需找出平方后等于a的正数。
初中数学重点知识归纳1、一元二次方程解法:(1)配方法:(X±a)²=b(b≥0)注:二次项系数必须化为1(2)公式法:aX²+bX+C=0(a≠0)确定a,b,c的值,计算b²-4ac≥0若b²-4ac>0则有两个不相等的实根,若b²-4ac=0则有两个相等的实根,若b²-4ac<0则无解若b²-4ac≥0则用公式X=-b±√b²-4ac/2a注:必须化为一般形式(3)分解因式法①提公因式法:ma+mb=0→m(a+b)=0平方差公式:a²-b²=0→(a+b)(a-b)=0②运用公式法:完全平方公式:a²±2ab+b²=0→(a±b)²=0③十字相乘法2、锐角三角函数定义锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
(完整版)初中数学知识点归纳总结(精华版)
(完整版)初中数学知识点归纳总结(精华版)【完整版】初中数学知识点归纳总结(精华版)一、数的性质与运算1. 自然数与整数自然数是大于等于0的整数,而整数包括正整数、负整数和0。
2. 有理数有理数是可以表示为两个整数的比值的数,包括整数和分数。
3. 实数实数包括有理数和无理数,可以用数轴表示。
4. 数的分类与运算规律数可以分为正数、负数和零,对于加法、减法、乘法和除法,都有相应的运算法则和运算规律。
二、代数表达式与简单方程1. 代数表达式代数表达式是用数、字母和运算符号表示的数学式子。
2. 同类项与合并同类项同类项具有相同的字母部分和相同的指数,可以合并同类项简化代数表达式。
3. 方程与解方程方程是含有未知数的等式,解方程就是求出使等式成立的未知数的值。
三、平面图形与坐标系1. 点、直线、线段与射线点是没有长度、宽度和高度的,直线是由无穷多个点连在一起的路径,线段是在两个点之间的部分,射线是一个起点固定的直线段。
2. 角与三角形角是由两条射线共享一个公共起点形成的,三角形是由三条线段相交形成的,有等边三角形、等腰三角形和直角三角形等。
3. 坐标系与坐标坐标系由横纵两条相互垂直的线段组成,坐标是表示一个点在坐标系中位置的数对。
四、比例与相似1. 比例和比例的性质比例是两个等式之间的比较关系,其中有比的前项和比的后项,比例具有相等的比值。
2. 类比与相似类比是指两个或多个比例关系相同的比,相似是指形状相似,但尺寸不同的图形。
3. 相似三角形与比例定理相似三角形的对应角相等,对应边成比例,有相似三角形的比例定理可以解决各种相关问题。
五、数与代数1. 分式与整式分式是由分子和分母构成的,整式则不包含分式。
2. 一元二次方程与解方程一元二次方程是最高次项的次数为2的一元方程,可以使用求根公式求解。
六、函数与图象1. 函数的概念与函数的图象函数是一个将定义域中的每个元素映射到值域中唯一元素的关系,函数的图象可以表示函数各点的对应关系。
初中数学知识点总结材料
初中数学知识点总结材料初中数学涉及的知识点非常广泛,包括代数、几何、概率、统计等多个方面。
下面是初中数学知识点的一个总结材料,希望能帮助到你。
一、代数篇1.数与式-自然数、整数、有理数、无理数、实数-整数的加减法、乘除法-有理数的加减法、乘除法-科学记数法2.算式与方程-代数式、算式、方程-方程的解-一元一次方程、一元一次方程应用-一元一次方程的解集3.整式的加减法与乘法-同类项、同类项合并-整式的加法、减法-整式的乘法-乘法公式4.分式-分数的四则运算-分式的乘法、除法-分式方程5.方程与方程组-二元一次方程组-二元一次方程组的应用二、几何篇1.平面图形-直线、射线、线段-角、角的度量、角的分类-三角形、四边形、多边形-面积2.空间与立体图形-空间平行关系-空间中的直线-空间中的平面-空间与立体图形的展转关系3.相似与全等-图像的旋转、翻转、镜像、平移-三角形的全等条件-三角形的相似条件4.圆-圆的性质、圆周长、面积-弧、弦、切线、割线-内切圆和外接圆5.测量-直线、角、线段的度量-直角三角形、一般三角形的三角函数-三角比的应用三、数据篇1.数据的收集与整理-统计数据的收集方法-数据的整理与分析2.统计图-条形图、折线图、散点图、饼图的绘制与分析3.平均数与中位数-算术平均数、权平均数、中位数的计算4.概率与事件-概率的基本概念-试验与事件-事件的概率计算四、应用篇1.比例与比例关系-比例的意义与性质-比例的计算-比例方程2.百分数与利息-百分数及其计算-利息与年利率3.功能关系与函数-函数的定义与表示-函数的图像与性质-一次函数与一次函数的图像以上只是初中数学知识点的一个概括,具体的知识点还有很多,每个知识点都有很多具体的规则和公式需要记忆和掌握。
希望以上的总结材料能给你带来帮助,加油!。