灰色模型介绍及应用.docx

合集下载

灰色预测模型理论及其应用

灰色预测模型理论及其应用

灰色预测模型理论及其应用灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测.灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.本文主要围绕灰色预测GM(1,1)模型及其应用进行展开。

一、灰色系统及灰色预测的概念1.1灰色系统灰色系统产生于控制理论的研究中。

若一个系统的内部特征是完全已知的,即系统的信息是充足完全的,我们称之为白色系统。

若一个系统的内部信息是一无所知,一团漆黑,只能从它同外部的联系来观测研究,这种系统便是黑色系统。

灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。

区别白色和灰色系统的重要标志是系统各因素间是否有确定的关系。

特点:灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定型系统的研究对象。

1.2灰色预测灰色系统分析方法是通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析,并通过对原始数据的生成处理来寻求系统变动的规律。

生成数据序列有较强的规律性,可以用它来建立相应的微分方程模型,从而预测事物未来的发展趋势和未来状态。

灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类:(1) 灰色时间序列预测。

用等时距观测到的反映预测对象特征的一系列数量(如产量、销量、人口数量、存款数量、利率等)构造灰色预测模型,预测未来某一时刻的特征量,或者达到某特征量的时间。

(2) 畸变预测(灾变预测)。

通过模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。

(3) 波形预测,或称为拓扑预测,它是通过灰色模型预测事物未来变动的轨迹。

灰色预测模型

灰色预测模型

灰色系统模型(Grey Model,GM)一:解决的关键问题 (所谓灰色系统是指部分信息已知而部分信息未知的系统,灰色系统所要考察和研究的是对信息不完备的系统,通过已知信息来研究和预测未知领域从而达到了解整个系统的目的)灰色系统模型作为一种预测方法广泛应用于工程控制,经济管理,社会系统等众多领域。

二:GM(1,1)模型(一):对原始序列累加处理一次累加生产序列②(即1-AGO序列),表示为其中,一次累加序列(1)X 的第k 项由原序列的前k 项和产生,即: 由(1)X 的相邻项平均得到(1)X 的紧邻均值生成序列(1)z ,表示为:根据上述序列,有灰色系统模型GM(1,1)的基本形式:(二)构造GM(1,1)模型方程组的矩阵形式,并求解参数 GM(1,1)模型的微分方程基本形式:(三)求的时间响应序列,累减得到原序列的预测值(四)模型检验残差的均值、方差分别为:21S C S 称为均方差比值,对于给定的00C ,当0C C 时,称模型为均方差比合格模型;1(()0.6745)p p k S 称为小误差概率,对于给定的00P ,当0P P 时,称模型为小误差概率合格模型。

一般均方差比值C 越小越好(因为C 小说明S 小,1S 大,即残差方差小,原始数据方差大,说明残差比较集中,摆动幅度小,原始数据比较分散,摆动幅度大,所以模拟效果好,要求2S 与1S 相比尽可能小),以及小误差概率p 越大越好,给定000,,,C p 的一组取值,就确定了检验模型模拟精度的一个等级,常用的精度等级见表1。

软件DPS 的分析结果也提供了C 、p 的检验结果。

(五)残差修正模型(六)建立新陈代谢GM(1,1)进行动态预测在实际建模过程中,原始数据序列的数据不一定全部用来建模。

我们在原始数据序列中取出一部分数据,就可以建立一个模型。

一般说来,取不同的数据,建立的模型也不一样,即使都建立同类的GM(1,1)模型,选择不同的数据,参数a,b的值也不一样。

灰色预测模型的研究及应用

灰色预测模型的研究及应用

灰色预测模型的研究及应用
灰色预测模型是一种用于预测问题的数学模型,广泛应用于各个领域。

它在1982年由中国科学家GM灰所提出,因此得名为“灰色预测模型”。

灰色预测模型基于灰色系统理论,它假设事物的发展具有一定的规律性和趋势性,但也存在不确定性的因素。

它通过对已知数据的分析和处理,来预测未来的发展趋势。

灰色预测模型的核心思想是将已知数据序列分解为两个部分:灰色部分和白色部分。

灰色部分是由数据的数量级和函数形式决定的,因此可以用来预测未来的趋势。

白色部分则是由不确定的随机因素引起的,往往被视为噪声,不具备预测能力。

灰色预测模型有多种形式,其中最常用的是GM(1,1)模型。

该模型通过建立一阶线性微分方程来描述数据的变化趋势,然后利用指数累减生成灰色模型。

基于灰色模型,可以进一步进行累加、累减、累乘等操作,来实现更复杂的预测。

灰色预测模型在各个领域都有广泛的应用。

其中最典型的应用是经济预测领域,包括国民经济、金融市场等。

此外,它还可以应用于工业生产、环境保护、农业发展、医疗卫生等方面的预测。

灰色预测模型的优点是简单易懂、计算量小、适用范围广。

它可以对数据的趋势进行较为准确的预测,尤其适用于数据量较小或者不完整的情况下。

缺点是对数据的要求较高,数据的采
样点要均匀分布,并且在建立模型时需要进行一些参数的选择,可能存在主观性和不确定性。

总之,灰色预测模型是一种有效的预测方法,具有广泛的应用前景。

在实际应用中,需要对具体问题进行合理的建模和参数选择,以提高预测的准确性。

灰色模型介绍及应用

灰色模型介绍及应用

第十章灰色模型介绍及应用(徐利艳天津农学院 2.4万字) 10.1灰色理论基本知识10.1.1概言10.1.2有关名词概念10.1.3GM建模机理10.2灰色理论模型应用10.2.1GM(1,1)模型的应用——污染物浓度问题10.2.2 GM(1,1)残差模型的应用——油菜发病率问题 10.2.3GM模型在复杂问题中的应用——SARS 疫情问题 10.2.4 GM(1,n)模型的应用——因素相关问题本章小结思考题推荐阅读书目第十章灰色模型介绍及应用10.1灰色理论基本知识10.1.1概言客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解,人们不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断来构造模型。

对这类部分信息已知而部分信息未知的系统,我们称之为灰色系统。

本章介绍的方法是从灰色系统的本征灰色出发,研究在信息大量缺乏或紊乱的情况下,如何对实际问题进行分析和解决。

灰色系统的研究对象是“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定性系统,它通过对“部分”已知信息的生成、开发实现对现实世界的确切描述和认识。

信息不完全是“灰”的基本含义。

灰色系统理论建模的主要任务是根据具体灰色系统的行为特征数据,充分开发并利用不多的数据中的显信息和隐信息,寻找因素间或因素本身的数学关系。

通常的办法是采用离散模型,建立一个按时间作逐段分析的模型。

但是,离散模型只能对客观系统的发展做短期分析,适应不了从现在起做较长远的分析、规划、决策的要求。

尽管连续系统的离散近似模型对许多工程应用来讲是有用的,但在某些研究领域中,人们却常常希望使用微分方程模型。

事实上,微分方程的系统描述了我们所希望辨识的系统内部的物理或化学过程的本质。

目前,灰色系统理论已成功地应用于工程控制、经济管理、未来学研究、生态系统及复杂多变的农业系统中,并取得了可喜的成就。

灰色系统理论有可能对社会、经济等抽象系统进行分析、建模、预测、决策和控制,它有可能成为人们认识客观系统改造客观系统的一个新型的理论工具。

灰色理论与灰色预测模型研究与应用

灰色理论与灰色预测模型研究与应用

灰色理论与灰色预测模型研究与应用灰色理论是一种基于不完全信息的数学方法,由中国科学家陈纳德于1982年提出。

它主要用于解决样本数据有限、不完整、不确定的问题,适用于各种领域的预测和决策。

灰色预测模型是灰色理论的核心内容之一,通过对数据序列进行建模和预测,可以在一定程度上弥补数据不完整性带来的问题。

灰色理论的核心思想是通过构建灰色模型,对数据进行预测和分析。

灰色模型是一种基于时间序列的预测模型,它主要包括GM(1,1)模型和GM(2,1)模型。

GM(1,1)模型适用于一阶动态系统,通过建立灰微分方程和灰累加方程,可以对数据进行预测和分析。

GM(2,1)模型是GM(1,1)模型的扩展,适用于二阶动态系统,通过引入二次累加生成序列,可以提高预测的准确性。

灰色预测模型的应用非常广泛,可以用于经济、环境、医疗、交通等领域的预测和决策。

以经济领域为例,灰色预测模型可以用于宏观经济指标的预测,如国内生产总值、物价指数等。

通过对历史数据的分析和建模,可以预测未来一段时间内的经济走势,为政府和企业的决策提供参考。

在环境领域,灰色预测模型可以用于空气质量、水质监测等方面的预测和评估。

通过对历史数据的分析,可以预测未来一段时间内的环境状况,为环境保护和治理提供科学依据。

灰色预测模型的优势在于能够处理数据不完整、不确定的问题。

在实际应用中,往往会遇到数据缺失、数据质量差等问题,传统的预测模型很难处理这些问题。

而灰色预测模型通过对数据序列的分析和建模,可以在一定程度上弥补数据不完整性带来的问题,提高预测的准确性。

此外,灰色预测模型还具有模型简单、计算快速等特点,适用于大规模数据的处理和分析。

然而,灰色预测模型也存在一些不足之处。

首先,灰色预测模型对数据的要求较高,需要满足一定的前提条件,如数据序列的稳定性、线性关系等。

如果数据不满足这些条件,就无法进行有效的预测和分析。

其次,灰色预测模型对参数的选择较为敏感,不同的参数选择可能会导致不同的预测结果。

时序预测中的灰色模型介绍(十)

时序预测中的灰色模型介绍(十)

时序预测中的灰色模型介绍时序预测是一种应用广泛的数据分析方法,它可以帮助我们预测未来一段时间内的数据趋势。

而在时序预测中,灰色模型是一种常用的模型之一。

本文将介绍灰色模型的基本原理、应用范围和优缺点。

一、灰色模型的基本原理灰色系统理论最早由中国科学家陈裕昌教授提出,它是一种用于处理少量数据和缺乏信息的系统分析方法。

灰色模型的基本原理是通过对数据进行灰色关联分析、灰色预测等处理,来实现对未来时序数据的预测。

灰色模型的关键在于建立数据的灰色关联度,通过对数据进行加权处理,将不规则的数据变为规则的规整数据,进而实现对未来数据的预测。

这种方法不仅可以用于单变量时序数据的预测,还可以用于多变量时序数据的预测,具有一定的灵活性和适用范围。

二、灰色模型的应用范围灰色模型在实际应用中具有广泛的应用范围,主要包括以下几个方面:1. 经济领域:灰色模型可以用于对经济指标的预测,如国内生产总值、消费指数、失业率等。

通过对这些指标的预测,可以帮助政府和企业制定发展战略和政策。

2. 工业领域:灰色模型可以用于对工业生产数据的预测,如原材料价格、产量、需求量等。

这对于企业的生产计划和库存管理具有重要意义。

3. 环境领域:灰色模型可以用于对环境数据的预测,如空气质量、水质数据等。

通过对这些数据的预测,可以帮助政府和环保部门采取相应的措施来改善环境。

4. 医疗领域:灰色模型可以用于对医疗数据的预测,如疾病发病率、病人数量、医疗资源需求等。

这对于医院和卫生部门的资源配置和医疗服务规划具有重要意义。

三、灰色模型的优缺点灰色模型作为一种时序预测方法,具有以下优点:1. 适用范围广:灰色模型可以处理各种类型的时序数据,包括线性和非线性数据,适用范围广泛。

2. 数据要求低:灰色模型对数据的要求相对较低,对于缺乏信息或者数据量较少的情况也可以进行预测。

3. 预测精度高:灰色模型在一定范围内可以取得较高的预测精度,对于短期和中期的预测效果较好。

实用文库汇编之数学建模之灰色预测模型

实用文库汇编之数学建模之灰色预测模型

*实用文库汇编之一、灰色预测模型*简介(P372)特点:模型使用的不是原始数据列,而是生成的数据列。

优点:不需要很多数据,一般只用4个数据就能解决历史数据少,序列的完整性和可靠性低的问题。

缺点:只适用于中短期的预测和指数增长的预测。

1、GM(1,1)预测模型GM(1,1)表示模型为一阶微分方程,且只含有一个变量的灰色模型。

1.1模型的应用 ①销售额预测②交通事故次数的预测③某地区火灾发生次数的预测④灾变与异常值预测,如对旱灾,洪灾,地震等自然灾害的时间与程度进行预报。

(百度文库)⑤基于GM(1,1)模型的广州市人口预测与分析(下载的文档) ⑥网络舆情危机预警(下载的文档) 1.2步骤①级比检验与判断由原始数据列(0)(0)(0)(0)((1),(2),,())x x x x n =计算得序列的级比为(0)(0)(1)(),2,3,,.()x k k k n x k λ-==若序列的级比()k λ∈ 2212(,)n n e e-++Θ=,则可用(0)x 作令人满意的GM(1,1)建模。

光滑比为(0)1(0)1()()()k i x k p k xi -==∑若序列满足[](1)1,2,3,,1;()()0,,3,4,,;0.5.p k k n p k p k k n ϕϕ+<=-∈=<则序列为准光滑序列。

否则,选取常数c 对序列(0)x 做如下平移变换(0)(0)()(),1,2,,,y k x k c k n =+=序列(0)y 的级比0(0)(1)(),2,3,,.()y y k k k n y k λ-=∈Θ=②对原始数据(0)x 作一次累加得 (1)(1)(1)(1)(0)(0)(0)(0)(0)((1),(2),,())(11+(2),,(1)()).x x x x n x x x x x n ==++(),()建立模型:(1)(1),dx ax b dt+= (1)③构造数据矩阵B 及数据向量Y(1)(1)(1)(2)1(3)1,()z z B z n ⎡⎤- ⎢⎥- ⎢⎥=⎢⎥ ⎢⎥⎢⎥- 1⎣⎦(0)(0)(0)(2)3()x x Y x n ⎡⎤⎢⎥⎢⎥=⎢⎥ ⎢⎥⎢⎥⎣⎦() 其中:(1)(1)(1()0.5()0.5(1),2,3,,.z k x k x k k n =+-=)④由1ˆˆ()ˆT T auB B B Y b -⎡⎤==⎢⎥⎣⎦求得估计值ˆa= ˆb = ⑤由微分方程(1)得生成序列预测值为ˆ(1)(0)ˆˆˆ(1)(1)k 0,1,,1,,ˆˆak b b xk x e n a a -⎛⎫+=-+=- ⎪ ⎪⎝⎭,则模型还原值为(0)(1)(1)ˆˆˆ(1)(1),1,2,,1,.x k x k x k n +=+-=-⑥精度检验和预测残差(0)(0)ˆ()()(),1,2,,,k x k xk k n ε=-= 相对误差(0)|()|()k x k ε∆=相对误差精度等级表级比偏差10.5()1(),10.5a k k a ρλ-⎛⎫=-⎪+⎝⎭若()k ρ<0.2则可认为达到一般要求;若()k ρ<0.1,则可认为达到较高要求。

灰色关联分析模型

灰色关联分析模型

模型优化
01
改进灰色关联分析模型的计算方 法,提高模型的准确性和稳定性 。
02
引入人工智能和机器学习技术, 实现灰色关联分析模型的自适应 和智能化。
应用拓展
将灰色关联分析模型应用于更多领域 ,如金融、能源、环境等,挖掘各领 域数据之间的关联关系。
结合其他数据分析方法,形成更为综 合和全面的数据分析体系。
THANKS
感谢观看
通过灰色关联分析,可以挖掘出数据之间的内在联系,为决策提供依据,有助于提 高决策的科学性和准确性。
灰色关联分析模型的基本概念
灰色关联分析
灰色关联分析是一种基于因素之间发 展趋势相似或相异程度的分析方法, 用于衡量因素之间的关联程度。
灰色关联序
灰色关联序是根据灰色关联度的大小 对因素进行排序,从而找出主要影响 因素和次要影响因素。
灰色关联分析模型
• 引言 • 灰色关联分析模型的理论基础 • 灰色关联分析模型的实例应用 • 灰色关联分析模型的优缺点 • 灰色关联分析模型的发展趋势和展望
01
引言
灰色关联分析模型的背景和意义
灰色关联分析模型是一种用于处理不完全信息或不确定信息的数学方法,广泛应用 于经济、社会、工程等领域。
在实际应用中,由于数据的不完全性和不确定性,许多问题难以得到准确的分析和 预测。灰色关联分析模型的出现,为这类问题提供了有效的解决方案。
灰色关联度
灰色关联度是灰色关联分析中的核心 概念,表示因素之间的关联程度。通 过计算灰色关联度,可以判断各因素 之间的相似或相异程度。
灰色关联矩阵
灰色关联矩阵是表示因素之间关联程 度的矩阵,通过矩阵可以直观地看出 各因素之间的关联程度。
02
灰色关联分析模型的理论基础

《灰色GM(1,1)模型的优化及其应用》范文

《灰色GM(1,1)模型的优化及其应用》范文

《灰色GM(1,1)模型的优化及其应用》篇一一、引言灰色系统理论是一种研究信息不完全、数据不精确的系统的理论。

其中,灰色GM(1,1)模型是灰色系统理论中最为重要和常用的预测模型之一。

该模型通过累加生成序列和一次微分方程进行建模,具有较高的预测精度和实用性。

然而,传统的灰色GM(1,1)模型在某些情况下仍存在模型参数不够准确、预测精度不高等问题。

因此,对灰色GM(1,1)模型进行优化及其应用的研究具有重要意义。

本文将首先介绍灰色GM(1,1)模型的基本原理,然后探讨其优化方法,并最后分析其在不同领域的应用。

二、灰色GM(1,1)模型的基本原理灰色GM(1,1)模型是一种基于微分方程的预测模型,主要用于处理小样本、不完全信息的数据。

该模型通过累加生成序列和一次微分方程进行建模,将原始数据序列转化为微分方程的形式,从而进行预测。

其基本步骤包括:数据累加、建立微分方程、求解微分方程、模型检验等。

三、灰色GM(1,1)模型的优化针对传统灰色GM(1,1)模型的不足,学者们提出了多种优化方法。

其中,基于数据预处理、模型参数优化和预测结果修正的优化方法较为常见。

1. 数据预处理:通过对原始数据进行处理,如去趋势、归一化等,以提高模型的适应性和预测精度。

2. 模型参数优化:通过引入其他因素或变量,如时间序列的波动性、随机性等,对模型参数进行优化,提高模型的预测精度。

3. 预测结果修正:通过对预测结果进行修正,如引入专家知识、其他预测方法的结果等,进一步提高预测精度。

四、灰色GM(1,1)模型的应用灰色GM(1,1)模型在各个领域都有广泛的应用。

下面以几个典型领域为例,介绍其应用。

1. 经济学领域:灰色GM(1,1)模型可以用于预测经济增长、股市走势等经济指标,为经济决策提供参考。

2. 农业领域:灰色GM(1,1)模型可以用于预测农作物产量、农业气候等指标,为农业生产提供指导。

3. 医学领域:灰色GM(1,1)模型可以用于预测疾病发病率、死亡率等指标,为医学研究和卫生政策制定提供参考。

灰色预测模型的优化及其应用

灰色预测模型的优化及其应用

偏残差灰色预测模型的优化
1 2 3
偏残差灰色预测模型的基本原理
通过对原始数据序列的偏残差进行修正,提高灰 色预测模型的精度。
优化方法一
考虑非等间距序列:在偏残差灰色预测模型中考 虑非等间距序列的影响,可以更准确地反映原始 数据的变化规律。
优化方法二
引入非线性函数:在偏残差灰色预测模型中引入 非线性函数,可以更准确地描述原始数据序列的 变化规律。
05
结论
研究成果总结
灰色预测模型在处理具有不完整、不确定信息的问题上具有优势,能够克服数据量 小、信息不完全等限制。
通过引入优化方法,灰色预测模型在预测精度、稳定性和泛化性能等方面都得到了 显著提升。
灰色预测模型在多个领域具有广泛的应用价值,如经济、环境、医学等,为相关领 域的科学研究提供了新的思路和方法。
灰色神经网络预测模型的优化
01
灰色神经网络预测模型的基本原理
利用神经网络的自学习能力,对灰色预测模型进行优化。
02
优化方法一
选择合适的网络结构:根据历史数据选择合适的网络结构,可以提高灰
色神经网络预测模型的泛化能力。
03
优化方法二
采用集成学习算法:将多个灰色神经网络模型的预测结果进行集成,可
以提高预测精度。
灰色预测模型与其他模型的组合研究
01
02
03
集成学习
将灰色预测模型与其他预 测模型进行集成,通过集 结多个模型的优点,提高 预测精度。
混合模型
将灰色预测模型与其他模 型进行混合,以充分利用 各种模型的优势,提高预 测性能。
多模型融合
将多个灰色预测模型进行 融合,通过综合多个模型 的预测结果,提高预测精 度。
基于大数据和人工智能的灰色预测模型研究

(完整版)3灰色模型GM(1,N)及其应用

(完整版)3灰色模型GM(1,N)及其应用

§3 灰色模型GM(1,N)及其应用客观系统无论本征非灰,还是本征灰,一般都存在能量吸收、储存、释放等过程,加之生成数列一般都有较强的指数变化趋势,所以灰色系统理论指出用离散的随机数,经过生成变为随机性被显著削减的较有规律的生成数,这样便可以对变化过程做较长时间的描述,进而建立微分方程形式的模型。

建模的实质是建立微分方程的系数。

设有N 个数列N i n X X X X i i i i ,,2,1))(,),2(),1(()0()0()0()0( ==对)0(i X 做累加生成,得到生成数列Ni n X n X X X X m X m XXXi i i i i nm i m iii,,2,1))()1(,),2()1(),1(())(,,)(),1(()0()1()0()1()1(1)0(21)0()0()1( =+-+==∑∑==我们将数列)1(i X 的时刻n k ,,2,1 =看作连续的变量t ,而将数列)1(i X 转而看成时间t 的函数)()1()1(t X X i i =。

如果数列)1()1(3)1(2,,,N X X X 对)1(1X 的变化率产生影响,则可建立白化式微分方程)1(1)1(32)1(21)1(1)1(1N N X b X b X b aX dtdX -+++=+ (1) 这个微分方程模型记为GM (1,N )。

方程(1)的参数列记为T N b b b a ),,,(121-= α,再设T N n X X X Y ))(,),3(),2(()0(1)0(1)0(1 =,将方程(1)按差分法离散,可得到线性方程组,形如αˆB Y N = (2)按照最小二乘法,有N T T Y B B B 1)(ˆ-=α (3)其中,利用两点滑动平均的思想,最终可得矩阵⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+--+-+-=)()())()1((21)3()3())3()2((21)2()2())2()1((21)1()1(2)1(1)1(1)1()1(2)1(1)1(1)1()1(2)1(1)1(1n X n X n X n X X X X X X X X X B N N N 求出αˆ后,微分方程(1)便确定了。

灰色模型GM1,N及其应用

灰色模型GM1,N及其应用
应用拓展
将灰色模型应用于更多的领域,如经济、环境、 能源等,发挥其预测优势。
智能化发展
结合人工智能技术,发展更加智能化的灰色模型, 提高模型的自适应性和鲁棒性。
感谢观看
THANKS
提高预测精度。常见的融合方法 包括加权融合、特征融合等。
模型自适应调整
根据数据的变化自适应地调整模型 参数,可以提高模型的适应性和鲁 棒性。
模型泛化能力提升
通过改进模型的泛化能力,可以更 好地处理未见过的数据,提高模型 的预测精度和稳定性。
未来研究方向与展望
理论完善
进一步完善灰色模型的理论基础,提高模型的预 测精度和稳定性。
参数调整
通过调整模型中的参数,可以更 好地拟合数据,提高模型的预测 精度。常见的参数调整方法包括 梯度下降法、牛顿法等。
参数敏感性分析
分析参数对模型预测结果的影响, 有助于理解模型的工作原理,并 进一步优化模型参数。
模型扩展与改进
模型融合
将灰色模型与其他预测模型进行 融合,可以结合不同模型的优点,
通过分析市场趋势、政策因素等外部 条件,提高预测准确性,为投资者提 供决策依据。
选取股票价格、成交量等关键数据作 为输入,建立股票价格预测模型。
预测人口数量
应用灰色模型GM(1,n)分析人口 数据,预测未来人口数量变化趋
势。
选取出生率、死亡率、迁移率等 关键指标作为输入,建立人口数
量预测模型。
结合社会经济发展状况、政策调 整等因素,评估人口数量变化对
GM(1,n)
考虑多个变量的一阶累加,更适用于多因素分析。
与机器学习模型的比较
机器学习模型
侧重于数据的分类和预测,强调模型的 泛化能力。
VS

(完整版)灰色预测模型

(完整版)灰色预测模型

我们说X (1)是X (0)的AGO序列,并记为
当且仅当
X (1) AGO X (0)
X (1) x(1) 1, x(1) 2,L , x(1) n
k
并满足 x(1) (k) x(0) (m) (k 1, 2,L , n) m1
例1 摆动序列为:X (0) 1, 2, 1.5, 3
3、灰数及其运算
只知道大概范围而不知道其确切值的数称为灰 数,通常记为:“”。
例如: 1. 头发的多少才算是秃子。应该是个区间范
围。模糊 2.多少层的楼房算高楼,中高楼,低楼。 3.多么重才算胖子?。
灰数的种类:
a、仅有下界的灰数。 有下界无上界的灰数记为: ∈[a, ∞] b、仅有上界的灰数。 有上界无下界的灰数记为: ∈[-∞ ,b] c、区间灰数 既有上界又有下界的灰数: ∈ [a, b] d、连续灰数与离散灰数 在某一区间内取有限个值的灰数称为离散灰 数,取值连续地充满某一区间的灰数称为连续 灰数。
这表明
IAGO X (1) IAGO(பைடு நூலகம்AGO X (0) ) X (0)
3. 均值生成算子(MEAN)
定义 它是将AGO序列中前后相邻两数取平均数, 以获得生成序列。令X (1)为X (0)的AGO序列
X (1) x(1) 1, x(1) 2,L , x(1) n
称Z (1)为X (1) 的MEAN序列,并记为
定义 它是对AGO生成序列中相邻数据依次累 减,又称累减生成。令X (0)为原序列
X (0) x(0) 1, x(0) 2,L , x(0) n
称Y是 X (0)的IAGO序列,并记为
当且仅当
Y IAGO X (0)
Y y(1), y(2),L , y(n)

时序预测中的灰色模型介绍(Ⅱ)

时序预测中的灰色模型介绍(Ⅱ)

时序预测中的灰色模型介绍时序预测是一种在实际生活和工作中非常常见的问题。

许多领域,如气象、经济、交通等都需要进行时序数据的预测,以便做出相应的决策。

其中,灰色模型是一种常用的预测方法,它能够对具有短时、小样本、非线性和不确定性的时序数据进行较为准确的预测。

1. 灰色模型的基本原理灰色模型是由中国科学家陈纳新教授于1982年提出的,它是一种基于少量数据,将不确定性和不完备性信息转化为可用信息的数学模型。

灰色系统理论是从不确定性的角度出发,描述了不确定性系统的非随机性特征。

灰色模型的基本原理是将时序数据进行建模,并通过建模得到的规律进行预测。

2. 灰色模型的应用范围灰色模型广泛应用于各种领域的时序数据预测中,如经济学、环境科学、医学、工程技术等。

在经济学领域,灰色模型被用于短期经济预测、股票市场预测等。

在环境科学领域,灰色模型被用于气象预测、气候变化预测等。

在医学领域,灰色模型被用于疾病传播预测、流行病学预测等。

在工程技术领域,灰色模型被用于负荷预测、能耗预测等。

3. 灰色模型的优势灰色模型在应对短时、小样本、不确定性等问题时,具有很大的优势。

首先,灰色模型能够较好地处理非线性问题,因为它不要求时序数据服从某种特定的分布。

其次,灰色模型对于不完备信息的处理能力较强,它能够通过建模得到的规律,对缺失信息进行补充,从而提高预测的准确性。

此外,灰色模型的计算简单,不需要过多的参数调整,因此适用于处理小样本数据。

4. 灰色模型的不足虽然灰色模型在处理短时、小样本、不确定性等问题上具有一定优势,但也存在一些不足之处。

首先,灰色模型对数据的要求较高,需要较为连续的时序数据,且对数据的质量要求较高。

其次,灰色模型在处理长期预测问题时,效果不如传统的时间序列分析方法。

另外,灰色模型的理论研究相对较少,其应用也相对较为局限。

5. 灰色模型的改进与发展为了克服灰色模型的不足,研究者们提出了许多改进和扩展的方法。

例如,改进了灰色模型的建模方法,提高了对不完备信息的处理能力;引入了混沌理论、粒子群算法等方法,提高了灰色模型的预测精度;将灰色模型与其他预测方法相结合,形成了集成预测模型等。

灰色关联度分析模型的特点与具体运用-应用数学论文-数学论文

灰色关联度分析模型的特点与具体运用-应用数学论文-数学论文

灰色关联度分析模型的特点与具体运用-应用数学论文-数学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:本文针对灰色关联模型进行分析, 通过分析得出灰色关联模型具有处理数据灵活的特点;并且灰色关联模型能应用于样本数量较少且关系为线性关系的系统分析。

关键词:灰色关联模型; 线性关系; 系统分析;引言在实际的工程设计与模型分析过程中,往往存在比较多的变量,而这些变量之间是否存在关系在很大程度上具有不确定性。

但是如果能够明确这些变量之间的关系,它们就会对工程设计以及系统分析起到理论的指导作用。

因此,将这些变量之间的关系以数学关联的方式进行表述是非常有意义的。

灰色关联度分析模型是目前较为常用的数学分析方法之一,其对描述变量关系具有重要意义。

目前,该模型已经被广泛应用,如文献[1]中利用灰色关联模型对六个苜蓿品种在某地的环境适应特性进行分析,得到了较好的结果;文献[2]利用灰色关联模型进行水质评价,也收到了不错的效果;灰色关联模型还可以广泛地应用于经济、桥梁工程等各个领域[3,4,5]。

因此,对灰色关联模型进行分析与研究对技术发展具有重要意义。

一、灰色关联度分析模型特点(一) 处理数据灵活灰色关联度分析中的灰色主要表现为信息不完整和非唯一性,灰靶思想[6]是非唯一性的一个重要体现,即多目标,多途径,灵活处理数据。

在求解过程中,要求定性与定量相结合,从而得到一个或者多个满意的解。

(二) 标准不固定该模型具有广泛适用性。

灰色关联度分析法主要通过估计被评价对象和评价指标之间的差距,利用历史样本之间的关系去评价样本,从而达到排除模糊关系的效果。

灰色关联度分析的评价标准并不固定。

因此,其具有广泛适用性,能较好地适用于各个领域[7]。

二、灰色关联度分析模型的应用分析(一) 研究的样本数量不用过多灰色关联度分析是根据历史发展趋势来分析的。

因此,即使是小样本量也能很好地推算出来,比较精确,得到可靠的分布规律。

灰色预测模型及应用论文

灰色预测模型及应用论文

灰色系统理论的研究GM(1,1)预测与关联度的拓展摘要:科学地预测尚未发生的事物是预测的根本目的和任务。

无论个体还是组织,在制定和规划面向未来的策略过程中,预测都是必不可少的重要环节,它是科学决策的重要前提。

在众多的预测方法中,灰色预测模型自开创以来一直深受许多学者的重视,它建模不需要太多的样本,不要求样本有较好的分布规律,计算量少而且有较强的适应性,灰色模型广泛运用于各种领域并取得了辉煌的成就。

本文详细推导GM(1,1)模型,另外对灰关联度进行了进一步的改进,让改进的计算式具有唯一性和规范性[]4。

通过给出的实例高校传染病发病率情况,建立了GM(1,1)预测模型,并预测了1993年的传染病发病率。

另外对传染病发病率较高的痢疾、肝炎、疟疾三种疾病做了关联度分析,发现痢疾与整个传染病关系最密切,而肝炎、疟疾与整个传染病的密切程度依次差些。

关键词:灰色预测模型;灰关联度;灰色系统理论The Research of Grey System TheoryGM(1,1) prediction and the expansion of correlationxueshenping Instructor: tangshaofangAbstract:Science has not yet occurred to predict the fundamental thing is to predict the purpose and mission. Whether individuals or organizations, in developing future-oriented strategy and planning process, the forecasts are essential and important aspect, which is an important prerequisite for scientific decision-making. Among the many prediction methods, the gray prediction model has been well received since its inception attention of many scholars, it does not require much sample modeling, does not require a better distribution of the sample was calculated, and has strong adaptability less , gray model widely used in various fields and has made brilliant achievements. This paper is derived GM (1,1) model,the other on the gray correlation was further improved, so that the improved formula is unique and normative. University by giving examples of the incidence of infectious diseases, establishing the GM (1,1) prediction model and predict the incidence of infectious diseases in 1993. In addition to the high incidence of infectious diseases, dysentery, hepatitis, malaria, made the three diseases, correlation analysis, found that dysentery is most closely with the infectious disease, and hepatitis, malaria and infectious diseases, the closeness of the order of hearing.Key words:Grey prediction model ; Grey relational grade;Grey system theory目录1、引言 (1)1.1、研究背景 (1)111.2、研究意义 (2)2、灰色系统及灰色预测的概念 (2)2.1、灰色系统理论发展概况 (2)22232.2、灰色系统的特点 (4)2.3、常见灰色系统模型 (5)2.4、灰色预测 (6)2.5、基本概念 (7)7778883、简单的灰色预测——GM(1,1)预测 (9)3.1、GM(1,1)预测模型的基本原理 (9)3.2、GM(1,1)模型检验 (12)1 2 1 3 1 3 3.3、GM(1,1)残差模型 (14)3.4、GM(1,N)模型 (15)3.5、灰色系统建模的基本思路 (16)4、灰色关联度分析 (16)4.1、灰色关联分析理论及方法 (16)4.2、灰色关联技术的应用 (17)4.3、灰色关联度计算式及改进 (18)5、传染病的问题 (20)5.1、传染病发病率的的预测 (21)5.2、三种传染病的关联分析 (22)6、小结 (23)参考文献: (24)附录 (25)灰色系统理论的研究GM(1,1)预测与关联度的拓展1、引言模型按照对研究对象的了解程度可分为:黑箱模型、白箱模型、灰箱模型。

时序预测中的灰色模型介绍(Ⅰ)

时序预测中的灰色模型介绍(Ⅰ)

时序预测中的灰色模型介绍时序预测是指根据已知的历史数据,通过建立数学模型并进行分析推断,预测未来一段时间内的发展趋势或结果。

在这个过程中,灰色模型作为一种常用的预测方法,被广泛应用于经济、环境、医学等各个领域。

本文将介绍灰色模型的基本原理、应用范围和优缺点,并分析其在时序预测中的作用。

灰色模型是由中国工程师、数学家、系统工程专家李昌儒教授于1982年提出的,它是一种非常适合于短期预测的模型。

它的基本原理是利用极少的历史数据,通过对数据进行处理和适当的修正,来建立数学模型,从而实现对未来发展趋势的预测。

在实际应用中,灰色模型通常被用来对非线性、非平稳、非高斯的时序数据进行预测,尤其在数据量较小、具有不确定性的情况下效果显著。

灰色模型的应用范围非常广泛,包括经济增长预测、环境污染趋势预测、医学疾病传播预测等多个领域。

例如,在经济学中,灰色模型可以用来预测国家的经济增长趋势,帮助政府制定宏观政策和经济计划。

在环境科学中,灰色模型可以用来预测大气污染物浓度的变化,为环境保护部门提供决策依据。

在医学领域,灰色模型可以用来预测疾病的传播趋势,帮助医疗机构做好防疫工作。

然而,灰色模型也存在一些局限性,主要表现在以下几个方面。

首先,灰色模型对数据的要求较高,需要有一定数量的历史数据才能建立有效的模型。

其次,灰色模型在处理多变量、高维度的数据时表现较差,对于这类数据的预测准确性较低。

此外,灰色模型在处理数据缺失、异常值较多的情况时也存在一定的困难,需要进行额外的处理和修正。

在时序预测中,灰色模型起到了至关重要的作用。

它的独特优势使得它成为时序预测中常用的方法之一。

例如,在金融领域,灰色模型可以用来预测股票价格、汇率变动等金融指标的趋势,为投资者提供决策参考。

在气象领域,灰色模型可以用来预测天气变化趋势,为农业生产和灾害预警提供支持。

在交通运输领域,灰色模型可以用来预测交通流量变化趋势,为交通管理部门提供决策依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建模机理灰色理论模型应用——污染物浓度问题GM( 1, 1)残差模型的应用——油菜发病率问题GM模型在复杂问题中的应用——SARS 疫情问题GM( 1, n)模型的应用——因素相关问题本章小结思考题推荐阅读书目第十章灰色模型介绍及应用灰色理论基本知识客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解,人们不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断来构造模型。

对这类部分信息已知而部分信息未知的系统,我们称之为灰色系统。

本章介绍的方法是从灰色系统的本征灰色出发,研究在信息大量缺乏或紊乱的情况下,如何对实际问题进行分析和解决。

灰色系统的研究对象是“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定性系统,它通过对“部分”已知信息的生成、开发实现对现实世界的确切描述和认识。

信息不完全是“灰”的基本含义。

灰色系统理论建模的主要任务是根据具体灰色系统的行为特征数据,充分开发并利用不多的数据中的显信息和隐信息,寻找因素间或因素本身的数学关系。

通常的办法是采用离散模型,建立一个按时间作逐段分析的模型。

但是,离散模型只能对客观系统的发展做短期分析,适应不了从现在起做较长远的分析、规划、决策的要求。

尽管连续系统的离散近似模型对许多工程应用来讲是有用的,但在某些研究领域中,人们却常常希望使用微分方程模型。

事实上,微分方程的系统描述了我们所希望辨识的系统内部的物理或化学过程的本质。

目前,灰色系统理论已成功地应用于工程控制、经济管理、未来学研究、生态系统及复杂多变的农业系统中,并取得了可喜的成就。

灰色系统理论有可能对社会、经济等抽象系统进行分析、建模、预测、决策和控制,它有可能成为人们认识客观系统改造客观系统的一个新型的理论工具。

灰数:一个信息不完全的数,称为灰数。

灰元:信息不完全或内容难以穷尽的元素,称为灰元。

灰关系:信息不完全或机制不明确的关系,称为灰关系。

具有灰关系的因素是灰因素,灰因素之间的量化作用,称为灰关联。

灰色系统 : 含灰数、灰元或灰关系的系统称为信息不完全系统。

如果按照灰色理论去研究它。

则称此系统为灰色系统。

累加生成:由于灰系统对一切随机量都可看作是在一定范围内变化的灰色量,因此,为适应灰系统建模需要,提出“生成”的概念,“生成”即指对原始数据做累加(或累减)处理。

累加生成一般可写成AGO。

若计x(0)为原始数列,x( r )为 r 次累加生成后数列,即则 r 次累加生成算式为x( r ) ( k) x ( r1) (1)x ( r1) (2)x ( r kx ( r1) (i )L1) ( k )i1[ x( r1) (1)x (r1) (2)L x( r1) ( k 1)]x( r1) (k ) x ( r ) (k 1) x( r 1) ( k )一般常用的是一次累加生成,即建模机理建立 GM模型,实际就是将原始数列经过累加生成后,建立具有微分、差分近似指数规律兼容的方程,成为灰色建模,所建模型称为灰色模型,简记为GM(Grey Model)。

如GM (m,n)称为m阶n 个变量的灰色模型,其中GM( 1,1)模型是GM( 1,n)模型的特例,是灰色系统最基本的模型,也是常用的预测模型,因此本章重点介绍几种GM(1, 1)模型的建模过程和计算方法,并简单介绍GM( 1, n)建模过程。

GM( 1, 1)的建模机理GM( 1, 1)模型是GM( 1, N)模型的特例,其简单的微分方程形式(白化形式的微分方程)是利用常数变易法解得,通解为若初始条件为t0, x(t )x0,则可得到微分方程的特解为或时间响应函数其中白化微分方程中的ax 项中的 x 为dx的背景值,也称为初始值;a, u 为常数(有dt时也将 u 写成b)。

按白化导数定义有差分形式的微分方程,即显然,当时间密化值定义为1,即当t 1 时,上式可记为记为离散形式这显然表明dx是一次累计生成,因此上述方程可改写为dt这实际也表明,模型是以生成数x(1) (x(1)是以 x(0)的一次累加)为基础的。

当t 足够小时,x (t )到x(t t ) 不会发生突变,因此可取x(t ) 与 x(t t ) 的平均值作为t0 时的背景值,因此,背景值便可记为或于是白化的微分方程dx (1)ax (1)u 可改写为dt或即因此,上述方程可以改写为矩阵方程形式,即引入下列符号,设于是便有令则解得将求解得到的代入微分方程的解式(也称时间响应函数),则由于 x(0) (1)x (1) (1) ,因此求导还原得上述两式便为GM(1, 1)的时间响应式,及灰色系统预测模型的基本算式,当然上述两式计算结果只是近似计算值。

为简记,一般可以将GM(1, 1)的建模过程记为灰色理论模型应用( 1, 1)模型的应用——污染物浓度问题GM( 1, 1)模型是灰色系统最基本的模型,下面以污染物浓度问题说明GM( 1, 1)模型的建立及求解过程。

例某污染源中某种污染物质量浓度测量值如表,试建立GM( 1,1)模型表某污染物质量浓度测量值( mg/L)年份200120022003200420052006解:第一步,设原始数据为x(0)( x(0) (1), x (0)(2), L, x (0)(6))(3.936, 4.575,4.968,5.063,5.968,5.507)第二步,对原始数据进行累加生成,即x(1)AGOx (0)因此累加生成数据为第三步,构造矩阵B,Y NY N[ x (0)(2),x(0) (3), L, x (0) (6)] T[4.575 4.968 5.063 5.968 5.507]第四步,计算?( B TB )1TY N。

a B先求 (B T B) 1,即根据逆矩阵的求解方法,得再求 B T Y N的值,即进而求得 a? 的值为计算 GM1_1的程序如下function 10toliti01(X0)[m,n]=size(X0);X1=cumsum(X0);X2=[];for i=1:n-1X2(i,:)=X1(i)+X1(i+1);endB=.*X2;t=ones(n-1,1);B=[B,t];YN=X0(2:end);TP_t=YN./X1(1:(length(X0)-1))A=inv(B.'*B)*B.'*YN.';a=A(1)u=A(2)Bb1=B.'*Bb2=inv(B.'*B)b3=B.'*YN.'b4=u/ab5=X1(1)-b4b6=-a*b5第五步,将 a, u 的值代入微分方程的时间响应函数,令(1)(1)x (0) 3.936 ,得x (1)第六步,求导还原得第七步,对上述模型进行精度检验。

常用的方法是回代检验,即分别用x?(1) (1), x (1) (0) 模型求出各时刻值,然后求相对误差。

先利用时间响应函数模型?(1)( k 1)0.0539 k80.3904求各时刻值x84.3264 e( k 1, 2, L,5 ),并计算相对误差,结果如表所示.表精度检验实测值、残差值表k1,2,L ,5 GM计算值实测值残差相对残差?(1)(k 1)x (1)( k 1)q(1)( k 1)x再利用时间响应函数模型(0)0.0539kx (k 1) 4.5443 e求各时刻值(k1,2, L ,5),?并计算相对误差,结果如表所示.表计算值与实验原始数据值对照表k 1, 2, L,5GM计算值实测值残差相对残差?(0)(k 1)x (0)(k 1)q(0)( k 1)x从残差检验结果看,累计生成数列曲线拟合较好,相对误差在即1%左右;而还原数列的相对误差较大,其原因是累加生成数据将原始数据的随机性弱化,正负误差有抵消的,当数据再被还原回来时便表现出来。

GM( 1, 1)残差模型的应用——油菜发病率问题当GM(1,1)模型的精度不符合要求时,可用残差序列建立GM(1,1)模型,对原来的模型进行修正,以提高精度,即建立残差GM(1,1)模型,步骤如下第一步,利用原始数据建立GM( 1,1)模型,得时间响应式其中第二个式子也成为导数还原值。

鉴于导数还原值与原始数据(累减还原值)不一致,为减少往返运算造成的误差,往往用原始数据与导数还原值的残差修正的x (0)) (0)模拟值 x。

第二步,利用残差数列建立新的GM( 1, 1)模型。

建立残差模型的过程和计算方法同于GM( 1, 1)建模过程,只不过建立残差模型所用的原始数列采用的是残差数据。

令g (0) (k ) 为残差,则即或利用残差序列g (0)建立新的GM(1,1)模型,求解得时间响应式第三步,结合上两步的GM( 1, 1)模型,建立残差GM( 1, 1)模型结合上两步的GM( 1, 1)模型,则相应的残差修正时间响应式为称为导数还原式的残差修正模型。

例某县油菜发病率数据如表所示,试建立残差GM模型并进行求解。

表某县油菜发病率数据(%)序号1234567891011121362040254045352114181715解:第一步,建立原始数据的GM( 1, 1)模型设原始数据为建立 GM( 1, 1)模型,利用GM( 1, 1)的求解程序得时间响应式为第二步,误差检验利用时间响应函数模型$(0)k10.368e0.06486k计算各时刻值(k 1, 2, L,12 ),x并计算相对误差,程序如下function10toliti02(X0)%format long ;%X0=*[6 20 40 25 40 45 35 21 14 18 17 15];[m,n]=size(X0);s(1)=1;for i=1:12y(i+1)=*exp*i);z(i+1)=X0(i+1)-y(i+1);w(i+1)=z(i+1)/X0(i+1);s(i+1)=i+1;endy'X0'z'w'z*z'sum(abs(w))/12计算结果如表所示表计算值与实验原始数据值对照表k 1, 2, L ,12 GM计算值实测值残差相对残差x?(0) (k 1)x(0) (k 1)q(0) ( k1)由表可以看出,最大误差高达%,最低的也达到%,模拟误差较大,进一步计算平均相对误差平均相对误差很较大,相对精度约70%。

因此为了提高远原点(即现时)精度,即将最后一个误差减小,需采用残差模型进行修正。

第三步,以部分残差数据为原始数据建立新的GM(1, 1)模型取 k09得残差尾端,即取最后 5 个数据的残差:,,,,,用此尾段可建立残差尾段模型,取绝对值,得残差数列以上述的残差数列为原始数据建立新的GM( 1, 1)模型,得残差的时间响应式第四步,将原始数据和部分残差数据的两个GM( 1, 1)模型即和结合,得到修正后的残差GM(1, 1)模型第五步,用修正后的模型对k 8,9, L ,12 的模拟值进行修正,结果为:第六步,精度检验建立如下程序:function 10toliti021(X0)%format long ;%X0=*[6 20 40 25 40 45 35 21 14 18 17 15];[m,n]=size(X0);s(1)=1;for i=8:12y(i+1)=*exp*i)*exp*i);z(i+1)=X0(i+1)-y(i+1);w(i+1)=z(i+1)/X0(i+1);s(i+1)=i+1;endy'X0'z'w'z*z'sum(abs(w))/5计算结果如表所示表修正后计算值与实验原始数据值检验结果k 8,9, L ,12 GM计算值实测值残差相对残差?(0)(k 1)x (0)(k 1)q(0)( k 1)x按此模型,可对 k9,10,11 ,12,13 五个模拟值进行修正,修正后的平均相对误差1 13q(0) (k )19.4% ,精度有明显的提高。

相关文档
最新文档