医用物理学习题册答案上课讲义

合集下载

医学物理学第八版课后习题答案

医学物理学第八版课后习题答案

医学物理学第八版课后习题答案医学物理学第八版课后习题答案医学物理学是一门研究医学应用中的物理原理和技术的学科。

它涉及到医学成像、放射治疗、生物医学工程等领域。

作为一门复杂而重要的学科,医学物理学的学习过程中,习题是不可或缺的一部分。

下面将为大家提供医学物理学第八版课后习题的答案。

第一章:医学物理学基础知识1. 什么是医学物理学?医学物理学是一门研究医学应用中的物理原理和技术的学科。

它涉及到医学成像、放射治疗、生物医学工程等领域。

2. 介绍医学物理学的应用领域。

医学物理学的应用领域包括医学成像、放射治疗、生物医学工程等。

医学成像包括X射线成像、核医学成像、超声成像、磁共振成像等。

放射治疗涉及到肿瘤治疗中的辐射剂量计算、辐射防护等。

生物医学工程则涉及到医学仪器设备的研发和应用。

3. 什么是辐射物理学?辐射物理学是研究辐射的性质、相互作用以及辐射与物质之间的相互关系的学科。

在医学物理学中,辐射物理学是非常重要的基础知识。

4. 介绍医学物理学的测量单位。

医学物理学中的测量单位有很多,其中包括剂量单位、辐射单位、放射性测量单位等。

剂量单位包括格雷(Gy)和西弗(Sv)等。

辐射单位包括居里(Ci)和贝克勒尔(Bq)等。

放射性测量单位包括曝光量(R)和剂量当量(H)等。

5. 什么是剂量当量?剂量当量是指辐射对人体组织或器官造成的伤害的度量。

它是剂量与辐射的生物效应之间的关系。

剂量当量的单位是西弗(Sv)。

第二章:医学成像1. 介绍医学成像的分类。

医学成像可以分为X射线成像、核医学成像、超声成像和磁共振成像等。

每种成像技术都有其特定的原理和应用领域。

2. 什么是X射线成像?X射线成像是利用X射线通过人体组织产生影像的技术。

它常用于检查骨骼和某些软组织病变。

X射线成像的原理是X射线在不同组织中的吸收程度不同,通过对X射线的吸收情况进行记录和分析,可以得到人体内部的影像。

3. 什么是核医学成像?核医学成像是利用放射性同位素在人体内部发出的射线产生影像的技术。

《医用物理学》复习题及解答教程文件

《医用物理学》复习题及解答教程文件

《医用物理学》复习题及解答《医用物理学》复习 一、教材上要求掌握的习题解答:第1章 习题1 )31(P 1-7 ⑴ )rad (.t ππωα40500210=-⨯=∆∆=, 圈5.2)(55.0402121220→=⨯⨯=+=rad t t ππαωθ⑵由αJ M =得:)(1.471540215.052212N mr F mr J Fr ==⨯==⇒==ππααα )(10109.125.11515.01522J Fr M W ⨯==⨯⨯===πππθθ ⑶由t αωω+=0得:)/(4001040s rad ππω=⨯= 由ωr v =得:)/(4.1886040015.0s m v ==⨯=ππ 由22222)()(ωατr r a a a n +=+=得:)/(24000)24000()6()40015.0()4015.0(222222222s m a πππππ≈+=⨯⨯+⨯=1-8 ⑴ 由αJ M =、FR M =、221mR J =得:α221mR FR = 则 2/2110010022s rad mR F =⨯⨯==α ⑵ J S F W E k 5005100=⨯=⋅==∆1-15 ⑴已知骨的抗张强度为71012⨯Pa ,所以 N S F C 4471061051012⨯=⨯⨯⨯==-σ ⑵ 已知骨的弹性模量为9109⨯Pa ,所以 101.0109105105.4944==⨯⨯⨯⨯=⋅==-E S F E σε% 1-16 ∵ l S l F E ∆⋅⋅==0εσ ∴ m E S l F l 4940101091066.0900--=⨯⨯⨯⨯=⋅⋅=∆第2章 习题2 )46(P2-5由连续性方程 2211V S V S = 及 1221S S =得:122V V = 取第2点处的水管位置为零势面,则由理想流体的伯努利方程有: 2222112121v P gh v P ρρρ+=++而 Pa P P )10(401+= 202P P P '+= (0P 为大气压强)KPaPa gh v v P 8.13108.1318.910)42(102110)(2110332234222142=⨯=⨯⨯+-⨯+=+-+='ρρ2-8 如图,设水平管粗、细处的截面积、压强、流速分别为111v p S 、、和222v p S 、、,2CO 、水的密度分别为21ρρ、。

医学物理学习题解答(第3版)

医学物理学习题解答(第3版)

《医学物理学(第3版)》习题解答2009.10部分题解2-10.解:已知 363102525m cm v -⨯==; a P .p 511051⨯= a P .p 521011⨯=()())J (..vp p 110251011105165521=⨯⨯⨯-⨯=-=ω∴-2-11.10-5s第三章 液体的表面现象3-1.解:设由n 个小水滴融合成一个大水滴,释放出的能量为P E ∆。

n 个小水滴的总表面积S 1=24r n ⋅⋅π,大水滴的表面积S 2=42R ⋅π,利用n 个小水滴的体积等于一个大水滴的体积,可求出n 即n ×334r ⋅π=334R ⋅π 所以n ×334r ⋅π=334R ⋅π; ()()936333310102102=⨯⨯==--r R n 个将910个半径为2×310-mm 小水滴融合成一个半径为2mm 的大水滴时,其释放的能量等于表面能的减少,所以 )44()(2221R r n S S E P ⋅-⋅⨯=-=∆ππαα=3612931066.3)10414.3410414.3410(1073----⨯≈⨯⨯⨯-⨯⨯⨯⨯⨯J3-2解:由于肥皂泡非常薄,因此可忽略肥皂泡的厚度,取外内=R R =2d=0.05m 。

因为肥皂泡有内外两个表面,所以肥皂泡增加的表面积242R S π⨯=∆。

根据SW∆=α可得吹一个直径为10cm 的肥皂泡,需要做的功 4423108105421040---⨯=⨯⨯⨯⨯⨯=∆⋅=ππαS W J 又因为增加表面能等于外力所做的功 W E P =∆ 所以 4108-⨯==∆πW E P J根据拉普拉斯公式,可得球形液面的内外压强差 =-外内p p Rα2 由于肥皂泡有内外两个表面,所以其内外压强差 =-外内p p 2.3100.510404423=⨯⨯⨯=--R α(P a )3-3.解:根据拉普拉斯公式,可得球形液面的内外压强差 =-外内p p Rα2 所以,当肺泡的半径为0.04mm 时,它的内外压强差为=-外内p p 353100.2100.4104022⨯=⨯⨯⨯=--R α(P a ) 3-4.解:根据拉普拉斯公式可得球形液面的内外压强差 =-外内p p Rα2 因为气泡在水下面只有一个球形表面,所以气泡的内外压强差=-外内p p Rα2 而 h g p p ⋅⋅+ρ0=外 所以,气泡内的压强 h g p p ⋅⋅+ρ0=内+Rα2 即 内p =1.013×105+310×9.8×10+5331001.2101.010732⨯=⨯⨯⨯--(P a )3=5.解:根据毛细现象的公式 θραcos 2rg h ⋅⋅=由于乙醇能完全润湿玻璃壁,所以接触角O=0θ,故 rg h ⋅⋅=ρα2所以 332107.2221015.08.97911090.32---⨯=⨯⨯⨯⨯⨯=⋅⋅⋅=r g h ρα (N/m)3-6.解:根据毛细现象的公式 θραcos 2rg h ⋅⋅=由于水能完全润湿玻璃壁,所以接触角O =0θ,故 rg h ⋅⋅=ρα2所以 112r g h ⋅⋅=ρα 222r g h ⋅⋅=ρα⎪⎭⎫⎝⎛⨯-⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=-=-=∆---3333212121105.11105.018.9101073211222r r g gr gr h h h ραραρα =1.99×210-(m)=1.99(cm)3-7.解:根据毛细现象的公式 θραcos 2rg h ⋅⋅=;由于水能完全润湿毛细管,所以接触角O =0θ,因此水在毛细管中上升的高度为 rg h ⋅⋅=ρα2而管中水柱的高度r g R h ⋅⋅+='ρα223333103.5103.08.91010732103----⨯=⨯⨯⨯⨯⨯+⨯=(m)=5.3(cm) 3-8.解::根据毛细现象的公式 θραcos 2rg h ⋅⋅=由于水和丙酮能完全润湿毛细管,所以接触角O =0θ,因此水和丙酮在毛细管上升的高度分别为rg h ⋅=水水ρα21 ① rg h ⋅=酮酮ρα22 ②②式除以①式可得酮水水酮ρραα⋅=t h h 12 所以 3332212104.32107310105.2792104.1-⨯=⨯⨯⨯⨯⨯⨯⋅⋅---水水酮酮==αρραh h (N/m) 3-9.解:根据毛细现象的公式 θραcos 2rg h ⋅⋅=由于血液在毛细管产生完全润湿现象,所以接触角O =0θ,故 rg h ⋅⋅=ρα2所以,血液表面张力系数3332109.572105.08.91005.11025.22---⨯=⨯⨯⨯⨯⨯⨯=⋅⋅⋅=r g h ρα (N/m)第四章 振动和波动及超声波成像的物理原理4-2.解:已知 kg M 5=;()cm t cos x 44010π+π= (1) 由()cm t cos x 44010π+π=得m cm A 11010-==;)s rad (π=ω40;mk 2=ω; m k 2ω=则)J (.)J (.mA kA E 384394400105160021212122222=π=⨯⨯π⨯=ω==s .T 0504022=ππ=ωπ=; Hz T f 201==; ()()sm 43t 40cos 4s m 4t 40sin 4vπ+ππ=π+ππ-= ()()2222sm 45t 40cos 160s m 4t 40cos 160a π+ππ=π+ππ-=(2) 当s .t 21=时,则()m .cos x 2110254214010--⨯=π+⨯π=;()sm .cos v π=π+⨯ππ=224321404)J (kx E );J (mv E p k 242222220105051600212120852121π=⨯⨯⨯π⨯==π=π⨯⨯==-(或)J (E E E k p 222202040π=π-π=-=)4-3.解:已知cm A 2=;0=t 时,刚好向x 反向传播;πω==250Hz f , 则 s rad π=ω100()ϕ+ω=t cos A x Θ,0=t 时 0=x 则 2πϕ±=又由 ()0sin 〈+-=ϕωωt A v , 得 2π=ϕ所以,振动方程为 cm 2t 100cos 2x ⎪⎭⎫ ⎝⎛π+π=速度方程为 s cm t sin v ⎪⎭⎫ ⎝⎛π+ππ-=2100200 s m t cos ⎪⎭⎫ ⎝⎛π+ππ=231002 ;s m 2v m π= 加速度方程为 222100200sm t cos a ⎪⎭⎫ ⎝⎛π+ππ-=;22m s m 200a π= 4-4. 解:(1)2A x =时,222121kA kx E p ==; 41218122==kA kAE E p 即势能占总能量的25%,动能占总能量的75% 。

第8版大学《医用物理学》课后习题答案

第8版大学《医用物理学》课后习题答案

习题三第三章流体的运动3-1 若两只船平行前进时靠得较近,为什么它们极易碰撞?答:以船作为参考系,河道中的水可看作是稳定流动,两船之间的水所处的流管在两船之间截面积减小,则流速增加,从而压强减小,因此两船之间水的压强小于两船外侧水的压强,就使得两船容易相互靠拢碰撞。

3-6 水在截面不同的水平管中作稳定流动,出口处的截面积为管的最细处的3倍,若出口处的流速为2m·s-1,问最细处的压强为多少?若在此最细处开一小孔,水会不会流出来。

(85kPa)3-7 在水管的某一点,水的流速为2m·s-1,高出大气压的计示压强为104Pa,设水管的另一点的高度比第一点降低了1m,如果在第二点处水管的横截面积是第一点的1/2,求第二点处的计示压强。

(13.8kPa)3-8 一直立圆柱形容器,高0.2m,直径0.1m,顶部开启,底部有一面积为10-4m2的小孔,水以每秒 1.4×10-4m3的快慢由水管自上面放人容器中。

问容器内水面可上升的高度? (0.1;11.2s.)3-9 试根据汾丘里流量计的测量原理,设计一种测气体流量的装置。

提示:在本章第三节图3-5中,把水平圆管上宽、狭两处的竖直管连接成U形管,设法测出宽、狭两处的压强差,根据假设的其他已知量,求出管中气体的流量。

解:该装置结构如图所示。

3-10 用皮托管插入流水中测水流速度,设两管中的水柱高度分别为5×10-3m和5.4×10-2m,求水流速度。

(0.98m·s-1)3-11 一条半径为3mm的小动脉被一硬斑部分阻塞,此狭窄段的有效半径为2mm,血流平均速度为50㎝·s-1,试求(1)未变窄处的血流平均速度。

(0.22m·s—1)(2)会不会发生湍流。

(不发生湍流,因Re = 350)(3)狭窄处的血流动压强。

(131Pa)3-12 20℃的水在半径为 1 ×10-2m的水平均匀圆管内流动,如果在管轴处的流速为0.1m·s-1,则由于粘滞性,水沿管子流动10m后,压强降落了多少? (40Pa)3-13 设某人的心输出量为0.83×10—4m3·s-1,体循环的总压强差为12.0kPa,试求此人体循环的总流阻(即总外周阻力)是多少N.S·m-5,?3-14 设橄榄油的粘度为0.18Pa·s,流过管长为0.5m、半径为1㎝的管子时两端压强差为2×104Pa,求其体积流量。

医用物理学习题册答案

医用物理学习题册答案

医用物理学习题册姓名班级学号包头医学院医学技术学院物理教研室成绩表1、书写整洁,字迹清楚,不得涂改。

2、独立完成,不得抄袭。

第1章力学基本规律教学内容:1、牛顿运动定律、功和能、能量守恒、动量守恒定律2、转动定律(1)角速度与角加速度。

角量与线量的关系。

•(2)刚体的定轴转动。

转动惯性。

转动惯量。

刚体绕定轴转动的动能。

力矩。

转动定律。

力矩作功。

(3)角动量守恒定律。

3、应力与应变:物体的应力与应变。

弹性模量:弹性与范性。

应力—应变曲线。

弹性模量。

一、填空题1. 刚体角速度是表示整个刚体转动快慢的物理量,其方向由右手螺旋定则确定。

2. 一个定轴转动的刚体上各点的角速度相同,所以各点线速度与它们离轴的距离r成正比,离轴越远,线速度越大。

3. 在刚体定轴转动中,角速度ω的方向由右手螺旋定则来确定,角加速度β的方向与角速度增量的方向一致。

4.质量和转动惯量它们之间重要的区别:同一物体在运动中质量是不变的;同一刚体在转动中, 对于不同的转轴, 转动惯量不同。

5. 刚体的转动惯量与刚体的总质量、刚体的质量的分布、转轴的位置有关。

6. 动量守恒的条件是合外力为0 ,角动量守恒的条件是合外力矩为0 .7. 跳水运动员在空中旋转时常常抱紧身体,其目的减小转动惯量,增加角速度。

8、角动量守恒的条件是合外力矩恒等于零。

9. 弹性模量的单位是 Pa ,应力的单位是 Pa 。

10.骨是弹性材料,在正比极限范围之内,它的应力和应变成正比关系。

二、选择题1. 下列说法正确的是[ C ](A)作用在定轴转动刚体上的合力越大,刚体转动的角加速度越大(B)作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大(C)作用在定轴转动刚体上的合力矩越大,刚体转动的角加速度越大(D)作用在定轴转动刚体上的合力矩为零,刚体转动的角速度为零2.两物体的转动惯量相等,当其转动角速度之比为2:1时,它们的转动动能之比为[ A ](A)4:1 (B)2:1 (C)1:4 (D)1:23.溜冰运动员旋转起来以后,想加快旋转速度总是把两手靠近身体,要停止转动时总是把手伸展开,其理论依据是[ A ](A )角动量守恒定律 (B)转动定律 (C)动量定理 (D)能量守恒定律4.一水平圆盘可绕固定的铅直中心轴转动,盘上站着一个人,初始时整个系统处于静止状态,忽略轴的摩擦,当此人在盘上随意走动时,此系统[ C ](A)动量守恒 (B)机械能守恒 (C)对中心轴的角动量守恒 (D)动量、机械能和角动量都守恒5. 求质量为m 、半径为R 的细圆环和圆盘绕通过中心并与圆面垂直的转轴的转动惯量分别是( C )。

(完整word版)医学物理学习题答案详解

(完整word版)医学物理学习题答案详解
带入数据并整理得
三式联立求解,得
I1=-0.01A;I2=0.015A;I3=0.025A
则高斯面内的电荷量之和
7-9.
解:以细棒的轴线为对称轴,做出如图所高斯面
因上底和下底面无电场线通过,故
7-10.
解:
在带电直线上取线元dr,
8-8.
解:由图可知,电路中有1个独立节点,对f点所列的支路电流方程为:
根据基尔霍夫定律选定afcba和fedcf两个回路,并规定绕行方向为逆时针方向,分别列出回路方程:
1-6.
解:地球自转角速度 = ,转动惯量J= ,则角动量 ,转动动能
1-7.
解: ,将各已知量代入即可求解
第二章习题答案
2-1.
1.皮球在上升和下降阶段均受恒力(重力),因而皮球上下运动不是简谐振动.
2.小球在半径很大的光滑凹球面的底部摆动时,所受的力是指向平衡位置的回复力,且由于是小幅度摆动,回复力的大小和位移成正比(类似于单摆的小幅度摆动)。所以此情况下小球小幅度摆动是简谐振动。
第一章习题答案
1-4
解:对滑轮:由转动定律
对 :
对 :
又因为 得 联立上式得

1-5.
解:以质心为转轴分析,摩擦力矩为转动力矩。因A、B、C的质量和半径相同,故支持力 相同。由摩擦力 =μ ,摩擦力矩M= ·R可知,三者的摩擦力矩也相同。
圆盘A的转动惯量 = m ;实心球B的转动惯量 = m ;圆环C的转动惯量 = m .由M=Jα可知 > > ,所以B先到达,C最后到达.
6-8.
解:如图所示的循环过程是由两条等温线和两条绝热线组成,因此该循环为卡诺循环。循环的效率
7-3.
解:1.做一高斯面S1,其球心为大球和小球的球心,半径r1>R1

医用物理学练习题-答案(1)说课讲解

医用物理学练习题-答案(1)说课讲解

医用物理学练习题-答案(1)说课讲解2015医用物理学练习题-答案(1)《医用物理学》教学要求 2016.4.251.骨骼肌、平滑肌的收缩、张应力、正应力、杨氏模量、2.理想流体、连续性方程、伯努利方程3.黏性液体的流动状态4.收尾速度、斯托克斯定律5.附加压强6.表面张力系数、表面活性物质7.毛细现象8.热力学第一定律9.热力学第一定律在等值过程中的应用(等压、等温)10.热力学第二定律11.电动势、稳恒电流12.一段含源电路的欧姆定律13.基尔霍夫定律应用14.复杂电路:电桥电路15.简谐振动的初相位16.平面简谐波的能量、特征量(波长、频率、周期等)17.光程、相干光18.惠更斯原理19.双缝干涉20.单缝衍射21.光的偏振22. X 射线的产生条件23. X 射线的衰减24. 标识X 射线的产生原理25. X 射线的短波极限26. 放射性活度27. 放射性原子核衰变方式28. 半衰期、衰变常数、平均寿命29. 辐射防护医用物理学练习题练习一1-1.物体受张应力的作用而发生断裂时,该张应力称为( D )A .范性B .延展性C .抗压强度D .抗张强度1-2平滑肌在某些适宜的刺激下就会发生( A )A .自发的节律性收缩B .等宽收缩C .不自主收缩D .等级收缩1-3.骨骼肌主动收缩所产生的张力和被动伸长所产生的张力的关系是( C )A .不等于B .小于C .大于D .近似等于1-4.头骨的抗压强度为1.7×108Pa ,如果质量为1kg 的重物,竖直砸到人的头上,设重物与头骨的作用时间为1×10-3s ,作用面积为0.4cm 2,问重物离头顶至少多高下落才会砸破人的头骨?解:头骨的抗压强度N 108.6104.0107.1348?===-S F σ根据机械能守恒可得 221v m mgh =h 22v = 根据动量定理有v m t F =? 求v 代入上式得()()m 36.218.92101108.6222233222====-gm t g h F v1-5.说明正应力、正应变和杨氏模量的定义以及它们之间的关系。

医用物理学课后习题参考答案解析

医用物理学课后习题参考答案解析

医用物理学课后习题参考答案第一章1-1 ① 1rad/s ② 6.42m/s1-2 ① 3.14rad/s - ② 31250(3.9310)rad π⨯ 1-3 3g =2l β 1-4 1W=g 2m l 1-5 ① 22k E 10.8(1.0710)J π=⨯ ② -2M=-4.2410N m ⨯⋅③ 22W 10.8(1.0710)J π=-⨯1-6 ① 26.28rad/s ② 314rad ③ 394J ④ 6.28N1-7 ① ω ② 1g 2m l 1-8 ① =21rad/s ω ② 10.5m/s1-9 ① =20rad/s ω ② 36J ③ 23.6kg m /s ⋅1-10 ① 211=2ωω ②1=-2k k1E E ∆ 1-11 =6rad/s ω 1-12 12F =398F 239NN = 1-13 ① 51.0210N ⨯ ② 1.9%1-14 ① 42210/N m ⨯ ② 52410/N m ⨯1-15 ① -65m(510)m μ⨯ ② -31.2510J ⨯第三章3-1 -33V=5.0310m ⨯3-2 ① 12m/s ② 51.2610a P ⨯3-3 ① 9.9m/s ② 36.0m3-4 ①-221.510;3.0/m m s ⨯ ② 42.7510a P ⨯ ③粗处的压强大于51.2910a P ⨯时,细处小于P 0时有空吸作用。

3-5 主动脉内Re 为762~3558,Re<1000为层流,Re>1500为湍流,1000< Re<1500为过渡流。

3-6 71.210J ⨯ 3-7 0.77m/s3-8 ①3=5.610a P P ∆⨯ ②173=1.3810a P s m β-⨯⋅⋅③-143Q=4.0610/m s ⨯3-9 0.34m/s 3-10 431.5210/J m ⨯第四章4-1 -23S=810cos(4t )m 2ππ⨯+ 或-2-2S=810cos(4t-)m=810sin 4t 2πππ⨯⨯4-2 ① ϕπ∆= ② 12t=1s S 0,S 0==当时, 4-3 ① S=0.1cos(t-)m 3ππ ②5t (0.833)6s s ∆= 4-4 ①-2S=810cos(2t-)m 2ππ⨯ ② -2=-1610s in(2t-)m/s 2v πππ⨯;2-22a=-3210cos(2t-)m/s 2πππ⨯③k E =0.126J 0.13J;F=0≈.4-5 ①max =20(62.8)m/s v π ②242max a =4000 3.9410m/s π=⨯ ③22321E=m A =1.9710J=200J 2ωπ⨯4-6 ①2A 5.010,=4,T=0.25,=1.25m Hz s m νλ-=⨯ ② -2S=5.010cos8(t-)0.5x m π⨯ 4-7 ①S=0.10cos (-)0.10cos 0.2(-)522x x t m t m ππ= ②S=-0.10m 4-8 ①=60,=1.0Hz m νλ ② -2S=5.010cos120(-)60x t m π⨯ 4-9 ①1s ϕπ-=②2A 6.010,=20,T=0.1,=0.2,c 2.m s m m/s ωπλ-=⨯= 4-10 ①22-31=A =25.44J m 2ερω⋅ ②328.4210W m -⨯⋅ 4-11 ① 0 ② 2A4-12 ①-39.1210a P ⨯ ②-9E=1.6510J ⨯4-13 ① 889.9 ② 0.54-14 ① -621.010W m -⨯⋅ ② -61.010W ⨯4-15 2=0.054 5.410v m/s m/s -=⨯第五章5-1 ①71.110a P ⨯ ②67.0810a P ⨯5-2 ① 2534.8310m -⨯ ② -9=2.7310;9d m ⨯倍。

医用物理学辅导习题详解

医用物理学辅导习题详解

F
F
(A) d 2 x (B) d x Δx
(C) F x (D) F d d
d
x
第二十一页,共70页。
G
F d2
F
x xd
d
13.铜的弹性模量为2×1011N·m-2,要把横截
面积为0.4cm2、长为1.5×106m的铜丝拉长
500cm,在铜丝上应加的拉力为:[ ]
(A)27N;
(B)16N;
医用物理学辅导习题ppt课件
第一页,共70页。
1.在生物物理实验中用来分离不同种类的分子的
超级离心机的转速是60×104r∙min-1。在这种离
心机的转子内,离轴10cm远的一个大分子的向
心加速度是重力加速度的
倍。
已知:n=60104rev·min-1,R=10cm=0.1m, 求:N=?
解:该分子 的速度为:
1-5 解:(1) t 0 t
100 0 20 5 rad / s2
第二十五页,共70页。
0t
1 t2
2
0
1 5
2
202
1000 rad
1-6解: (1) 1 ml2
(2) 1 ml2
12
3
(3) 1 ml2 mh2 12
(4) 1 ml2 sin2
12
1-7解:(1)t 0 t 10 2 0 0.5
(A)压应力;
(B)切应力;
(C)
切应力和体应力; (D)张应力和切应力
第十八页,共70页。
10.横截面积为0.06cm2,抗张强度为
1.2×109N·m-2,它能承受的最大负荷是:[ ]
(A)7.2×103N;
(B)1.2×109N;

医用物理学 课后习题解答

医用物理学 课后习题解答

后是否仍为简谐振动?②合振动的周期是多少?
解: ①由于分振动的频率不同,所以它们合成后将不是简谐振动。②合振动的频率为 100Hz,
周期
T=
1 100
s=0.01s。
8-7 弹簧振子作简谐振动时,若其振幅增为原来的两倍,而频率降为原来的一半,它们的能 量怎样改变?
答:
弹簧振子作简谐振动时,其能量为 E
x A cos( t )
(a)
①第一种情况:位于平衡点右侧 6cm 处,这时位移 x=6cm,将 t=0,A=6cm,x=6cm 代 入(a)式得
6 6 cos 6
解之得, =0。已知 T=2 秒,则
2 2
,将 A、ω、值代入(a)式可得第一种情况
的位移表达式为
x 6 cos t (cm)
x=-A, v=0, a=Aω2
8-3 一个作简谐振动的质点,在 t=0 时,离开平衡位置 6cm 处,速度为零,振动周期为 2s, 求该简谐振动的位移、速度、加速度的表达式。 解:根据题意,t=0 时,质点速度为零,离开平衡位置 6cm,这说明该振动的振幅为 A=6cm, 这时质点可能位于平衡点右侧 6cm 处,或位于平衡点左侧 6cm 处。下面分这两种情况进行 讨论,设该振动方程为:
解:
①已知波源 O 的振动方程为
y
0.06
cos
9
t ,则其振幅为 A=0.06m,角频率
9

又知 u=2m·s -1 ,则该波的波动方程为
s
0.06
cos
9
(t
x 2
)
由它可得 x=10m 处的质点振动方程为
y
0.06
cos
9
b 2

医用物理学课后习题参考答案

医用物理学课后习题参考答案

医用物理学课后习题参考答案练习一 力学基本定律(一)1.j i 55+;j i 54+;i 42.2/8.4s m ;2/4.230s m ;rad 15.3 3.(2);4.(3) 5.(1)由⎩⎨⎧-==22192ty t x 得)0(21192≥-=x x y ,此乃轨道方程 (2)j i r 1142+=,j i r 1721+=,,s m v /33.6=(3)i t i dt rd v 42-==,j dt v d a 4-== st 2=时,j i v 82-=, 6.(1)a dt dv = 2/1kv dtdv-=∴有⎰⎰-=-⇒-=-vv tkt v vkdt dv v2/102/12/122 当0=v 时,有kv t 02=(2)由(1)有2021⎪⎭⎫ ⎝⎛-=kt v vkvkt v k vdt x tk v 3221322/3000/2300=⎪⎭⎫⎝⎛--==∆⎰练习二力 学基本定律(二)1.kg m 2222.j i 431+;j i 321+3.(4)4.(1)5..(1) (2)r mg W f πμ2⋅-=∴j i v 62-=∴j a 4-=2020208321221mv mv v m E W k f -=-⎪⎭⎫ ⎝⎛=∆=rgv πμ163 2=∴(3)34)210(20=∆-=k E mv N (圈) 6.设人抛球后的速度为V,则人球系统抛球过程水平方向动量守恒)() (V u m MV v m M o ++=+∴ mM muv V +-=0人对球施加的冲量mM mMumv V u m I +=-+=0)( 方向水平向前练习三 刚体的转动(一)1.2.20-s rad ;1.48-s rad 2.034ω;2021ωJ 3.(1);4.(5)5.ααR a MR TR maT mg ===-221 R M m mg )2/(+=α;2/M m mga +=;6.(1)由角动量守恒得: 02211=+ωωJ J0222=+⋅ωJ RvMR )(05.0122--=-=S J mRv ω (2)πωω2)]([21=--t (s) 55.02π=t (rad) 1122πωθ==t (3)(s) 422ππωπ===vRT (r a d ) 0.2 2πωθ==∴T 练习四 刚体的转动(二)1.gl 3 2.06.0ω3.(1);πω4504.(3);5.1111a m T g m =- 2222a m g m T =- α)(2121J J r T R T +=- αR a =1 αr a =2联立解得:22212121)(rm R m J J gr m R m +++-=α 222121211)(r m R m J J Rg r m R m a +++-=222121212)(r m R m J J rgr m R m a +++-= g m r m R m J J r R r m J J T 12221212211)(++++++=g m r m R m J J r R R m J J T 22221211212)(++++++=6.23121202lmg ml =⋅ω lg30=ω 2222022131213121mv ml ml +⋅=⋅ωω lmv ml ml +=ωω2023131 gl v 321=练习五 流体力学(一)1.h 、P 、v 2.P 、v 3.(3) 4.(4)5.(1)粗细两处的流速分别为1v 与2v ;则 2211v S v S Q ==12131175403000--⋅=⋅==s cm cms cm S Q v ;121322*********--⋅=⋅==s cm cm s cm S Q v (2)粗细两处的压强分别为1P 与2P2222112121v P v P ρρ+=+)(1022.4)75.03(102121213223212221Pa v v P P P ⨯=-⨯⨯=-=-=∆ρρ P h g ∆=∆⨯⋅-)(水水银ρρ;m h 034.0=∆6.(1)射程 vt s =gh v ρρ=221 gh v 2 =∴ 又 221gt h H =- g h H t )(2-=)(2)(22 h H h gh H gh vt s -=-⋅==∴tt =0.5st t =0s (2)设在离槽底面为x 处开一小孔,则同样有:)(2121x H g v -=ρρ )(21x H g v -= 又 2121gt x = gxt 21= )()(2 111h H h s x H x t v s -==-==∴ h x =∴则在离槽底为h 的地方开一小孔,射程与前面相同。

医用物理学课后习题参考答案解析

医用物理学课后习题参考答案解析

医用物理学课后习题参考答案解析-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN医用物理学课后习题参考答案第一章1-1 ① 1rad/s ② 6.42m/s1-2 ① 3.14rad/s - ② 31250(3.9310)rad π⨯ 1-3 3g =2l β 1-4 1W=g 2m l 1-5 ① 22k E 10.8(1.0710)J π=⨯ ② -2M=-4.2410N m ⨯⋅③ 22W 10.8(1.0710)J π=-⨯1-6 ① 26.28rad/s ② 314rad ③ 394J ④ 6.28N1-7 ① ω ② 1g 2m l 1-8 ① =21rad/s ω ② 10.5m/s1-9 ① =20rad/s ω ② 36J ③ 23.6kg m /s ⋅1-10 ① 211=2ωω ②1=-2k k1E E ∆ 1-11 =6rad/s ω 1-12 12F =398F 239NN =1-13 ① 51.0210N ⨯ ② 1.9%1-14 ① 42210/N m ⨯ ② 52410/N m ⨯1-15 ① -65m(510)m μ⨯ ② -31.2510J ⨯第三章3-1 -33V=5.0310m ⨯3-2 ① 12m/s ② 51.2610a P ⨯3-3 ① 9.9m/s ② 36.0m3-4 ①-221.510;3.0/m m s ⨯ ② 42.7510a P ⨯ ③粗处的压强大于51.2910a P ⨯时,细处小于P 0时有空吸作用。

3-5 主动脉内Re 为762~3558,Re<1000为层流,Re>1500为湍流, 1000< Re<1500为过渡流。

3-6 71.210J ⨯ 3-7 0.77m/s3-8 ①3=5.610a P P ∆⨯ ②173=1.3810a P s m β-⨯⋅⋅③-143Q=4.0610/m s ⨯3-9 0.34m/s 3-10 431.5210/J m ⨯第四章4-1 -23S=810cos(4t )m 2ππ⨯+或-2-2S=810cos(4t-)m=810sin 4t 2πππ⨯⨯4-2 ① ϕπ∆= ② 12t=1s S 0,S 0==当时,4-3 ① S=0.1cos(t-)m 3ππ ②5t (0.833)6s s ∆=4-4 ①-2S=810cos(2t-)m 2ππ⨯ ② -2=-1610s in(2t-)m/s 2v πππ⨯;2-22a=-3210cos(2t-)m/s 2πππ⨯③k E =0.126J 0.13J;F=0≈.4-5 ①max =20(62.8)m/s v π ②242max a =4000 3.9410m/s π=⨯③22321E=m A =1.9710J=200J 2ωπ⨯ 4-6 ①2A 5.010,=4,T=0.25,=1.25m Hz s m νλ-=⨯② -2S=5.010cos8(t-)0.5xm π⨯ 4-7 ①S=0.10cos(-)0.10cos 0.2(-)522x xt m t m ππ= ②S=-0.10m4-8 ①=60,=1.0Hz m νλ ② -2S=5.010cos120(-)60xt m π⨯ 4-9 ①1s ϕπ-=②2A 6.010,=20,T=0.1,=0.2,c 2.m s m m/s ωπλ-=⨯= 4-10 ①22-31=A =25.44J m 2ερω⋅ ②328.4210W m -⨯⋅ 4-11 ① 0 ② 2A4-12 ①-39.1210a P ⨯ ②-9E=1.6510J ⨯4-13 ① 889.9 ② 0.54-14 ① -621.010W m -⨯⋅ ② -61.010W ⨯ 4-15 2=0.054 5.410v m/s m/s -=⨯第五章5-1 ①71.110a P ⨯ ②67.0810a P ⨯5-2 ① 2534.8310m -⨯ ② -9=2.7310;9d m ⨯倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

医用物理学习题册答案2015医用物理学习题册姓名班级学号包头医学院医学技术学院物理教研室成绩表1、书写整洁,字迹清楚,不得涂改。

2、独立完成,不得抄袭。

第1章力学基本规律教学内容:1、牛顿运动定律、功和能、能量守恒、动量守恒定律2、转动定律(1)角速度与角加速度。

角量与线量的关系。

•(2)刚体的定轴转动。

转动惯性。

转动惯量。

刚体绕定轴转动的动能。

力矩。

转动定律。

力矩作功。

(3)角动量守恒定律。

3、应力与应变:物体的应力与应变。

弹性模量:弹性与范性。

应力—应变曲线。

弹性模量。

一、填空题1. 刚体角速度是表示整个刚体转动快慢的物理量,其方向由右手螺旋定则确定。

2. 一个定轴转动的刚体上各点的角速度相同,所以各点线速度与它们离轴的距离r成正比,离轴越远,线速度越大。

3. 在刚体定轴转动中,角速度ω的方向由右手螺旋定则来确定,角加速度β的方向与角速度增量的方向一致。

4.质量和转动惯量它们之间重要的区别:同一物体在运动中质量是不变的;同一刚体在转动中, 对于不同的转轴, 转动惯量不同。

5. 刚体的转动惯量与刚体的总质量、刚体的质量的分布、转轴的位置有关。

6. 动量守恒的条件是合外力为0 ,角动量守恒的条件是合外力矩为0 .7. 跳水运动员在空中旋转时常常抱紧身体,其目的减小转动惯量,增加角速度。

8、角动量守恒的条件是合外力矩恒等于零。

9. 弹性模量的单位是 Pa ,应力的单位是 Pa 。

10.骨是弹性材料,在正比极限范围之内,它的 应力 和 应变 成正比关系。

二、选择题1. 下列说法正确的是[ C ](A )作用在定轴转动刚体上的合力越大,刚体转动的角加速度越大(B )作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大(C )作用在定轴转动刚体上的合力矩越大,刚体转动的角加速度越大(D )作用在定轴转动刚体上的合力矩为零,刚体转动的角速度为零2.两物体的转动惯量相等,当其转动角速度之比为2:1时,它们的转动动能之比为[ A ](A )4:1 (B )2:1 (C )1:4 (D )1:23.溜冰运动员旋转起来以后,想加快旋转速度总是把两手靠近身体,要停止转动时总是把手伸展开,其理论依据是[ A ](A )角动量守恒定律 (B)转动定律 (C)动量定理 (D)能量守恒定律4.一水平圆盘可绕固定的铅直中心轴转动,盘上站着一个人,初始时整个系统处于静止状态,忽略轴的摩擦,当此人在盘上随意走动时,此系统[ C ](A)动量守恒 (B)机械能守恒 (C)对中心轴的角动量守恒 (D)动量、机械能和角动量都守恒5. 求质量为m 、半径为R 的细圆环和圆盘绕通过中心并与圆面垂直的转轴的转动惯量分别是( C )。

(A)均为2mR (B)均为221mR (C)2mR 和221mR (D)221mR 和2mR 6. 刚体角动量守恒的充分而必要的条件是( B )。

A. 刚体不受外力矩的作用B. 刚体所受合外力矩为零C. 刚体所受的合外力和合外力矩均为零D. 刚体的转动惯量和角速度均保持不变7.刚体绕定轴转动,在每1 s 内角速度都增加πrad/s ,则刚体的运动是( D )A .匀加速转动B .匀速转动C .匀减速转动D .不能确定8、一圆形飞轮可绕垂直中心轴转动,其转动惯量为20 ㎏·m 2,给圆盘施加一个400πN ·m 的恒外力矩使其由静止开始转动,经2 s 后飞轮转过的圈数为( B )A .10B .20C .30D .409.关于转动惯量J 说法正确的是( A )A.J 是刚体转动惯性的量度B.J 的单位是kg/m 2C.J 与转轴位置无关D.J 与刚体的形状无关10.杨氏模量是指在张(压)应力作用下的正比极限范围内( C )。

A. 张应力与正应力之比B.张应力与压应力之比C.张应力与张应变之比D.张应力与长度的增量之比三、名词解释1、杨氏模量:在正比极限范围之内,应力与应变的比值。

2.刚体:在外力作用下,物体的大小和形状都不变.3.转动定律:(书上没涉及这部分内容)四、简答题1.一个物体的转动惯量是否具有确定的值?怎样计算转动惯量?答:刚体的转动惯量与三个因素有关:1、刚体的总质量 2、刚体的质量的分布(几何形状、密度、大小) 3、转轴的位置。

21ni i i J m r ==∆∑ 2、一个人随着转台转动,两手各拿一只重量相等的哑铃,当他将两臂伸开,他和转台的转动角速度是否改变?答:当人的两臂伸开时,其绕轴转动的转动惯量增大,根据角动量守恒定律,人和转台的转动角速度必将减少。

五、计算题1.设某人一条腿骨长m 6.0,平均截面积为23cm ,当站立时两腿支持整个体重N 800,问此人一条腿骨缩短了多少?(骨的杨氏模量为21010-⋅m N )10458001031020.68.010F L E S LL L m--∆=⋅∆=⋅⨯⨯∆=⨯ 2.质量为0.5kg 、直径为0.4m 的圆盘,绕过盘心的垂直轴转动,转速为1min 1500-⋅r 。

要使它在s 20内停止转动,求角速度、角加速度、制动力矩的大小、圆盘原来的转动动能和该力矩的功。

1222122150050()min 0050 2.5()201J 0.01(kg m )2r rad s rad s t MR ωπωωωπβπ===--==-==⋅22121M J 0.01 2.57.851011232123k k k N mE J J W E E Jβπω-==⨯=⨯⋅===-=-第3章 流体的流动教学内容:1、理想流体的定常流动:理想液体、定常流动、流线与流管、流量、液流连续原理。

2、伯努利方程式:伯努利方程式及伯努利方程式的应用。

3、实际液体:粘滞性、层流、粘滞系数、牛顿液体、湍流、雷诺数。

4、牛顿液体与非牛顿液体。

湍流。

泊肃叶公式。

5、斯托克斯公式。

流阻。

血液的流动。

血压。

一、填空题1.根据连续性方程和伯努利方程,水平管中管径细的地方流速大,压强小,喷雾器就是根据这一原理制成的。

2.液体的粘滞系数随温度升高而减小,气体的粘滞系数随温度升高增大。

3.我们把绝对不可压缩和完全没有粘性的流体称为理想流体。

4.当雷诺数Re <1000时,液体做层流,当雷诺数Re>1500时,液体做湍流。

5.牛顿流体指的是,在一定温度下黏度为常量,即遵循牛顿粘滞定律的流体。

6.实际流体伯努利方程的表达式为W的物理意义是单位体积实际液体从截面1运动到截面2过程中,克服内摩擦力所消耗的能量。

7.对于实际流体来说,雷诺数大于1500时,流体做湍流;雷诺数小于___1000__时,流体做层流。

8.牛顿液体粘滞系数的大小取决于液体的种类和温度。

9.水中水管的截面面积在粗处为S1=40 cm2,细处为S2=10 cm2,管中水的流量为Q=3000cm3/s。

则粗处水的流速为V1= 75cm/s ,细处水的流速为V2= 300cm/s 。

10.伯努利方程的表达式为22221211ghv21Pghv21Pρ+ρ+=ρ+ρ+,使用该方程的条件是理想流体在同一流管内做定常流动。

二、选择题1、液体中上浮的气泡,当其达到收尾速度时,气泡所受 [ D ]A.浮力超过粘滞力与重力之和B.粘滞力等于浮力与重力之和C.重力等于浮力与粘滞力之和D.浮力等于粘滞力与重力之和2、用斯托克司定律测定流体的粘度时,球的速度可是[ D ]。

A.初速度 B.平均速度 C.匀加速时的瞬时速度 D.合力为零时的速度3、理想液体作定常流动时,同一流线上任意两点[A ]A.速度均不随时间改变B.速度一定相同C.速度一定不同D.速率一定是相同4、理想流体做稳定流动时,同一流线上两个点处的流速[ C ]A. 一定相同B. 一定不同C. 之间的关系由两点处的压强和高度决定D. 一定都随时间变化5、水平流管中的理想流体做稳定流动时,横截面积S、流速v 、压强p之间满足 [ C ]A. S大处,v小, p小B. S大处, v大, p大C. S大处, v小, p大D. S大处, v大, p小6、水在同一流管中做稳定流动,在截面积为0.5 cm2处的流速为12 cm/s ,则在流速为4.0 cm/s处的截面积为[ B ]A. 1.0 cm2B. 1.5 cm2C. 2.0 cm2D. 2.25cm27、站在高速行驶火车旁的人会被火车[ A ]。

A.吸进轨道B. 甩离火车C. 倒向火车前进的方向D. 没有影响8、按泊肃叶定律,管道的半径增加一倍时,体积流量变为原来的[ A ] A. 16倍 B. 32倍 C. 8倍 D. 4倍9、连续性方程成立的必要条件是[ A ]。

A.理想流体做定常流动 B.不可压缩流体做定常流动C.粘滞流体做定常流动 D.流体做定常流动10、若流管中M、N两点处的横截面积比为1:4,则M、N两点处流速之比为[ B ]A、1:4B、4:1C、1:2D、2:1三、名词解释1.理想流体:绝对不可压缩和完全没有粘滞性的液体。

2.定常流动: 如果流体中流线上各点的速度,都不随时间而变,则这样的流动称定常流动。

3.牛顿粘滞定律:均匀流体在作层流时,两液层间的内摩擦力 F 与接触面积 S 及该处的速度梯度dv/dy 成正比.dy dv S F η=四、简答题 1、两条相距较近,平行共进的船会相互靠拢而导致船体相撞。

试解释其原因。

答:在两条相距较近,平行共进的轮船之间,海水相对于船体向后流动,两船之间的区域可以看作一段流管,在两船之间的海水的流速比船的外边的海水流速大。

由伯努利方程可知,两船之间的海水压强小,而外边海水的压强大。

所以,周围的海水会把两船推向一起,导致船体相撞。

2、水从水龙头流出后,下落的过程中水流逐渐变细,这是为什么?答:下落过程中的水可被理解成在做稳定流动,流动路径上各点压强均为大气压。

由伯努利方程可知,水流随高度下降流速逐渐增大,又由连续性方程可知,随流速逐渐增大,水流的横截面积逐渐减小。

五、计算题1、水在截面不同的水平管中做定常流动,出口处截面积为管的最细处的3倍,若出口处的流速为12-⋅s m ,问最细处的压强为多少?若在此最细处开一小孔,水会不会流出来?(水的粘性忽略不计,P 0=1.01×105Pa )11222S υS υυ6/sm == 22112232320255211P ρυP ρυ2211P 1.0102P 1.010622P 0.851085 1.0110Pa KPa Pa +=++⨯⨯=+⨯⨯=⨯=<⨯所以水不会流出。

2.设流量为0.12m3.s -1的水流过一个管子,管子A 处的压强为2×105N.m -2,横截面积为100cm 2,B 点的横截面积为60cm 2, B 点比A 点高2m , 水的粘性忽略不计,求①A,B 点的速度; ②B 点的压强。

相关文档
最新文档