正多边形与圆、弧长面积的计算

合集下载

圆的弧长及面积计算

圆的弧长及面积计算
弧形面积的计算通常可以通过扇形面积公式来实现。在半径为r的圆中,若圆心角为n°,则所对应的扇形面积S可以通过公式S=nπr²/360来计算。此外,如果已知弧长l,那么扇形面积S也可以表示为S=1/2lr。这些公式提供了计算弧形面积的基础,其中π代表圆周率,r代表半径,n代表圆心角的角度数,l代表弧长。通过这些公式,我们可以根据已知条件灵活选择适合的计算方法,从而求出弧形面积。需情况进行必要的单位换算。扇形面积公式的应用不仅限于纯数学计算,还广泛应用于工程、物理、经济等多个领域,是解决实际问题的有力工具。

正多边形和圆及正多边形的有关计算

正多边形和圆及正多边形的有关计算

中考数学辅导之—正多边形和圆及正多边形的有关计算正多边形和圆是初中几何课本中的最后一单元,它包括正多边形的定义、正多边形的判定、性质,正多边形的有关计算,圆周长及弧长公式,圆、扇形、弓形的面积。

今天我们一起学习正多边形的定义、判定、性质及有关计算.一、基础知识及其说明:1.正多边形的定义:各边相等、各角也相等的多边形叫做正多边形.此定义中的条件各边相等,各角也相等 “缺一不可”.如:菱形各边相等,因四个角不等,所以菱形不一定是正多边形.矩形的四个角相等,但因四条边不一定相等,故矩形不一定是正四边形,只有正方形是正四边形.2.正多边形的判定,正多边形的定义当然是正多边形的判定方法之一,但如同全等三角形的判定一样,用定义来证明两个三角形全等显然不可取,因此需用判定定理来证.判定定理:把圆几等分()①依次连结各分点所得的多边形是这个圆的内接正边形②经过各分点做圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正边形.也就是说,若要证明一个多边形是圆内接正多边形,只要证明这个多边形的顶点是圆的等分点即可, 如:要证明一个圆内接边形ABCDEF ……是圆内接正边形,就要证A 、B 、C 、D 、E 、F ……各点是圆的n 等分点,就是要证AB=BC=CD=DE=EF=…….同样,要证明一个圆外切边形是圆外切正边形,只要证明各切点是圆的等分点即可例1:证明:各边相等的圆内接多边形是正多边形.已知:在⊙O 中,多边形ABCDE ……是⊙O 的内接n 边形 且AB=BC=CD=DE=…….求证:n 边形ABCDE ……是正n 边形证明: AB=BC=CD=DE=…… ∴ AB=BC=CD=DE ……∴OEB=AEC= BED=COE=……∴ =∠=∠=∠=∠D C B A又∵AB=BC=CD=DE=……∴n 边形ABCDE ……是正n 边形.例2:证明:各角相等的圆外切n 边形是正n 边形.已知:多边形……是圆外切n 边形,切点分别是A,B,C,D,E ……,=…….求证:n 边形……是正n 边形.证明:连结OB,OC,OD ……,在四边形COD 和四边形BOC 中∵切⊙O 于B,C,D∴∴ 0''180=∠+∠=∠+∠COD C BOC B而……∴∴BC=CD(在同圆中,相等的圆 B O心角所对的弧相等).同理BC=CD=DE=FE=……'B D∴A,B,C,D,E,F……是圆的n等分点 C∴多边形ABCDEF……是圆外切n正多边形3.正多边都是轴对称图形,若n是奇数,正n边形是轴对称图形,n是偶数,正n边形既是轴对称图形又是中心图形.4.正多边形的性质:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.5.正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆半径叫正多边形的半径.内切圆的半径叫正多边形的边心距.正多边形的每一边所对的圆心角叫中心角,中心角的度数是.如图:OA,OB是半径,O是中心,OH⊥AB于H,OH是边心距,是中心角6.正多边形的有关计算,一般是围绕正边形的半径R,边长,边心距,周长及面积来进行,但关健是之间的计算,因为正边形的边心距把正边形的一边与该边所对应的两条半径所围成的等腰三角形分成两个全等的直角三角形,所以在Rt△AOH中,斜边是R,直角边分别是和,锐角,利用直角三角形的有关知识(勾股定理,锐角三角函数等)来解直角三角形即可.例:已知正六边形ABCDEF的半径是R,求正六边形的边长S6.解:作半径OA、OB,过O做OH⊥AB,则∠AOH==30°∵∴∴∴∵∴S6=同学们在进行正多边形的计算时,应很好的理解、掌握如何用解直角三角形的方法进行计算,但也可以推出公式,然后利用公式变形进行计算.则这是已知半径R,求的公式,若记住公式则正多边形的计算就简单了很多,如已知半径R,求解:再如:已知正三角形的边长为,可以先由,求出半径,再将求得的R代入;若已知边心距求边长,则先用,求出R,再代入求边长公式即可求出,此法好处是不用画图,只需将上面两个公式反复变形即可.7.如何求同圆的圆内接正边形与圆外切正边形的边长比,半径比,边心距比.如:求同圆的圆内接正边形和圆外切正边形的边长比.设⊙O的半径的为R则圆内接正边形的边长是而在Rt△OBC中,OB=R,则,即外切正边形的边长是,∴=实际上,=,OB是的邻边,OC是Rt△BOC的斜边,,希望同学们记住此结论.如圆内接正四边形的边心距与圆外切正四边形的边心距之比是,圆内接正六边形与圆外切正六边形的边长之比是,而圆内接正三角形与圆外切正三角形的面积之比是.(注意:①此结论必须是同圆的边数相同的圆内接正边形与圆外切正边形的相似比是.②若求圆外切正边形与圆内接正边形的相似比则是).二、练习题:1.判断题:①各边相等的圆外切多边形一定是正多边形.( )②各角相等的圆内接多边形一定是正多边形.( )③正多边形的中心角等于它的每一个外角.( )④若一个正多边形的每一个内角是150°,则这个正多边形是正十二边形.( )⑤各角相等的圆外切多边形是正多边形.( )2.填空题:①一个外角等于它的一个内角的正多边形是正____边形.②正八边形的中心角的度数为____,每一个内角度数为____,每一个外角度数为____.③边长为6cm的正三角形的半径是____cm,边心距是____cm,面积是____cm.④面积等于cm2的正六边形的周长是____.⑤同圆的内接正三角形与外切正三角形的边长之比是____.⑥正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.⑦正六边形的两对边之间的距离是12cm,则边长是____cm.⑧同圆的外切正四边形与内接正四边形的边心距之比是____.⑨同圆的内接正三角形的边心距与正六边形的边心距之比是____.3.选择题:①下列命题中,假命题的是( )A.各边相等的圆内接多边形是正多边形.B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心.C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心.D.一个外角小于一个内角的正多边形一定是正五边形.②若一个正多边形的一个外角大于它的一个内角,则它的边数是( )A.3B.4C.5D.不能确定③同圆的内接正四边形与外切正四边形的面积之比是( )A.1:B.1:C.1:2D.:1④正六边形的两条平行边间距离是1,则边长是( )A. B. C. D.⑤周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是:( )A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S3⑥正三角形的边心距、半径和高的比是( )A.1:2:3B.1::C.1::3D.1:2:三、练习答案:1.判断题①×②×③√④√⑤√2.填空题①四②45°,135°,45°③④12⑤1:2 1:4 ⑥8 ⑦⑧:1 ⑨1:3.选择题①D ②A ③C ④C ⑤B ⑥A。

正多边形与圆及弧长与扇形面积的计算【知识点清单】中考数学一轮复习精讲+热考题型(全国通用)

正多边形与圆及弧长与扇形面积的计算【知识点清单】中考数学一轮复习精讲+热考题型(全国通用)

B A O 专题27 正多边形与圆及弧长与扇形面积计算【知识要点】正多边形概念:各条边相等,并且各个内角也都相等的多边形叫做正多边形。

正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心。

正多边形的半径:正多边形外接圆的半径叫做正多边形的半径。

正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。

正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距。

【解题思路】1.正边形半径、边心距和12边长构成直角三角形。

2.已知其中两个值,第三个值可以借助勾股定理求解。

正多边形的对称性:1)正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心。

2)一个正多边形,如果有偶数条边,那么它既是轴对称图形,又是中心对称图形.对称中心就是这个正多边的中心。

【小结】正n 变形的内角为(n−2)×180°n ,外角为3600n ,中心角为3600n 内角和为( n-2 )×180°。

【扩展】正多边形常见边心距与边长的比值第一种 正三角形 在⊙O 中△ABC 是正三角形,在Rt △BOD 中,OD:BD:OB=1: √3 : 2 (图一) 变式 正三角形内切圆与外切圆半径比为1:2 (图二)第二种 正方形 在⊙O 中四边形是正方形,在Rt △OAE 中,OE:AE:OE=1:1: √2 (图三) 变式 正方形内切圆与外切圆半径比为1: √2 (图四)第三种 正六变形 在⊙O 中六边形是正六边形,在Rt △OAB ,AB:OB:OA=1: √3 : 2 (图五)图一 图二 图三 图四 图五 设的半径为R ,圆心角所对弧长为l ,弧长公式:l=nπR180(弧长的长度和圆心角大小和半径的取值有关)扇形面积公式:圆锥的侧面积公式:122S l r rlππ==(其中l是圆锥的母线长,r是圆锥的底面半径)母线的概念:连接圆锥顶点和底面圆周任意一点的线段。

圆与正多边形、弧长扇形的面积

圆与正多边形、弧长扇形的面积

得到正五边形ABCDE.
∵A⌒B=B⌒C=C⌒D=D⌒E=E⌒A
A
∴ AB=BC=CD=DE=EA,
∴B⌒CE=C⌒DA=3A⌒B
∴ ∠A=∠B.
B
E
·O
同理∠B=∠C=∠D=∠E.
C
D
又∵五边形ABCDE的顶点都在⊙O上,
∴ 五边形ABCDE是⊙O的内接正五边形, ⊙O是五边形 ABCDE的外接圆.
A
D
D' A'
C'
B
C
4.(2018·河南)如图,在△ABC中, ∠ACB=90°,AC=BC=2,将△ABC绕AC 的中点D逆时针旋转90°得到△A′B′C′,其 中点B的运动路径为,则图中阴影部分的面 积为____________.
B′
C′
C
D
A
A′
B
5.如图,将半径为2,圆心角为120°的 扇形OAB绕点A逆时针旋转60°,点O, B的对应点分别为O′,B′,连接BB′,则 图中阴影部分的面积是( )
圆心角为1°的扇形所对的面积是多少?
在半径为R 的圆中,n°的圆心角所对的扇
形面积计算公式为
S = S n nR2
扇形 S扇形360 360圆

n 360
πR2
扇形的面积与扇形所在的圆的半径和弧所对
的圆心角的度数有关系.
n
n
n
L弧 360 C圆 360 d 180 R
S扇形

C
A
D
B
O
割补法:由弧出发找扇形
2.(2015·河南)如图,在扇形AOB中, ∠AOB=90°,点C为OA的中点,CE⊥OA交于 点E,以点O为圆心,OC的长为半径作弧交OB

正多边形和圆、弧长和扇形面积分析

正多边形和圆、弧长和扇形面积分析

正多边形和圆、弧长和扇形面积一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:● 了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用正多边形和圆的有关知识画正多边形.● 通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长180n R l π=和扇形面积2360n R S π=扇的计算公式,并应用这些公式解决问题.● 了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用公式解决问题. 重点难点:● 重点:正多边形半径和边长、边心距、中心角之间的关系;n °的圆心角所对的弧长180n R l π=,扇形面积2360n R S π=扇及它们的应用;圆锥侧面积和全面积的计算公式. ● 难点:正多边形半径和边长、边心距、中心角之间的关系;弧长和扇形面积公式的应用;由圆的周长和面积迁移到弧长和扇形面积公式的过程;圆锥侧面积和全面积的计算公式. 学习策略:● 要结合图形真正理解掌握相关概念,注意多观察实物模型、多动手.二、学习与应用(一)多边形的内角和公式为 ,多边形的外角和为 .(二)正n 边形有 个内角,每一个内角都 ,每一个内角的度数为 . (三)正n 边形有 个外角,每一个外角都 ,每一个外角度数为 . (四)正n 边形有 条对角线.(五)圆的半径为r ,则其周长为 ,面积为 .知识点一:正多边形的概念各边 ,各角也 的多边形是正多边形. “凡事预则立,不预则废”.科学地预习才能使我们上课听讲更有目的性和针对知识要点——预习和课堂学习知识回顾——复习学习新知识之前,看看你的知识贮备过关了吗?判断一个多边形是否是正多边形,必须满足两个条件:(1)各边;(2)各角;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形).知识点二:正多边形的重要元素(一)正多边形的外接圆和圆的内接正多边形正多边形和圆的关系十分密切,只要把一个圆分成的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.(二)正多边形的有关概念(1)一个正多边形的圆的圆心叫做这个正多边形的中心.(2)正多边形圆的半径叫做正多边形的半径.(3)正多边形每一边所对的角叫做正多边形的中心角.(4)正多边形的到正多边形的一边的叫做正多边形的边心距.(三)正多边形的有关计算(1)正n边形每一个内角的度数是;(2)正n边形每个中心角的度数是;(3)正n边形每个外角的度数是 .知识点三:正多边形的性质(一)正多边形都只有个外接圆,圆有个内接正多边形.(二)正n边形的半径和边心距把正n边形分成个全等的直角三角形.(三)正多边形都是图形,对称轴的条数与它的数相同,每条对称轴都通过正n 边形的;当边数是偶数时,它也是对称图形,它的就是对称中心.知识点四:正多边形的画法(一)用量角器等分圆由于在同圆中相等的圆心角所对的弧相等,因此作相等的圆心角可以等分圆.(二)用尺规等分圆对于一些特殊的正n边形,可以用圆规和直尺作图.知识点五:弧长公式半径为R的圆中360°的圆心角所对的弧长(圆的周长)公式:n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即12R Rππ⨯=;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R为弧所在圆的半径;(3)弧长公式所涉及的三个量:、度数、弧所在圆的,知道其中的两个量就可以求出第三个量.知识点六:扇形面积公式(一)扇形定义:由组成圆心角的两条和圆心角所对的所围成的图形叫做扇形.(二)扇形面积公式:半径为R的圆中360°的圆心角所对的扇形面积(圆面积)公式:n°的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即221360360RRππ⨯=;(2)在扇形面积公式中,涉及三个量:扇形、扇形、扇形的,知道其中的两个量就可以求出第三个量.(3)扇形面积公式12S lR=扇形,可根据题目条件灵活选择使用,它与三角形面积公式12S ah=有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:21136021802n R n RS R lRππ==⨯⨯=扇形.知识点七:圆锥的侧面积和全面积连接圆锥和底面圆上任意一点的叫做圆锥的母线.圆锥的母线长为l,底面半径为r,侧面展开图中的扇形面积圆心角为n°,则圆锥的侧面积,全面积 .要点诠释:扇形的半径就是圆锥的,扇形的弧长就是圆锥底面圆的 .因此,要求圆锥的侧面积就是求展开图形面积,全面积是由和组成的.类型一:正多边形的概念例1.(1)(2011江苏南通)比较正五边形与正六边形,可以发现它们的相同点与不同点.例如它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点.相同点:(1)(2)经典例题-自主学习(2)(2)如图,在正方形ABCD中,对角线AC、BD交于O点,若分别以A、B、C、D为圆心,以OA长为半径作弧,分别与各边交于E、F、G、H、K、L、M、N点.求证:八边形EFGHKLMN是正八边形.例2.已知:如图,△ABC是⊙O的内接等腰三角形,顶角∠A=36°,弦BD、CE分别平分∠ABC、∠ACB.求证:五边形AEBCD是正五边形类型二:正多边形的有关计算例3.(1)(2011广东中山)正八边形的每个内角为()A.120° B.135° C.140° D.144°(2)已知正六边形ABCDEF,如图所示,其外接圆的半径是a,•求正六边形的周长和面积.举一反三:【变式1】已知,如图,正八边形ABCDEFGH内接于半径为R的⊙O,求这个八边形的面积.探究思考:这个八边形的边长a=?提示:如图所示,当OA=R时,AK OK==a====类型三:考查弧长和扇形的计算例4.(1)(2011广东广州)如图4,AB切⊙O于点B,OA=23,AB=3,弦BC∥OA,则劣弧⌒BC的弧长为().A.33πB.32πC.πD.32π图 4(2)制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即AB的长(结果精确到0.1mm)例5.如图,已知扇形AOB的半径为10,∠AOB=60°,求AB的长(结果精确到0.1)和扇形AOB的面积(结果精确到0.1).举一反三:【变式1】如图,AB为O的直径,CD AB⊥于点E,交O于点D,OF AC⊥于点F.(1)请写出三条与BC有关的正确结论;(2)当30D∠=,1BC=时,求圆中阴影部分的面积.类型四:圆锥面积的计算例6.(1)(2011山东泰安)一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A.5πB. 4πC.3πD.2π(2)圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽,已知纸帽的底面周长为58cm,高为20cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm2)举一反三:【变式1】如图,圆锥形的烟囱帽的底面直径是cm80,母线长cm50.计算这个烟囱帽侧面展开图的面积及圆心角.BA【变式2】如图,已知Rt △ABC 的斜边AB =13cm ,一条直角边AC =5cm ,以直线AB 为轴旋转一周得一个几何体.求这个几何体的表面积.三、总结与测评要想学习成绩好,总结测评少不了!课后复习是学习不可或缺的环节,它可以帮助我们巩固学习效果,弥补知识缺漏,提高学习能力.(一)首先要结合图形真正理解掌握正多边形及其相关的一些概念;(二)在进行正多边形的有关计算时,要利用由正多边形的半径、边心距及弦的一半组成的直角三角形结合勾股定理进行计算;(三)注意掌握用尺规等分圆的方法画一些特殊的正多边形;(四)注意弧长公式中,n 表示1°的圆心角的倍数,n 和180都不带单位,若圆心角的单位不统一,应先统一单位,化为度;(五)扇形面积公式lR S 21扇与三角形面积公式类似.把弧长看作底,R 看做高就比较容易记忆了;(六)对组合图形面积的计算问题,应认真全面观察和分析图形,避免拿起题目就盲目乱做.经典例题透析总结规律和方法——强化所学 认真回顾总结本部分内容的规律和方法,熟练掌握技能技巧.1.(1)(2011江苏南通)比较正五边形与正六边形,可以发现它们的相同点与不同点.例如它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点.相同点:(1)______________(2)______________不同点:(1)______________(2)______________答案:相同点(1)每个内角都相等(或每个外角都相等或对角线都相等…);(2)都是轴对称图形(或都有外接圆和内切圆…);.不同点(1)正五边形的每个内角是108°,正六边形的每个内角是120°(或…);(2)正五边形的对称轴是5条,正六边形的对称轴是6条(或…).(2)如图,在正方形ABCD中,对角线AC、BD交于O点,若分别以A、B、C、D为圆心,以OA长为半径作弧,分别与各边交于E、F、G、H、K、L、M、N点.求证:八边形EFGHKLMN是正八边形.思路点拨:欲证八边形EFGHKLMN是正八边形,依据定义,只要证它的各角相等(都为135°),各边也相等.证明:设正方形ABCD的边长为a,则同理可证同理可证∴八边形EFGHKLMN的各边相等而△BFG、△CHK、△DML、△AEN都是等腰直角三角形,由三角形的外角性质可得此八边形的每个内角都为90°+45°=135°∴八边形EFGHKLMN是正八边形.2.已知:如图,△ABC是⊙O的内接等腰三角形,顶角∠A=36°,弦BD、CE分别平分∠ABC、∠ACB.求证:五边形AEBCD是正五边形解:∵△ABC是等腰三角形,顶角∠A=36°,∴∠ABC=72°,∠ACB=72°,又弦BD、CE分别平分∠ABC、∠ACB∴∠ABD=∠DBC=∠ACE=∠BCE=∠BAC=36°∴五边形AEBCD是正五边形.类型二、正多边形的有关计算3. (1)(2011广东中山)正八边形的每个内角为()A.120° B.135° C.140° D.144°思路点拨:正八边形的每个内角为,故选B.答案:B(2)已知正六边形ABCDEF,如图所示,其外接圆的半径是a,•求正六边形的周长和面积.思路点拨:要求正六边形的周长,只要求AB的长,已知条件是外接圆半径,因此自然而然,边长应与半径挂上钩,很自然应连接OA,过O点作OM⊥AB于M,在Rt△AOM 中便可求得AM,又应用垂径定理可求得AB的长.正六边形的面积是由六块正三角形面积组成的.解:如图所示,由于ABCDEF是正六边形,所以它的中心角等于,△OBC是等边三角形,从而正六边形的边长等于它的半径.因此,所求的正六边形的周长为6a在Rt△OAM中,OA=a,AM=AB=利用勾股定理,可得边心距OM=∴所求正六边形的面积=6××AB×OM=.举一反三:【变式1】已知,如图,正八边形ABCDEFGH内接于半径为R的⊙O,求这个八边形的面积.解:如图,分别连结OA,OC及AC由正八边形的对称性,则AC⊥OB,∠AOC=90°探究思考:这个八边形的边长a=?提示:如图所示,当OA=R时,.类型三、考查弧长和扇形的计算4. (1)(2011广东广州)如图4,AB切⊙O于点B,OA=,AB=3,弦BC∥OA,则劣弧的弧长为().A. B.C.π D.图4思路点拨:连结OB、OC,则,OB=,,,由弦BC∥OA得,所以△OBC为等边三角形,.则劣弧的弧长为,故选A.答案:A(2)制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)思路点拨:要求的弧长,圆心角知,半径知,只要代入弧长公式即可.解:R=40mm,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm.5.如图,已知扇形AOB的半径为10,∠AOB=60°,求的长(•结果精确到0.1)和扇形AOB的面积(结果精确到0.1).思路点拨:要求弧长和扇形面积,只要有圆心角,半径的已知量便可求,本题已满足.解:的长=S扇形=因此,的长为10.5,扇形AOB的面积为52.4.举一反三:【变式1】如图,为的直径,于点,交于点,于点.(1)请写出三条与有关的正确结论;(2)当,时,求圆中阴影部分的面积.解:(1)答案不唯一,只要合理均可.例如:①;②;③;④;⑤是直角三角形;⑥是等腰三角形.(2)连结,则.,,.为的直径,.在中,,,.,.,是的中位线.....类型四、圆锥面积的计算6.(1)(2011山东泰安)一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A.5π B. 4πC.3πD.2π思路点拨:圆锥的侧面展开图的弧长为2π,圆锥的侧面面积为2π,底面半径为1,圆锥的底面面积为π,则该圆锥的全面积是2π+π=3π.故选C.答案:C(2)圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽,已知纸帽的底面周长为58cm,高为20cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm2)思路点拨:要计算制作20顶这样的纸帽至少要用多少平方厘米的纸,只要计算纸帽的侧面积.解:设纸帽的底面半径为rcm,母线长为,则(cm)22.03(cm)S纸帽侧=×58×22.03=638.87(cm)638.87×20=12777.4(cm2)所以,至少需要12777.4cm2的纸.举一反三:【变式1】如图,圆锥形的烟囱帽的底面直径是,母线长.计算这个烟囱帽侧面展开图的面积及圆心角.思路点拨:烟囱帽的展开图是扇形,这个扇形的半径是圆锥的母线长,弧长是圆锥底面的周长.解:设扇形的半径为,弧长为,圆心角为,则,.∵∴∴答:烟囱帽侧面展开图的圆心角是,面积是.【变式2】如图,已知Rt△ABC的斜边AB=13cm,一条直角边AC=5cm,以直线AB为轴旋转一周得一个几何体.求这个几何体的表面积.思路点拨:首先应了解这个几何体的形状是上下两个圆锥,共用一个底面,表面积即为两个圆锥的侧面积之和.根据可知,用第二个公式比较好求,但是得求出底面圆的半径.解:在Rt△ABC中,AB=13cm,AC=5cm,∴BC=12cm.∵OC·AB=BC·AC(由三角形面积得),∴.∴所以,这个几何体的表面积为.。

正多边形与圆、弧长面积的计算【范本模板】

正多边形与圆、弧长面积的计算【范本模板】

正多边形与圆、弧长面积的计算一、选择题(共2小题;共10分)1. 如图所示,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为A. √3−π2B. √3−2π3C。

2√3−π2D。

2√3−2π32。

如图,⊙O为正五边形ABCDE的外接圆,⊙O的半径为2,则AB的长为A. π5B。

2π5C。

3π5D. 4π5二、填空题(共8小题;共40分)3。

图1中的圆与正方形各边都相切,设这个圆的面积为S1;图2中的四个圆的半径相等,并依次外切,且与正方形的边相切,设这四个圆的面积之和为S2;图3中的九个圆半径相等,并依次外切,且与正方形的各边相切,设这九个圆的面积之和为S3,⋯依此规律,当正方形边长为2时,第n 个图中所有圆的面积之和S n=.4. 如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则AB的长为.5。

如图所示,已知正方形ABCD的边心距OE=√2,则这个正方形外接圆⊙O的面积为.6. 一个工件,外部是圆柱体,内部凹槽是正方体,如图所示.其中,正方体一个面的四个顶点都在圆柱底面的圆周上,若圆柱底面周长为2πcm,则正方体的体积为cm3.7。

如图所示,正方形ABCD的边长为2,E,F,G,H分别为各边中点,EG,FH相交于点O,以O 为圆心,OE为半径画圆,则图中阴影部分的面积为8. 如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)9. 如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于.10. 如图,六边形ABCDEF为⊙O的内接正六边形,若⊙O的半径为2√3,则图中阴影部分的面积为.三、解答题(共2小题;共26分)11。

如图,已知正方形ABCD的边心距OE=√2cm,求这个正方形外接圆⊙O的面积.12。

图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形−正八边形.(1) 如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2) 在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180∘)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.答案第一部分1。

专题11 正多边形以及与圆有关的计算

专题11 正多边形以及与圆有关的计算

专题11 与圆有关的计算一、正多边形和圆1. 正多边形的定义:各条边 ,并且各个 也都相等的多边形叫做正多边形.2. 正多边形的相关概念:⑴ 正多边形的中心:正多边形的 的圆心叫做这个正多边形的中心.⑵ 正多边形的半径:正多边形外接圆的半径叫做正多边形的 .⑶ 正多边形的中心角:正多边形每一边所对的 叫做正多边形的中心角.⑷ 正多边形的边心距: 到正多边形的一边的距离叫做正多边形的边心距.3. 正多边形的性质:⑴正n 边形的半径和边心距把正n 边形分成2n 个 的直角三角形;⑵正多边形都是轴对称图形,正n 边形共有n 条通过正n 边形 的对称轴;⑶偶数条边的正多边形既是 图形,也是轴对称图形,其 就是对称中心.【例 1】⑴求正三角形的边心距、半径和高的比。

⑵若同一个圆的内接正三角形、正方形、正六边形的边心距分别为3r ,4r ,6r ,求346::r r r 。

边心距二、与圆有关的计算 1、弧长的计算如果弧长为 l ,圆心角度数为 n ,圆的半径为 r ,那么,弧长 l = 。

【推导】:【例 2】⑴将下表补充完整。

⑵【易错】若弦AB 将圆的周长分为1:5的两部分,则弦AB 所对的圆周角为 。

⑶图中有五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿1ADA 、12A EA 、23A FA 、3A GB 的路线爬行,乙虫沿ACB 路线爬行,则下列结论正确的是( )A. 甲先到B 点B. 乙先到B 点C. 甲、乙同时到B 点D. 无法确定⑷如图,等边△ABC 的周长为6π,半径是1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针A 3A 2A 1GFE D CBAB DOA2、扇形面积计算方法一:如果已知扇形圆心角为n,半径为r,那么扇形面积S=。

【推导】:方法二:如果已知扇形弧长为l ,半径为r,那么扇形面积S=。

【推导】【例 3】将下表补充完整。

人教版九年级上册数学 第24章《圆》讲义 第讲 正多边形和圆弧长和扇形面积(有答案)

人教版九年级上册数学 第24章《圆》讲义 第讲 正多边形和圆弧长和扇形面积(有答案)

第17讲 正多边形和圆、弧长和扇形面积 第一部分 知识梳理 知识点一:圆与内正多边形的计算1、正三角形 在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::1:3:2OD BD OB =;2、正四边形 同理,四边形的有关计算在Rt OAE ∆中进行,::1:1:2OE AE OA =3、正六边形 同理,六边形的有关计算在Rt OAB ∆中进行,::1:3:2AB OB OA = 知识点二、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:180n R l π=; (2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积2、圆柱侧面展开图:3、圆锥侧面展开图第二部分 考点精讲精练考点1、正多边形和圆的求解例1、六边形的边长为10cm ,那么它的边心距等于( )A .10cmB .5cmC .cm D .cm 例2、已知正多边形的边心距与边长的比为21,则此正多边形为( ) A .正三角形 B .正方形 C .正六边形 D .正十二边形例3、如图,在⊙O 内,AB 是内接正六边形的一边,AC 是内接正十边形的一边,BC 是内接正n 边形的一边,那么n= .例4、圆的内接正六边形边长为a,这个圆的周长为.例5、如图,已知边长为2cm的正六边形ABCDEF,点A1,B1,C1,D1,E1,F1分别为所在各边的中点,求图中阴影部分的总面积S.举一反三:1、下列命题中的真命题是()A.三角形的内切圆半径和外接圆半径之比为2:1B.正六边形的边长等于其外接圆的半径C.圆外切正方形的边长等于其边A心距的倍D.各边相等的圆外切多边形是正方形2、已知正方形的边长为a,其内切圆的半径为r,外接圆的半径为R,则r:R:a=()A.1:1:B.1::2 C.1::1 D.:2:43、某工人师傅需要把一个半径为6cm的圆形铁片加工截出边长最大的正六边形的铁片,则此正六边形的边长为 cm.4、如图,正六边形与正十二边形内接于同一圆⊙O中,已知外接圆的半径为2,则阴影部分面积为.5、如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t= s时,四边形PBQE为菱形;②当t= s时,四边形PBQE为矩形.考点2、弧长的计算例1、一条弧所对的圆心角是90°,半径是R,则这条弧长是()A.B.C.D.例2、一个滑轮起重装置如图所示,滑轮半径是10cm,当重物上升10cm时,滑轮的一条半径OA绕轴心O,绕逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)()A.115°B.160°C.57°D.29°例3、已知:如图,四边形ABCD内接于⊙O,若∠BOD=120°,OB=1,则∠BAD= 度,∠BCD= 度,弧BCD的长= .例4、如图,在Rt△ABC中,∠C=90°,∠A=60°,AC=cm,将△ABC绕点B旋转至△A′BC′的位置,且使点A、B、C′三点在一条直线上,则点A经过的最短路线的长度是.例5、如图,菱形ABCD的边长为6,∠BAD=60°,AC为对角线.将△ACD绕点A逆时针旋转60°得到△AC′D′,连接DC′.(1)求证:△ADC≌△ADC′;(2)求在旋转过程中点C扫过路径的长.(结果保留π)举一反三:1、弧长为6π的弧所对的圆心角为60°,则弧所在的圆的半径为()A.6 B.6C.12D.182、如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路径长为()A.20cm B.20cm C.10πcm D.5πcm3、一段铁路弯道成圆弧形,圆弧的半径是2km.一列火车以每小时28km的速度经过10秒通过弯道.那么弯道所对的圆心角的度数为度.(π取3.14,结果精确到0.1度).4、已知矩形ABCD的长AB=4,宽AD=3,按如图放置在直线AP上,然后不滑动地转动,当它转动一周时(A→A′),顶点A所经过的路线长等于.5、如图,在一个横截面为Rt△ABC的物体中,∠CAB=30°,BC=1米.工人师傅把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1B1C1的位置(BC1在l上),最后沿BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边).(1)请直接写出AB、AC的长;(2)画出在搬动此物的整个过程A点所经过的路径,并求出该路径的长度(精确到0.1米).考点3、扇形面积的计算例1、已知五个半径为1的圆的位置如图所示,各圆心的连线构成一个五边形,那么阴影部分的面积是()A.B.2π C.D.3π例2、一个商标图案如图中阴影部分,在长方形ABCD中,AB=8cm,BC=4cm,以点A 为圆心,AD为半径作圆与BA的延长线相交于点F,则商标图案的面积是()A.(4π+8)cm2 B.(4π+16)cm2C.(3π+8)cm2 D.(3π+16)cm2例3、如图,E是正方形ABCD内一点,连接EA、EB并将△BAE以B为中心顺时针旋转90°得到△BFC,若BA=4,BE=3,在△BAE旋转到△BCF的过程中AE扫过区域面积.例4、如图,有一直径为1米的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形,则剩下部分的(阴影部分)的面积是.例5、如图,已知P为正方形ABCD内一点,△ABP经过旋转后到达△CBQ的位置.(1)请说出旋转中心及旋转角度;(2)若连接PQ,试判断△PBQ的形状;(3)若∠BPA=135°,试说明点A,P,Q三点在同一直线上;(4)若∠BPA=135°,AP=3,PB=,求正方形的对角线长;(5)在(4)的条件下,求线段AP在旋转过程中所扫过的面积.举一反三:1、若一个扇形的面积是相应圆的41,则它的圆心角为( ) A .150° B .120° C .90° D .60°2、如图所示的4个的半径均为1,那么图中的阴影部分的面积为( )A .π+1B .2πC .4D .63、如图,O 为圆心,半径OA=OB=r ,∠AOB=90°,点M 在OB 上,OM=2MB ,用r 的式子表示阴影部分的面积是 .4、如图,直角△ABC 的直角顶点为C ,且AC=5,BC=12,AB=13,将此三角形绕点A 顺时针旋转90°到直角△AB′C′的位置,在旋转过程中,直角△ABC 扫过的面积是 .(结果中可保留π)5、如图,四边形ABCD 是长方形,AB=a ,BC=b (a >b ),以A 为圆心AD 长为半径的圆与CD 交于D ,与AB 交于E ,若∠CAB=30°,请你用a 、b 表示图中阴影部分的面积.考点4、圆锥侧面积计算例1、如果圆锥的高为3cm ,母线长为5cm ,则圆锥的侧面积是( )A .16πcm 2B .20πcm 2C .28πcm 2D .36πcm 2例2、新疆哈萨克族是一个游牧民族,喜爱居住毡房,毡房的顶部是圆锥形,如图所示,为防雨需要在毡房顶部铺上防雨布.已知圆锥的底面直径是5.7m ,母线长是3.2m ,铺满毡房顶部至少需要防雨布(精确到1m 2)( )A .58 m 2B .29 m 2C .26 m 2D .28 m 2例3、扇形的圆心角为150°,半径为4cm ,用它做一个圆锥,那么这个圆锥的表面积为 cm 2.例4、在十年文革期间的“高帽子”.这种“高帽子”是用如图①所示的扇形硬纸板,做成如图②所示的无底圆锥体.已知接缝的重叠部分的圆心角为30°.(1)求重叠部分的面积.(结果保留π)(2)计算这顶“高帽子”有多高?(结果保留根号)例5、已知:一个圆锥的侧面展开图是半径为20cm,圆心角为120°的扇形,求这圆锥的底面圆的半径和高.举一反三:1、若圆锥的侧面积为12πcm2,它的底面半径为3cm,则此圆锥的母线长为()A.4πcm B.4 cm C.2πcm D.2 cm2、圆锥的轴截面是一个等腰三角形,它的面积是10cm2,底边上的高线是5cm,则圆锥的侧面展开图的弧长等于()A.87πcm B.47πcm C.8 cm D.4 cm3、如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的高为。

正多边形与圆的有关的证明和计算知识讲解及典型例题解析

正多边形与圆的有关的证明和计算知识讲解及典型例题解析

正多边形与圆的有关的证明和计算知识讲解及典型例题解析【考纲要求】1.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;2.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【考点梳理】考点一、正多边形和圆1、正多边形的有关概念:(1) 正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心——正多边形的外接圆的圆心.(3)正多边形的半径——正多边形的外接圆的半径.(4)正多边形的边心距——正多边形中心到正多边形各边的距离.(正多边形内切圆的半径)(5)正多边形的中心角——正多边形每一边所对的外接圆的圆心角.2、正多边形与圆的关系:(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形.(2)这个圆是这个正多边形的外接圆.(3)把圆分成n(n≥3)等分,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.这个圆叫做正n边形的内切圆.(4)任何正n边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3、正多边形性质:(1)任何正多边形都有一个外接圆.(2) 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.当边数是偶数时,它又是中心对称图形,它的中心就是对称中心.(3)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.(4)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.要点诠释:(1)正n边形的有n个相等的外角,而正n边形的外角和为360度,所以正n边形每个外角的度数是360n;所以正n边形的中心角等于它的外角.(2)边数相同的正多边形相似.周长的比等于它们边长(或半径、边心距)的比.面积比等于它们边长(或半径、边心距)平方的比.考点二、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、正多边形有关计算1.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【思路点拨】(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长 FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.【答案与解析】(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.【总结升华】本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.举一反三:【变式1】如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是______米.【答案】31+.解析:如图,以三个圆心为顶点等边三角形O1O2O3的高O1C=3,所以AB=AO1+O1C+BC=1313122++=+.【变式2】同一个圆的内接正三角形、正方形、正六边形的边长的比是__________.32::【变式3】一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为2,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:【答案】A.【解析】解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=2,∵∠AOB=45°,∴OB=AB=2,由勾股定理得:OD==2,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=2,∴MC=MB=,∴⊙M的面积是π×()2=2π,∴扇形和圆形纸板的面积比是π÷(2π)=.故选:A.类型二、正多边形与圆有关面积的计算2.(1)如图(a),扇形OAB 的圆心角为90°,分别以OA ,OB 为直径在扇形内作半圆,P 和Q分别表示阴影部分的面积,那么P 和Q 的大小关系是( ).A .P =QB .P >QC .P <QD .无法确定(2)如图(b),△ABC 为等腰直角三角形,AC =3,以BC 为直径的半圆与斜边AB 交于点D ,则图中阴影部分的面积是________.(3)如图(c),△AOB 中,OA =3cm ,OB =1cm ,将△AOB 绕点O 逆时针旋转90°到△A ′OB ′,求AB 扫过的区域(图中阴影部分)的面积.(结果保留π)【思路点拨】 直接使用公式计算阴影部分面积比较困难时,可采用和差法、转化法、方程法等,有时也需要运用变换的观点来解决问题.【答案与解析】解:(1)阴影部分的面积直接求出十分困难,可利用几个图形面积的和差进行计算:2OAB OCA P S S Q =-+扇形半圆2211()42R R Q Q ππ=-+=; (2)(转化法“凑整”)利用BmD CnD S S =弓形弓形,则阴影部分的面积可转化为△ACD 的面积,等于△ABC 面积的一半,答案为94; (3)(旋转法)将图形ABM 绕点O 逆时针旋转到A ′B ′M ′位置,则A OA MOM S S S ''=-阴影扇形扇形2211244OA OM πππ=-=. 【总结升华】求阴影面积的几种常用方 (1)公式法;(2)割补法;(3)旋转法;(4)拼凑法;(5)等积变形法;(6)构造方程法.举一反三:【变式】如图,在△ABC 中,AB =AC ,AB =8,BC =12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )A .64π127-B .16π32-C .16π247-D .16π127-【答案】解:如图,由AB ,AC 为直径可得AD ⊥BC ,则BD =DC =6.在Rt △ABD 中,228627AD =-=,∴ 211246271612722S ππ⎛⎫=⨯⨯⨯-⨯⨯=-⎪⎝⎭阴影. 答案选D.3.如图所示,A 是半径为2的⊙O 外一点,OA =4,AB 是⊙O 的切线,B 为切点,弦BC ∥OA ,连AC ,求阴影部分的面积.【思路点拨】图中的阴影是不规则图形,不易直接求出,如果连接OB 、OC ,由BC ∥OA ,根据同底等高的三角形面积相等,于是所求阴影可化为扇形OBC 去求解.【答案与解析】解:如图所示,连OB 、OC∵ BC ∥OA .∴ △OBC 和△ABC 同底等高,∴ S △ABC =S △OBC ,∴∵ AB 为⊙O 的切线,∴ OB ⊥AB .∵ OA =4,OB =2,∴ ∠AOB =60°.∵ BC ∥OA ,∴ ∠AOB =∠OBC =60°.∵ OB =OC ,∴ △OBC 为正三角形.∴ ∠COB =60°,∴ 260223603OBC S S ππ⨯===阴影扇形.【总结升华】通过等积替换化不规则图形为规则图形,在等积转化中①可根据平移、旋转或轴对称等图形变换;②可根据同底(等底)同高(等高)的三角形面积相等进行转化.举一反三:【变式】如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【答案】 解:连接OC 、OD 、CD .∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===g g 阴影扇形OCD .4.如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E.(1)求弧BE所对的圆心角的度数.(2)求图中阴影部分的面积(结果保留π).【思路点拨】(1)连接OE,由条件可求得∠EAB=45°,利用圆周角定理可知弧BE所对的圆心角∠EOB=2∠E AB=90°;(2)利用条件可求得扇形AOE的面积,进一步求得弓形的面积,利用Rt△ADC的面积减去弓的面积可求得阴影部分的面积.【答案与解析】解:(1)连接OE,∵四边形ABCD为正方形,∴∠EAB=45°,∴∠EOB=2∠EAB=90°;(2)由(1)∠EOB=90°,且AB=4,则OA=2,∴S扇形AOE==π,S△AOE=OA2=2,∴S弓形=S扇形AOE﹣S△AOE=π﹣2,又∵S△ACD=AD•CD=×4×4=8,∴S阴影=8﹣(π﹣2)=10﹣π.【总结升华】本题主要考查扇形面积的计算和正方形的性质,掌握扇形的面积公式是解题的关键,注意弓形面积的计算方法.»AB)对应5.将一块三角板和半圆形量角器按图中方式叠放,重叠部分(阴影)的量角器圆弧(的中心角(∠AOB)为120°,AO的长为4cm,求图中阴影部分的面积.【思路点拨】看是否由“规则的”三角形、四边形、圆、扇形、弓形等可求面积的图形,经过怎样的拼凑、割补、叠合而成,这是解决这类题的关键.【答案与解析】阴影部分的面积可看成是由一个扇形AOB 和一个Rt △BOC 组成,其中扇形AOB 的中心角是120°,AO 的长为4,Rt △BOC 中,OB =OA =4,∠BOC =60°,∴ 可求得BC 长和OC 长,从而可求得面积,阴影部分面积=扇形AOB 面积+△BOC 面积=21623cm 3π⎛⎫+ ⎪⎝⎭. 【总结升华】本题是求简单组合图形的面积问题,解答时,常常是寻找这些“不规则的图形”是由哪些“可求面积的、规则的图形”组合而成.举一反三:【变式】如图,矩形ABCD 中,AB =1,2AD =.以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影部分的面积为________.【答案】1224π--. 解析:连接AE ,易证AB =BE =1,∠BAE =45°,所以∠EAD =45°, 所以21112(2)22824ABE ABCD DAE S S S S ππ=--=--=--△阴影矩形扇形.6.如图,AB 是⊙O 的直径,点P 是AB 延长线上一点,PC 切⊙O 于点C ,连接AC ,过点O 作AC 的垂线交AC 于点D ,交⊙O 于点E .已知AB ﹦8,∠P=30°.(1)求线段PC 的长;(2)求阴影部分的面积.【思路点拨】(1)连接OC,由PC为圆O的切线,根据切线的性质得到OC与PC垂直,可得三角形OCP为直角三角形,同时由直径AB的长求出半径OC的长,根据锐角三角函数定义得到tanP为∠P的对边OC与邻边PC的比值,根据∠P的度数,利用特殊角的三角函数值求出tanP的值,由tanP及OC的值,可得出PC 的长;(2)由直角三角形中∠P的度数,根据直角三角形的两个锐角互余求出∠AOC的度数,进而得出∠BOC的度数,由OD与BC垂直,且OC=OB,利用等腰三角形的三线合一得到OD为∠BOC的平分线,可求出∠COD度数为60°,再根据直角三角形中两锐角互余求出∠OCD度数为30°,根据30°角所对的直角边等于斜边的一半,由斜边OC的长求出OD的长,先由∠COD的度数及半径OC的长,利用扇形的面积公式求出扇形COE的面积,再由OD与CD的长,利用直角三角形两直角边乘积的一半求出直角三角形COD 的面积,用扇形COE的面积减去三角形COD的面积,即可求出阴影部分的面积.【答案与解析】解:(1)连接OC,∵PC切⊙O于点C,∴OC⊥PC,∵AB=8,∴OC=12AB=4,又在直角三角形OCP中,∠P=30°,∴tanP=tan30°=OCPC,即PC=433=43;(2)∵∠OCP=90°,∠P=30°,∴∠COP=60°,∴∠A OC=120°,又AC⊥OE,OA=OC,∴OD为∠AOC的平分线,∴∠COE=12∠AOC=60°,又半径OC=4,∴S扇形OCE=26048=3603ππ⨯,在Rt△OCD中,∠COD=60°,∴∠OCD=30°,∴OD=12OC=2,根据勾股定理得:CD=22OC-OD=23,【总结升华】此题考查了切线的性质,含30°角的直角三角形的性质,等腰三角形的性质,锐角三角函数定义,以及扇形的面积公式,遇到已知切线的类型题时,常常连接圆心与切点,利用切线的性质得出垂直,利用直角三角形的性质来解决问题.。

多边形和圆的初步认识公式

多边形和圆的初步认识公式

多边形和圆的初步认识公式
以下是关于多边形和圆的初步认识公式:
正n边形的公式:
1. 一个内角 = (n-2) × 180° ÷ n。

2. 内角和度数 = (n-2) × 180度。

3. 中心角= 360 ÷ n。

4. 外角= 360 ÷ n。

5. 对角线数量 = n(n-3) ÷ 2。

圆的公式:
1. 圆的面积:S = πr^2 或S = πd^2/4。

2. 圆的直径:d = 2r。

3. 圆的周长:C = 2πr 或C = πd。

4. 扇形面积:S = nπr^2/360 = Lr/2(L为扇形的弧长)。

5. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

6. 一条弧所对的圆周角等于它所对的圆心角的一半。

直径所对的圆周角是直角。

90度的圆周角所对的弦是直径。

7. 圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。

(2)经过切点垂直于切线的直线必经过圆心。

(3)圆的切线垂直于经过切点的半径。

8. 切线的长定理:从圆外一点到圆的两条切线的长相等。

希望对您有所帮助!。

中考数学复习满分突破正多边形与圆与弧长公式扇形面积圆锥侧面积有关的计算

中考数学复习满分突破正多边形与圆与弧长公式扇形面积圆锥侧面积有关的计算

中考数学复习满分突破正多边形与圆与弧长公式扇形面
积圆锥侧面积有关的计算
一、正多边形与圆的关系
正多边形是指所有边和角都相等的多边形。

一个正多边形可以画出一个内接圆,该圆的圆心即为正多边形的中心,且圆心与多边形的各个顶点连线都与多边形的一条边垂直。

正多边形的内角和公式为:
内角和=(n-2)×180°,其中n为正多边形的边数。

正多边形的外角和公式为:
外角和=360°,且每个外角的度数为360°/n,其中n为正多边形的边数。

1.弧长公式
弧长可以理解为一段圆周的长度。

弧长公式为:
弧长=弧度×半径,其中弧度=角度×π/180。

2.弧度制度数转换式
角度=弧度×180/π。

三、扇形面积的计算
扇形是由一条弧和两条半径组成的图形。

扇形面积公式为:
扇形面积=(弧长×半径)/2,其中弧长单位为弧度。

四、圆锥侧面积的计算
圆锥的侧面是由圆锥的母线、底面圆弧以及连接底面圆弧与顶点的三角形组成的。

圆锥侧面积公式为:
圆锥侧面积=弧长×母线/2,其中弧长单位为弧度,母线为连接圆锥顶点和底面圆圆心的线段长度。

以上是正多边形与圆、与弧长公式、扇形面积、圆锥侧面积有关的计算的相关知识点。

希望对你的中考数学复习有所帮助。

计算这些相关内容时,记得要熟记公式,并且注意单位的转换。

祝你取得满意的成绩!。

(中考考点梳理)与圆有关的计算-中考数学一遍过

(中考考点梳理)与圆有关的计算-中考数学一遍过

考点19 与圆有关的计算一、正多边形的有关概念正多边形中心:正多边形的外接圆的圆心叫做这个正多边形的中心.正多边形半径:正多边形外接圆的半径叫做正多边形半径.正多边形中心角:正多边形每一边所对的圆心角叫做正多边形中心角.正多边形边心距:正多边形中心到正多边形的一边的距离叫做正多边形的边心距.二、与圆有关的计算公式1.弧长和扇形面积的计算扇形的弧长l=π180n r;扇形的面积S=2π360n r=12lr.2.圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为2πr,圆锥的侧面积为S圆锥侧=12ππ2l r rl⋅=.圆锥的表面积:S圆锥表=S圆锥侧+S圆锥底=πrl+πr2=πr·(l+r).在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.考向一正多边形与圆任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.典例1 如图,已知⊙O的周长等于8π cm,则圆内接正六边形ABCDEF的边心距OM的长为A.2 cm B.cmC.4 cm D.cm【答案】B【点睛】本题考查了正多边形和圆、正六边形的性质、等腰三角形的判定与性质;熟练掌握正六边形的性质是解决问题的关键.1.若一个正多边形的一个外角为60°,则它的内切圆半径与外接圆半径之比是__________.2.如图,正方形ABCD的外接圆为⊙O,点P在劣弧CD上(不与C点重合).(1)求∠BPC的度数;(2)若⊙O的半径为8,求正方形ABCD的边长.考向二弧长和扇形面积1.弧长公式:π180n Rl=;2.扇形面积公式:2π360n RS=扇形或12S lR=扇形.典例2 时钟的分针长5 cm ,经过15分钟,它的针尖转过的弧长是 A .254π cm B .152π cm C .52π cm D .512π cm 【答案】C【解析】∵分针经过60分钟,转过360°,∴经过15分钟转过360°×1560=90°,则分针的针尖转过的弧长是l C .学科=网 典例3 小明用如图所示的扇形纸片折叠成一个圆锥的侧面,已知圆锥的母线长为5 cm ,扇形的弧长是6πcm ,那么这个圆锥的高是A .4 cmB .6 cmC .8 cmD .3 cm【答案】A【解析】设圆锥的底面半径是r ,则2πr =6π,解得:r =3cm ). 【点睛】本题主要考查圆锥侧面展开图的计算.用到的知识点:圆锥的侧面展开图是一个扇形,扇形的弧长等于圆锥底面的周长,扇形的半径是圆锥的母线长.3.已知扇形的圆心角为60°,半径长为12,则扇形的面积为 A .34π B .2π C .3π D .24π4.如图1,圆锥底面圆半径为1,母线长为4,图2为其侧面展开图.(1)求阴影部分面积(π可作为最后结果);(2)母线SC 是一条蜜糖线,一只蚂蚁从A 沿着圆锥表面最少需要爬多远才能吃到蜜糖?1,则该圆的内接正六边形的边心距是A.2B.1C D2.如图,正方形ABCD内接于⊙O,AB,则 AB的长是A.πB.32πC.2πD.12π3.圆锥的主视图与左视图都是边长为4的等边三角形,则圆锥的侧面展开图扇形的圆心角是A.90° B.120° C.150° D.180°4.已知半径为5的⊙O是△ABC的外接圆.若∠ABC=25°,则劣弧 AC的长为A.25π36B.125π36C.25π18D.5π365.如图,ABCDEF为⊙O的内接正六边形,AB=a,则图中阴影部分的面积是A .2π6aB .26π(a C 2D .23π(a 6.如图,在ABC △中,90ACB ∠=︒,30A ∠=︒,4AB =,以点B 为圆心,BC 长为半径画弧,交AB于点D ,则 CD的长为A .1π6B .1π3C .2π3D 7.如图,AB 是圆锥的母线,BC 为底面半径,已知BC =6 cm ,圆锥的侧面积为15π cm 2,则sin ∠ABC的值为A .34B .35C .45D .538.如图,在正方形ABCD 中,AB =12,点E 为BC 的中点,以CD 为直径作半圆CFD ,点F 为半圆的中点,连接AF ,EF ,图中阴影部分的面积是A .18+36πB .24+18πC .18+18πD .12+18π9.如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为A .2πm 2B 2mC .2πmD .22πm10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O 的内接正十边形的一边, DE的度数为__________.11cm ,其侧面展开图的圆心角为120°,则圆锥的母线长是__________cm . 12.用一块圆心角为216︒的扇形铁皮,做一个高为40cm 的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是__________cm .13.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为__________.14.如图,正六边形ABCDEF 的边长为1,以点A 为圆心,AB 的长为半径,作扇形ABF ,则图中阴影部分的面积为__________(结果保留根号和π).15.如图1,作∠BPC 平分线的反向延长线PA ,现要分别以∠APB ,∠APC ,∠BPC 为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC 为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而902=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是__________;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是__________.16.如图,AB是⊙O的弦,BC切⊙O于点B,AD⊥BC,垂足为D,OA是⊙O的半径,且OA=3.(1)求证:AB平分∠OAD;(2)若点E是优弧AEB上一点,且∠AEB=60°,求扇形OAB的面积(计算结果保留π).17.已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.(1)求扇形OBC的面积(结果保留π);(2)求证:CD是⊙O的切线.学-科网18.已知:如图,以等边△ABC的边BC为直径作⊙O,分别交AB,AC于点D,E,过点D作DF⊥AC交AC于点F.(1)求证:DF是⊙O的切线;(2)若等边△ABC的边长为8,求由 DE、DF、EF围成的阴影部分面积.19.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.20.如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.21.如图,AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,E 为⊙O 上一点,过点E 作直线DC 分别交AM ,BN 于点D ,C ,且CB =CE . (1)求证:DA =DE ;(2)若AB =6,CD1.(2018·益阳)如图,正方形ABCD 内接于圆O ,AB =4,则图中阴影部分的面积是A .4π16-B .8π16-C .16π32-D .32π16-2.(2018·山西)如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积为A .4π-4B .4π-8C .8π-4D .8π-83.(2018·抚顺)如图,AB 是⊙O 的直径,CD 是弦,∠BCD =30°,OA =2,则阴影部分的面积是A .π3B .2π3C .πD .2π4.(2018·十堰)如图,扇形OAB 中,∠AOB =100°,OA =12,C 是OB 的中点,CD ⊥OB 交 AB 于点D ,以OC 为半径的 CE交OA 于点E ,则图中阴影部分的面积是A .B .C .D .5.(2018·盘锦)如图,一段公路的转弯处是一段圆弧 AB ,则 AB 的展直长度为A .3π mB .6π mC .9π mD .12π m6.(2018·广安)如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为A .23π- B .13πC .43π- D .43π7.(2018·钦州)如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB =2,则莱洛三角形的面积(即阴影部分面积)为A .π+B .π-C .2πD .2π-8.(2018·成都)如图,在ABCD 中,60B ∠=︒,C 的半径为3,则图中阴影部分的面积是A .πB .2πC .3πD .6π9.(2018·湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣: ①将半径为r 的⊙O 六等分,依次得到A ,B ,C ,D ,E ,F 六个分点; ②分别以点A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点; ③连接OG . 问:OG 的长是多少? 大臣给出的正确答案应是A r B.()rC.()r D r10.(2018·温州)已知扇形的弧长为2π,圆心角为60°,则它的半径为__________.11.(2018·呼和浩特)同一个圆的内接正方形和正三角形的边心距的比为__________.△是半径为2的圆内接正三角形,则图中阴影部分的面积是__________ 12.(2018·绥化)如图,ABC(结果用含π的式子表示).13.(2018·贵阳)如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是__________度.学科网14.(2018·玉林)如图,正六边形ABCDEF的边长是O1,O2分别是△ABF,△CDE的内心,则O1O2=__________.15.(2018·烟台)如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1∶r2=__________.16.(2018·株洲)如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则∠BOM =__________.17.(2018·宜宾)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O 的半径为1,若用圆O 的外切正六边形的面积来近似估计圆O 的面积,则S =__________.(结果保留根号)18.(2018·凉山州)将ABC △绕点B 逆时针旋转到A'BC'△使A 、B 、C'在同一直线上,若90BCA ∠=︒,30BAC ∠=︒,4cm AB =,则图中阴影部分面积为__________2cm .19.(2018·重庆A 卷)如图,在矩形ABCD 中,3AB =,2AD =,以点A 为圆心,AD 长为半径画弧,交AB 于点E ,图中阴影部分的面积是__________(结果保留π).20.(2018·泰州)如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若BE ,DF =3,求图中阴影部分的面积.21.(2018·扬州)如图,在ABC ∆中,AB AC =,AO BC ⊥于点O ,OE AB ⊥于点E ,以点O 为圆心,OE 为半径作半圆,交AO 于点F . (1)求证:AC 是O 的切线;(2)若点F 是AO 的中点,3OE =,求图中阴影部分的面积;(3)在(2)的条件下,点P 是BC 边上的动点,当PE PF +取最小值时,直接写出BP 的长.1∶2.【解析】∵一个正多边形的一个外角为60°,∴360°÷60°=6, ∴这个正多边形是正六边形,设这个正六边形的半径是r ,则外接圆的半径是r ,,2.2.【点睛】垂径定理:垂直于弦的直径平分弦并且平分弦所对的两条弧.3.【答案】D【解析】扇形的面积为D.4.【答案】(1)S阴=4π–8;(2)一只蚂蚁从A沿着圆锥表面最少需要爬个单位长度才能吃到蜜糖.【解析】(1)如图2中,作SE⊥AF交弧AF于C,设图2中的扇形的圆心角为n°·1,∴n=90°,∵SA=SF,∴△SFA是等腰直角三角形,∴S△SAF=12×4×4=8,又S扇形SAFS阴=S扇形SAF–S△SAF=4π–8.(2)在图2中,∵SC是一条蜜糖线,AE⊥SC,AF=,AE∴一只蚂蚁从A沿着圆锥表面最少需要爬个单位长度才能吃到蜜糖.1.【答案】B,故选B . 2.【答案】A【解析】如图,连接OA 、OB ,∵正方形ABCD 内接于⊙O , ∴AB =BC =DC =AD ,∴ AB BCCD DA ===, ∴∠AOB =14×360°=90°,在Rt △AOB 中,由勾股定理得:2AO 2=()2, 解得:AO =2, ∴ AB 的长为90π2180⨯=π,故选A . 3.【答案】D【解析】∵圆锥的主视图与左视图都是边长为4的等边三角形, ∴圆锥的母线长为4,底面圆的直径为4, 则圆锥的侧面展开图扇形的半径为4, 设圆锥的侧面展开图扇形的圆心角是n , 根据题意,得:·π·4180n =4π, 解得:n =180°,故选D . 4.【答案】C【解析】如图,连接AO ,CO ,∵∠ABC =25°,∴∠AOC =50°,∴劣弧 AC 的长=50π525π=18018⨯,故选C . 5.【答案】B【解析】∵正六边形的边长为a , ∴⊙O 的半径为a , ∴⊙O 的面积为π×a 2=πa 2,∵空白正六边形为六个边长为a 的正三角形,∴每个三角形面积为12×a ×a a 2,∴正六边形面积为a 2a 2,∴阴影面积为(πa 2a 2)×16=(π6)a 2,故选B .6.【答案】C【解析】∵90ACB ∠=︒,4AB =,30A ∠=︒,∴60B ∠=︒,2BC =,∴ CD的长为60π22π1803⨯=,故选C . 7.【答案】C【解析】设圆锥的母线长为R ,由题意得15π=π×3×R ,解得R =5, ∴圆锥的高为4,∴sin ∠ABC =45.故选C . 8.【答案】C【解析】作FH ⊥BC 于H ,连接FH ,如图,∵点E 为BC 的中点,点F 为半圆的中点,∴BE =CE =CH =FH =6,AE易得Rt △ABE ≌△EHF ,∴∠AEB =∠EFH ,而∠EFH +∠FEH =90°,∴∠AEB +∠FEH =90°,∴∠AEF =90°,∴图中阴影部分的面积=S 正方形ABCD +S 半圆-S △ABE -S △AEF =12×12+12·π·62-12×12×6-12· =18+18π.故选C . 9.【答案】A【解析】如图,连接AC .∵从一块直径为2 m 的圆形铁皮上剪出一个同心角为90°的扇形,即∠ABC =90°, ∴AC 为直径,即AC =2 m ,AB =BC .∵AB 2+BC 2=22,∴AB =BC m =1π2(m 2).故选A .11.【答案】【解析】设该圆锥的母线长是x cm x =.故答案为:. 12.【答案】50【解析】设这个扇形铁皮的半径为R cm ,圆锥的底面圆的半径为r cm , 根据题意得2πr =216π180R ⋅⋅,解得r =35R ,因为402+(35R )2=R 2,解得R =50. 所以这个扇形铁皮的半径为50 cm .故答案为:50. 13.【答案】72°【解析】∵五边形ABCDE 为正五边形,∴AB =BC =AE ,∠ABC =∠BAE =108°, ∴∠BAC =∠BCA =∠ABE =∠AEB =(180°−108°)÷2=36°, ∴∠AFE =∠BAC +∠ABE =72°,故答案为:72°.14-π3 【解析】正六边形的中心为点O ,如图,连接OD 、OE ,作OH ⊥DE 于H ,∴∠DOE =3606︒=60°,∴OD =OE =DE =1,∴OH∴正六边形ABCDEF 的面积=12,∠A =(62)1806-⨯︒=120°,∴扇形ABF 的面积=2120π13π603⨯=,∴图中阴影部分的面积-π3-π3. 15.【答案】14;21【解析】图2中的图案外轮廓周长是:8-2+2+8-2=14; 设∠BPC =2x ,∴以∠BPC 为内角的正多边形的边数为:360180180290x x =--,以∠APB 为内角的正多边形的边数为:360x,∴图案外轮廓周长是=18090x --2+360x -2+360x -2=18090x -+720x-6,根据题意可知:2x 的值只能为60°,90°,120°,144°, 当x 越小时,周长越大,∴当x =30时,周长最大,此时图案定为会标, 则则会标的外轮廓周长是=180720903030+--6=21,故答案为:14;21.16.【解析】(1)连接OB ,如图所示:∵BC切⊙O于点B,∴OB⊥BC,∵AD⊥BC,∴AD∥OB,∴∠DAB=∠OBA,∵OA=OB,∴∠OAB=∠OBA,∴∠DAB=∠OAB,∴AB平分∠OAD;(2)∵点E是优弧AEB上一点,且∠AEB=60°,∴∠AOB=2∠AEB=120°,∴扇形OAB的面积=2120π3360⨯=3π.17.【解析】(1)∵AB=4,∴OB=2,∵∠COB=60°,∴S扇形OBC=60π42π3603⨯=.(2)∵AC平分∠FAB,∴∠FAC=∠CAO,∵AO=CO,∴∠ACO=∠CAO,∴∠FAC=∠ACO,∴AD∥OC,∵CD⊥AF,∴CD⊥OC∵C在圆上,∴CD是⊙O的切线.18.【解析】(1)如图,连接CD、OD,∵BC是⊙O的直径,∴∠CDB=90°,即CD⊥AB,又∵△ABC是等边三角形,∴AD=BD,∵BO=CO,∴DO是△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∴DF是⊙O的切线.19.【解析】(1)如图,连接OE,过O作OM⊥AC于M,则∠AMO=90°,∵DF⊥AC,∴∠DFC=90°,∵∠FDC=15°,∴∠C=180°-90°-15°=75°,∵AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°-∠ABC∠C=30°,∴OM =12OA =12×3=32,AM OM , ∵OA =OE ,OM ⊥AC ,∴AE =2AM , ∴∠BAC =∠AEO =30°, ∴∠AOE =180°-30°-30°=120°,∴阴影部分的面积S =S 扇形AOE -S △AOE =2120π3133π36022⨯-⨯=-.(2)如图,连接OD ,∵AB =AC ,OB =OD ,∴∠ABC =∠C ,∠ABC =∠ODB , ∴∠ODB =∠C , ∴AC ∥OD , ∵DF ⊥AC , ∴DF ⊥OD , ∵OD 过点O , ∴DF 是⊙O 的切线. (3)如图,连接BE ,∵AB 为⊙O 的直径, ∴∠AEB =90°, ∴BE ⊥AC ,∵DF ⊥AC , ∴BE ∥DF , ∴∠FDC =∠EBC , ∵∠EBC =∠DAC , ∴∠FDC =∠DAC , ∵A 、B 、D 、E 四点共圆, ∴∠DEF =∠ABC , ∵∠ABC =∠C , ∴∠DEC =∠C , ∵DF ⊥AC , ∴∠EDF =∠FDC , ∴∠EDF =∠DAC .20.【解析】(1)直线DE 与⊙O 相切.理由如下:连接OE 、OD ,如图,∵AC 是⊙O 的切线, ∴AB ⊥AC , ∴∠OAC =90°,∵点E 是AC 的中点,O 点为AB 的中点, ∴OE ∥BC ,∴∠1=∠B ,∠2=∠3, ∵OB =OD , ∴∠B =∠3, ∴∠1=∠2,在△AOE 和△DOE 中,12OA OD OE OE =⎧⎪∠=∠⎨⎪=⎩,∴△AOE≌△DOE,∴∠ODE=∠OAE=90°,∴OA⊥AE,∴DE为⊙O的切线.(2)∵点E是AC的中点,∴AE=12AC=2.4,∵∠AOD=2∠B=2×50°=100°,∴图中阴影部分的面积=2×12×2×2.4-2100π2104.8π3609⨯=-.21.【解析】(1)如图,连接OE、BE,∵OB=OE,∴∠OBE=∠OE B.∵BC=EC,∴∠CBE=∠CEB,∴∠OBC=∠OEC.∵BC为⊙O的切线,∴∠OEC=∠OBC=90°.∵OE为半径,∴CD为⊙O的切线,∵AD切⊙O于点A,∴DA=DE.(2)如图,连接OC,过点D作DF⊥BC于点F,则四边形ABFD是矩形,∴AD=BF,DF=AB=6,∴DC=BC+AD,∵CF=,∴BC -AD∴BC在直角△OBC 中,tan ∠BOC =BCOB, ∴∠BOC =60°.在△OEC 与△OBC 中,OE OB OC OC CE CB =⎧⎪=⎨⎪=⎩,∴△OEC ≌△OBC (SSS ), ∴∠BOE =2∠BOC =120°,∴S 阴影部分=S 四边形BCEO -S 扇形OBE =2×12BC ·OB -2120π360OB ⋅⋅-3π.1.【答案】B【解析】如图,连接OA 、OB ,∵四边形ABCD 是正方形, ∴∠AOB =90°,∠OAB =45°, ∴OA =AB ·, 所以阴影部分的面积=S ⊙O -S 正方形ABCD =π×()2-4×4=8π-16.故选B . 2.【答案】A【解析】利用对称性可知:阴影部分的面积=扇形AEF 的面积-△ABD 的面积=290π413602⨯⨯-×4×2=4π-4,故选A . 3.【答案】B【解析】∵∠BCD =30°,∴∠BOD =60°, ∵AB 是⊙O 的直径,CD 是弦,OA =2,∴阴影部分的面积是:260π22π3603⨯⨯=,故选B . 4.【答案】C【解析】如图,连接OD ,AD ,∵点C 为OA 的中点,∴OC =12OA =12OD , ∵CD ⊥OA ,∴∠CDO =30°,∠DOC =60°,∴△ADO 为等边三角形,OD =OA =12,OC =CA =6,∴CD ,∴S 扇形AOD =260π12360⋅⋅=24π, ∴S阴影=S扇形AOB -S扇形COE -(S扇形AOD -S △COD)=22100π12100π61(24π63603602⋅⋅⋅⋅---⨯⨯,故选C . 5.【答案】B【解析】 AB 的展直长度为:108π10180⨯=6π(m ).故选B .6.【答案】C【解析】连接OB 和AC 交于点D ,如图,∵圆的半径为2,∴OB =OA =OC =2,又四边形OABC 是菱形,∴OB ⊥AC ,OD =12OB =1,在Rt △COD 中利用勾股定理可知:CD =,AC =2CD ,∵sin ∠COD =CD OC =∴∠COD =60°,∠AOC =2∠COD =120°,∴S 菱形ABCO =12B ×AC =12S 扇形AOC =2120π24π3603⨯⨯=,则图中阴影部分面积为S 菱形ABCO -S 扇形AOC =4π3-C .8.【答案】C【解析】∵在 ABCD 中,∠B =60°,⊙C 的半径为3,∴∠C =120°,∴图中阴影部分的面积是:2120π3360⨯⨯=3π,故选C . 9.【答案】D【解析】如图,连接CD ,AC ,DG ,AG .∵AD 是⊙O 直径,∴∠ACD =90°,在Rt △ACD 中,AD =2r ,∠DAC =30°,∴AC , ∵DG =AG =CA ,OD =OA ,∴OG ⊥AD ,∴∠GOA =90°,∴OG r ,故选D .10.【答案】6【解析】设扇形的半径为r ,根据题意得:60π2π180r=,解得:r =6,故答案为:6.111【解析】设⊙O 的半径为r ,⊙O 的内接正方形ABCD ,如图,过O 作OQ ⊥BC 于Q ,连接OB 、OC ,即OQ 为正方形ABCD 的边心距, ∵四边形BACD 是正方形,⊙O 是正方形ABCD 的外接圆, ∴O 为正方形ABCD 的中心,∴∠BOC =90°, ∵OQ ⊥BC ,OB =CO ,∴QC =BQ ,∠COQ =∠BOQ =45°,∴OQ =OC R . 设⊙O 的内接正△EFG ,如图,过O 作OH ⊥FG 于H ,连接OG ,即OH 为正△EFG 的边心距,∵正△EFG 是⊙O 的外接圆,∴∠OGF =12∠EGF =30°, ∴OH =OG ×sin30°=12R ,∴OQ ∶OH =R )∶(12R )∶1∶1.12.【答案】4π-【解析】如图,点O 既是它的外心也是其内心,∴2OB =,130∠=︒,∴112OD OB ==,BD =,∴3AD =,BC =,∴132ABC S =⨯=△2π24π=⨯=,所以阴影部分的面积4π=-,故答案为:4π-. 13.【答案】72【解析】如图,连接OA 、OB 、OC ,∠AOB =3605︒=72°, ∵∠AOB =∠BOC ,OA =OB ,OB =OC ,∴∠OAB =∠OBC ,在△AOM 和△BON 中,OA OB OAM OBN AM BN =⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BON ,∴∠BON =∠AOM ,∴∠MON =∠AOB =72°,故答案为:72. 14.【答案】【解析】如图,过A 作AM ⊥BF 于M ,连接O 1F 、O 1A 、O 1B ,∵六边形ABCDEF 是正六边形,∴∠A =(62)1806-⨯︒=120°,AF =AB ,∴∠AFB =∠ABF =12×(180°-120°)=30°, ∴△AFB 边BF 上的高AM =12AF =12×(FM =BM+6,∴BF设△AFB 的内切圆的半径为r , ∵S △AFB =111AO F AO B BFO S S S ++△△△,∴12×()×(+6)=12×()×r +12×()×r +12×(×r , 解得:r =32,即O 1M =r =32,∴O 1O 2=2×32.152【解析】如图,连接OA ,由已知,M 为AF 中点,则OM ⊥AF ,∵六边形ABCDEF 为正六边形,∴∠AOM =30°,设AM =a ,∴AB =AO =2a ,OM , ∵正六边形中心角为60°,∴∠MON =120°,∴扇形MON πa =,则r 1a , 同理:扇形DEF 的弧长为:120π24π1803a a ⋅⋅=,则r 2=23a ,r 1:r 222. 16.【答案】48°【解析】如图,连接OA ,∵五边形ABCDE 是正五边形,∴∠AOB =3605︒=72°,∵△AMN 是正三角形,∴∠AOM =3603︒=120°, ∴∠BOM =∠AOM -∠AOB =48°,故答案为:48°.17.【答案】【解析】依照题意画出图象,如图所示.∵六边形ABCDEF 为正六边形,∴△ABO 为等边三角形,∵⊙O 的半径为1,∴OM =1,∴BM =AM AB∴S =6S △ABO =6×12. 18.【答案】4π【解析】由旋转可得△ABC ≌△A ′BC ′.∵∠BCA =90°,∠BAC =30°,AB =4 cm ,∴BC =2 cm ,AC ,∠A ′BA =120°,∠CBC ′=120°,∴阴影部分面积=(S △A ′BC ′+S 扇形BAA ′)-S 扇形BCC ′-S △ABC =120π360×(42-22)=4π cm 2.故答案为:4π. 19.【答案】6π- 【解析】S 阴影=S 矩形ABCD -S 扇形ADE =2×3-290π2360⨯=6-π,故答案为:6-π. 20.【解析】(1)DE 与⊙O 相切,理由:如图,连接DO ,∵DO =BO ,∴∠ODB =∠OBD ,∵∠ABC 的平分线交⊙O 于点D ,∴∠EBD =∠DBO ,∴∠EBD =∠BDO ,∴DO ∥BE ,∵DE ⊥BC ,∴∠DEB =∠EDO =90°,∴DE 与⊙O 相切.(2)∵∠ABC 的平分线交⊙O 于点D ,DE ⊥BE ,DF ⊥AB ,∴DE =DF =3,∵BE ,∴BD =6, ∵sin ∠DBF =31=62, ∴∠DBA =30°,∴∠DOF =60°,∴sin60°=3DF DO DO ==,∴DO ,则FO132π2=. 21.【解析】(1)如图,过O 作AC 垂线OM ,垂足为M .∵AB AC =,AO BC ⊥,∴AO 平分BAC ∠,∵OE AB OM AC ⊥⊥,, ∴OE OM =,∵OE 为⊙O 的半径,∴OM 为⊙O 的半径,∴AC 是⊙O 的切线.(2)∵3OM OE OF ===,且F 是OA 的中点,∴6AO =,AE =,∴2AEO S AO AE =⋅÷=△, ∵OE AB ⊥,∴60EOF ∠=︒,即9π603π3602OEF S ⋅︒==︒扇形,∴3π2S =-阴影.学科=网 (3)作B 关于BC 的对称点G ,交BC 于H ,连接FG 交BC 于P ,此时PE PF +最小, 由(2)知60EOF ∠=︒,30EAO ∠=︒,∴60B ∠=︒,∵3EO =,∴3EG =,32EH =,BH =, ∵EG BC ⊥,FO BC ⊥,∴EHP △∽FOP △, ∴31322EH HP FO PO ==÷=,即2HP OP =,∵BO HP OP =+=,∴3HP =,即HP =,∴BP ==.。

正多边形和圆及弧长和扇形面积思维导图

正多边形和圆及弧长和扇形面积思维导图
正多边形和圆
(1)正多边形与圆的关系 把一个圆分成n(n边形是这个圆的内接正多边形,这个圆叫做这个正多边形 的外接圆. (2)正多边形的有关概念
①中心:正多边形的外接圆的圆心叫做正多边形的中心.
②正多边形的半径:外接圆的半径叫做正多边形的半径.
③中心角:正多边形每一边所对的圆心角叫做正多边形的中心 角.

积为S,则
S扇形=nπR2/360
扇形面积的计算
或S扇形=lR/2(其中l为扇形的弧长) (4)求阴影面积常用的方法:
弧长和扇形面积
① 接用公式法; ②和差法;
③ 补法.
(5)求阴影面积的主要思路是将不规则图形面积转化为规则图形 的面积.
圆锥的计算
(1)连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母 线.连接顶点与底面圆心的线段叫圆锥的高. (2)圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面 的周长,扇形的半径等于圆锥的母线长. (3)圆锥的侧面积:S侧=1/2•2πr•l=πrl.
③题设未标明精确度的,可以将弧长用π表示.
④正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不 一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才 有等弧的概念,才是三者的统一.
(1)圆面积公式:S=πr2
(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的
图形叫做扇形.
(3)扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面
④边心距:中心到正多边形的一边的距离叫做正多边形的边心 距.
弧长的计算
(1)圆周长公式:C=2πR (2)弧长公式:l=nπR/180
(弧长为l,圆心角度数为n,圆的半径为R)
①在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都 不要带单位.

正多边形和圆

正多边形和圆

正多边形和圆介绍在几何学中,正多边形和圆是两个重要的概念。

正多边形是指具有相等边长和相等内角的多边形,而圆是一个平面上所有点到圆心的距离都相等的图形。

本文将介绍正多边形和圆的特征、性质和相关公式。

正多边形定义正多边形是指所有边长相等且所有内角相等的多边形。

常见的正多边形有三角形、四边形(正方形)、五边形、六边形等。

正多边形的内角都可以通过以下公式计算:内角和 = (n - 2) × 180°其中,n表示多边形的边数。

性质1.边长相等:正多边形的所有边长都相等,即正多边形的每条边长度相等。

2.内角相等:正多边形的所有内角都相等,即正多边形每个内角的度数相等。

3.对称性:正多边形具有n个对称轴,其中n为边数。

每个对称轴将正多边形分为两个对称的部分。

4.外角和:正多边形的外角和等于360°,即正多边形的所有外角之和为一个圆的周角。

5.外接圆:正多边形的外接圆是指将正多边形每个顶点都切在圆上的圆。

外接圆的半径等于正多边形中心到任一顶点的距离。

公式1.正多边形的面积:正多边形的面积可以通过边长和高计算,公式如下:面积 = 边长 × 高 / 22.正多边形的周长:正多边形的周长等于所有边长之和,即边长 × 边数。

圆定义圆是平面上所有点到圆心距离都相等的图形。

圆由圆心、半径和弧组成,其中圆心为圆上所有点的中心,半径是圆心到圆上任意一点的距离,弧是圆上两点之间的弯曲部分。

性质1.圆心角:圆心角是指圆心所对的弧所对应的角。

圆心角的度数等于对应弧所占据的圆心角度的一部分,即圆心角 = 弧度 / 弧长 × 360°。

2.弧长:圆上的弧长可以通过圆心角的度数计算,公式如下:弧长 = 圆心角度数 / 360°× 圆周3.面积:圆的面积可以通过半径计算,公式如下:面积= π × 半径²其中,π(pi)是一个数学常数,约等于3.14159。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正多边形与圆、弧长面积的计算
一、选择题(共2小题;共10分)
1. 如图所示,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为
A. √3−π
2B. √3−2π
3
C. 2√3−π
2
D. 2√3−2π
3
2. 如图,⊙O为正五边形ABCDE的外接圆,⊙O的半径为2,则AB的长为
A. π
5B. 2π
5
C. 3π
5
D. 4π
5
二、填空题(共8小题;共40分)
3. 图1中的圆与正方形各边都相切,设这个圆的面积为S1;图2中的四个圆的半径相等,并依次外
切,且与正方形的边相切,设这四个圆的面积之和为S2;图3中的九个圆半径相等,并依次外切,且与正方形的各边相切,设这九个圆的面积之和为S3,⋯依此规律,当正方形边长为2时,第n 个图中所有圆的面积之和S n=.
4. 如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则AB的长为.
5. 如图所示,已知正方形ABCD的边心距OE=√2,则这个正方形外接圆⊙O的面积为.
6. 一个工件,外部是圆柱体,内部凹槽是正方体,如图所示.其中,正方体一个面的四个顶点都在
圆柱底面的圆周上,若圆柱底面周长为2πcm,则正方体的体积为cm3.
7. 如图所示,正方形ABCD的边长为2,E,F,G,H分别为各边中点,EG,FH相交于点O,以O
为圆心,OE为半径画圆,则图中阴影部分的面积为
8. 如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)
9. 如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于.
10. 如图,六边形ABCDEF为⊙O的内接正六边形,若⊙O的半径为2√3,则图中阴影部分的面积
为.
三、解答题(共2小题;共26分)
11. 如图,已知正方形ABCD的边心距OE=√2cm,求这个正方形外接圆⊙O的面积.
12. 图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形−正八边形.
(1) 如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,
保留作图痕迹);
(2) 在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180∘)是一个圆锥的侧
面,则这个圆锥底面圆的半径等于.
答案第一部分
1. A
2. D
第二部分
3. π
4. π
3
5. 4π
6. 2√2
π
7. 1
2
8. π
6
π
9. 16
3
10. 2π−3√3
第三部分
11. (1) 连接OC,OD.
∵圆O是正方形ABCD的外接圆,
∴O是对角线AC,BD的交点,
∠ADC=45∘.
∴∠ODE=1
2
∵OE⊥CD,
∴∠DOE=90∘−∠ODE=45∘,
∴OE=DE=√2cm.
由勾股定理得OD=√OE2+DE2=2(cm),
∴这个正方形外接圆⊙O的面积是π⋅22=4π(cm2).12. (1) 如图,正八边形ABCDEFGH即为所求.
.12. (2) 15
8。

相关文档
最新文档