t检验与方差分析新

合集下载

统计学中的方差分析与t检验的比较

统计学中的方差分析与t检验的比较

统计学中的方差分析与t检验的比较统计学是研究收集、整理、分析和解释数据的一门学科。

在统计学中,方差分析和t检验是两种常见的统计方法,用于比较不同样本或处理之间的差异。

本文将对方差分析和t检验进行比较,包括原理、适用场景和统计结果的解释。

一、方差分析方差分析(Analysis of Variance,简称ANOVA)是一种用于比较两个或多个样本均值是否存在显著性差异的方法。

它将总体方差拆解为组内方差和组间方差,然后通过比较组间方差与组内方差的大小来判断样本均值是否存在显著性差异。

方差分析适用于多个组之间的比较。

例如,一个实验研究了三种不同肥料对植物生长的影响,将植物分为三组分别使用不同的肥料,然后通过比较植物生长的指标来确定肥料是否有显著影响。

方差分析的统计结果通常包括F值、P值和自由度。

F值表示组间方差与组内方差的比值,P值则用于判断差异是否显著。

如果P值小于设定的显著性水平(通常是0.05),则可以拒绝原假设,即认为样本均值之间存在显著性差异。

二、t检验t检验(t-test)是一种用于比较两个样本均值是否存在显著性差异的方法。

它通过计算两个样本的均值差异与其标准误差的比值,来判断样本均值之间是否存在统计学上的显著性差异。

t检验适用于两个组之间的比较。

例如,一个实验想要比较男性和女性在某种认知任务上的得分是否存在显著差异,可以使用t检验来进行分析。

与方差分析不同,t检验的统计结果通常包括t值、P值和自由度。

t 值表示样本均值差异与标准误差的比值,P值用于判断差异是否显著。

同样地,如果P值小于设定的显著性水平(通常是0.05),则可以拒绝原假设,认为样本均值之间存在显著性差异。

三、方差分析与t检验的比较方差分析和t检验都是用于比较不同样本或处理之间差异的统计方法,但适用场景和分析过程略有不同。

首先,方差分析适用于多个组之间的比较,而t检验适用于两个组之间的比较。

当只有两个组时,可以选择使用方差分析或t检验,但一般情况下,t检验更常见。

t检验和方差分析的前提条件及应用误区

t检验和方差分析的前提条件及应用误区

t检验和方差分析的前提条件及应用误区集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#t检验和方差分析的前提条件及应用误区用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。

后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。

无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。

若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。

之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。

值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。

t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。

t检验得到如此广泛的应用,究其原因,不外乎以下几点:现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t检验方法简单,其结果便于解释。

简单、熟悉加上外界的要求,促成了t检验的流行。

但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。

将这些问题归类,可大致概括为以下两种情况:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。

以上两种情况,均不同程度地增加了得出错误结论的风险。

而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。

sas第九章 t检验和方差分析

sas第九章 t检验和方差分析

第九章 t 检验和方差分析在科研中,我们往往是根据样本之间的差异,去推断其总体之间是否有差异。

样本差异可能是由抽样误差所致,也可能是由本质的不同所致。

应用统计学方法来处理这类问题,称为“差异的显著性检验”。

若已知总体为正态分布,进行差异的显著性检验,称为“参数性检验”,SAS 中MEANS 、TTEST 、ANOVA 、GLM 等均属此类检验;若未知总体分布,进行差异的显著性检验,称为“非参数性检验”,SAS 中采用NPAR1WAY 过程。

第一节 t 检验9.1.1 简介t 检验是用于两组数据均值间差异的显著性检验。

它常用于以下场合:1.样本均值与总体(理论)均值差别的显著性检验检验所测得的一组连续资料是否抽样于均值已知的总体根据大量调查的结果或以往的经验,可得到某事物的平均数(例如生理生化的正常值),以此作总体均值看待。

SAS 中采用MEANS 过程,计算出观察与总体均值的差值,再对该差值的均值进行t 检验。

2.同一批对象实验前后差异的显著性检验(自身对照比较)或配对资料差异的显著性检验(配对比较检验)比如,在医学研究中,我们常常对同一批病人治疗前后的某些生理生化指标(如血压、体温等)进行测量,以观察疗效;或对同一批人群进行预防接种,以观察预防效果;或把实验对象配成对进行测定,比较其实验结果。

SAS 中采用MEANS 过程,计算出两样本观察的差值(如治疗前、后实验数据的差值),再对该差值的均值进行t 检验。

3.两样本均值差异的显著性检验作两样本均值差异比较的两组原始资料各自独立,没有成对关系。

两组样本所包含的个数可以相等,也可以不相等。

每组观测值都是来自正态总体的样本。

设1X 与2X 为两样本的均值,1n 与2n 为两样本数,21s ,22s 为两样本方差,分两种情形,其数学模型为:(1)方差齐(相等)时:)/1/1(21221n n s x x t +-=)2/(])1()1[(212222112-+-+-=n n s n s n s(2)方差不齐时: 22212121//n s n s x x t +-=SAS 中采用TTEST 过程,先作方差齐性检验(F 检验),然后根据方差齐(EQUAL)和方差不齐(UNEQUAL)输出t 值和P 值以及基本统计量。

STATA第四章t检验和单因素方差分析命令输出结果说明(最新整理)

STATA第四章t检验和单因素方差分析命令输出结果说明(最新整理)

第四章 t检验和单因素方差分析命令与输出结果说明·单因素方差分析单因素方差分析又称为Oneway ANOVA,用于比较多组样本的均数是否相同,并假定:每组的数据服从正态分布,具有相同的方差,且相互独立,则无效假设。

原假设:H0:各组总体均数相同。

在STATA中可用命令:oneway 观察变量分组变量[, means bonferroni]其中子命令bonferroni是用于多组样本均数的两两比较检验。

例:测定健康男子各年龄组的淋巴细胞转化率(%),结果见表,问:各组的淋巴细胞转化率的均数之间的差别有无显著性?健康男子各年龄组淋巴细胞转化率(%)的测定结果:11-20 岁组:58 61 61 62 63 68 70 70 74 7841-50 岁组:54 57 57 58 60 60 63 64 6661-75 岁组:43 52 55 56 60用变量x 表示这些淋巴细胞转化率以及用分组变量group=1,2,3分别表示11-20岁组,41-50岁组和61-75岁组,即:数据表示为:x586161626368707074785457 group111111111122x575860606364664352555660 group222222233333则用 STATA 命令:oneway x group, mean bonferroni| Summary of xgroup | Mean ①-------------+------------1 | 66.52 | 59.8888893 | 53.2------+------------Total | 61.25 ②Analysis of VarianceSource SS df MS F Prob > F------------------------------------------------------------------------------- Between groups 616.311111③ 2 ④ 308.155556⑤ 9.77⑥ 0.0010⑦Within groups 662.188889⑧ 21⑨ 31.5328042⑴-------------------------------------------------------------------------------Total 1278.50 23 55.586956(2)Bartlett's test for equal variances:chi2(2) = 2.1977 (3)Prob>chi2=0.333Comparison of x by group(Bonferroni)Row Mean- |Col Mean | 1 2-------------- --|--------------------------------------2 | -6.61111 (4)| 0.054 (5)|3 | -13.3 (6) -6.68889(8)| 0.001 (7) 0.134 (9)①对应三个年龄组的淋巴细胞转化率的均数;②三组合并在一起的总的样本均数;③组间离均差平方和;④组间离均差平方和的自由度;⑤组间均方和(即:⑤=③/④);⑧组内离均差平方和;⑨组内离均差平方和的自由度;(1)组内均方和(即:(1)=⑧/⑨);⑥为F 统计值(即为⑤/(1));⑦为相应的p值;(2)为方差齐性的Bartlett检验;(3)方差齐性检验相应的p值;(4)第二组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(5)第二和第一组均数差的显著性检验所对应p 值;(6)第三组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(7)第三和第一组均数差的显著性检验所对应的 p 值;(8)第三组的淋巴细胞转化率样本均数—第二组的淋巴细胞转化率的样本均数的差;(9)第三和第二组均数差的显著性检验所对应的p 值。

T检验及单因素方差分析

T检验及单因素方差分析

T检验及单因素方差分析T检验是一种用于比较两个样本均值是否具有统计学意义的方法,而单因素方差分析则是一种用于比较三个或更多个样本均值是否具有统计学意义的方法。

本文将详细介绍T检验和单因素方差分析的基本原理、假设条件、计算公式以及实际应用。

一、T检验的基本原理T检验是由英国统计学家威廉·塞吉威德·高斯特及学生威廉·赖斯·格斯特发展而来的。

T检验基于样本均值与总体均值的比较,通过计算差异的标准误差来判断这种差异是否具有统计学意义。

T检验的基本原理是假设样本的均值服从正态分布,通过计算样本均值与总体均值之间的标准差来估计差异的大小。

二、T检验的假设条件T检验的假设条件包括正态分布假设、独立性假设和方差齐性假设。

1.正态分布假设:样本来自正态分布总体或样本容量足够大时,可以近似看作来自正态分布总体。

2.独立性假设:样本之间是相互独立的,即一个样本的观察值与另一个样本的观察值之间没有关联。

3.方差齐性假设:不同样本的方差相等,即总体的方差是相同的。

三、T检验的计算公式T检验的计算公式包括两种情况:独立样本T检验和配对样本T检验。

1.独立样本T检验:适用于两个独立的样本均值比较。

计算公式为:t = (X1 - X2) / se其中,X1和X2分别为两个样本的均值,se为标准误差,t为检验统计量。

2.配对样本T检验:适用于两个相关的样本均值比较。

计算公式为:t=(X1-X2)/(s/√n)其中,X1和X2分别为两个样本的均值,s为差异的标准差,n为样本容量,t为检验统计量。

四、单因素方差分析的基本原理单因素方差分析是用于比较三个或更多个样本均值是否具有统计学意义的方法。

它基于样本之间的差异和样本内的差异,通过计算组间方差和组内方差的比值来判断这种差异是否显著。

单因素方差分析的基本原理是假设总体均值相等,通过计算组间方差和组内方差的比值来检验这一假设。

五、单因素方差分析的假设条件单因素方差分析的假设条件包括正态分布假设、独立性假设和方差齐性假设。

t检验和方差分析的前提条件及应用误区

t检验和方差分析的前提条件及应用误区

t检验和方差分析的前提条件及应用误区用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。

后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。

无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。

若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。

之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。

值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。

t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。

t检验得到如此广泛的应用,究其原因,不外乎以下几点:现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t检验方法简单,其结果便于解释。

简单、熟悉加上外界的要求,促成了t检验的流行。

但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。

将这些问题归类,可大致概括为以下两种情况:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。

以上两种情况,均不同程度地增加了得出错误结论的风险。

而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。

医学论文中常见的统计方法误用一、等级资料用卡方检验代替秩和检验卡方检验主要用于计数资料的显著性检验。

t检验与方差分析

t检验与方差分析
• 主效应(main effect) • 交互效应(interaction)
• 注意
• 主效应显著,而交互作用不显著。交互作用显著, 而主效应不显著都是正常的。
• 避免只有统计的显著性而没有实用的显著性
– 解释量或效应量effect size, ajusted R2
• 因变量由自变量解释的百分比,6%,16%
几种方差分析的区别
• 组间,被试间
– ANOVA
• 单因素方差分析,如只有两个水平也可以做t检验
-Univariate
• 单因素或多因素方差分析 • 如交互作用显著,做简单效应比较
• 组内(被试内)混合实验设计
– Repeated measures
Post hoc
• 当某个因素的水平多于2个时,做事后多重 比较
– 季节对植物生长率的影响
• Test of sphericity(球形检验)
– Assumed: tests of within-subjects effects
– Not assumed: tests of within-subjects effects greenhouse or mutivariate(多元分析)
结果描述
• 对射击成绩进行2(枪支类型,手枪与步枪)*2 (靶子类型,移动靶与固定靶)两因素重复测量 方差分析。
• 结果发现:枪支类型主效应显著, F(1,29)=592.173, p= <0.001,步枪射击成绩显著 高于手枪射击成绩。靶子类型主效应显著, F(1,29)=69.781, p <0.001 ,移动靶的成绩显著 高于固定靶的成绩。两因素交互作用不显著, F(1,29)=1.384,p=0.249。
3步

方差分析和T检验在统计学中的差异

方差分析和T检验在统计学中的差异

方差分析和T检验在统计学中的差异统计学是一门研究数据收集、整理、分析和解释的学科。

在实际应用中,方差分析和T检验是常用的两种统计技术,它们被广泛运用于数据的比较和推断。

尽管它们都属于参数假设检验的方法,但方差分析和T检验在统计学中有着一些差异。

一、概念和应用领域差异方差分析是一种用于比较两个或多个样本均值是否存在显著差异的统计方法。

通常情况下,方差分析用于比较不同处理组之间的均值差异,例如比较不同药物对疾病的治疗效果或者不同肥料对植物生长的影响等。

方差分析可以通过计算组间方差和组内方差之比来进行推断。

T检验是一种用于比较两个样本均值是否存在显著差异的统计方法。

相对于方差分析,T检验通常用于比较两个处理组之间的均值差异,例如比较不同性别、不同学历或不同药物剂量对某个指标的影响等。

T检验可以通过计算T值,并与设定的显著性水平进行比较,来进行推断。

二、假设和前提条件差异方差分析的主要假设是各组之间的方差相等和服从正态分布。

在使用方差分析前需要检验这些假设是否成立。

同时,在进行方差分析时,还需要注意样本之间的独立性以及误差项的独立性。

T检验的主要假设是样本来自两个独立的总体,且总体满足正态分布。

在使用T检验前需要检验这些假设是否成立。

同时,在进行T检验时,还需要注意两个样本之间的独立性以及误差项的独立性。

三、分析结果和解释方法差异方差分析的分析结果主要包括F值和P值。

F值用于判断组间的平均差异是否显著,P值则表示这种差异的概率。

当P值小于设定的显著性水平时,我们可以拒绝原假设,认为组间存在显著差异。

T检验的分析结果主要包括T值和P值。

T值用于判断两个样本均值之间的差异是否显著,P值则表示这种差异的概率。

当P值小于设定的显著性水平时,我们可以拒绝原假设,认为两个样本均值存在显著差异。

四、数据类型和样本容量差异方差分析适用于连续型变量,并且要求样本容量相等或相近。

同时,方差分析也可以处理多个分类因素的情况,通过拆分方差和互作用效应来分析各因素对均值差异的贡献。

T检验和方差分析的差别

T检验和方差分析的差别

T检验和方差分析的差别用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。

后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。

无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。

若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。

之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。

值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。

t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。

t检验得到如此广泛的应用,究其原因,不外乎以下几点:现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t检验方法简单,其结果便于解释。

简单、熟悉加上外界的要求,促成了t检验的流行。

但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。

将这些问题归类,可大致概括为以下两种情况:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。

以上两种情况,均不同程度地增加了得出错误结论的风险。

而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。

t检验和方差分析的前提条件及应用误区选摘自《医学统计应用错误的诊断与释疑》,军事医学科学出版社,主编:胡良平用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。

t检验与单方差分析PPT资料

t检验与单方差分析PPT资料
t检验与单因素方差分析
事实上,小概率事件在随机抽样中还是可能发生的,
如果该P值太小,成为了我们所定义的小概率事件(小于等于α水准),则我们怀疑所做的假设不成立,从而拒绝H0。
察在假设条件下随机样本的特征信息是否属小概率事
• 二是与H0相对立的备择假设 (alternative hypothesis),记为H1。
统计方法应当注意其适用条件
近,不存在差别)考试后的成绩是否存在差异?
均数为正,因此可推断出是使得病人血压下
三、计算检验统计量和P值
三、完全随机的两样本t检验
完全随机的两样本t检验


目的:
推断两个样本是否来自相同的总体,更具体地说,
是要检验两样本所代表的总体均数是否相等。
检验假设
无效假设H0:μ1=μ2
检验结果
多个子集,利用studentized
range分布来进行
件,若为小概率事件,则怀疑假设成立有悖于该样本
基本思想:先建立一个关于样本所属总体的假设,考
D=X- u0
所提供特征信息,因此拒绝假设
•因此,认为两者的差别无统计学意义,但是这并不意味着可以接受H0
• 二是与H0相对立的备择假设 (alternative hypothesis),记为H1。
检验假设H0本来是成立的,而根据样本信息拒
绝H0的可能性大小的度量,换言之,α是拒绝
了实际上成立的H0的概率。
常用的检验水准为α = 0.05,其意义是:在所设
H0的总体中随机抽得一个样本,其均数比手头
样本均数更偏离总体均数的概率不超过5%
假设检验的基本步骤
三、计算检验统计量和P值
检验统计量的特点:
基本思想:先建立一个关于样本所属总体的假设,考

07t检验--方差分析(医学统计学)

07t检验--方差分析(医学统计学)
? 0
• 例1(P60例7-1) 以往通过大规模调查已知某地新生 儿出生体重为3.30kg.从该地难产儿中随机抽取35 名新生儿作为研究样本,平均出生体重为3.42kg,标 准差为0.40kg,问该地难产儿出生体重是否与一般 新生儿体重不同?
例题里涉及两个总体:
• 一般新生儿出生体重(已知总体,µ0=3.30kg) • 该地难产儿出生体重(未知总体,µ未知) • 3.42 >3.30既可能是抽样误差所致,或本质上不同
(n1
1)S12
(n2
1)S
2 2
n1 n2 2
若n1=n2时:
S X1X 2
S2 S2 X1 X2
S12
n1
S
2 2
n2
例3 测得14名慢性支气管炎病人与11名健
康人的尿中17酮类固醇(mol/24h)排出量 如下,试比较两组人的尿中17酮类固醇的 排出量有无不同。
• 原始调查数据如下:
t | 1.33 | 0.58 7.91 12
• (3)确定P值,作出推断结论 自由度=n-1=12-1=11,查附表2,t界值表,得
单侧t0.05,11=1.796,t=0.58<t0.05,11=1.796,故P > 0.05。 按α=0.05水准,不拒绝H0, 差异无统计学意义。
• 结论:故尚不能认为该减肥药有减肥效果。
t ' 10.38 6.62 2.0639 6.322 2.162 14 16
v 15.6447 16,
查 t 界 值 表 , t t0 . 0 5 / 2=(21.61)1 9 。 P > , 不 拒 绝 H0, 尚 不 能 认 为 两 种 药 的 疗 效 不 等 。
三、t检验与Z检验

求方差分析与两样本T检验区别

求方差分析与两样本T检验区别

求⽅差分析与两样本T检验区别⽅差分析与两样本T检验。

1。

⾸先可以看到⽅差分析(ANOVA)包含两样本T检验,把两样本T检验作为⾃⼰的特例。

因为ANOVA可以⽐较多个总体的均值,当然包含两个总体作为特例。

实际上,T的平⽅就是F统计量(m个⾃由度的T分布之平⽅恰为⾃由度为(1,m)的F 分布。

因此,这时候⼆者检验效果完全相同。

T 检验和 ANOVA 检验对于所要求的条件也相同:1)各个组的样本数据内部要相互独⽴,2)各组皆要正态分布3)各总体的⽅差相等。

上述这3个条件完全相同。

2。

如果说要指出差别,则区别仅在下列⼀点上:⽤ANOVA检验两总体均值相等性时,只限于这样的双侧检验问题,即:H0:mu1=MU2 <-> Ha:mu1 not= mu2⽽两样本的T检验则可以⽐上述情况更⼴泛,对⽴假设可以是下⾯3种中的任何⼀种.Ha:mu1 > mu2Ha:mu1 < mu2Ha:mu1 not= mu2这样说来,两样本均值相等性检验虽然可以⽤ANOVA做, 但这没有任何好处,反⽽使得对⽴假设受到限制,因⽽还是T检验更好。

其他表述:t检验与⽅差分析,主要差异在于,t检验⼀般使⽤在单样本或双样本的检验,⽅差分析⽤于2个样本以上的总体均值的检验.同样,双样本也可以使⽤⽅差分析, 多样本也可以使⽤t检验,不过,t检验只能是所有总体两两检验⽽已.两种⽅法与样本量没有直接关系,⽽是与数据的分布有关系,如果数据是正态分布的,那不管是⼩样本或⼤样本,利⽤莱维-林德伯格中⼼极限定理的原理,都是可以⽤的,如果数据⾮正态分布,那只能使⽤⼤样本利⽤李雅普诺夫中⼼极限定理的原理进⾏2t检验,此时不能利⽤⽅差分析,因为⽅差分析三个条件之⼀就是正态分布.。

线性回归的方差分析和回归系数的t检验

线性回归的方差分析和回归系数的t检验

线性回归的方差分析和回归系数的t检验对同一资料作总体回归系数β是否为零的假设检验时,方差分析和t
检验是等价的并且有tβ2= F。

但并不是可以用t检验来取代回归检验的方差分析,对一元多变量的回归来说,方差分析只能代表总体回归β不等于零,即β1、β2…、βn 至少存在一个不为零,如果要检验具体的哪一个β不为零,即确定回归线的具体模型,此时就必须用争对该β的t检验。

对于一元单变量回归线,方差分析与t检验完全等价.
具体检验方法和公式在很多资料上都有提供,随便一百度就有。

T检验及其与方差分析的区别

T检验及其与方差分析的区别

T检验及其与方差分析的区别假设检验是通过两组或多组的样本统计量的差别或样本统计量与总体参数的差异来推断他们相应的总体参数是否相同。

t 检验:1.单因素设计的小样本(n<50)计量资料2.样本来自正态分布总体3.总体标准差未知4.两样本均数比较时,要求两样本相应的总体方差相等•根据研究设计t检验可由三种形式:–单个样本的t检验–配对样本均数t检验(非独立两样本均数t检验)–两个独立样本均数t检验(1)单个样本t检验•又称单样本均数t检验(one sample t test),适用于样本均数与已知总体均数μ0的比较,其比较目的是检验样本均数所代表的总体均数μ是否与已知总体均数μ0有差别。

•已知总体均数μ0一般为标准值、理论值或经大量观察得到的较稳定的指标值。

•单样t检验的应用条件是总体标准s未知的小样本资料( 如n<50),且服从正态分布。

(2)配对样本均数t检验•配对样本均数t检验简称配对t检验(paired t test),又称非独立两样本均数t检验,适用于配对设计计量资料均数的比较,其比较目的是检验两相关样本均数所代表的未知总体均数是否有差别。

•配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。

•应用配对设计可以减少实验的误差和控制非处理因素,提高统计处理的效率。

•配对设计处理分配方式主要有三种情况:①两个同质受试对象分别接受两种处理,如把同窝、同性别和体重相近的动物配成一对,或把同性别和年龄相近的相同病情病人配成一对;②同一受试对象或同一标本的两个部分,随机分配接受两种不同处理,如例5.2资料;③自身对比(self-contrast)。

即将同一受试对象处理(实验或治疗)前后的结果进行比较,如对高血压患者治疗前后、运动员体育运动前后的某一生理指标进行比较。

(3)两独立样本t检验两独立样本t 检验(two independent samples t-test),又称成组t 检验。

t检验和单因素方差分析

t检验和单因素方差分析
t 检验、单因素方差分析
参数估计
参数估计
参数:统计学中总体的指标称为参数
如总体均数 μ、总体标准差 σ、总体率 π
统计量:样本的指标称为统计量
如样本均数x、样本标准差 S、样本率 p
参数估计:是指由样本统计量估计总体参数。包括点估计(point
estimation)和区间估计(interval estimation)。
2.用肝素封管留置针的平均使用时间是3.1天,用生理盐水封管平均使用时间是2.9天
问:肝素封管相对生理盐水封管是否可以延长留置针留置时长?
3.采用坐位测量100人的血压得平均收缩压为120±20mmHg,再采用卧位测量这100人得
平均收缩压为118±21mmHg
问:坐位测得的血压要比卧位测得的血压高吗?
4.调查某医院住院100名男患者和100名女患者,男患者的平均焦虑得分是8±2.5,女患者
的平均焦虑得分是7.9±2.4分
问:男患者是否比女患者更容易产生住院焦虑情绪?
t检验
单样本 t 检验 已知样本均数与已知总体均数的比较
• 两受试对象分别接受两种不同的处理后的数据
配对样本 t 检验
• 同一样品用两种不同的方法检验出的结果
选择检验方法,计算检验统计量
根据资料类型、研究设计方案和统计推断的目的,选择适当的检验方法和计算公式。
T检验、z检验、F检验、 2 检验、
根据P 值做出统计推断
P≤α,按照α检验水准则拒绝H0,接受H1
P>α,则不能拒绝H0
结论:
①P≤0.05,拒绝H0 ,差异有统计学意义,认为联合组和对照组对心脏收缩功能的影响不同。
差异关系
使用新药和未使用新药的两组患者
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0.01
0.005
2.831 2.819 2.807 2.797 2.787 2.779 2.771 2.763 2.756 2.750 2.704 2.678 2.660 2.648 2.639 2.632 2.626 2.601 2.586 2.576
二.配对设计的t检验:
1)自身对照:同一个体的处理前后,不同处理; 2)同一个样本用两种测试检验的结果;
d d 36 4.50 n8
d 2 ( d )2
362 232
Sd
n n1
8 3.16 81
Sd
Sd n
3.16 8
1.12
d 4.50 t 4.02
Sd 1.12
3.确定P值,判断结果:
81 7
查t界值表,t0.05,7=2.365,t=4.02>2.365, P<0.05,按α=0.05水准,拒绝H0,接受H1, 又因为d 4.50 0 ,可以认为该药有降低舒张
压的作用。
三.独立样本均数比较的t检验:
完全随机设计:将实验对象完全随机地分配到 两组中, 这两组分别接受不同的处理或分别从 两种不同的总体中完全随机地抽取一部分个体 进行研究。
人口学 变量差异:性别,城乡,班级。。。
方差分析
方差分析由R.A.Fisher(英)首创,又称F检验 缩写:ANOVA 用途 比较某实验(处理)因素不同水平样本均数间差别有无统
31.821 63.657 6.965 9.925 4.541 5.841 3.747 4.604 3.365 4.032 3.143 3.707 2.998 3.499 2.896 3.355 2.821 3.250 2.764 3.169 2.718 3.106 2.681 3.055 2.650 3.012 2.624 2.977 2.602 2.947 2.583 2.921 2.567 2.898 2.552 2.878 2.539 2.861 2.528 2.845
0.05 0.02 0.01
0.025 0.01 0.005
12.706 4.303 3.182 2.776 2.571 2.447 2.365 2.306 2.262 2.228 2.201 2.179 2.160 2.145 2.131 2.120 2.110 2.101 2.093 2.086
表9-10 用某药治疗高血压患者前后舒张压变化情况
病人编
舒张压(mmHg)
差值 d

治疗前
治疗后



⑷=⑵-⑶
1
96
88
8
2
112
108
4
3
108
102
6
4
102
98
4
5
98
100
-2
6
100
96
4
7
106
102
4
8
100
92
8
d 36
d2
232
1.建立假设,确定检验水准: H0:μd=0 H1:μd≠0 α=0.05 2.选择检验方法,计算检验统计量t值:
S n 0.98 15
3.确定P值,判断结果:
查t界值表,t0.05,14=2.145,本例t=1.70< 2.145,故P>0.05,按α=0.05水准,不拒绝 H0,尚不能认为该法测得的均数与真值不同。
自由度
ν
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1.建立假设,确定检验水准: H0:μ=μ0 H1:μ≠μ0 α=0.05
2.选 316.98 / 15 21.13
n
x2 x2
316.982
6711.98
s
n
15 0.98
n1
15 1
t x 0 21.13 20.7 1.70 n 1 15 1 14
T检验前提
▪ 小样本比较时,要求样本来自正态总体; ▪ 两个小样本比较时,要求两总体方差相等(方
差齐性)。
一.独立样本的t检验:
例9-15 已知某水样中含CaCO3的真值是 20.7mg/L。现用某法重复测定该水样15次, CaCO3含量(mg/L)分别为: 20.99,20.41,20.62, 20.75,20.10,20.00, 20.80,20.91,22.60,22.30,20.99,20.41, 20.50, 23.00,22.60。 问该法测得的均数与真值有无差别?
自由度
ν
21 22 23 24 25 26 27 28 29 30 40 50 60 70 80 90 100 200 500 ∞
双侧: 0.10 单侧: 0.05
1.721 1.717 1.714 1.711 1.708 1.706 1.703 1.701 1.699 1.697 1.685 1.676 1.671 1.667 1.664 1.662 1.660 1.653 1.648 1.645
配对设计的目的:在比较两种处理的效应时, 消除 个体其他方面的差异带来的干扰,提高检验效能。 注意:假定差值的总体分布为正态分布。
d 0 d
t
Sd Sd n
Sd
n1
d
2
d
n
2
n1
d :差值的均数
n :对子数
:S 差值均数的标准误 d
:Sd差值的标准差
应用某药治疗8例高血压患者,观察患者治疗 前后舒张压变化情况,问该药是否对高血压 患者治疗前后舒张压变化有影响?
表 9-8
双侧: 0.10 单侧: 0.05
6.314 2.920 2.353 2.132 2.015 1.943 1.895 1.860 1.833 1.812 1.796 1.782 1.771 1.761 1.753 1.746 1.740 1.734 1.729 1.725
t 界值表
概率 P
概率 P
0.05
0.025
2.080 2.074 2.069 2.064 2.060 2.056 2.052 2.048 2.045 2.042 2.021 2.009 2.000 1.994 1.990 1.987 1.984 1.972 1.965 1.960
0.02
0.01
2.518 2.508 2.500 2.492 2.485 2.479 2.473 2.467 2.462 2.457 2.423 2.403 2.390 2.381 2.374 2.368 2.364 2.345 2.334 2.326
相关文档
最新文档