浙江省台州市部分中学2020年中考数学模拟考试试卷(4月份)

合集下载

2020年浙江省台州市温岭中学中考数学一模试卷(4月份)

2020年浙江省台州市温岭中学中考数学一模试卷(4月份)

2020年浙江省台州市温岭中学中考数学一模试卷(4月份)(满分:150分 考试时间:120分钟)一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)1.如果股票指数上涨30点记作+30,那么股票指数下跌20点记作( ) A .﹣20B .+20C .﹣10D .+102.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为( ) A .38×104B .3.8×104C .3.8×105D .0.38×1063.三个立体图形的展开图如图①②③所示,则相应的立体图形是( )A .①圆柱,②圆锥,③三棱柱B .①圆柱,②球,③三棱柱C .①圆柱,②圆锥,③四棱柱D .①圆柱,②球,③四棱柱4.如图,若l 1∥l 2,l 3∥l 4,则图中与∠1互补的角有( )A .1个B .2个C .3个D .4个5.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点,为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班学生的成绩统计如下:成绩(分)60 70 80 90 100人数 4 8 12 11 5则该班学生成绩的众数和中位数分别是()A.70分,80分B.80分,80分C.90分,80分D.80分,90分6.明月从家里骑车去游乐场,若速度为每小时10km,则可早到8分钟,若速度为每小时8km,则就会迟到5分钟,设她家到游乐场的路程为xkm,根据题意可列出方程为()A.B.﹣=+C. +=﹣D. +8=+57.如图,△ABC内接于⊙O,AD是△ABC边BC上的高,D为垂足.若BD=1,AD=3,BC=7,则⊙O的半径是()A.B.C.D.8.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD=6,则平行四边形ABCD的面积是()A .6B .8C .10D .129.对于一次函数y =2x+4,下列结论中正确的是( )①若两点A (x 1,y 1),B (x 2,y 2)在该函数图象上,且x 1<x 2,则y 1<y 2. ②函数的图象不经过第四象限.③函数的图象与x 轴的交点坐标是(0,4). ④函数的图象向下平移4个单位长度得y =2x 的图象. A .1个B .2个C .3个D .4个10.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4等于( )A .4B .5C .6D .14二、填空题(本题有6小题,每小题5分,共30分) 11.把多项式x 3﹣25x 分解因式的结果是12.如图所示,点C 位于点A 、B 之间(不与A 、B 重合),点C 表示1﹣2x ,则x 的取值范围是 .13.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现2个男婴、1个女婴的概率是.解:可能出现的情况如下表婴儿1 婴儿2 婴儿3男男男男男女男女男男女女女男男女男女女女男女女女14.如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F两点,与线段AC交于D 点.若∠BFC=20°,则∠DBC=.15.如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为.16.如图,在边长为3正方形ABCD的外部作Rt△AEF,且AE=AF=1,连接DE,BF,BD,则DE2+BF2=.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:﹣22+(π﹣3.14)0+﹣|1﹣|18.(8分)先化简,再求值:,其中x=﹣1.19.(8分)如图,某数学兴趣小组为测量一颗古树BH和教学楼CG的高,先在A处用高1.5米的测角仪AF测得古树顶端H的仰角∠HFE为45°,此时教学楼顶端G恰好在视线FH 上,再向前走10米到达B处,又测得教学楼顶端G的仰角∠GED为60°,点A、B、C三点在同一水平线上.(1)求古树BH的高;(2)求教学楼CG的高.(参考数据:=1.4,=1.7)20.(8分)甲,乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中其中一人因故障停止加工几分钟后又继续按原速加工,直到他们完成任务,如图表示甲比乙多加工的零件数量y(个)与加工时间x(分)之间的函数关系,观察图象解决下列问题:(1)点B的坐标是,B点表示的实际意义是;(2)求线段BC对应的函数关系式和D点坐标;(3)乙在加工的过程中,多少分钟时比甲少加工100个零件?(4)为了使乙能与甲同时完成任务,现让丙帮乙加工,直到完成.丙每分钟能加工3个零件,并把丙加工的零件数记在乙的名下,问丙应在第多少分钟时开始帮助乙?并在图中用虚线画出丙帮助后y与x之间的函数关系的图象.21.(10分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.(12分)如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD交AB 于点E,DE=OE.(1)求证:△ACB是等腰直角三角形;(2)求证:OA2=OE•DC:(3)求tan∠ACD的值.23.(12分)如图,在平面直角坐标系中,已知点B的坐标为(﹣1,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.24.(14分)如图,在正方形ABCD中,点E是AB边上一点,以DE为边作正方形DEFG,DF 与BC交于点M,延长EM交GF于点H,EF与CB交于点N,连接CG.(1)求证:CD⊥CG;(2)若tan∠MEN=,求的值;(3)已知正方形ABCD的边长为1,点E在运动过程中,EM的长能否为?请说明理由.参考答案1A 2C 3A 4D 5B 6C 7C 8D 9C 10A11 :x(x+5)(x﹣5)12:﹣<x<013:14: 30°15: (﹣22017,22017)16:2017解:原式=﹣4+1+3﹣1=﹣1.18解:原式=÷=•=﹣,当x=﹣1时,原式=﹣1.19解:(1)在Rt△EFH中,∠HEF=90°,∠HFE=45°,∴HE=EF=10,∴BH=BE+HE=1.5+10=11.5,∴古树的高为11.5米;(2)在Rt△EDG中,∠GED=60°,∴DG=DEtan60°=DE,设DE=x米,则DG=x米,在Rt△GFD中,∠GDF=90°,∠GFD=45°,∴GD=DF=EF+DE,∴x=10+x,解得:x=5+5,∴CG=DG+DC=x+1.5=(5+5)+1.5=16.5+5≈25,答:教学楼CG的高约为25米.20解:(1)B(15,0),B点表示的实际意义是:甲乙两人工作15分钟时,加工零件的数量相同故答案为:(15,0);甲乙两人工作15分钟时,加工零件的数量相同;(2)由图形可知:甲因故障停止加工15﹣10=5分钟后又继续按原速加工,甲105分钟时,完成任务,即甲100分钟,加工600个零件,甲加工的速度:=6,设乙每分钟加工a个零件,15a=10×6,a=4,600﹣105×4=600﹣420=180,∴C(105,180),设BC的解析式为:y=kx+b,把B(15,0)和C(105,180)代入得:,解得:,∴线段BC对应的函数关系式为:y=2x﹣30(15≤x≤105),=150,∴D(150,0);(3)当x=10时,y=6×10﹣4×10=20,∴A(10,20),易得CD:y=﹣4x+600,当y=100时,﹣2x﹣30=100,x=65,﹣4x+600=100,x=125,综上所述,乙在加工的过程中,65分钟或125分钟时比甲少加工100个零件;(4)设丙应在第x分钟时开始帮助乙,>15,∴x>15,由题意得:4x+(3+4)(105﹣x)=600,x=45,则丙应在第45分钟时开始帮助乙;丙帮助后y与x之间的函数关系的图象如右图所示.21解:(1)参加此次诗词大会预选赛的同学共有18÷45%=40(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为360°×=90°,故答案为:90°.(3)获二等奖的人数=40×20%=8,一等奖的人数为40﹣8﹣10﹣18=4(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率=.22证明:(1)∵BM是以AB为直径的⊙O的切线,∴∠ABM=90°,∵BC平分∠ABM,∴∠ABC=∠ABM=45°∵AB是直径∴∠ACB=90°,∴∠CAB=∠CBA=45°∴AC=BC∴△ACB是等腰直角三角形;(2)如图,连接OD,OC∵DE=EO,DO=CO∴∠EDO=∠EOD,∠EDO=∠OCD∴∠EDO=∠EDO,∠EOD=∠OCD∴△EDO∽△ODC∴∴OD2=DE•DC∴OA2=DE•DC=EO•DC(2)如图,连接BD,AD,DO,作∠BAF=∠DBA,交BD于点F,∵DO=BO∴∠ODB=∠OBD,∴∠AOD=2∠ODB=∠EDO,∵∠CAB=∠CDB=45°=∠EDO+∠ODB=3∠ODB,∴∠ODB=15°=∠OBD∵∠BAF=∠DBA=15°∴AF=BF,∠AFD=30°∵AB是直径∴∠ADB=90°∴AF=2AD,DF=AD∴BD=DF+BF=AD+2AD∴tan∠ACD=tan∠ABD===2﹣23解:(1)OA=OC=4OB=4,故点A、C的坐标分别为(4,0)、(0,﹣4);(2)抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=﹣4,解得:a=1,故抛物线的表达式为:y=x2﹣3x﹣4;(3)直线CA过点C,设其函数表达式为:y=kx﹣4,将点A坐标代入上式并解得:k=1,故直线CA的表达式为:y=x﹣4,过点P作y轴的平行线交AC于点H,∵OA=OC=4,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHD=∠OCA=45°,设点P(x,x2﹣3x﹣4),则点H(x,x﹣4),PD=HPsin∠PFD=(x﹣4﹣x2+3x+4)=﹣x2+2x,∵<0,∴PD有最大值,当x=2时,其最大值为2,此时点P(2,﹣6).24(1)证明:∵四边形ABCD和四边形DEFG是正方形,∴∠A=∠ADC=∠EDG=90°,AD=CD,DE=DG,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴∠A=∠DCG=90°,∴CD⊥CG;(2)解:∵四边形DEFG是正方形,∴EF=GF,∠EFM=∠GFM=45°,在△EFM和△GFM中,∴△EFM≌△GFM(SAS),∴EM=GM,∠MEF=∠MGF,在△EFH和△GFN中,,∴△EFH≌△GFN(ASA),∴HF=NF,∵tan∠MEN==,∴GF=EF=3HF=3NF,∴GH=2HF,作NP∥GF交EM于P,则△PMN∽△HMG,△PEN∽△HEF,∴=,==,∴PN=HF,∴====;(3)EM的长不可能为,理由:假设EM的长为,∵点E是AB边上一点,且∠EDG=∠ADC=90°,∴点G在BC的延长线上,同(2)的方法得,EM=GM=,∴GM=,在Rt△BEM中,EM是斜边,∴BM<,∵正方形ABCD的边长为1,∴BC=1,∴CM>,∴CM>GM,∴点G在正方形ABCD的边BC上,与“点G在BC的延长线上”相矛盾,∴假设错误,即:EM的长不可能为.。

2020年浙江省台州市中考数学模拟考试试卷附解析

2020年浙江省台州市中考数学模拟考试试卷附解析

2020年浙江省台州市中考数学模拟考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.正方形网格中,AOB ∠如图放置,则sin AOB ∠=( )A .5B .5C .12D .2 2.如图,是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是( ) A .内含B .相交C .相切D .外离 3. 一个二次函数的图像经过A (0,0),B (-1,-11),C (1,9)三点,则这个二次函数的解析式是( )A .y =-10x 2+xB .y =-10x 2+19xC .y =10x 2+xD .y =-x 2+10x 4.已知2x =是 关于x 的方程23202x a -=的一个根,则22a -的值是( )A .3B .4C .5D .65.为了调查某校八年级学生的身高情况,现在对该校八年级(1)班的全班学生进行调查. 下列说法中,正确的是( )A .总体是该校八年级学生B .总体是该校八年级学生的身高C .样本是该校八年级(1)班学生D .个体是该校八年级的每个学生6.下列说法不正确的是( )A .在平移变换中,图形中的每一个点都沿同一方向移动了相同的距离B .在旋转变换中,图形中的每一点都绕旋转中心旋转了相同的角度C .在相似变换中,图形中的每一个角都扩大(或缩小)相同的倍数D .在相似变换中,图形中的每一条线段都扩大(或缩小)相同的倍数7.桌上放着6张扑克牌,全部正面朝下,其中恰有2张是老K.两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K ,则红方胜,否则蓝方胜.哪方赢的机会大?( )A .红方B .蓝方C .一样D .不知道 8. ...依次观察左边三个图形,并判断照此规律从左向右第四个图形是( )A .B .C .D . 9.如图,为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备的水管的长为( )A .17.5mB .35mC .335mD .70m 二、填空题 10.如图,在下列各图形中选择合适的图形填入相应的空格内(填号码):(1)主视图: ;左视图: ;俯视图: ;(2)主视图: ;左视图: ;俯视图: ;(3)主视图: ;左视图: ;俯视图: ;解答题11.若点11(,)P x y 、22(,)Q x y 在双曲线k y x=(k>0 且为常数)上,若120x x <<,则 y 1、y 2 的大小关系为y 1 y 2(填“>”或“<”).12.如图,正方形ABCD 的边长为4,MN ∥BC 分别交AB ,CD 于点M ,N ,在MN 上任取两点P ,Q ,那么图中阴影部分的面积是 .13.如图,已知∠1=∠2,BC=EF ,那么需要补充一个直接条件如 等(写出一个即可),才能使△ABC ≌△DEF .14.若方程mx 2+3x-4=3x 2是关于x 的一元二次方程,则m 的取值范围是 .15.若点(a ,b )在第二象限,则点(a b -,ab )在第 象限.16.观察图象,与图①中的鱼相比,图②中的鱼发生了一些变化.若图①中鱼上点P 的坐标为(4,3.2),则这个点在图②中的对应点P 1的坐标为 (图中的方格是边长为1的小正方形).17.当x=_______时,分式x x x 2的值为 0. 18.观察下列等式9-1=8;16-4=12;25 -9= 16;36--16=20;…这些等式反映出自然数间的某种规律,设n(n ≥1)表示自然数,用关于 n 的等式表示 这个规律为 .三、解答题19.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°.(1)求∠APB 的度数;(2)当OA =3时,求AP 的长.20.如图,在直角坐标系中,P 是第一象限的点,其坐标是(3,y ),且OP 与x 轴的正半轴的夹角α的正切值是43,求(1)y 的值;(2)角α的正弦值.21.如图,有一圆心角为120 o 、半径长为6cm 的扇形,若将OA 、OB 重合后围成一圆锥侧面,求圆锥的高.22.已知关于x的一元二次方程x2-m x-2=0.……①(1) 若x=-1是方程①的一个根,求m的值和方程①的另一根;(2) 对于任意实数m,判断方程①的根的情况,并说明理由.23.已知 c 为实数,并且方程230+-=一个根,求方x x c-+=一个根的相反数是方程230x x c程230x x c+-=的根和 c的值.24.已知0a<,试比较3a与2a的大小(用两种不同方法进行比较).25.如图所示,已知 EB∥DC,∠C=∠E.试说明:∠A=∠ADE.26.“5·12”汶川大地震后,灾区急需大量帐篷,某服装厂原有 4条成衣生产线和 5条童装生产线,工厂决定转产,计划用了天时间赶制 1000顶帐篷支援灾区,若启用 1条成衣生产线和 2条童装生产线,一天可以生产帐篷105顶;若启用 2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?27.解下列方程组:(1)⎩⎨⎧=+-=11232y x x y (2) ⎩⎨⎧=--=+894132t s t s28.根据下图提供的信息,求出每只网球拍和每只乒乓球拍的单价.29.根据条件列方程:(1)某数的5倍比这个数大3(2)某数的相反数比这个数大6(3)爸爸和儿子的年龄分别是40岁和l3岁,请问几年后,爸爸的年龄是儿子年龄的2倍?30.下面计算错在哪里,怎样改正?4211(1)()()(1)5353+-+---+ 4211115353=-+- 4121(1)(1)5533=+-- 22()3=--22 =+= 2233【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.D4.B5.B6.C7.B8.D9.D二、填空题10.(1)④④④;(2)⑥⑥④;(3)⑤⑤①11.>12.813.AC=DF 或∠B=∠E 等14.3≠m 15.三16.(4,2.2)17.118.22(2)4(1)n n n +-=+三、解答题19.解:(1)∵在△ABO 中,OA =OB ,∠OAB =30°∴∠AOB =180°-2×30°=120°∵PA 、PB 是⊙O 的切线∴OA ⊥PA ,OB ⊥PB .即∠OAP =∠OBP =90°∴在四边形OAPB 中,∠APB =360°-120°-90°-90°=60°.(2)如图①,连结OP,∵PA 、PB 是⊙O 的切线,∴PO 平分∠APB ,即∠APO =12∠APB =30° 又∵在Rt △OAP 中,OA =3, ∠APO =30°,∴AP =tan 30OA °=(1)421. 24 22. 图①解:(1) x =-1是方程①的一个根,所以1+m -2=0, 解得m =1.方程为x 2-x -2=0, 解得, x 1=-1, x 2=2.所以方程的另一根为x =2.(2) ac b 42-=m 2+8,因为对于任意实数m ,m 2≥0,所以m 2+8>0,所以对于任意的实数m ,方程①有两个不相等的实数根.23.10x =,23x =-,0c =24.方法一:∵3>2,∴a<0,∴3a<2a ;方法二:∵3a-2a=a<0,∴3a<2a25.可由AC ∥DE 说明26.(1)凌每条成衣生产线和童装生产线平均每天生产帐篷分别为x 顶、y 顶.210523178x y x y +=⎧⎨+=⎩,解这个方程组4132x y =⎧⎨=⎩,经检验,这个解是原方程组的解,且符合题意. 答:每条成衣生产线和童装生产线平均每天生产帐篷分别为 41顶、32顶.(2)由 3×(4×41+5×32)=972<1000,可知即使工厂满负荷全面转产也不可能如期完成任务. 作为厂长可以安排加班生产、改进技术等,进一步挖掘自已厂的生产潜力,或动员其他厂家支援,想办法尽早完成生产任务,为灾区人民多作贡献.27.(1)⎩⎨⎧==13y x ,(2) ⎪⎩⎪⎨⎧-==3221t s 28.每只网球拍单价为 80 元,每只乒乓球拍的单价为 40 元29.略30.错在第二步,正确结果为 0。

浙江省台州市2019-2020学年中考数学四模考试卷含解析

浙江省台州市2019-2020学年中考数学四模考试卷含解析

浙江省台州市2019-2020学年中考数学四模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.菱形的两条对角线长分别是6cm 和8cm ,则它的面积是( ) A .6cm 2B .12cm 2C .24cm 2D .48cm 22.已知二次函数y =ax 1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc >0;②b 1﹣4ac =0;③a >1;④ax 1+bx+c =﹣1的根为x 1=x 1=﹣1;⑤若点B (﹣14,y 1)、C (﹣12,y 1)为函数图象上的两点,则y 1>y 1.其中正确的个数是( )A .1B .3C .4D .53.某青年排球队12名队员年龄情况如下: 年龄 18 19 20 21 22 人数14322则这12名队员年龄的众数、中位数分别是( ) A .20,19B .19,19C .19,20.5D .19,204.一次函数y kx k =-与反比例函数(0)ky k x=≠在同一个坐标系中的图象可能是( ) A . B . C . D .5.下列四个命题,正确的有( )个. ①有理数与无理数之和是有理数 ②有理数与无理数之和是无理数 ③无理数与无理数之和是无理数 ④无理数与无理数之积是无理数. A .1B .2C .3D .46.在Rt △ABC 中,∠C=90°,如果AC=2,cosA=23,那么AB 的长是( ) A .3B .43C 5D 137.用五个完全相同的小正方体组成如图所示的立体图形,从正面看到的图形是( )A .B .C .D .8.某运动会颁奖台如图所示,它的主视图是( )A .B .C .D .9.如图,已知O e 的周长等于6cm π ,则它的内接正六边形ABCDEF 的面积是( )A .93B .273C .273D .27310.化简(﹣a 2)•a 5所得的结果是( ) A .a 7B .﹣a 7C .a 10D .﹣a 1011.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 于点D ,连接AD .若∠B=40°,∠C=36°,则∠DAC 的度数是( )A .70°B .44°C .34°D .24°12.如图:将一个矩形纸片ABCD ,沿着BE 折叠,使C D 、点分别落在点11,C D 处.若150C BA ∠=︒,则ABE ∠的度数为( )A .15︒B .20︒C .25︒D .30°二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.在△ABC 中,若∠A ,∠B 满足|cosA -12|+(sinB -22)2=0,则∠C =_________. 14.已知二次函数24y x x k =-+的图像与x 轴交点的横坐标是1x 和2x ,且128x x -=,则k =________. 15.因式分解:3x 3﹣12x=_____.16.如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为_____.17.如图,点A ,B 是反比例函数y=kx(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA ,BC ,已知点C (2,0),BD=2,S △BCD =3,则S △AOC =__.18.如图,Rt △ABC 的直角边BC 在x 轴上,直线y=23x ﹣23经过直角顶点B ,且平分△ABC 的面积,BC=3,点A 在反比例函数y=kx图象上,则k=_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解不等式组:()()3x1x38 2x11x132⎧-+--<⎪⎨+--≤⎪⎩并求它的整数解的和.20.(6分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:(1)填空:样本中的总人数为;开私家车的人数m= ;扇形统计图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?21.(6分)画出二次函数y=(x﹣1)2的图象.22.(8分)如图1,AB为半圆O的直径,半径的长为4cm,点C为半圆上一动点,过点C作CE⊥AB,垂足为点E,点D为弧AC的中点,连接DE,如果DE=2OE,求线段AE的长.小何根据学习函数的经验,将此问题转化为函数问题解决.小华假设AE的长度为xcm,线段DE的长度为ycm.(当点C与点A重合时,AE的长度为0cm),对函数y随自变量x的变化而变化的规律进行探究.下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数).(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 0 1 2 3 4 5 6 7 8y/cm 0 1.6 2.5 3.3 4.0 4.7 5.8 5.7当x=6cm时,请你在图中帮助小何完成作图,并使用刻度尺度量此时线段DE的长度,填写在表格空白处:(2)在图2中建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象解决问题,当DE=2OE时,AE的长度约为cm.23.(8分)如图1,反比例函数kyx(x>0)的图象经过点A(23,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.24.(10分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a的值为,中位数在第组;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.组别成绩x分频数(人数)第1组50≤x<60 6第2组60≤x<70 8第3组70≤x<80 14第4组80≤x<90 a第5组90≤x<100 1025.(10分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程两个根均为正整数,求负整数m的值.26.(12分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E求证:△ACD≌△AED;若∠B=30°,CD=1,求BD的长.27.(12分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是_____度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在_____等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积. 【详解】根据对角线的长可以求得菱形的面积, 根据S=12ab=12×6cm×8cm=14cm 1. 故选:C . 【点睛】考查菱形的面积公式,熟练掌握菱形面积的两种计算方法是解题的关键. 2.D 【解析】 【分析】根据二次函数的图象与性质即可求出答案. 【详解】解:①由抛物线的对称轴可知:02ba-<, ∴0ab >,由抛物线与y 轴的交点可知:22c +>, ∴0c >,∴0abc >,故①正确; ②抛物线与x 轴只有一个交点, ∴0∆=,∴240b ac -=,故②正确; ③令1x =-,∴20y a b c =-++=, ∵12ba-=-,∴2b a =,∴220a a c -++=, ∴2a c =+, ∵22c +>, ∴2a >,故③正确; ④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确; ⑤∵11124-<-<-, ∴12y y >,故⑤正确; 故选D . 【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想. 3.D 【解析】 【分析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解. 【详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为20202+=1. 故选D . 【点睛】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义. 4.B 【解析】当k >0时,一次函数y=kx ﹣k 的图象过一、三、四象限,反比例函数y=kx的图象在一、三象限,∴A 、C 不符合题意,B 符合题意;当k <0时,一次函数y=kx ﹣k 的图象过一、二、四象限,反比例函数y=kx的图象在二、四象限,∴D 不符合题意. 故选B . 5.A 【解析】解:①有理数与无理数的和一定是有理数,故本小题错误;②有理数与无理数的和一定是无理数,故本小题正确;③例如22-+=0,0是有理数,故本小题错误;④例如(﹣2)×2=﹣2,﹣2是有理数,故本小题错误.故选A.点睛:本题考查的是实数的运算及无理数、有理数的定义,熟知以上知识是解答此题的关键.6.A【解析】根据锐角三角函数的性质,可知cosA=ACAB=23,然后根据AC=2,解方程可求得AB=3.故选A.点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=A∠的邻边斜边,然后带入数值即可求解.7.A【解析】从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A.8.C【解析】【分析】【详解】从正面看到的图形如图所示:,故选C.9.C【解析】【分析】过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质可得∠AOB=60°,即可证明△AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6S△OAB即可得出答案.【详解】过点O作OH⊥AB于点H,连接OA,OB,设⊙O的半径为r,∵⊙O的周长等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半径为3cm,即OA=3cm,∵六边形ABCDEF是正六边形,∴∠AOB=16×360°=60°,OA=OB,∴△OAB是等边三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=12 AB,∴AB=OA=3cm,∴AH=32cm,OH=22OA AH=33cm,∴S正六边形ABCDEF=6S△OAB=6×12×3×33=273(cm2).故选C.【点睛】此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.10.B【解析】分析:根据同底数幂的乘法计算即可,计算时注意确定符号.详解: (-a2)·a5=-a7.故选B.点睛:本题考查了同底数幂的乘法,熟练掌握同底数的幂相乘,底数不变,指数相加是解答本题的关键. 11.C【解析】【分析】易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC【详解】∵AB=BD,∠B=40°,∴∠ADB=70°, ∵∠C=36°,∴∠DAC=∠ADB ﹣∠C=34°. 故选C. 【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键. 12.B 【解析】根据折叠前后对应角相等可知. 解:设∠ABE=x ,根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x , 所以50°+x+x=90°, 解得x=20°. 故选B .“点睛”本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.75° 【解析】【分析】根据绝对值及偶次方的非负性,可得出cosA 及sinB 的值,从而得出∠A 及∠B 的度数,利用三角形的内角和定理可得出∠C 的度数.【详解】∵|cosA -12|+(sinB )2=0,∴cosA=12,, ∴∠A=60°,∠B=45°, ∴∠C=180°-∠A-∠B=75°, 故答案为:75°. 【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出cosA 及sinB 的值,另外要求我们熟练掌握一些特殊角的三角函数值.14.-12 【解析】 【分析】令y=0,得方程24=0-+x x k ,1x 和2x 即为方程的两根,利用根与系数的关系求得12x x +和12x x ⋅,利用完全平方式并结合128x x -=即可求得k 的值. 【详解】解:∵二次函数24y x x k =-+的图像与x 轴交点的横坐标是1x 和2x , 令y=0,得方程24=0-+x x k , 则1x 和2x 即为方程的两根, ∴124x x +=,12x x k ⋅=, ∵128x x -=,两边平方得:212()64-=x x , ∴21212()464+-⋅=x x x x ,即16464-=k ,解得:12k =-, 故答案为:12-. 【点睛】本题考查了一元二次方程与二次函数的关系,函数与x 轴的交点的横坐标就是方程的根,解题的关键是利用根与系数的关系,整体代入求解. 15.3x (x+2)(x ﹣2) 【解析】 【分析】先提公因式3x ,然后利用平方差公式进行分解即可. 【详解】 3x 3﹣12x=3x (x 2﹣4) =3x (x+2)(x ﹣2),故答案为3x (x+2)(x ﹣2). 【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解. 16.60° 【解析】解:∵BD 是⊙O 的直径,∴∠BCD=90°(直径所对的圆周角是直角),∵∠CBD=30°,∴∠D=60°(直角三角形的两个锐角互余),∴∠A=∠D=60°(同弧所对的圆周角相等);故答案是:60°17.1.【解析】【分析】由三角形BCD为直角三角形,根据已知面积与BD的长求出CD的长,由OC+CD求出OD的长,确定出B的坐标,代入反比例解析式求出k的值,利用反比例函数k的几何意义求出三角形AOC面积即可.【详解】∵BD⊥CD,BD=2,∴S△BCD=12BD•CD=2,即CD=2.∵C(2,0),即OC=2,∴OD=OC+CD=2+2=1,∴B(1,2),代入反比例解析式得:k=10,即y=10x,则S△AOC=1.故答案为1.【点睛】本题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k 的几何意义是解答本题的关键.18.1【解析】分析:根据题意得出点B的坐标,根据面积平分得出点D的坐标,利用三角形相似可得点A的坐标,从而求出k的值.详解:根据一次函数可得:点B的坐标为(1,0),∵BD平分△ABC的面积,BC=3∴点D的横坐标1.5,∴点D的坐标为512⎛⎫⎪⎝⎭,,∵DE:AB=1:1,∴点A的坐标为(1,1),∴k=1×1=1.点睛:本题主要考查的是反比例函数的性质以及三角形相似的应用,属于中等难度的题型.得出点D的坐标是解决这个问题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.0【解析】分析:先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可求出不等式组的解集. 详解:,由①去括号得:﹣3x﹣3﹣x+3<8,解得:x>﹣2,由②去分母得:4x+2﹣3+3x≤6,解得:x≤1,则不等式组的解集为﹣2<x≤1.点睛:本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 20.(1)80,20,72;(2)16,补图见解析;(3)原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.【解析】试题分析:(1)用乘公交车的人数除以所占的百分比,计算即可求出总人数,再用总人数乘以开私家车的所占的百分比求出m,用360°乘以骑自行车的所占的百分比计算即可得解:样本中的总人数为:36÷45%=80人;开私家车的人数m=80×25%=20;扇形统计图中“骑自行车”的圆心角为.(2)求出骑自行车的人数,然后补全统计图即可.(3)设原来开私家车的人中有x人改为骑自行车,表示出改后骑自行车的人数和开私家车的人数,列式不等式,求解即可.试题解析:解:(1)80,20,72.(2)骑自行车的人数为:80×20%=16人,补全统计图如图所示;(3)设原来开私家车的人中有x人改为骑自行车,由题意得,,解得x≥50.答:原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.考点:1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系;4.一元一次不等式的应用.21.见解析【解析】【分析】首先可得顶点坐标为(1,0),然后利用对称性列表,再描点,连线,即可作出该函数的图象.【详解】列表得:x …﹣1 0 1 2 3 …y … 4 1 0 1 4 …如图:.【点睛】此题考查了二次函数的图象.注意确定此二次函数的顶点坐标是关键.22.(1)5.3(2)见解析(3)2.5或6.9【解析】【分析】(1)(2)按照题意取点、画图、测量即可.(3)中需要将DE=2OE转换为y与x的函数关系,注意DE为非负数,函数为分段函数.【详解】(1)根据题意取点、画图、测量的x=6时,y=5.3 故答案为5.3(2)根据数据表格画图象得(3)当DE=2OE时,问题可以转化为折线y=()()28048248x xx x⎧-+≤≤⎪⎨-≤≤⎪⎩与(2)中图象的交点经测量得x=2.5或6.9时DE=2OE.故答案为2.5或6.9【点睛】动点问题的函数图象探究题,考查了函数图象的画法,应用了数形结合思想和转化的数学思想.23.(1)3(2)33,313y x=-;(3)134【解析】试题分析:(1)根据反比例函数图象上点的坐标特征易得3(2)作BH⊥AD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,3),则31,3﹣1,可判断△ABH为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根据特殊角的三角函数值得tan∠DAC=33;由于AD⊥y轴,则OD=1,3后在Rt△OAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,﹣1),于是可根据待定系数法求出直线AC的解析式为y=33x﹣1;(3)利用M点在反比例函数图象上,可设M点坐标为(t 23(0<t<3),由于直线l⊥x轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(tt﹣1),则﹣,根据三角形面积公式得到S△CMN=12•t•),再进行配方得到S=t2(0<t<),最后根据二次函数的最值问题求解.试题解析:(1)把A(1)代入y=kx,得(2)作BH⊥AD于H,如图1,把B(1,a)代入反比例函数解析式,∴B点坐标为(1,,∴﹣1,1,∴△ABH为等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°∵AD⊥y轴,∴OD=1,tan∠DAC=CDDA=3,∴CD=2,∴OC=1,∴C点坐标为(0,﹣1),设直线AC的解析式为y=kx+b,把A(1)、C(0,﹣1)代入得11bb⎧+=⎪⎨=-⎪⎩,解得1kb⎧=⎪⎨⎪=-⎩,∴直线AC的解析式为y=3x﹣1;(3)设M点坐标为(t,t )(0<t<,∵直线l⊥x轴,与AC相交于点N,∴N点的横坐标为t,∴N点坐标为(tt﹣1),∴﹣1),∴S△CMN=12•t•(23t﹣33t+1)=﹣36t2+12t+3=﹣36(t﹣32)2+938(0<t<23),∵a=﹣36<0,∴当t=32时,S有最大值,最大值为938.24.(1)①12,3. ②详见解析.(2)1 3 .【解析】分析:(1)①根据题意和表中的数据可以求得a的值;②由表格中的数据可以将频数分布表补充完整;(2)根据表格中的数据和测试成绩不低于80分为优秀,可以求得优秀率;(3)根据题意可以求得所有的可能性,从而可以得到小明与小强两名男同学能分在同一组的概率.详解:(1)①a=50﹣(6+8+14+10)=12,中位数为第25、26个数的平均数,而第25、26个数均落在第3组内,所以中位数落在第3组,故答案为12,3;②如图,(2)121050×100%=44%,答:本次测试的优秀率是44%;(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC).所以小明和小强分在一起的概率为:13.点睛:本题考查列举法求概率、频数分布表、频数分布直方图、中位数,解题的关键是明确题意,找出所求问题需要的条件,可以将所有的可能性都写出来,求出相应的概率.25.(1)见解析;(2) m=-1.【解析】【分析】(1)根据方程的系数结合根的判别式,即可得出△=1>1,由此即可证出:无论实数m取什么值,方程总有两个不相等的实数根;(2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根据已知条件即可得出结论.【详解】(1)∵△=(m+3)2﹣4(m+2)=(m+1)2∴无论m取何值,(m+1)2恒大于等于1∴原方程总有两个实数根(2)原方程可化为:(x-1)(x-m-2)=1∴x1=1, x2=m+2∵方程两个根均为正整数,且m为负整数∴m=-1.【点睛】本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握根的判别式与根据因式分解法解一元二次方程.26.(1)见解析(2)BD=2【解析】解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°.∵在Rt△ACD和Rt△AED中,AD AD {CD DE==,∴Rt△ACD≌Rt△AED(HL).(2)∵Rt△ACD≌Rt△AED ,CD=1,∴DC=DE=1.∵DE⊥AB,∴∠DEB=90°.∵∠B=30°,∴BD=2DE=2.(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.27.(1)117;(2)答案见图;(3)B;(4)30.【解析】【分析】(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得.【详解】(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.。

2020年浙江省台州市中考数学模拟试题附解析

2020年浙江省台州市中考数学模拟试题附解析

2020年浙江省台州市中考数学模拟试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 400 米比赛有 4 条跑道,其中两条是对比赛成绩起积极影响的好跑道,其余两条是普通跑道,4 名运动员抽签决定跑道,则小明第一个抽抽到好跑道的概率是()A.12B.13C.14D.342.如图所示,小明将一张报纸对折后,发现对折后的半张报纸与整张报纸相似,你能推算出整张报纸的长与宽的比是下面哪一个答案吗()A.2:1 B.4:1 C.1:4 D.1:23.如图,在 Rt△AOB 中,AB =OB= 3,设直线x= t,截此三角形所得阴影部分的面积为s,则 s 与 t 之间的函数图象为()A. B.C.D.4.下列语句是命题的有()①经过一点有且只有一条直线与已知直线平行;②延长线段AB到C,使B是AC的中点;③一条直线的垂线只有一条;④如果两个角的两边互相平行,那么这两个角相等.A.1个B.2个C.3个D.4个5.等腰△ABC,AB=AC,AD是角平分线,则①AD⊥BC,②BD=CD,③∠B=∠C,④∠BAD=∠CAD中,正确的个数是()A.1个B.2个C.3个D.4个6.若229()x bx x c-+=+,则 b,c 的值分别为()A.6,3 B. -6,3 C.-6,-3 D.以上都不对7.已知方程(31)(2)0x x+-=,则31x+的值为()A.7 B.2 C.0 D.7 或08.如果61x-表示一个正整数,那么整数x可取的值的个数是()A.2 B.3 C.4 D.5 9.如图,AB=AC, EB= EC,那么图中的全等三角形共有()A.1 对B. 2 对 C. 3 对 D.4 对10.下列四个式子中,结果为1210的有( ) ①661010+;②10102(25)⨯;③56(2510)10⨯⨯⨯;④34(10) A . ①② B . ③④ C . ②③ D . ①④ 11.如图,在长方体中,与AB 平行的棱有( )A . 1条B .2条C .3条D .4条12.如图,从A 到B 有①、②、③三条路可以走,每条路长分别为l 、m 、n ,则l 、m 、n 的大小关系是( ) A .l n m >>B .l m n =>C .m n l >>D .l m n >>13.下列说法:①代数式21a +的值永远是正的;②代数式2a b+中的字母可以是任何数;③代数式2a b +只代表一个值;④代数式2x x-中字母x 可以是 0 以外的任何数. 其中正确的有( ) A .1 个 B .2 个 C .3 个D .4 个二、填空题14.已知菱形有一个内角为︒60,若边长等于cm 4,则较长的对角线的长是 ㎝. 15.当0x a <<时,2x 与ax 的大小关系是 .16.为了估计某市空气质量情况,某同学在30天里做了如下记录:污染指数(w ) 40 60 80 100 120 140 天数(天)3510 651w w 100<w ≤150时空气质量为轻度污染,若1年按365天计算,请你估计该城市在一年中空气质量达到良以上(含良)的天数为 天.三、解答题17.如图,某地夏季中午,当太阳移到屋顶上方偏南时,光线与地面成60°角,房屋向南的窗户 AB 高 1.8m ,现要在窗子外面的上方安装一个水平遮阳篷 AC.(1)当遮阳篷 AC 的宽度在什么范围时,中午太阳光线直接射入室内 (精确到0.01 m)? (2)当遮阳篷 AC 的宽度在什么范围时,中午太阳光线不能直接射入室内?18.如图,在△ABC 中,AB=5,AC=7,∠B=60°,求BC 的长.19..某商场出售一批进价为 2 元的贺卡,在市场营销中发现此商品日销售单价x(元)与日销售量 y(张)之间有如下关系: x (元) 3 4 5 6 y(张)20151210(1)根据表中数据在直角坐标系中描出实数 对(x ,y)的对应点; (2)猜测并确定 y 与x 之间的函数关系式,并画出图象;(3)设经营此贺卡的销售利润为ω元,试求ω与x 之间的函数关系式,如果物价局规定此贺卡售价最高不能超过10元/张,请你求出当日销售单价x 定为多少元时,才能获得最大日销售利润?60CB A20.如图,反比例函数y =kx 的图象与一次函数y =mx +b 的图象交于A((1,3),B(n ,-1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x 取何值时,反比例函数的值大于一次函数的值.21. 如图,在□ABCD 中,点E 是BC 的中点,AB 的延长线与DE 的延长线交于点F ,连结 BD ,CF.(1)请指出图中哪些线段与线段CD 相等(不再添加辅助线); (2)试判断四边形DBFC 的形状,并证明你的结论.22.求代数式(a +1)2-(2a - 3 )(1-a )的值,其中a = 3Oy xAB23.按由大到小的顺序排列下列各数:1 33,23,1272,1752.111 7523273 223 >>>24.已知|31|23250a b a b-+++-≤,求不等式组27()10(3)62ax x bax b x-->⎧⎪⎨+->⎪⎩的解.2x<-25.如图,在△ABC中,AB=AC,点P是边BC的中点,PD⊥AB,PE⊥AC,垂足分别为点D、E,说明PD=PE.26.你喜欢玩游戏吗?现在请你玩一个转盘游戏,如图所示的两个转盘中,指针落在每个数字上的机会均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针指向一个数字,用所指的两个数字作乘积,请你:(1)列举(用列表或画树状图法)所有可能得到的数字之积;(2)求出数字之积为奇数的概率.27.如图,请你用三种方法把左边的小正方形分别平移到右边的三个图形中,使它成为轴对称图形.28.利用图形变换,分析如图的花边图案是怎样形成的,请类似地利用图形变换设计一条花边图案.29.请你在图的点格上画出两条与直线l平行的直线.30.在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示:若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A 型玩具有套,B型玩具有套,C型玩具有套.(2)若每人组装A型玩具16套与组装C型玩具12套所画的时间相同,那么a的值为,每人每小时能组装C型玩具套.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.D4.C5.D6.D7.D8.C9.C10.B11.C12.B13.B二、填空题14.3415.2x ax>16.292三、解答题17.( 1)在 Rt△ABC中,由∠ABC= 30°,则 AB=AC=1.8(m)1.81.043AC=≈(m)∴当遮阳篷 AC 的长度小于 1.04 m 时,太阳光能直接射入室内;(2)当遮阳篷 AC 的长度大于 1.O4m 时,太阳光线不能直接射入室内. 18.如图,作AD⊥BC于D,则AD=AB·sin60°=532,BD=AB·cos60°=52,CD227511 4942AC AD=-=-=,∴BC=BD+CD=8.19.(1)如图,(2)是反比例函数,60y x= (x 为正整数)图象如图.(3)60120(2)60w x x x=-⋅=-,当定价x 定为10元/张时,利润最大,为48 元. 20.(1)∵A(1,3)在y =kx 的图象上,∴k =3,∴y =3x又∵B(n,-1)在y =3x 的图象上,∴ n=-3,即B (-3,-1)313m b m b =+⎧⎨-=-+⎩,解得:m =1,b =2,∴反比例函数的解析式为y =3x, 一次函数的解析式为y =x +2.(2)从图象上可知,当x<-3或0<x<1时,反比例函数的值大于一次函数的值.21.(1)AB ,BF (2)平行四边形,证明略22.原式=3a 2- 3 a + 3 +1 =7+ 3 .23.1117523273223>>>. 2x <-25.连接AP .说明AP 是角平分线,再利用角平分上的点到角两边的距离相等26.(1)所有可能得到的数字之积列表如下:1 2 3 4 5 6 1 1 2 3 4 5 6 2 2 4 6 8 10 12 3 3 6 9 12 15 18 44812162024或用树状图法(略); (2)P(数字之积为奇数)=61244=27.如图:28.略29.略30.(1) 132,48,60,(2) 4,6。

浙江省台州市2019-2020学年中考数学四月模拟试卷含解析

浙江省台州市2019-2020学年中考数学四月模拟试卷含解析

浙江省台州市2019-2020学年中考数学四月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若a=10,则实数a在数轴上对应的点的大致位置是()A.点E B.点F C.点G D.点H2.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.63B.62C.33D.323.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①12AFFD=;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④B.①④C.②③④D.①②③4.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.215B.8 C.210D.2135.如图,小刚从山脚A出发,沿坡角为α的山坡向上走了300米到达B点,则小刚上升了()A .300sin α米B .300cos α米C .300tan α米D .300tan α米 6.已知☉O 的半径为5,且圆心O 到直线l 的距离是方程x 2-4x-12=0的一个根,则直线l 与圆的位置关系是( )A .相交B .相切C .相离D .无法确定7.下列各数中负数是( )A .﹣(﹣2)B .﹣|﹣2|C .(﹣2)2D .﹣(﹣2)38.分式方程()22111x x x -++=1的解为( ) A .x=1 B .x=0 C .x=﹣23 D .x=﹣19.如图,该图形经过折叠可以围成一个正方体,折好以后与“静”字相对的字是( )A .着B .沉C .应D .冷10.工人师傅用一张半径为24cm ,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为( )cm .A .119B .2119C .46D .1119211.平面上直线a 、c 与b 相交(数据如图),当直线c 绕点O 旋转某一角度时与a 平行,则旋转的最小度数是( )A .60°B .50°C .40°D .30°12.如图,在Rt △ABC 中,∠ACB=90°,BC=12,AC=5,分别以点A ,B 为圆心,大于线段AB 长度的一半为半径作弧,相交于点E ,F ,过点E ,F 作直线EF ,交AB 于点D ,连接CD ,则△ACD 的周长为( )A .13B .17C .18D .25二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量OP uuu r 可以用点P 的坐标表示为OP uuu r=(m ,n ),已知:OA u u u r =(x 1,y 1),OB uuu r =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA u u u r 与OB uuu r 互相垂直,下列四组向量:①OC u u u r =(2,1),OD uuu r =(﹣1,2);②OE uuu r =(cos30°,tan45°),OF uuu r =(﹣1,sin60°);③OG u u u r =(3﹣2,﹣2),OH u u u r =(3+2,12);④OC u u u r =(π0,2),u u u r ON =(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).14.若反比例函数y=2k x-的图象位于第一、三象限,则正整数k 的值是_____. 15.关于x 的一元二次方程2210ax x -+=有实数根,则a 的取值范围是 __________.16.如图,一艘海轮位于灯塔P 的北偏东方向60°,距离灯塔为4海里的点A 处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB 长_____海里.17.如图,已知⊙O 1与⊙O 2相交于A 、B 两点,延长连心线O 1O 2交⊙O 2于点P ,联结PA 、PB ,若∠APB=60°,AP=6,那么⊙O 2的半径等于________.18.如图,在△ABC 中,CA=CB ,∠ACB=90°,AB=2,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在锐角△ABC 中,边BC 长为18,高AD 长为12如图,矩形EFCH 的边GH 在BC 边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求EFAK的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.20.(6分)为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E 五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.21.(6分)如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC=60°,AB=10,求线段CF的长.22.(8分)在某校举办的2012 年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200 个以上可以按折扣价出售;购买200 个以下(包括200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050 元;若多买35 个,则按折扣价付款,恰好共需1050 元.设小王按原计划购买纪念品x 个.(1)求x 的范围;(2)如果按原价购买5 个纪念品与按打折价购买6 个纪念品的钱数相同,那么小王原计划购买多少个纪念品?23.(8分)先化简,后求值:a2•a4﹣a8÷a2+(a3)2,其中a=﹣1.24.(10分)计算:(﹣2)﹣2﹣22sin45°+(﹣1)2018﹣38-÷225.(10分)如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm,BC=5cm,AE=13AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形.26.(12分)如图1,已知抛物线y=﹣33x2+233x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求线段DE的长度;(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少;(3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x轴交于点K,则是否存在这样的点K,使得△F′F″K为等腰三角形?若存在求出OK的值;若不存在,说明理由.27.(12分)已知y是x的函数,自变量x的取值范围是0x≠的全体实数,如表是y与x的几组对应值.小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;x=时所对应的点,并写出m=.(3)在画出的函数图象上标出2(4)结合函数的图象,写出该函数的一条性质:.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】91016∴310<4,∵a=10,∴3<a<4,故选:C.【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出3<10<4是解题关键.2.A【解析】试题分析:根据垂径定理先求BC一半的长,再求BC的长.解:如图所示,设OA与BC相交于D点.∵AB=OA=OB=6,∴△OAB是等边三角形.又根据垂径定理可得,OA平分BC,利用勾股定理可得226333-=所以BC=2BD=3.故选A.点睛:本题主要考查垂径定理和勾股定理. 解题的关键在于要利用好题中的条件圆O与圆A的半径相等,从而得出△OAB是等边三角形,为后继求解打好基础.3.D【解析】【详解】∵在▱ABCD中,AO=12 AC,∵点E是OA的中点,∴AE=13 CE,∵AD∥BC,∴△AFE∽△CBE,∴AF AEBC CE==13,∵AD=BC,∴AF=13AD , ∴12AF FD =;故①正确; ∵S △AEF =4, AEF BCE S S V V =(AF BC )2=19, ∴S △BCE =36;故②正确;∵EF AE BE CE = =13, ∴AEF ABE S S V V =13, ∴S △ABE =12,故③正确;∵BF 不平行于CD ,∴△AEF 与△ADC 只有一个角相等,∴△AEF 与△ACD 不一定相似,故④错误,故选D .4.D【解析】∵⊙O 的半径OD ⊥弦AB 于点C ,AB=8,∴AC=AB=1.设⊙O 的半径为r ,则OC=r -2,在Rt △AOC 中,∵AC=1,OC=r -2,∴OA 2=AC 2+OC 2,即r 2=12+(r ﹣2)2,解得r=2.∴AE=2r=3.连接BE ,∵AE 是⊙O 的直径,∴∠ABE=90°.在Rt △ABE 中,∵AE=3,AB=8,∴2222BE AE AB 1086=--=.在Rt △BCE 中,∵BE=6,BC=1,∴2222CE BE BC 64213=+=+=D . 5.A【解析】【分析】利用锐角三角函数关系即可求出小刚上升了的高度.在Rt△AOB中,∠AOB=90°,AB=300米,BO=AB•sinα=300sinα米.故选A.【点睛】此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO 的关系是解题关键.6.C【解析】【分析】首先求出方程的根,再利用半径长度,由点O到直线a的距离为d,若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与与圆相离.【详解】∵x2-4x-12=0,(x+2)(x-6)=0,解得:x1=-2(不合题意舍去),x2=6,∵点O到直线l距离是方程x2-4x-12=0的一个根,即为6,∴点O到直线l的距离d=6,r=5,∴d>r,∴直线l与圆相离.故选:C【点睛】本题考核知识点:直线与圆的位置关系.解题关键点:理解直线与圆的位置关系的判定方法.7.B【解析】【分析】首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可.【详解】A、-(-2)=2,是正数;B、-|-2|=-2,是负数;C、(-2)2=4,是正数;D、-(-2)3=8,是正数.故选B.此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键.8.C【解析】【分析】首先找出分式的最简公分母,进而去分母,再解分式方程即可.【详解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-23,检验:当x=-23时,(x+1)2≠0,故x=-23是原方程的根.故选C.【点睛】此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.9.A【解析】【分析】正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答【详解】这是一个正方体的平面展开图,共有六个面,其中面“沉”与面“考”相对,面“着”与面“静”相对,“冷”与面“应”相对.故选:A【点睛】本题主要考查了利用正方体及其表面展开图的特点解题,明确正方体的展开图的特征是解决此题的关键10.B【解析】分析:直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.详解:由题意可得圆锥的母线长为:24cm,设圆锥底面圆的半径为:r,则2πr=15024180π⨯,解得:r=10,故这个圆锥的高为:222410=2119-(cm ). 故选B .点睛:此题主要考查了圆锥的计算,正确得出圆锥的半径是解题关键. 11.C 【解析】 【分析】先根据平角的定义求出∠1的度数,再由平行线的性质即可得出结论. 【详解】解:∵∠1=180°﹣100°=80°,a ∥c , ∴∠α=180°﹣80°﹣60°=40°. 故选:C .【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补. 12.C 【解析】在Rt △ABC 中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF 为线段AB 的垂直平分线,在Rt △ABC 中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=12AB ,所以△ACD 的周长为AC+CD+AD=AC+AB=5+13=18.故选C. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.①③④ 【解析】分析:根据两个向量垂直的判定方法一一判断即可; 详解:①∵2×(−1)+1×2=0, ∴OC u u u v 与OD u u u v垂直;②∵33cos301tan45sin603⨯+⋅==o o o ,∴OE uuu v 与OF u u u v不垂直.③∵()13232202+-⨯=,∴OG u u u v 与OH u u u v垂直. ④∵()02210π⨯+⨯-=,∴OM u u u u v 与ON u u u v垂直. 故答案为:①③④.点睛:考查平面向量,解题的关键是掌握向量垂直的定义. 14.1. 【解析】 【分析】由反比例函数的性质列出不等式,解出k 的范围,在这个范围写出k 的整数解则可. 【详解】解:∵反比例函数的图象在一、三象限, ∴2﹣k >0,即k <2. 又∵k 是正整数, ∴k 的值是:1. 故答案为:1. 【点睛】本题考查了反比例函数的性质:当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限. 15.a≤1且a≠0 【解析】∵关于x 的一元二次方程2210ax x -+=有实数根,∴()20240a a ≠⎧⎪⎨=--≥⎪⎩n ,解得:a 1≤, ∴a 的取值范围为:a 1≤且0a ≠ .点睛:解本题时,需注意两点:(1)这是一道关于“x”的一元二次方程,因此0a ≠ ;(2)这道一元二次方程有实数根,因此()2240a =--≥n ;这个条件缺一不可,尤其是第一个条件解题时很容易忽略. 16.1 【解析】分析:首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB ∥NP ,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt △ABP ,得出AB=AP•cos ∠A=1海里. 详解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP•cos∠A=4×cos60°=4×12=1海里.故答案为1.点睛:本题考查了解直角三角形的应用-方向角问题,平行线的性质,三角函数的定义,正确理解方向角的定义是解题的关键.17.23【解析】【分析】由题意得出△ABP为等边三角形,在Rt△ACO2中,AO2=ACsin60︒即可.【详解】由题意易知:PO1⊥AB,∵∠APB=60°∴△ABP为等边三角形,AC=BC=3∴圆心角∠AO2O1=60°∴在Rt△ACO2中,AO2=ACsin60︒=23.故答案为23.【点睛】本题考查的知识点是圆的性质,解题的关键是熟练的掌握圆的性质.18.1 42π-.【解析】【分析】连接CD,根据题意可得△DCE≌△BDF,阴影部分的面积等于扇形的面积减去△BCD的面积.【详解】解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=12AB=1,四边形DMCN是正方形,DM=2.则扇形FDE的面积是:2901= 3604ππ⨯.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,则在△DMG和△DNH中,DMG DNHGDM HDN DM DN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=12.则阴影部分的面积是:1 42π-.故答案为:1 42π-.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)32;(2)1.【解析】【分析】(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EH=KD=x,得出AK=12﹣x,EF=32(12﹣x),再根据S=32x(12﹣x)=﹣32(x﹣6)2+1,可得当x=6时,S有最大值为1.【详解】解:(1)∵△AEF∽△ABC,∴EF AK BC AD=,∵边BC长为18,高AD长为12,∴EF BCAK AD=32;(2)∵EH=KD=x,∴AK=12﹣x,EF=32(12﹣x),∴S=32x(12﹣x)=﹣32(x﹣6)2+1.当x=6时,S有最大值为1.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.20.(1)50;(2)115.2°;(3).【解析】(1)先求出参加本次比赛的学生人数;(2)由(1)求出的学生人数,即可求出B等级所对应扇形的圆心角度数;(3)首先根据题意列表或画出树状图,然后由求得所有等可能的结果,再利用概率公式即可求得答案.解:(1)参加本次比赛的学生有:(人)(2)B等级的学生共有:(人).∴所占的百分比为:∴B等级所对应扇形的圆心角度数为:.(3)列表如下:男女1 女2 女3男﹣﹣﹣(女,男)(女,男)(女,男)女1 (男,女)﹣﹣﹣(女,女)(女,女)女2 (男,女)(女,女)﹣﹣﹣(女,女)女3 (男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.∴P(选中1名男生和1名女生).“点睛”本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.通过扇形统计图求出扇形的圆心角度数,应用数形结合的思想是解决此类题目的关键.21.(1)证明见解析(2)13【解析】【分析】(1)连接OC,可以证得△OAP≌△OCP,利用全等三角形的对应角相等,以及切线的性质定理可以得到:∠OCP=90°,即OC⊥PC,即可证得;(2)先证△OBC是等边三角形得∠COB=60°,再由(1)中所证切线可得∠OCF=90°,结合半径OC=1可得答案.【详解】(1)连接OC.∵OD⊥AC,OD经过圆心O,∴AD=CD,∴PA=PC.在△OAP和△OCP中,∵OA OCPA PCOP OP=⎧⎪=⎨⎪=⎩,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP.∵PA是半⊙O的切线,∴∠OAP=90°,∴∠OCP=90°,即OC⊥PC,∴PC是⊙O的切线.(2)∵OB=OC,∠OBC=60°,∴△OBC是等边三角形,∴∠COB=60°.∵AB=10,∴OC=1.由(1)知∠OCF=90°,∴CF=OC•tan∠3【点睛】本题考查了切线的性质定理以及判定定理,以及直角三角形三角函数的应用,证明圆的切线的问题常用的思路是根据切线的判定定理转化成证明垂直的问题.22.(1)0<x≤200,且x是整数(2)175【解析】【分析】(1)根据商场的规定确定出x的范围即可;(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.【详解】(1)根据题意得:0<x≤200,且x 为整数; (2)设小王原计划购买x 个纪念品, 根据题意得:105010505635x x ⨯=⨯+, 整理得:5x+175=6x , 解得:x=175,经检验x=175是分式方程的解,且满足题意, 则小王原计划购买175个纪念品. 【点睛】此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键. 23.1 【解析】 【分析】先进行同底数幂的乘除以及幂的乘方运算,再合并同类项得到化简后的式子,将a 的值代入化简后的式子计算即可. 【详解】原式=a 6﹣a 6+a 6=a 6, 当a=﹣1时,原式=1. 【点睛】本题主要考查同底数幂的乘除以及幂的乘方运算法则. 24.74【解析】 【分析】按照实数的运算顺序进行运算即可. 【详解】解:原式()1122,422=-⨯+--÷ 1111,42=-++ 7.4=【点睛】本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及立方根,熟练掌握各个知识点是解题的关键.25.(1)证明见解析;(2)从运动开始经过2s或53s或125s或682215-s时,△BEP为等腰三角形.【解析】【分析】(1)根据内错角相等,得到两边平行,然后再根据三角形内角和等于180度得到另一对内错角相等,从而证得原四边形是平行四边形;(2)分别考虑P在BC和DA上的情况求出t的值.【详解】解:(1)∵∠BAC=∠ACD=90°,∴AB∥CD,∵∠B=∠D,∠B+∠BAC+∠ACB=∠D+∠ACD+∠DAC=180°,∴∠DAC=∠ACB,∴AD∥BC,∴四边形ABCD是平行四边形.(2)∵∠BAC=90°,BC=5cm,AB=3cm,′由勾股定理得:AC=4cm,即AB、CD间的最短距离是4cm,∵AB=3cm,AE=13 AB,∴AE=1cm,BE=2cm,设经过ts时,△BEP是等腰三角形,当P在BC上时,①BP=EB=2cm,t=2时,△BEP是等腰三角形;②BP=PE,作PM⊥AB于M,∴BM=ME=12BE=1cm∵cos∠ABC=35 AB BMBC BP==,∴BP=53 cm,t=53时,△BEP 是等腰三角形; ③BE=PE=2cm ,作EN ⊥BC 于N ,则BP=2BN ,∴cosB=35BN BE =, ∴325BN =, BN=65cm ,∴BP=125,∴t=125时,△BEP 是等腰三角形;当P 在CD 上不能得出等腰三角形,∵AB 、CD 间的最短距离是4cm ,CA ⊥AB ,CA=4cm , 当P 在AD 上时,只能BE=EP=2cm , 过P 作PQ ⊥BA 于Q , ∵四边形ABCD 是平行四边形, ∴AD ∥BC , ∴∠QAD=∠ABC , ∵∠BAC=∠Q=90°, ∴△QAP ∽△ABC , ∴PQ :AQ :AP=4:3:5, 设PQ=4xcm ,AQ=3xcm ,在△EPQ 中,由勾股定理得:(3x+1)2+(4x )2=22,∴x=325 ,AP=5x=35-cm ,∴t=5+5+3答:从运动开始经过2s 或53s 或125s 或685-s 时,△BEP 为等腰三角形.【点睛】本题主要考查平行四边形的判定定理及一元二次方程的解法,要求学生能够熟练利用边角关系解三角形.26. ;(2)见解析.【解析】分析:(1)根据解析式求得C的坐标,进而求得D的坐标,即可求得DH的长度,令y=0,求得A,B的坐标,然后证得△ACO∽△EAH,根据对应边成比例求得EH的长,进继而求得DE的长;(2)找点C关于DE的对称点N(4,3),找点C关于AE的对称点G(-2,-3),连接GN,交AE 于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,根据点的坐标求得直线GN的解析式:y=3x-3;直线AE的解析式:y= -3x-3,过点M作y轴的平行线交FH于点Q,设点M(m,-3m²+23m+3),则Q(m,3m-3),根据S△MFP=S△MQF+S△MQP,得出S△MFP= -33m²+33m+43,根据解析式即可求得,△MPF面积的最大值;(3)由(2)可知C(0,3),F(0,33),P(2,33),求得CF=433,CP=433,进而得出△CFP为等边三角形,边长为43,翻折之后形成边长为43的菱形C′F′P′F″,且F′F″=4,然后分三种情况讨论求得即可.本题解析:(1)对于抛物线y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,则DE=2;(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN 最小,直线GN的解析式:y=x﹣;直线AE的解析式:y=﹣x﹣,联立得:F (0,﹣),P(2,),过点M作y轴的平行线交FH于点Q,设点M(m,﹣m2+m+),则Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵对称轴为:直线m=<2,开口向下,∴m=时,△MPF面积有最大值:;(3)由(2)可知C(0,),F(0,),P(2,),∴CF=,CP==,∵OC=,OA=1,∴∠OCA=30°,∵FC=FG,∴∠OCA=∠FGA=30°,∴∠CFP=60°,∴△CFP为等边三角形,边长为,翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,1)当K F′=KF″时,如图3,点K在F′F″的垂直平分线上,所以K与B重合,坐标为(3,0),∴OK=3;2)当F′F″=F′K时,如图4,∴F′F″=F′K=4,∵FP的解析式为:y=x﹣,∴在平移过程中,F′K与x轴的夹角为30°,∵∠OAF=30°,∴F′K=F′A∴AK=4∴OK=4﹣1或者4+1;3)当F″F′=F″K时,如图5,∵在平移过程中,F″F′始终与x轴夹角为60°,∵∠OAF=30°,∴∠AF′F″=90°,∵F″F′=F″K=4,∴AF″=8,∴AK=12,∴OK=1,综上所述:OK=3,4﹣1,4+1或者1.点睛:本题是二次函数的综合题,考查了二次函数的交点和待定系数法求二次函数的解析式以及最值问题,考查了三角形相似的判定与性质,等边三角形的判定与性质,等腰三角形的性质等,分类讨论的思想是解题的关键.27.(1)32;(2)见解析;(3)72;(4)当01x <<时,y 随x 的增大而减小. 【解析】【分析】 (1)根据表中x ,y 的对应值即可得到结论;(2)按照自变量由小到大,利用平滑的曲线连结各点即可;(3)在所画的函数图象上找出自变量为7所对应的函数值即可;(4)利用函数图象的图象求解.【详解】解:(1)当自变量是﹣2时,函数值是32; 故答案为:32. (2)该函数的图象如图所示;(3)当2x =时所对应的点 如图所示,且72m =; 故答案为:72; (4)函数的性质:当01x <<时,y 随x 的增大而减小.故答案为:当01x <<时,y 随x 的增大而减小.【点睛】本题考查了函数值,函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.。

浙江省台州市部分中学2020年中考数学模拟试卷(4月份)

浙江省台州市部分中学2020年中考数学模拟试卷(4月份)

浙江省台州市部分中学2020年中考数学模拟试卷(4月份)一.选择题(每小题4分,满分40分)1.﹣的倒数的绝对值是()A.﹣2020 B.C.2020 D.﹣2.2022年冬奥运即将在北京举行,北京也即将成为迄今为止唯一个既举办过夏季奥运会,又举办过冬季奥运会的城市,据了解北京冬奥会的预算规模为15.6亿美元,政府补贴6%(9400万美元).其中1 560 000 000用科学记数法表示为()A.1.56×109B.1.56×108C.15.6×108D.0.156×10103.导学案课前预习要求设计4幅既是轴对称又是中心对称的图案,小明设计完成了下列4幅图案,其中符合要求的个数是()A.1个B.2个C.3个D.4个4.如图,P是∠ABC内一点,点Q在BC上,过点P画直线a∥BC,过点Q画直线b∥AB,若∠ABC=115°,则直线a与b相交所成的锐角的度数为()A.25°B.45°C.65°D.85°5.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为()A.42 B.45 C.46 D.486.书架上放着三本古典名著和两本外国小说,小明从中随机抽取两本,两本都是古典名著的概率是()A.B.C.D.7.如图,点A,B,C是⊙O上的三点,若∠BOC=50°,则∠A的度数是()A.25°B.20°C.80°D.100°8.如图,一次函数y=﹣x与二次函数为y=ax2+bx+c的图象相交于点M,N,则关于x的一元二次方程ax2+(b+1)x+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.以上结论都正确9.如图,在Rt△ABC中,∠B=90°,AC=10,BC=6,线段AC的垂直平分线MN分别交AC、AB于M、N两点,则△BCN的面积是()A.B.C.D.10.如图,矩形OABC的顶点A、C分别在x轴、y轴上,OA=4,OC=3,直线m:y=﹣x 从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M,N,直线m运动的时间为t(秒),设△OMN的面积为S,则能反映S 与t之间函数关系的大致图象是()A.B.C.D.二.填空题(满分30分,每小题5分)11.分解因式:3x2﹣12x+12=.12.如图,在边长为6的菱形ABCD中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是.(结果保留π)13.如果定义新运算:a※b=(a≠b),那么(1※2)※3的值为.14.如图,在Rt△ABC中,∠C=90°,BC=4,BA=5,点D在边AC上的一动点,过点D 作DE∥AB交边BC于点E,过点B作BF⊥BC交DE的延长线于点F,分别以DE,EF为对角线画矩形CDGE和矩形HEBF,则在D从A到C的运动过程中,当矩形CDGE和矩形HEBF 的面积和最小时,则EF的长度为.15.将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B的对应点E落在坐标平面内,当△ADE是等腰直角三角形时,点E的坐标为.16.如图,在直角坐标系中,A,B为定点,A(2,﹣3),B(4,﹣3),定直线l∥AB,P 是l上一动点,l到AB的距离为6,M,N分别为PA,PB的中点下列说法中:①线段MN的长始终为1;②△PAB的周长固定不变;③△PMN的面积固定不变;④若存在点Q使得四边形APBQ是平行四边形,则Q到MN所在直线的距离必为9.其中正确的说法是.三.解答题17.(8分)已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.18.(8分)解不等式组,并将解集在数轴上表示出来.19.(8分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)20.(8分)如图,一次函数y 1=x +4的图象与反比例函数y 2=的图象交于A (﹣1,a ),B 两点,与x 轴交于点C .(1)求k .(2)根据图象直接写出y 1>y 2时,x 的取值范围.(3)若反比例函数y 2=与一次函数y 1=x +4的图象总有交点,求k 的取值.21.(10分)为了解家长对“学生在校带手机”现象的看法,某校“九年级兴趣小组”随机调查了该校学生家长若干名,并对调查结果进行整理,绘制如下不完整的统计图.根据以上信息,解答下列问题:(1)这次接受调查的家长总人数为 人.(2)在扇形统计图中,求“很赞同”所对应的扇形圆心角的度数;(3)若在这次接受调查的家长中,随机抽出一名家长,恰好抽到“无所谓”的家长概率是多少?22.(12分)已知∠MON =120°,点A ,B 分别在ON ,OM 边上,且OA =OB ,点C 在线段OB 上(不与点O ,B 重合),连接CA .将射线CA 绕点C 逆时针旋转120°得到射线CA ′,将射线BO 绕点B 逆时针旋转150°与射线CA ′交于点D .(1)根据题意补全图1;(2)求证:①∠OAC =∠DCB ;②CD =CA (提示:可以在OA 上截取OE =OC ,连接CE );(3)点H 在线段AO 的延长线上,当线段OH ,OC ,OA 满足什么等量关系时,对于任意的点C 都有∠DCH =2∠DAH ,写出你的猜想并证明.23.(12分)甲、乙两车分别从A 、B 两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B 地行驶,两车之间的路程y (千米)与出发后所用时间x (小时)之间的函数关系如图所示.(1)求甲、乙两车行驶的速度V 甲、V 乙.(2)求m 的值.(3)若甲车没有故障停车,求可以提前多长时间两车相遇.24.(14分)如图,正方形ABCD 的边长为4,点E ,F 分别在边AB ,AD 上,且∠ECF =45°,CF 的延长线交BA 的延长线于点G ,CE 的延长线交DA 的延长线于点H ,连接AC ,EF ,GH .(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.。

2020-2021学年最新台州市中考数学模拟试卷及答案解析

2020-2021学年最新台州市中考数学模拟试卷及答案解析

浙江省台州市中考数学模拟试卷(4月份)一.选择题(共10小题,满分40分,每小题4分)1.﹣1+3的结果是()A.﹣4 B.4 C.﹣2 D.22.如图,王华用橡皮泥做了个圆柱,再用手工刀切去一部分,则其左视图是()A.B.C.D.3.在某个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小4.对于反比例函数y=,下列说法正确的是()A.图象经过点(2,﹣1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大5.在一次训练中,甲、乙、丙三人各射击10次的成绩(单位:环)如图,在这三人中,此次射击成绩最稳定的是()A.甲B.乙C.丙D.无法判断6.把不等式组:的解集表示在数轴上,正确的是()A.B.C.D.7.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.20°B.30°C.50°D.80°8.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为()A.﹣2 B.2 C.0 D.19.如图,矩形ABCD的边AB=1,BC=2,以点B为圆心,BC为半径画弧,交AD于点E,则图中阴影部分的面积是()A.B.2C.D.2﹣10.图1是甲、乙两个圆柱形水槽,一个圆柱形的空玻璃杯放置在乙槽中(空玻璃杯的厚度忽略不计).将甲槽的水匀速注入乙槽的空玻璃杯中,甲水槽内最高水位y(厘米)与注水时间t(分钟)之间的函数关系如图2线段DE所示,乙水槽(包括空玻璃杯)内最高水位y(厘米)与注水时间t(分钟)之间的函数关系如图2折线O﹣A﹣B﹣C所示.记甲槽底面积为S1,乙槽底面积为S2,乙槽中玻璃杯底面积为S3,则S1:S2:S3的值为()A.8:5:1 B.4:5:2 C.5:8:3 D.8:10:5二.填空题(共6小题,满分30分,每小题5分)11.因式分解:2x2﹣4x═.12.点A(a,5),B(3,b)关于y轴对称,则a+b=.13.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.14.如图,△ABC中,点D在BA的延长线上,DE∥BC,如果∠BAC=80°,∠C=33°,那么∠BDE的度数是.15.如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线M﹣P﹣N上移动,它们的坐标分别为M(﹣1,4)、P(3,4)、N(3,1).若在抛物线移动过程中,点A横坐标的最小值为﹣3,则a﹣b+c的最小值是.16.如图,已知⊙O的半径为5,P是直径AB的延长线上一点,BP=1,CD是⊙O的一条弦,CD=6,以PC,PD为相邻两边作▱PCED,当C,D点在圆周上运动时,线段PE长的最大值与最小值的积等于.三.解答题(共8小题,满分80分)17.计算:(﹣3)2+|2﹣|﹣.18.先化简÷,然后从﹣1,0,2中选一个合适的x的值,代入求值.19.如图,已知点E在Rt△ABC的斜边AB上,以AE为直径的⊙O与直角边BC相切于点D.(1)求证:∠1=∠2;(2)若BE=2,BD=4,求⊙O的半径.20.列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?21.在读书月活动中学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就”我最喜爱的课外读物”从文学、艺术、科普和其他四个类別进行了抽样调查(每位同学只选一类).下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买深外读物8000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?22.直角三角形有一个非常重要的性质质:直角三角形斜边上的中线等于斜边的一半,比如:如图1,Rt △ABC中,∠C=90°,D为斜边AB中点,则CD=AD=BD=AB.请你利用该定理和以前学过的知识解决下列问题:在△ABC中,直线a绕顶点A旋转.(1)如图2,若点P为BC边的中点,点B、P在直线a的异侧,BM⊥直线a于点M,CN⊥直线a于点N,连接PM、PN.求证:PM=PN;(2)如图3,若点B、P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)如图4,∠BAC=90°,直线a旋转到与BC垂直的位置,E为AB上一点且AE=AC,EN⊥a于N,连接EC,取EC中点P,连接PM、PN,求证:PM⊥PN.23.有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=16cm,∠ADB=30°.(1)试探究线段BD 与线段MF的数量关系和位置关系,并说明理由;(2)把△BCD 与△MEF 剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM 于点K(如图2),设旋转角为β(0°<β<90°),当△AFK 为等腰三角形时,求β的度数;(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.24.如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.浙江省台州市中考数学模拟试卷(4月份)参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据有理数的加法解答即可.【解答】解:﹣1+3=2,故选:D.【点评】此题考查有理数的加法,关键是根据法则计算.2.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是上下两个矩形,矩形的公共边是虚线,故选:A.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.【分析】根据概率的意义对各选项分析判断后利用排除法求解.【解答】解:科比罚球投篮的命中率大约是83.3%,科比罚球投篮2次,不一定全部命中,A选项错误、B选项正确;科比罚球投篮1次,命中的可能性较大、不命中的可能性较小,C、D选项说法正确;故选:A.【点评】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.4.【分析】根据反比例函数性质逐项判断即可.【解答】解:∵当x=2时,可得y=1≠﹣1,∴图象不经过点(2,﹣1),故A不正确;∵在y=中,k=2>0,∴图象位于第一、三象限,且在每个象限内y随x的增大而减小,故B、D不正确;又双曲线为中心对称图形,故C正确,故选:C.【点评】本题主要考查反比例函数的性质,掌握反比例函数的图象形状、位置及增减性是解题的关键.5.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:根据统计图波动情况来看,此次射击成绩最稳定的是乙,波动比较小,比较稳定.故选:B.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.【分析】先求出两个不等式的解集,各个不等式的解集的公共部分就是这个不等式组的解集.【解答】解:解不等式组得:.再分别表示在数轴上为.在数轴上表示得:.故选A.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.【分析】根据平行线的性质求出∠4,根据三角形的外角的性质计算即可.【解答】解:∵AB∥CD,∴∠4=∠2=50°,∴∠3=∠4﹣∠1=20°,故选:A.【点评】本题考查的是平行线的性质,三角形的外角的性质,掌握两直线平行,内错角相等是解题的关键.8.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.【解答】解:根据题意得:(x+m)(2﹣x)=2x﹣x2+2m﹣mx,∵x+m与2﹣x的乘积中不含x的一次项,∴m=2;故选:B.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.9.【分析】连接BE.则阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形BCE,根据题意知BE=BC=2,则AE=、∠AEB=∠EBC=30°,进而求出即可.【解答】解:如图,连接BE,则BE=BC=2,在Rt△ABE中,∵AB=1、BE=2,∴∠AEB=∠EBC=30°,AE==,则阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形BCE=1×2﹣×1×﹣=2﹣﹣,故选:A.【点评】此题主要考查了扇形面积求法,本题中能够将不规则图形的面积进行转换成规则图形的面积差是解题的关键.10.【分析】根据题意和函数图象中的数据可以列出相应的方程组,求出S1:S2:S3的值,本题得以解决.【解答】解:由题意可得,,解得,S1:S2:S3=4:5:2,故选:B.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.二.填空题(共6小题,满分30分,每小题5分)11.【分析】直接提取公因式2x,进而分解因式即可.【解答】解:2x2﹣4x=2x(x﹣2).故答案为:2x(x﹣2).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【分析】直接利用关于y轴对称点的性质得出a,b的值,进而得出答案.【解答】解:∵点A(a,5),B(3,b)关于y轴对称,∴a=﹣3,b=5,则a+b=﹣3+5=2.故答案为:2.【点评】此题主要考查了关于y轴对称点的性质,正确记忆关于y轴对称点的横纵坐标关系是解题关键.13.【分析】列表得出所有等可能结果,从中找到积为大于﹣4小于2的结果数,根据概率公式计算可得.【解答】解:列表如下:﹣2 ﹣1 1 2﹣2 2 ﹣2 ﹣4﹣1 2 ﹣1 ﹣21 ﹣2 ﹣1 22 ﹣4 ﹣2 2由表可知,共有12种等可能结果,其中积为大于﹣4小于2的有6种结果,∴积为大于﹣4小于2的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】先根据三角形内角和定理,得出∠B,再根据平行线的性质,即可得到∠BDE的度数.【解答】解:∵∠BAC=80°,∠C=33°,∴△ABC中,∠B=67°,∵DE∥BC,∴∠BDE=180°﹣∠B=180°﹣67°=113°,故答案为:113°.【点评】本题主要考查了三角形内角和定理以及平行线的性质,解题时注意:两直线平行,同旁内角互补.15.【分析】由题意得:当顶点在M处,点A横坐标为﹣3,可以求出抛物线的a值;当顶点在N处时,y =a﹣b+c取得最小值,即可求解.【解答】解:由题意得:当顶点在M处,点A横坐标为﹣3,则抛物线的表达式为:y=a(x+1)2+4,将点A坐标(﹣3,0)代入上式得:0=a(﹣3+1)2+4,解得:a=﹣1,当x=﹣1时,y=a﹣b+c,顶点在N处时,y=a﹣b+c取得最小值,顶点在N处,抛物线的表达式为:y=﹣(x﹣3)2+1,当x=﹣1时,y=a﹣b+c=﹣(﹣1﹣3)2+1=﹣15,故答案为﹣15.【点评】本题考查的是二次函数知识的综合运用,本题的核心是确定顶点在M、N处函数表达式,其中函数的a值始终不变.16.【分析】连接OC.设CD交PE于点K,连接OK.求出OK,OP的值,利用三角形的三边关系即可解决问题.【解答】解:连接OC.设CD交PE于点K,连接OK.∵四边形PCED是平行四边形,∴EK=PK,CK=DK,∴OK⊥CD,在Rt△COK中,∵OC=5,CK=3,∴OK==4,∵OP=OB+PB=6,∴6﹣4≤PK≤6+4,∴2≤PK≤10,∴PK的最小值为2,最大值为10,∵PE=2PK,∴PE的最小值为4,最大值为20,∴线段PE长的最大值与最小值的积等于80.故答案为80.【点评】本题考查垂径定理,勾股定理,三角形的三边关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三.解答题(共8小题,满分80分)17.【分析】本题涉及乘方、绝对值、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=9+﹣2﹣2=7﹣.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.【分析】先根据分式混合运算顺序和运算法则化简原式,再由分式有意义的条件选取合适的x的值代入计算可得.【解答】解:原式=•﹣=﹣==﹣,当x=2时,原式=﹣.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.19.【分析】(1)连接OD,如图,由切线的性质得到OD⊥BC,则OD∥AC,根据平行线的性质得到∠2=∠ODA,加上∠ODA=∠1,所以∠1=∠2;(2)设⊙O的半径为r,在Rt△OBD中利用勾股定理得到r2+42=(r+2)2,然后解方程即可.【解答】(1)证明:连接OD,如图,∵BC为切线,∴OD⊥BC,∵∠C=90°,∴OD∥AC,∴∠2=∠ODA,∵OA=OD,∴∠ODA=∠1,∴∠1=∠2;(2)解:设⊙O的半径为r,则OD=OE=r,在Rt△OBD中,r2+42=(r+2)2,解得r=3,即⊙O的半径为3.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了勾股定理.20.【分析】设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x万人,根据2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时列出分式方程,求出答案即可.【解答】解:设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x万人,由题意得,解得x=6,经检验x=6是分式方程的解,答:2017年每小时客运量24万人.【点评】本题考查了分式方程的应用;解这类问题时要注意分析题中的等量关系,由时间关系列出方程是解决问题的关键.21.【分析】(1)结合两个统计图,根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,即可得出总人数;(2)利用科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,即可得出m的值;(3)根据圆心角计算公式,即可得到艺术类读物所在扇形的圆心角;(4)根据喜欢其他类读物人数所占的百分比,即可估计6000册中其他读物的数量.【解答】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得8000×=1200(册).答:学校购买其他类读物1200册比较合理.【点评】此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题关键.22.【分析】(1)如图2中,延长NP交BM的延长线于G.只要证明△PNC≌△PGB,推出PN=PG,再根据直角三角形斜边中线定理即可证明.(2)结论:PM=PN.延长NP交BM于G,证明方法类似(1).(3)如图4中,延长NP交BM于G.先证明△EAN≌△CAM,推出EN=AM,AN=CM,再证明△ENP≌△CGP,推出EN=CG=AM,PN=PG,因为AN=CM,所以MG=MN,即可证明PM⊥PN.【解答】(1)证明:如图2中,延长NP交BM的延长线于G.∵BM⊥AM,CN⊥AM,∴BG∥CN,∴∠PCN=∠PBG,在△PNC和△PGB中,,∴△PNC≌△PGB,∴PN=PG,∵∠NMG=90°,∴PM=PN=PG.(2)结论:PM=PN.如图3中,延长NP交BM于G.∵BM⊥AM,CN⊥AM,∴BM∥CN,∴∠PCN=∠PBG,在△PNC和△PGB中,,∴△PNC≌△PGB,∴PN=PG,∵∠NMG=90°,∴PM=PN=PG.(3)如图4中,延长NP交BM于G.∵∠EAN+∠CAM=90°,∠CAM+∠ACM=90°,∴∠EAN=∠ACM,在△EAN和△CAM中,,∴△EAN≌△CAM,∴EN=AM,AN=CM,∴∠ENP=∠CGP,在△ENP和△CGP中,,∴△ENP≌△CGP,∴EN=CG=AM,PN=PG,∵AN=CM,∴MG=MN,∴PM⊥PN.【点评】本题考查几何变换综合题、直角三角形斜边中线性质、全等三角形的判定和性质、平行线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.23.【分析】(1)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),得BD=MF,△BAD≌△MAF,推出BD=MF,∠ADB=∠AFM=30°,进而可得∠DNM的大小.(2)分两种情形讨论①当AK=FK时,②当AF=FK时,根据旋转的性质得出结论.(3)求平移的距离是A2A的长度.在矩形PNA2A中,A2A=PN,只要求出PN的长度就行.用△DPN∽△DAB得出对应线段成比例,即可得到A2A的大小.【解答】解:(1)结论:BD=MF,BD⊥MF.理由:如图1,延长FM交BD于点N,由题意得:△BAD≌△MAF.∴BD=MF,∠ADB=∠AFM.又∵∠DMN=∠AMF,∴∠ADB+∠DMN=∠AFM+∠AMF=90°,∴∠DNM=90°,∴BD⊥MF.①当AK=FK时,∠KAF=∠F=30°,则∠BAB1=180°﹣∠B1AD1﹣∠KAF=180°﹣90°﹣30°=60°,即β=60°;②当AF=FK时,∠FAK=(180°﹣∠F)=75°,∴∠BAB1=90°﹣∠FAK=15°,即β=15°;综上所述,β的度数为60°或15°;(3)如图3,由题意得矩形PNA2A.设A2A=x,则PN=x,在Rt△A2M2F2中,∵F2M2=FM=16,∠F=∠ADB=30°,∴A2M2=8,A2F2=8,∴AF2=8﹣x.∵∠PAF2=90°,∠PF2A=30°,∴AP=AF2•tan30°=8﹣x,∴PD=AD﹣AP=8﹣8+x.∵NP∥AB,∴∠DNP=∠B.∵∠D=∠D,∴△DPN∽△DAB,∴=,∴=,解得x=12﹣4,即A2A=12﹣4,∴平移的距离是(12﹣4)cm.【点评】本题属于四边形综合题,主要考查了旋转的性质,相似三角形的判定与性质,勾股定理的运用,等腰三角形的性质的运用运用.在利用相似三角形的性质时注意使用相等线段的代换以及注意分类思想的运用.24.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD,则可知CD∥x轴,由A、F的坐标可知F、A到CD的距离,利用三角形面积公式可求得△ACD和△FCD的面积,则可求得四边形ACFD的面积;②由题意可知点A处不可能是直角,则有∠ADQ =90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD解析式,则可求出直线DQ解析式,联立直线DQ和抛物线解析式则可求得Q点坐标;当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,则可用t表示出k′,设直线DQ解析式为y=k2x+b2,同理可表示出k2,由AQ⊥DQ则可得到关于t的方程,可求得t的值,即可求得Q点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x轴,∵A(﹣1,0),∴S四边形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;②∵点P在线段AB上,∴∠DAQ不可能为直角,∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°,i.当∠ADQ=90°时,则DQ⊥AD,∵A(﹣1,0),D(2,3),∴直线AD解析式为y=x+1,∴可设直线DQ解析式为y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直线DQ解析式为y=﹣x+5,联立直线DQ和抛物线解析式可得,解得或,∴Q(1,4);ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=﹣(t﹣3),设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t,∵AQ⊥DQ,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=,当t=时,﹣t2+2t+3=,当t=时,﹣t2+2t+3=,∴Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

2020年浙江省台州市中考数学仿真模拟试卷解析版

2020年浙江省台州市中考数学仿真模拟试卷解析版

2020年浙江省台州市中考数学仿真模拟试卷一、选择题(本题有10小题,每小题4分,共40分)1.(4分)﹣2018的倒数是()A.2018B.﹣C.D.﹣20182.(4分)在以下四个标志中,是轴对称图形的是()A.B.C.D.3.(4分)如图是由4 个相同的正方体组成的一个立体图形,它的俯视图为()A.B.C.D.4.(4分)下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1C.(3m2)3=9m6D.2a3•a4=2a75.(4分)要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.方差B.平均数C.中位数D.众数6.(4分)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°7.(4分)已知有理数a、b、c在数轴上对应的点如图所示,则下列结论正确的是()A.c+b>a+b B.cb<ab C.﹣c+a>﹣b+a D.ac>ab8.(4分)以菱形ABCD的两条对角线所在的直线为坐标轴,建立平面直角坐标系,点A的坐标为(2,0).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2﹣8x+16B.y=x2+8x+16C.y=x2+4D.y=x2﹣49.(4分)如图,在矩形ABCD中,点O为对角线的交点,点E为CD上一点,沿BE折叠,点C恰好与点O重合,点G为BD上的一动点,则EG+CG的最小值m与BC的数量关系是()A.m=BC B.m=BC C.m=BC D.2m=BC 10.(4分)把所有正偶数从小到大排列,并按如下规律分组:(2),(4,6,8),(10,12,14,16,18),(20,22,24,26,28,30,32),…,现用等式A M=(i,j)表示正偶数M是第i组第j个数(从左往右数),如A8=(2,3),则A2018=()A.(32,25)B.(32,48)C.(45,39)D.(45,77)二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:x2y+y=.12.(5分)如图,有一个正六边形图片,每组平行的对边距离为3米,点A是正六边形的一个顶点,现点A与数轴的原点O重合,工人将图片沿数轴正方向滚动一周,点A恰好落在数轴点A′上,则点A′对应的实数是.13.(5分)甲、乙、丙3人站成一排合影留念,甲站在中间的概率为.14.(5分)已知直线y1=x﹣1与双曲线y2=(k>0)在第一象限内交于点P(5,4),则当0<y1<y2时,自变量x的取值范围是.15.(5分)已知﹣2是三次方程x3+bx+c=0的唯一实数根,求c的取值范围.下面是小丽的解法:解:因为﹣2是三次方程x3+bx+c=0的唯一实数根,所以(x+2)(x2+mx+n)=x3+bx+c 可得m=﹣2,n=c.再由△=m2﹣4n<0.得出c>2.根据小丽的解法,则b的取值范围是.16.(5分)如图,在Rt△ABC中,∠ABC=90°,∠C=30°,点D是线段BC上的动点,将线段AD绕点A顺时针旋转60°至AD',连接BD'.若AB=2cm,则BD'的最小值为.三、解答题(本题有8小题,第17-20题每小题8分,第21题10分,第22、23题每小题8分,第24题14分,共80分)17.(8分)计算:|1﹣|+(π﹣2018)0﹣2sin60°18.(8分)先化简:(﹣)÷,再从0,﹣2,2,+2中选取一个适当的数代入求值.19.(8分)如图,AB是⊙O的直径,点C是圆上一点,连接CA、CB,过点O作弦BC的垂线,交于点D,连接AD.(1)求证:∠CAD=∠BAD;(2)若⊙O的半径为1,∠B=50°,求的长.20.(8分)为了方便宣传,让全校师生及时了解学校相关信息,学校在教学楼前面的空地上安装了一块LED电子显示屏(如图),已知电子显示屏的立柱(垂直于地面)AB高度是 2.2 米,从侧面P点测得显示屏顶端C点和底端B点的仰角分别53°和45°.求LED电子显示屏的宽度BC的长.(结果精确到0.1m,参考数据sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).21.(10分)某校开展课外活动,分音乐、体育、美术、制作四个活动项目,随机抽取部分学生对其选择参加的活动项目进行调查统计,制成了两幅不完整的统计图.请根据上述统计图提供的信息,完成下列问题:(1)这次抽查的样本容量是;(2)请补全上述条形统计图,并求出扇形图中“美术”所占的圆心角度数;(3)若该校有2000名学生,请你用此样本估计参加“艺术”类活动项目(“艺术”类活动包括“音乐”和“美术”两个项目)的学生人数约为多少人.22.(12分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的计价规则:若车辆以平均速度v千米/时行驶了s千米,则打车费用为(ps+60q⋅)元(不足9元按9元计价).当某车以60千米/时的速度行驶8千米时,该打车方式的付费为9.6元;当以50千米/时的速度行驶10千米时,该打车方式付费为12.4元.(1)求p、q的值;(2)若该车行驶15分钟时费用为17元,求该车的平均速度.23.(12分)定义一种新运算:A*B=,例:2*3=3﹣2=1,(﹣2)*3=3﹣(﹣2)=5.(1)解不等式:2*(3x+1)>10;(2)若y=x*x2,回答下列问题:①求函数解析式,并指出x的取值范围;②讨论函数y=x*x2与y=x*(x﹣a)(a≥0)的图象的交点个数.24.(14分)如图1,在正方形ABCD中,E为AB的中点,FE⊥AB,交CD于点F,点P 在直线EF上移动,连接PC、P A,回答下列问题:(1)如图2,当点P在E的左侧,且∠P AE=60°时,连接BD,交直线PC于点M,求∠DMC的度数;(请完成下列求解过程)解:连接PB.∵FE⊥AB,E为AB的中点,∴P A=PB,∵∠P AE=60°,∴△APB是三角形,∵四边形ABCD是正方形,∴PB=BC=AB,且∠DAB=∠ABC=90°,∠DBC的度数是,∴∠PBC=150°,∴∠PCB的度数是,∴∠DMC=∠PCB+∠DBC=.(2)如图3,在(1)的条件下,点P关于AB的对称点为点P',连结CP'并延长交BD 于点M'.求证:△MCM'是等边三角形;(3)直线BD与直线EF、直线PC分别相交于点O和点M,若正方形的边长为2,是否存在点P,使△PMO的面积为1?若存在,求出OP的长度;若不存在,请说明理由.参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分)1.(4分)﹣2018的倒数是()A.2018B.﹣C.D.﹣2018【分析】直接利用倒数的定义进而分析得出答案.【解答】解:﹣2018的倒数是:﹣.故选:B.2.(4分)在以下四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选:A.3.(4分)如图是由4 个相同的正方体组成的一个立体图形,它的俯视图为()A.B.C.D.【分析】根据俯视图是从上边看得到的图形,可得答案.【解答】解:从上边看从上边看有三列,每一列是一个小正方形,故选:D.4.(4分)下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1C.(3m2)3=9m6D.2a3•a4=2a7【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=m4,不符合题意;B、原式=x2+2x+1,不符合题意;C、原式=27m6,不符合题意;D、原式=2a7,符合题意,故选:D.5.(4分)要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.方差B.平均数C.中位数D.众数【分析】根据方差的意义:方差是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.标准差是方差的平方根,也能反映数据的波动性;故要判断他的数学成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的方差;【解答】解:方差是衡量波动大小的量,方差越小则波动越小,稳定性也越好.故选:A.6.(4分)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,再根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选:A.7.(4分)已知有理数a、b、c在数轴上对应的点如图所示,则下列结论正确的是()A.c+b>a+b B.cb<ab C.﹣c+a>﹣b+a D.ac>ab【分析】结合数轴中a,b,c的位置,判断其正负性和绝对值的大小,以此判断各选项的对错.【解答】解:由数轴上各点的位置判断:c<b<0<a,|b|<|a|<|c|,A.c+b<0,a+b>0,所以c+b<a+b,故该选项错误;B.c,b同号,所以cb>0,同理,ab<0,所以cb<ab,故该选项错误;C.﹣c>0,﹣b>0,a>0,因为|c|>|b|,所以﹣c>﹣b,不等式两边同时加a,不等号方向不变,故该选项正确;D.c<b,所以不等式两边同时乘以正数a,不等号的方向不变,故该选项错误;故选:C.8.(4分)以菱形ABCD的两条对角线所在的直线为坐标轴,建立平面直角坐标系,点A的坐标为(2,0).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2﹣8x+16B.y=x2+8x+16C.y=x2+4D.y=x2﹣4【分析】利用菱形的性质结合已知得出抛物线平移距离进而得出答案.【解答】解:∵以菱形ABCD的两条对角线所在的直线为坐标轴,建立平面直角坐标系,点A的坐标为(2,0),∴C点坐标为:(﹣2,0),∵抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,∴抛物线向左平移了4个单位长度,∴该抛物线的函数表达式变为:y=(x+4)2=x2+8x+16.故选:B.9.(4分)如图,在矩形ABCD中,点O为对角线的交点,点E为CD上一点,沿BE折叠,点C恰好与点O重合,点G为BD上的一动点,则EG+CG的最小值m与BC的数量关系是()A.m=BC B.m=BC C.m=BC D.2m=BC【分析】△OBC是等边三角形,延长EO交AB于K,连接CK交BD于G,连接GE,由题意E、K关于BD对称,推出GE+GC=GK+GC,当K、G、C共线时,GE+GC的值最小,最小值为KC的长;【解答】解:如图,由题意∠BOE=∠BCE=90°,OB=BC=OC,∴△OBC是等边三角形,延长EO交AB于K,连接CK交BD于G,连接GE.由题意E、K关于BD对称,∴GE+GC=GK+GC,∴当K、G、C共线时,GE+GC的值最小,最小值为KC的长,设BC=a,CK=m,在Rt△BOK中,∵∠KBO=30°,OB=a,∴BK=OB÷cos30°=a,在Rt△CBK中,∵BC2+BK2=CK2,∴a2+(a)2=m2,∴3m2=7a2,∴m=a.故选:C.10.(4分)把所有正偶数从小到大排列,并按如下规律分组:(2),(4,6,8),(10,12,14,16,18),(20,22,24,26,28,30,32),…,现用等式A M=(i,j)表示正偶数M是第i组第j个数(从左往右数),如A8=(2,3),则A2018=()A.(32,25)B.(32,48)C.(45,39)D.(45,77)【分析】先计算出2018是第1009个数,然后判断第1009个数在第几组,进一步判断是这一组的第几个数即可.【解答】解:2018是第1009个数,设2018在第n组,则1+3+5+7+(2n﹣1)=×2n×n=n2,当n=31时,n2=961,当n=32时,n2=1024,故第1009个数在第32组,第32组第一个数是961×2+2=1924,则2018是第+1=48个数,故A2018=(32,48).故选:B.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:x2y+y=y(x2+1).【分析】直接提公因式y即可.【解答】解:原式=y(x2+1),故答案为:y(x2+1).12.(5分)如图,有一个正六边形图片,每组平行的对边距离为3米,点A是正六边形的一个顶点,现点A与数轴的原点O重合,工人将图片沿数轴正方向滚动一周,点A恰好落在数轴点A′上,则点A′对应的实数是.【分析】如图作BH⊥OC于H.解直角三角形求出正六边形的边长即可解决问题;【解答】解:如图作BH⊥OC于H.∵BC=BO,BH⊥OC,∴CH=HO=,在Rt△CBH中,∵cos30°=,∴CH=,由题意OA′=6BC=6,故答案为6.13.(5分)甲、乙、丙3人站成一排合影留念,甲站在中间的概率为.【分析】画树状图展示所有6种等可能的结果数,再找出甲站在中间的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以甲站在中间的概率==,故答案为:.14.(5分)已知直线y1=x﹣1与双曲线y2=(k>0)在第一象限内交于点P(5,4),则当0<y1<y2时,自变量x的取值范围是1<x<5.【分析】依据直线y1=x﹣1与x轴的交点为(1,0),点P为(5,4),可得当0<x<5时,反比例函数图象在直线的上方,依据当x>1时,0<y1,即可得到当0<y1<y2时,自变量x的取值范围是1<x<5.【解答】解:当y1=x﹣1=0时,x=1,∴直线y1=x﹣1与x轴的交点为(1,0).根据函数图象可知:当0<x<5时,反比例函数图象在直线的上方,∴当0<x<5时,y1<y2.又∵当x>1时,0<y1,∴当0<y1<y2时,自变量x的取值范围是1<x<5.故答案为:1<x<5.15.(5分)已知﹣2是三次方程x3+bx+c=0的唯一实数根,求c的取值范围.下面是小丽的解法:解:因为﹣2是三次方程x3+bx+c=0的唯一实数根,所以(x+2)(x2+mx+n)=x3+bx+c 可得m=﹣2,n=c.再由△=m2﹣4n<0.得出c>2.根据小丽的解法,则b的取值范围是b>﹣3.【分析】根据小丽的解法,可知:b=n+2m,且n>﹣1,代入可得b的取值范围.【解答】解:因为﹣2是三次方程x3+bx+c=0的唯一实数根,所以(x+2)(x2+mx+n)=x3+bx+c,x3+mx2+nx+2x2+2mx+2n=x3+bx+c,x3+(m+2)x2+(n+2m)x+2n=x3+bx+c,则,可得m=﹣2,n=c,再由△=m2﹣4n<0,4﹣4n<0,n>1,∴n﹣4>﹣3,∵b=n+2m=n﹣4,∴b>﹣3,故答案为:b>﹣3.16.(5分)如图,在Rt△ABC中,∠ABC=90°,∠C=30°,点D是线段BC上的动点,将线段AD绕点A顺时针旋转60°至AD',连接BD'.若AB=2cm,则BD'的最小值为1.【分析】在AC上截取AE=AB=2,作EF⊥BC于F,如图,先计算出AC=2AB=4,BC =2,∠BAC=60°,则CE=2,再在Rt△CEF中计算出EF=1,FC=,接着证明△ABD′≌△ADE得到DE=BE′,然后利用勾股定理得到DE2=DF2+EF2=(BD﹣)2+1,然后根据二次函数的性质解决问题.【解答】解:在AC上截取AE=AB=2,作EF⊥BC于F,如图,∵∠ABC=90°,∠C=30°,∴AC=2AB=4,BC=AB=2,∠BAC=60°,∴CE=AC﹣AE=2,在Rt△CEF中,EF=CE=1,FC=EF=,∵线段AD绕点A顺时针旋转60°至AD',∴AD=AD′,∠DAD′=60°,∴∠BAD′=∠EAD,在△ABD′和△ADE中,∴△ABD′≌△ADE,∴DE=BE′,在Rt△DEF中,DE2=DF2+EF2=(﹣BD)2+12=(BD﹣)2+1,∴当BD=时,DE2有最小值1,∴BD'的最小值为1.三、解答题(本题有8小题,第17-20题每小题8分,第21题10分,第22、23题每小题8分,第24题14分,共80分)17.(8分)计算:|1﹣|+(π﹣2018)0﹣2sin60°【分析】原式利用零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=﹣1+1﹣2×=0.18.(8分)先化简:(﹣)÷,再从0,﹣2,2,+2中选取一个适当的数代入求值.【分析】根据分式的减法和除法可以化简题目中的式子,再从0,﹣2,2,+2中选取一个使得原分式有意义的值代入即可解答本题.【解答】解:(﹣)÷==2(m﹣2)﹣(m+2)=2m﹣4﹣m﹣2=m﹣6,当m=时,原式=.19.(8分)如图,AB是⊙O的直径,点C是圆上一点,连接CA、CB,过点O作弦BC的垂线,交于点D,连接AD.(1)求证:∠CAD=∠BAD;(2)若⊙O的半径为1,∠B=50°,求的长.【分析】(1)根据圆周角定理证明即可;(2)连接CO,利用弧长公式解答即可.【解答】(1)证明:∵点O是圆心,OD⊥BC,∴,∴∠CAD=∠BAD;(2)连接CO,∵∠B=50°,∴∠AOC=100°,∴的长为:L=.20.(8分)为了方便宣传,让全校师生及时了解学校相关信息,学校在教学楼前面的空地上安装了一块LED电子显示屏(如图),已知电子显示屏的立柱(垂直于地面)AB高度是 2.2 米,从侧面P点测得显示屏顶端C点和底端B点的仰角分别53°和45°.求LED电子显示屏的宽度BC的长.(结果精确到0.1m,参考数据sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).【分析】通过解直角△P AB求得P A的长度,通过解直角△P AC得到AC的长度,则CA=AB+BC,由此求得BC的长度.【解答】解:由题意得CA=P A•tan53°≈2.2×1.33=2.926≈2.93(m)∴CB=CA﹣AB=2.93﹣2.2=0.73≈0.7(m).21.(10分)某校开展课外活动,分音乐、体育、美术、制作四个活动项目,随机抽取部分学生对其选择参加的活动项目进行调查统计,制成了两幅不完整的统计图.请根据上述统计图提供的信息,完成下列问题:(1)这次抽查的样本容量是50;(2)请补全上述条形统计图,并求出扇形图中“美术”所占的圆心角度数;(3)若该校有2000名学生,请你用此样本估计参加“艺术”类活动项目(“艺术”类活动包括“音乐”和“美术”两个项目)的学生人数约为多少人.【分析】(1)根据体育的人数除以占的百分比求出调查的学生总数即可;(2)求出“音乐”与“制作”的人数,补全条形统计图即可;(3)求出音乐与美术的百分比,乘以2000即可得到结果.【解答】解:(1)根据题意得:20÷40%=50;故答案为:50;(2)根据题中的数据得:条形图中“音乐”15人,“制作”5人,如图所示:则“美术”所占的角度数为360°×=72°;(3)参加“艺术”类活动项目的学生有:2000×(+)=1000(人).22.(12分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的计价规则:若车辆以平均速度v千米/时行驶了s千米,则打车费用为(ps+60q⋅)元(不足9元按9元计价).当某车以60千米/时的速度行驶8千米时,该打车方式的付费为9.6元;当以50千米/时的速度行驶10千米时,该打车方式付费为12.4元.(1)求p、q的值;(2)若该车行驶15分钟时费用为17元,求该车的平均速度.【分析】(1)根据题意列出方程组即可求出答案.(2)根据题意列出方程即可求出答案.【解答】(1)由题意得解得;(2)由题意得解得s=14所以该车的平均速度=(km/h).23.(12分)定义一种新运算:A*B=,例:2*3=3﹣2=1,(﹣2)*3=3﹣(﹣2)=5.(1)解不等式:2*(3x+1)>10;(2)若y=x*x2,回答下列问题:①求函数解析式,并指出x的取值范围;②讨论函数y=x*x2与y=x*(x﹣a)(a≥0)的图象的交点个数.【分析】(1)根据新定义解答即可;(2)①根据新定义解答即可;②分情况讨论即可.【解答】解:(1)当2≥3x+1,即x≤时,2﹣(3x+1)>10,得x<﹣3,∴x<﹣3,当2<3x+1,即x>时,(3x+1)﹣2>10,得x>,∴x>.(2)①,②当a=0时,两图象有2个交点;当0<a<时,两图象有4个交点;当a=时,两图象有3个交点;当a>时,两图象有2个交点.24.(14分)如图1,在正方形ABCD中,E为AB的中点,FE⊥AB,交CD于点F,点P 在直线EF上移动,连接PC、P A,回答下列问题:(1)如图2,当点P在E的左侧,且∠P AE=60°时,连接BD,交直线PC于点M,求∠DMC的度数;(请完成下列求解过程)解:连接PB.∵FE⊥AB,E为AB的中点,∴P A=PB,∵∠P AE=60°,∴△APB是①等边三角形三角形,∵四边形ABCD是正方形,∴PB=BC=AB,且∠DAB=∠ABC=90°,∠DBC的度数是②45°,∴∠PBC=150°,∴∠PCB的度数是③15°,∴∠DMC=∠PCB+∠DBC=④60°.(2)如图3,在(1)的条件下,点P关于AB的对称点为点P',连结CP'并延长交BD 于点M'.求证:△MCM'是等边三角形;(3)直线BD与直线EF、直线PC分别相交于点O和点M,若正方形的边长为2,是否存在点P,使△PMO的面积为1?若存在,求出OP的长度;若不存在,请说明理由.【分析】(1)如答图1,连接PB.构造等边△APB,结合正方形的性质和三角形外角定理求得∠DMC的度数;(2)如答图2,连接BP',由题意可得△ABP'是等边三角形,由对称的性质、等边三角形的性质和等边三角形的判定定理推知结论;(3)需要分类讨论:结合题意作出四种不同的图形,利用相似三角形的判定与性质解答.【解答】(1)解:如答图1,连接PB.∵FE⊥AB,E为AB的中点,∴P A=PB,∵∠P AE=60°,∴△APB是等边三角形,∵四边形ABCD是正方形,∴PB=BC=AB,且∠DAB=∠ABC=90°,∠DBC=45°,∴∠PBC=150°,∴∠PCB=15°,∴∠DMC=∠PCB+∠DBC=60°.故答案是:①等边三角形,②45°,③15°,④60°.(2)如答图2,连接BP',由题意可得△ABP'是等边三角形,∠P'BC=30°,可得:∠BC P'=75°,∵∠PCB=15°,∴∠PC P'=60°,∵∠PC P'=60°,∴△MCM'是等边三角形;(3)存在.设PO为x,过点M作MH⊥OP,①如答图3,当点P在点O左侧时:∵△BCM∽△OPM,∴MH=∴S△PMO=解得:x1=1+,x2=1﹣(舍去);②如答图4,由△BCM∽△OPM可得:△OPM的高为,∴S△PMO=解得:x1=﹣1+>1(舍去),x2=﹣1﹣(舍去)点P不存在;③如图③,由△BCM∽△OPM可得:△OPM的高为,∴S△PMO=解得:x1=﹣1+,x2=﹣1﹣(舍去)④如图④,由△BCM∽△OPM可得:△OPM的高为,∴S△PMO=方程无解.综上所述,存在点P,使△PMO的面积为1,此时OP的长为1+和﹣1+.。

2020年浙江省台州市中考数学必刷模拟试卷附解析

2020年浙江省台州市中考数学必刷模拟试卷附解析

2020年浙江省台州市中考数学必刷模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1. 某人沿着倾斜角为α的斜坡前进了c 米,则他上升的高度为( ) A . csin αB .ctan αC . ccos αD .tan cα2.下列说法正确的有( )①位似图形一定是相似图形;②相似图形一定是位似图形;③两个位似图形若全等,则位似中心在两个图形之间;④若五边形ABCDE 与五边形 A ′B ′C ′D ′E ′位似,则其中△ABC 与△A ′B ′C ′也是位似的,且位似比相等. A .1 个B .2 个C .3 个D .4 个3.下列四个点中,可能在反比例函数y =kx (k>0)的图象上的点是( ) A .(2,-3)B .(-4,-5)C .(-3,2)D .(2,0)4.下面这几个车标中,是中心对称图形而不是轴对称图形的共有( )A .1个B .2个C .3个D .4个 5.平行四边形中一边的长为10cm ,那么它的两条对角线的长度可能是( ) A .4cm 和6cm B .20cm 和30cm C .6cm 和8cmD .8cm 和12cm6.将方程x 2+4x +1=0配方后,原方程变形为( )A .(x +2)2=3B .(x +4)2=3C .(x +2)2=-3D .(x +2)2=-57.如图,在四边形ABCD 中,AD ∥/BC ,AB ∥DC ,BD=CD ,∠BCE=15°,CE ⊥BD 于E ,则∠A 的度教为( ) A . 75°B . 70°C . 65°D . 60°8.如果2m ,m ,1m -这三个实数在数轴上所对应的点从左到右依次排列,那么m 的取值范围是( ) A .0m <B .12m >C .0m >D .102m <<9.如图所示,△ABC 平移后得到△DEF ,若∠BNF=100°,则∠DEF 的度数是( )A.120°B.100°C.80°D.50°10.温度上升了3-℃后,又下降2℃,这一过程的温度变化是()A.上升1℃B.上升5℃C.下降1℃D.下降5℃11.求0.0529的正确按键顺序为()A.B.C.D.12.近似数0.07030的有效数字和精确度分别是()A.4个,精确到万分位 B.3个,精确到万分位C.4个,精确到十万分位D.3个,精确到十万分位13.两个不为零的有理数的和等于 0,那么它们的商是()A.正数B.-1 C.0 D.1±14.数轴上A、B两点分别是-8. 2,365,则A、B两点间的距离为()A.4145B.2145C.-1.6 D.1.6二、填空题15.太阳光形成的投影是,手电筒、台灯发出的光线形成的投影是.16.如图. ⊙O的两条弦AF、BE的延长线交于C点,∠ACB的平分线CD过点O,请直接写出图中一对相等的线段: .17.将半径为3的半圆围成一个圆锥的侧面,此圆锥底面半径为.18.在 Rt△ABC 中,∠C =90°, a, b, c 分别是∠A,∠B,∠C 对应的边. 若a :b=1:3,则b:c= ,若2a=:3:5b c则c= .19.如图,一次函数y=x+2的图象经过点M(a ,b)和N(c ,d),则a(c-d)-b(c-d)的值为 .20. 写出一个二元一次方程组,使它的解为23x y =⎧⎨=-⎩,则二元一次方程组为 . 21.利用平方差公式直接写出结果:5031×4932=____________. 22.如果正数m 的平方根为1x +和3x -,则m 的值是 .三、解答题23.如图,已知抛物线P :y =ax 2+bx +c (a ≠0) 与x 轴交于A 、B 两点(点A 在x 轴的正半轴上),与y 轴交于点C ,矩形DEFG 的一条边DE 在线段AB 上,顶点F 、G 分别在线段BC 、AC 上,抛物线P 上部分点的横坐标对应的纵坐标如下:x … -3 -2 1 2 … y…-52 -4-52…(1) 求A 、B 、C 三点的坐标;(2) 若点D 的坐标为(m ,0),矩形DEFG 的面积为S ,求S 与m 的函数关系,并指出m 的取值范围;(3) 当矩形DEFG 的面积S 取最大值时,连接DF 并延长至点M ,使FM =k ·DF ,若点M 不在抛物线P 上,求k 的取值范围.24.如图所示,△ABC中,AB=a,∠A=30°,∠B=45°,以直线 AB 为轴旋转一周得一几何体,则以 AC 为母线的圆锥的侧面积与以 BC 为母线的圆锥的侧面积之比是多少?25.在下面△ABC中,用尺规作出AB边上的高及∠B的平分线(不写作法,保留作图痕迹)AB C26.如下图在10×10的正方形网格中,每个小正方形的边长均为1个单位,将△ABC作相似变换得到△A1B1C1,使得边长扩大2倍,再将△A1B1C1绕点C1顺时针旋转900,得到△A2B2C1请你画出△A1B1C1和△A2B2C1 (不要求写出画法),并写出△A2B2C1的面积.27.如图,ΔABC的两条高AD、BE相交于H,且AD=BD,试说明下列结论成立的理由.(1)∠DBH=∠DAC;(2)ΔBDH≌ΔADC.28.解下列分式方程:(1)231x x=+;(2)22322xx x--=++;(3)3133xx x--=--29.某公司用白铁皮做盒子,每张铁皮可生产12 个盒身或 18 个盒盖,用 7 张铁皮,怎样安排生产盒身和盒盖的铁皮张数,才能使生产的盒身与盒盖配套 (一张铁皮只能生产一种产品,一个盒身配两个盒盖)?若用x 表示安排生产盒身的铁皮张数,y 表示生产盒盖的铁皮张数,请根据问题中的条件列出关于 x,y 的方程组,并用尝试列表的方法求其解.30.如图中AB=8 cm,AD=5 cm,BC=5 cm,求CD的长.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.B4.B5.B6.A7.A8.A9.C10.D11.D12.C13.B14.A二、填空题 15.平行投影,中心投影16.AF=BE ,AC=BC ,CF=CE17. 3218.19.420.略21.982499 22.4三、解答题 23.⑴A (2,0),B (-4,0),C (0,-4);⑵S DEFG =12m -6m 2 (0<m <2) ⑶9615+-≠k 且k >0. 24.25.略26.略.27.(1)ΔABC的两条高AD、BE相交于H,则∠BDH=∠AEH=90 º,由于∠BHD=∠AHE,则∠DBH=∠DAC;(2)AD为ΔABC的高,则∠BDH=∠ADC=90 º,ΔBDH≌ΔADC (ASA)..找出下图中每个轴对称图形的对称轴,并画出来.略.28.(1)2x=;(2)3x=-;(3)无解29.由题意,得方程组721218x yx y+=⎧⎨⨯=⎩,用列表尝试可得34xy=⎧⎨=⎩30.2 cm。

2020年浙江省台州市中考数学第四次模拟考试试卷附解析

2020年浙江省台州市中考数学第四次模拟考试试卷附解析

2020年浙江省台州市中考数学第四次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列函数中,当 x>0 时,y 随x 的增大而减小的是()A.y x=B.1yx=C.1yx=-D.21y x=-2.将方程2345x x=-化为一般形式后,二次项系数、一次项系数、常数项分别为()A. 3,4,-5 B. 3,-4, -5 C.3,-4,5 D. 4 , - 3 , 53.若式子5x+在实数范围内有意义,则x的取值范围是()A.x>-5 B.x<-5 C.x≠-5 D.x≥-54.在“我为震灾献爱心”的捐赠活动中,某班40位同学捐款金额统计如下:金额(元)20303550100学生数(人)3751510则在这次活动中,该班同学捐款金额的众数是()A.30元B.35元C.50元D.100元5.某射击运动员连续射靶10次,其中2次命中10.2环,2次命中10.1环,6次命中10环,则下列说法中,正确的是()A.命中环数的平均数是l0.1环B.命中环数的中位数是l0.1环C.命中环数的众数是l0.1环D.命中环数的中位数和众数都是l0环6.如图所示,是由一些相同的小立方体构成的几何体的三视图,这些相同小立方体的个数是()A.3个B.4个C.5个D.6个7.下列运算中,正确的是()A .23467()x y x y =B .743x x x =⋅C .2213()()x y x y xy --÷=D .21124-⎛⎫= ⎪⎝⎭8.如图所示,是轴对称图形的个数有( )A .4个B .3个C .2个D .1个9.x 是一个两位数,y 是一个一位数,如果把y 放在x 的左边,那么所成的三位数表示为( ) A .yxB .100y x +C .10x y +D .100x y +10.若有理数0a b c ++<,则( ) A .三个数中至少有两个负数 B .三个数中有且只有一个负数 C .三个数中最少有一个负数 D .三个数中有两个负数 11.下列计算正确的是( ) A .(2|2--=B .(3)3--=-C .|4|4=+D .|5|5--=-二、填空题12.小明托人从商店购买铅笔和钢笔,他喜欢的是红色或绿色铅笔和白色钢笔,而小明没有向捎带的人说明要购买什么颜色的,商店有红、蓝、黄、绿四种颜色的铅笔和黑、白两种颜色的钢笔. 那么那个人带回的铅笔和钢笔正好都是小明喜欢的颜色的概率是 . 13.一圆拱的跨度为20cm ,拱高5cm ,则圆拱的直径为 cm.14.梯形ABCD 中,AD ∥BC ,∠B=60°,∠C=75°,那么A= ,∠D= .15.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式 .16.若代数式242x x --的值为 0,则x = .17.在ΔABC 中, ∠C=90°,BD 平分∠ABC,交AC 于D,若AB=5,CD=2, 则ΔABD 的面积是 .18.如图所示,点P 关于OA 、OB 的对称点分别是P 1,P 2,P 1P 2分别交OA ,OB 于C ,D 两点, P 1P 2=6 cm ,则△PCD 的周长为 .解答题19.33亿精确到位,有个有效数字,它们是;26.5万精确到位,有个有效数字,它们是.20.地球半径大约是6370 km,用科学记数法表示为 km.21.某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为元时,获得的利润最多.三、解答题22.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上一点,且OE⊥CD,垂足为F,EF=90m,求这段弯路的半径.23.如图,⊙O为四边形ABCD的外接圆,圆心O在AD上,OC∥AB.(1)求证:AC平分DAB;(2)若AC=8,⌒AC:⌒CD=2:1,试求⊙O的半径;(3)若点B为⌒AC的中点,试判断四边形ABCD的形状.DAO24.某中学图书馆将图书分为自然科学、文学艺术、社会百科、数学四类. 在“读书月”活动期间,为了解图书的借阅情况,图书管理员对本月各类图书的借阅量进行统计,图①和图②是图书管理员通过采集数据后,绘制的频数分布表和频数分布直方图的部分内容. 请你根据图表中提供的信息,解答以下问题:(1)请完成图①的频率分布表;(2)补全图②的频数分布直方图;(3)近期该学校准备采购 1 万册图书,如果要保持各类图书的频率不变,请你估算“数学”类图书应采购多少册较合适?25.如图,已知四边形ABCD,四边形AECF都为菱形,取BE中点M,DF中点N.求证:四边形AMCN为菱形.26.如图,已知∠B=∠AEF=40°,∠C=58°,求∠BAC与∠F的度数.27.解下列方程:(1)28)32(72=-x (2)039922=--y y(3)x x 52122=+; (4))1(332+=+x x28.已知不等式5(2)86(1)7x x -+<-+最小整数解为方程24x ax -=的的解,求a 的值.29.解下列方程:(1)43(202)10x x --= (2)3423y y --=+230.某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月l2元,租碟费每张0.4元.小彬经常来该店租碟,若每月租碟数量为x 张. (1)写出零星租碟方式应付金额y(元)与租碟数量x(张)之间的关系式; (2)写出会员卡租碟方式应付金额y(元)与租碟数量x(张)之间的关系式; (3)求小彬租碟多少张时,两种付费相同.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.D4.C5.D6.B7.B8.B9.D10.C11.D二、填空题12.0.2513.2514.120°,l05°15.a2-b2=(a+b)(a-b)16.-217.518.6 cm19.亿两;3,3;千,三;2,6,5 20.36.3701021.70三、解答题22.545m.23.(1)略;(2)338;(3)等腰梯形.24.(1)0.25,100 (2)略 (3)500册25.连结AC交BD于O,证A0=C0,MO=NO 26.∠BAC=82°,∠F= 42°27.⑴21,2521==x x ;⑵19,2121-==x x ;⑶235,23521+=-=x x ; ⑷ 3,021==x x .28.a=429.(1)7x = (2)1y =30.(1)1y x = (2)2120.4y x =+ (3)20张。

浙江省台州市2019-2020学年中考数学模拟试题(4)含解析

浙江省台州市2019-2020学年中考数学模拟试题(4)含解析

浙江省台州市2019-2020学年中考数学模拟试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .8374y x y x -=⎧⎨-=⎩B .8374y x x y -=⎧⎨-=⎩C .8374x y y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩2.如图,点O′在第一象限,⊙O′与x 轴相切于H 点,与y 轴相交于A (0,2),B (0,8),则点O′的坐标是( )A .(6,4)B .(4,6)C .(5,4)D .(4,5)3.﹣0.2的相反数是( ) A .0.2B .±0.2C .﹣0.2D .24.已知在四边形ABCD 中,AD//BC ,对角线AC 、BD 交于点O ,且AC=BD ,下列四个命题中真命题是( )A .若AB=CD ,则四边形ABCD 一定是等腰梯形;B .若∠DBC=∠ACB ,则四边形ABCD 一定是等腰梯形;C .若AO COOB OD=,则四边形ABCD 一定是矩形; D .若AC ⊥BD 且AO=OD ,则四边形ABCD 一定是正方形.5.计算211a a a ---的结果是( )A .1B .-1C .11a -D .2211+-a a6.某城2014年底已有绿化面积300公顷,经过两年绿化,到2016年底增加到363公顷,设绿化面积平均每年的增长率为x ,由题意所列方程正确的是( ). A .300(1)363x +=B .2300(1)363x +=C .300(12)363x +=D .2300(1)363x -=下列结论中错误的是()成绩(分)30 29 28 26 18 人数(人)32 4 2 1 1 A.该班共有40名学生B.该班学生这次考试成绩的平均数为29.4分C.该班学生这次考试成绩的众数为30分D.该班学生这次考试成绩的中位数为28分8.若反比例函数kyx=的图像经过点1(,2)2A-,则一次函数y kx k=-+与kyx=在同一平面直角坐标系中的大致图像是()A.B.C.D.9.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I为对称轴的交点,如图2,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是()A.18πB.27πC.452πD.45π10.如图,直角坐标平面内有一点(2,4)P,那么OP与x轴正半轴的夹角α的余切值为()A.2 B.12C5D511.如图,A、B为⊙O上两点,D为弧AB的中点,C在弧AD上,且∠ACB=120°,DE⊥BC于E,若AC=DE,则BECE的值为()A.3 B.3C.333+D.31+12.计算(﹣3)﹣(﹣6)的结果等于()A.3 B.﹣3 C.9 D.18二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形的面积之和(即阴影部分)为cm2(结果保留π).14.若实数m、n在数轴上的位置如图所示,则(m+n)(m-n)________ 0,(填“>”、“<”或“=”)15.一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°=33112222⨯+⨯=1.类似地,可以求得sin15°的值是_______.16.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=_______度.17.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,点P、Q分别在边BC、AC上,PQ∥AB,把△PCQ 绕点P旋转得到△PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分∠BAC,则CP的长为_________.数学活动课上,老师出了一道作图问题:“如图,已知直线l和直线l外一点P.用直尺和圆规作直线PQ,使PQ⊥l于点Q.”小艾的作法如下:(1)在直线l上任取点A,以A为圆心,AP长为半径画弧.(2)在直线l上任取点B,以B为圆心,BP长为半径画弧.(3)两弧分别交于点P和点M(4)连接PM,与直线l交于点Q,直线PQ即为所求.老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知点C是∠AOB的边OB上的一点,求作⊙P,使它经过O、C两点,且圆心在∠AOB的平分线上.20.(6分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象.(1)求y与x的函数关系式;(2)直接写出自变量x的取值范围.21.(6分)如图,在平面直角坐标系中,直线l :()0y kx k k =+≠与x 轴,y 轴分别交于A ,B 两点,且点()0,2B ,点P 在y 轴正半轴上运动,过点P 作平行于x 轴的直线y t =.(1)求k 的值和点A 的坐标;(2)当4t =时,直线y t =与直线l 交于点M ,反比例函数()0ny n x=≠的图象经过点M ,求反比例函数的解析式;(3)当4t <时,若直线y t =与直线l 和(2)反比例函数的图象分别交于点C ,D ,当CD 间距离大于等于2时,求t 的取值范围.22.(8分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的35.问该兴趣小组男生、女生各有多少人? 23.(8分)如图,在矩形ABCD 中,AB =3,AD =4,P 沿射线BD 运动,连接AP ,将线段AP 绕点P 顺时针旋转90°得线段PQ .(1)当点Q 落到AD 上时,∠PAB =____°,PA =_____,»AQ长为_____; (2)当AP ⊥BD 时,记此时点P 为P 0,点Q 为Q 0,移动点P 的位置,求∠QQ 0D 的大小; (3)在点P 运动中,当以点Q 为圆心,23BP 为半径的圆与直线BD 相切时,求BP 的长度; (4)点P 在线段BD 上,由B 向D 运动过程(包含B 、D 两点)中,求CQ 的取值范围,直接写出结果.24.(10分)在Rt △ABC 中,∠ACB =90°,BE 平分∠ABC ,D 是边AB 上一点,以BD 为直径的⊙O 经过点E ,且交BC 于点F . (1)求证:AC 是⊙O 的切线;(2)若BF =6,⊙O 的半径为5,求CE 的长.25.(10分)如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.26.(12分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.27.(12分)已知:如图,在半径是4的⊙O中,AB、CD是两条直径,M是OB的中点,CM的延长线交⊙O于点E,且EM>MC,连接DE,15(1)求证:△AMC∽△EMB;(2)求EM的长;(3)求sin∠EOB的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】【分析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程. 【详解】设合伙人数为x 人,物价为y 钱,根据题意得8x-y 3y 7x 4=⎧⎨-=⎩故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程. 2.D 【解析】 【分析】过O'作O'C ⊥AB 于点C ,过O'作O'D ⊥x 轴于点D ,由切线的性质可求得O'D 的长,则可得O'B 的长,由垂径定理可求得CB 的长,在Rt △O'BC 中,由勾股定理可求得O'C 的长,从而可求得O'点坐标. 【详解】如图,过O′作O′C ⊥AB 于点C ,过O′作O′D ⊥x 轴于点D ,连接O′B ,∴AC=BC,∵A(0,2),B(0,8),∴AB=8−2=6,∴AC=BC=3,∴OC=8−3=5,∵⊙O′与x轴相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得=4,∴P点坐标为(4,5),故选:D.【点睛】本题考查了切线的性质,坐标与图形性质,解题的关键是掌握切线的性质和坐标计算. 3.A【解析】【分析】根据相反数的定义进行解答即可.【详解】负数的相反数是它的绝对值,所以﹣0.2的相反数是0.2.故选A.【点睛】本题主要考查相反数的定义,熟练掌握这个知识点是解题关键.4.C【解析】A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;C、因为由AO COBO OD=结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立. 故选C.5.C【解析】【分析】原式通分并利用同分母分式的减法法则计算,即可得到结果.解:()()22111=111a aa aaa a a+-------=2211a aa-+-=11a-,故选:C.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.6.B【解析】【分析】先用含有x的式子表示2015年的绿化面积,进而用含有x的式子表示2016年的绿化面积,根据等式关系列方程即可.【详解】由题意得,绿化面积平均每年的增长率为x,则2015年的绿化面积为300(1+x),2016年的绿化面积为300(1+x)(1+x),经过两年的增长,绿化面积由300公顷变为363公顷.可列出方程:300(1+x)2=363.故选B.【点睛】本题主要考查一元二次方程的应用,找准其中的等式关系式解答此题的关键.7.D【解析】A.∵32+4+2+1+1=40(人),故A正确;B. ∵(30×32+29×4+28×2+26+18)÷40=29.4(分),故B正确;C. ∵成绩是30分的人有32人,最多,故C 正确;D. 该班学生这次考试成绩的中位数为30分,故D错误;8.D【解析】【分析】甶待定系数法可求出函数的解析式为:1yx=-,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象. 【详解】解:由于函数kyx=的图像经过点1,22A⎛⎫-⎪⎝⎭,则有1k,=-∴图象过第二、四象限,∴一次函数y=x-1,∴图象经过第一、三、四象限,故选:D.【点睛】本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;9.B【解析】【分析】先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可. 【详解】如图1中,∵等边△DEF的边长为2π,等边△ABC的边长为3,∴S矩形AGHF=2π×3=6π,由题意知,AB⊥DE,AG⊥AF,∴∠BAG=120°,∴S扇形BAG=2 1203360π⋅=3π,∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;故选B.【点睛】本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边△DEF扫过的图形.10.B【解析】【分析】作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.【详解】过P 作x 轴的垂线,交x 轴于点A ,∵P(2,4),∴OA=2,AP=4,. ∴4tan 22AP OA α=== ∴1cot 2α=. 故选B .【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.11.C【解析】【分析】连接,,CD BD D 为弧AB 的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:120,ACB ADB ∠=∠=o ,CAD CBD ∠=∠在BC 上截取BF AC =,连接DF,则ACD V ≌BFD △,根据全等三角形的性质可得:,CD FD = ,ADC BDF ∠=∠ ,ADC ADF BDF ADF ∠+∠=∠+∠ 即120,CDF ADB ∠=∠=o ,DE BC ⊥根据等腰三角形的性质可得:,CE EF = 30,DCF DFC ∠=∠=o 设,DE x = 则,BF AC x ==3,tan 30DE CE EF x ===o 即可求出BE CE的值. 【详解】如图:连接,,CD BDD 为弧AB 的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:120,ACB ADB ∠=∠=o ,CAD CBD ∠=∠在BC 上截取BF AC =,连接DF,,AC BF CAD FBD AD BD =⎧⎪∠=∠⎨⎪=⎩则ACD V ≌BFD △,,CD FD ∴= ,ADC BDF ∠=∠,ADC ADF BDF ADF ∠+∠=∠+∠即120,CDF ADB ∠=∠=o,DE BC ⊥根据等腰三角形的性质可得:,CE EF = 30,DCF DFC ∠=∠=o设,DE x = 则,BF AC x ==,tan 30DE CE EF ===oBE BF EF CE CE +=== 故选C.【点睛】考查弧,弦之间的关系,全等三角形的判定与性质,等腰三角形的性质,锐角三角函数等,综合性比较强,关键是构造全等三角形.12.A【解析】原式=−3+6=3,故选A二、填空题:(本大题共6个小题,每小题4分,共24分.)13.23π. 【解析】【分析】图中阴影部分的面积就是两个扇形的面积,圆A ,B 的半径为2cm ,则根据扇形面积公式可得阴影面积.【详解】()2260423603603A B πππ∠+∠⨯⨯==(cm 2). 故答案为23π. 考点:1、扇形的面积公式;2、两圆相外切的性质.14.>【解析】【分析】根据数轴可以确定m 、n 的大小关系,根据加法以及减法的法则确定m +n 以及m−n 的符号,可得结果.【详解】解:根据题意得:m <1<n ,且|m|>|n|,∴m +n <1,m−n <1,∴(m +n )(m−n )>1.故答案为>.【点睛】本题考查了整式的加减和数轴,熟练掌握运算法则是解题的关键.15. 【解析】试题分析:sin15°=sin (60°﹣45°)=sin60°•cos45°﹣cos60°•sin45°=12222-⨯=4.故答考点:特殊角的三角函数值;新定义.16.270【解析】【分析】根据三角形的内角和与平角定义可求解.【详解】解析:如图,根据题意可知∠5=90°,∴ ∠3+∠4=90°,∴ ∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°,故答案为:270度.【点睛】本题主要考查了三角形的内角和定理和内角与外角之间的关系.要会熟练运用内角和定理求角的度数.17.1【解析】【分析】连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=11-4x,故可得出x的值,进而得出结论.【详解】连接AD,∵PQ∥AB,∴∠ADQ=∠DAB,∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=1x,∵AQ=4-4x,∴4-4x=1x,解得x=23,∴CP=3x=1;故答案为:1.【点睛】本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.18.到线段两端距离相等的点在线段的垂直平分线上或两点确定一条直线或sss或全等三角形对应角相等或等腰三角形的三线合一【解析】【分析】从作图方法以及作图结果入手考虑其作图依据..【详解】解:依题意,AP=AM,BP=BM,根据垂直平分线的定义可知PM⊥直线l.因此易知小艾的作图依据是到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.故答案为到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.【点睛】本题主要考查尺规作图,掌握尺规作图的常用方法是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.答案见解析【解析】【分析】首先作出∠AOB的角平分线,再作出OC的垂直平分线,两线的交点就是圆心P,再以P为圆心,PC长为半径画圆即可.【详解】解:如图所示:.【点睛】本题考查基本作图,掌握垂直平分线及角平分线的做法是本题的解题关键..20.(1)y=-2x+31,(2)20≤x≤1【解析】试题分析:(1)根据函数图象经过点(20,300)和点(30,280),利用待定系数法即可求出y 与x 的函数关系式;(2)根据试销期间销售单价不低于成本单价,也不高于每千克1元,结合草莓的成本价即可得出x 的取值范围.试题解析:(1)设y 与x 的函数关系式为y=kx+b ,根据题意,得:2030030280k b k b +=⎧⎨+=⎩ 解得:2340k b =-⎧⎨=⎩∴y 与x 的函数解析式为y=-2x+31,(2) ∵试销期间销售单价不低于成本单价,也不高于每千克1元,且草莓的成本为每千克20元, ∴自变量x 的取值范围是20≤x≤1.21.(1)2k =,()1,0A -;(2)4y x =;t 的取值范围是:02t <≤. 【解析】【分析】(1)把()0,2代入得出k 的值,进而得出A 点坐标;(2)当4t =时,将4y =代入22y x =+,进而得出x 的值,求出M 点坐标得出反比例函数的解析式;(3)可得2CD =,当y t =向下运动但是不超过x 轴时,符合要求,进而得出t 的取值范围.【详解】解:(1)∵直线l :y kx k =+ 经过点()0,2B ,∴2k =,∴22y x =+,∴()1,0A -;(2)当4t =时,将4y =代入22y x =+,得,1x =,∴()1,4M 代入n y x=得,4n =,∴4y x=; (3)当2t =时,()0,2B 即()0,2C ,而()2,2D ,如图,2CD =,当y t =向下运动但是不超过x 轴时,符合要求,∴t 的取值范围是:02t <≤.【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.22.男生有12人,女生有21人.【解析】【分析】设该兴趣小组男生有x 人,女生有y 人,然后再根据:(男生的人数-1)×2-1=女生的人数,(女生的人数-1) ×35=男生的人数 ,列出方程组,再进行求解即可.【详解】设该兴趣小组男生有x 人,女生有y 人, 依题意得:2(1)13(1)5y x x y =--⎧⎪⎨=-⎪⎩, 解得:1221x y =⎧⎨=⎩. 答:该兴趣小组男生有12人,女生有21人.【点睛】本题主要考查了二元一次方程组的应用,解题的关键是明确题中各个量之间的关系,并找出等量关系列出方程组. 23. (1)45,27,62;(2)满足条件的∠QQ 0D 为45°或135°;(3)BP 的长为275或2725;(4)210≤CQ≤7. 【解析】【分析】(1)由已知,可知△APQ为等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的长度;(2)分点Q在BD上方和下方的情况讨论求解即可.(3)分别讨论点Q在BD上方和下方的情况,利用切线性质,在由(2)用BP0表示BP,由射影定理计算即可;(4)由(2)可知,点Q在过点Q o,且与BD夹角为45°的线段EF上运动,有图形可知,当点Q运动到点E 时,CQ最长为7,再由垂线段最短,应用面积法求CQ最小值.【详解】解:(1)如图,过点P做PE⊥AD于点E由已知,AP=PQ,∠APQ=90°∴△APQ为等腰直角三角形∴∠PAQ=∠PAB=45°设PE=x,则AE=x,DE=4﹣x∵PE∥AB∴△DEP∽△DAB∴DEDA=PEAB∴4-x4=3x解得x=12 7∴PA2PE=2 7∴弧AQ的长为14•2π•122762.故答案为45,2762.(2)如图,过点Q做QF⊥BD于点F由∠APQ=90°,∴∠APP0+∠QPD=90°∵∠P0AP+∠APP0=90°∴∠QPD=∠P0AP∵AP=PQ∴△APP0≌△PQF∴AP0=PF,P0P=QF∵AP0=P0Q0∴Q0D=P0P∴QF=FQ0∴∠QQ0D=45°.当点Q在BD的右下方时,同理可得∠PQ0Q=45°,此时∠QQ0D=135°,综上所述,满足条件的∠QQ0D为45°或135°.(3)如图当点Q直线BD上方,当以点Q为圆心,23BP为半径的圆与直线BD相切时过点Q做QF⊥BD于点F,则QF=23BP由(2)可知,PP0=23BP∴BP0=13BP∵AB=3,AD=4 ∴BD=5∵△ABP0∽△DBA ∴AB2=BP0•BD∴9=13BP×5∴BP=27 5同理,当点Q位于BD下方时,可求得BP=27 25故BP的长为275或2725(4)由(2)可知∠QQ0D=45°则如图,点Q在过点Q0,且与BD夹角为45°的线段EF上运动,当点P与点B重合时,点Q与点F重合,此时,CF=4﹣3=1当点P与点D重合时,点Q与点E重合,此时,CE=4+3=7∴EF22CF+CE2217+2过点C做CH⊥EF于点H由面积法可知CH=FC ECEF•52=7210∴CQ的取值范围为:210≤CQ≤7【点睛】本题是几何综合题,考查了三角形全等、勾股定理、切线性质以及三角形相似的相关知识,应用了分类讨论和数形结合的数学思想.24.(1)证明见解析;(2)CE=1.【解析】【分析】(1)根据等角对等边得∠OBE=∠OEB,由角平分线的定义可得∠OBE=∠EBC,从而可得∠OEB=∠EBC,根据内错角相等,两直线平行可得OE∥BC,根据两直线平行,同位角相等可得∠OEA=90°,从而可证AC是⊙O的切线.(2)根据垂径定理可求BH=12BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的长,从而求出CE的长. 【详解】(1)证明:如图,连接OE,∵OB=OE,∴∠OBE=∠OEB,∵ BE平分∠ABC.∴∠OBE=∠EBC,∴∠OEB=∠EBC,∴OE∥BC,∵∠ACB=90°,∴∠OEA=∠ACB=90°,∴ AC是⊙O的切线.(2)解:过O作OH⊥BF,∴BH=12BF=3,四边形OHCE是矩形,∴CE=OH,在Rt△OBH中,BH=3,OB=5,∴OH=22OB OH=1,∴CE=1.【点睛】本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.25.答案见解析【解析】由于AB=AC,那么∠B=∠C,而DE⊥AC,DF⊥AB可知∠BFD=∠CED=90°,又D是BC中点,可知BD=CD,利用AAS可证△BFD≌△CED,从而有DE=DF.26.(1)144°;(2)补图见解析;(3)160人;(4)这个说法不正确,理由见解析.【解析】【详解】试题分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为144°;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×40300=160人;(4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.考点:①条形统计图;②扇形统计图.27.(1)证明见解析;(2)EM=4;(3)sin∠EOB=154.【解析】【分析】(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;(3)过点E作EF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.【详解】(1)证明:连接AC、EB,如图1,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB;(2)解:∵DC是⊙O的直径,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=15,CD=8,且EC为正数,∴EC=7,∵M为OB的中点,∴BM=2,AM=6,∵AM•BM=EM•CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:过点E作EF⊥AB,垂足为点F,如图2,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴=∴sin ∠EOB=4EF OE =. 【点睛】本题考查了圆心角、弧、弦、弦心距的关系与相似三角形的判定与性质,解题的关键是熟练的掌握圆心角、弧、弦、弦心距的关系与相似三角形的判定与性质.。

浙江省台州市2020年中考数学模拟试卷解析版

浙江省台州市2020年中考数学模拟试卷解析版

中考数学模拟试卷题号一二三四总分得分一、选择题(本大题共10小题,共40.0分)1.-|-3|的倒数是( )A. -3B. -C.D. 32.第二届“一带一路”国际合作高峰论坛于2019年4月25日至27日在北京召开,“一带一路”建设进行5年多来,中资金融机构为“一带一路”相关国家累计发放贷款250000000000元,重点支持了基础设施、社会民生等项目.数字250000000000用科学记数法表示,正确的是( )A. 0.25×1011B. 2.5×1011C. 2.5×1010D. 25×10103.四边形ABCD中,对角线AC、BD相交于O,如果AO=CO,BO=DO,AC⊥BD,那么这个四边形( )A. 仅是轴对称图形B. 仅是中心对称图形C. 既是轴对称图形,又是中心对称图形D. 以上都不对4.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是( )A. 45°B. 60°C. 75°D. 82.5°5.某住宅小区六月份1日至5日每天用水量变化情况如图所示.那么这5天用水量的中位数是( )A. 30吨B. 36吨C. 32吨D. 34吨6.学校组织校外实践活动,安排给九年级两辆车,小明与小慧都可以从两辆车中任选一辆搭乘,则小明和小慧乘同一辆车的概率是( )A. B. C. D. 17.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为( )A. 100°B. 110°C. 120°D. 130°8.若0<m<2,则关于x的一元二次方程-(x+m)(x+3m)=3mx+37根的情况是( )A. 无实数根B. 有两个正根C. 有两个根,且都大于-3mD. 有两个根,其中一根大于-m9.如图所示,在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,连接CP.下列结论:①∠ACB=2∠APB;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④∠PCF=∠CPF.其中,正确的有( )A. 1个B. 2个C. 3个D. 4个10.如图1,正方形ABCD在直角坐标系中,其中AB边在y轴上,其余各边均与坐标轴平行,直线l:y=x-5沿y轴的正方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m 与t的函数图象如图2所示,则图2中b的值为( )A. 3B. 5C. 6D. 10二、填空题(本大题共6小题,共30.0分)11.因式分解:9a3b-ab=______.12.如图,菱形OABC的边长为2,且点A、B、C在⊙O上,则劣弧的长度为______.13.定义一种新运算:a※b=,则2※3-4※3的值______.14.如图,在Rt△ABC中,∠C=90°,BC=4,BA=5,点D是边AC上的一动点,过点D作DE∥AB交边BC于点E,过点B作BF⊥BC交DE的延长线于点F,分别以DE,EF为对角线画矩形CDGE和矩形HEBF,则在D从A到C的运动过程中,当矩形CDGE和矩形HEBF的面积和最小时,AD的长度为______.15.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连结OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan ∠BOC=,则点A′的坐标为_________.16.如图,点A,B为定点,直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对于下列各值:其中会随点P的移动而发生变化的是______(填序号).①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN与AB之间的距离;⑤∠APB的大小.三、计算题(本大题共1小题,共8.0分)17.已知:(x-1)(x+3)=ax2+bx+c,求代数式9a-3b+c的值.四、解答题(本大题共7小题,共72.0分)18.解不等式组:,并写出该不等式组的整数解.19.如图,某中学数学活动小组在学习了“利用三角函数测高”后,选定测量小河对岸一幢建筑物BC的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°.且D离地面的高度DE=5m.坡底EA=30m,然后在A处测得建筑物顶端B的仰角是60°,点E,A,C在同一水平线上,求建筑物BC的高.(结果用含有根号的式子表示)20.如图,在平面直角坐标系xOy中,直线y=x-2与双曲线y=(k≠0)相交于A,B两点,且点A的横坐标是3.(1)求k的值;(2)过点P(0,n)作直线,使直线与x轴平行,直线与直线y=x-2交于点M,与双曲线y=(k≠0)交于点N,若点M在N右边,求n的取值范围.21.某中学对本校初2017届500名学生中中考参加体育加试测试情况进行调查,根据男生1000米及女生800米测试成绩整理,绘制成不完整的统计图(图①、图②),根据统计图提供的信息,回答问题:(1)该校毕业生中男生有______人;扇形统计图中a=______;(2)补全条形统计图;扇形统计图中,成绩为10分的所在扇形的圆心角是______度;(3)若500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是多少?22.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE,设OD=m.(1)问题发现如图1,△CDE的形状是______三角形.(2)探究证明如图2,当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.(3)解决问题是否存在m的值,使△DEB是直角三角形?若存在,请直接写出m的值;若不存在,请说明理由.23.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟______米,乙在A地时距地面的高度b为______米.(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?24.如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM ,设AM=x,DN=y.①写出y关于x的函数解析式,并求出y的最小值;②是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:-|-3|=-3,-|-3|的倒数是-,故选:B.根据负数的绝对值是它的相反数,可得绝对值表示的数,根据乘积为1的两个数互为倒数,可得一个数的倒数.本题考查了倒数,先求出绝对值,再求出倒数.2.【答案】B【解析】解:数字2500 00000000用科学记数法表示,正确的是2.5×1011.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:∵对角线AC、BD相交于O,AO=CO,BO=DO,AC⊥BD,∴四边形为菱形,菱形是轴对称图形,也是中心对称图形.故选:C.根据题意判断出该四边形是菱形,再根据轴对称图形与中心对称图形的概念即可得出答案.本题主要考查了菱形对角线的特点以及中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,难度适中.4.【答案】C【解析】解:作直线l平行于直角三角板的斜边,可得:∠2=∠3=45°,∠3=∠4=30°,故∠1的度数是:45°+30°=75°.故选:C.直接利用平行线的性质结合已知角得出答案.此题主要考查了平行线的性质,正确作出辅助线是解题关键.5.【答案】C【解析】解:把这些数从小到大排列为:28,30,32,34,36,最中间的数是32吨,则这5天用水量的中位数是32吨;故选:C.根据中位数的定义先把这组数据从小到大排列,找出最中间的数即可得出答案.此题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.【答案】B【解析】解:画树状图为:(用A、B表示两辆车)共有4种等可能的结果数,其中小明和小慧乘同一辆车的结果数为2,所以小明和小慧乘同一辆车的概率==.故选:B.画树状图(用A、B表示两辆车)展示所有4种等可能的结果数,再找出小明和小慧乘同一辆车的结果数,然后根据概率公式求解.本题考查了利用树状图法求概率,属于基础题.7.【答案】B【解析】解:∵∠BOC=40°,∴∠AOC=180°-40°=140°,∴∠D=,故选:B.根据互补得出∠AOC的度数,再利用圆周角定理解答即可.此题考查圆周角定理,关键是根据互补得出∠AOC的度数.8.【答案】A【解析】解:方程整理为x2+7mx+3m2+37=0,△=49m2-4(3m2+37)=37(m2-4),∵0<m<2,∴m2-4<0,∴△<0,∴方程没有实数根.故选:A.先把方程化为一般式,再计算判别式的值得到△=37(m2-4),然后根据m的范围得到△<0,从而根据判别式的意义可得到正确选项.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了判别式的意义.9.【答案】D【解析】解:∵PA平分∠CAB,PB平分∠CBE,∴∠PAB=∠CAB,∠PBE=∠CBE,∵∠CBE=∠CAB+∠ACB,∠PBE=∠PAB+∠APB,∴∠ACB=2∠APB;故①正确;过P作PM⊥AB于M,PN⊥AC于N,PS⊥BC于S,∴PM=PN=PS,∴PC平分∠BCD,∵S△PAC:S△PAB=(AC•PN):(AB•PM)=AC:AB;故②正确;∵BE=BC,BP平分∠CBE∴BP垂直平分CE(三线合一),故③正确;∵PG∥AD,∴∠FPC=∠DCP∵PC平分∠DCB,∴∠DCP=∠PCF,∴∠PCF=∠CPF,故④正确.故选:D.利用角平分线的性质以及已知条件对①②③④进行一一判断,从而求解.此题综合性较强,主要考查了角平分线的性质和定义,平行线的性质,线段的垂直平分线的判定,等腰三角形的性质等.10.【答案】C【解析】解:如图1,直线y=x-5中,令y=0,得x=5;令x=0,得y=-5,即直线y=x-5与坐标轴围成的△OEF为等腰直角三角形,∴直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,由图2可得,t=3时,直线l经过点A,∴AO=5-3×1=2,∴A(-2,0),由图2可得,t=15时,直线l经过点C,∴当t=,直线l经过B,D两点,∴AD=(9-3)×1=6,∴等腰Rt△ABD中,BD=,即当a=9时,b=.故选:C.先根据△AEF为等腰直角三角形,可得直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,再根据BD的长即可得到b的值.本题主要考查了动点问题的函数图象,用图象解决问题时,要理清图象的含义即会识图.解决问题的关键是掌握正方形的性质以及平移的性质.11.【答案】ab(3a+1)(3a-1)【解析】解:原式=ab(9a2-1)=ab(3a+1)(3a-1).故答案为:ab(3a+1)(3a-1)原式提取公因式后,利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【答案】π【解析】解:连接OB,∵四边形OABC是菱形,∴OC=BC=AB=OA=2,∴OC=OB=BC,∴△OBC是等边三角形,∴∠COB=60°,∴劣弧的长为=π,故答案为:π.连接OB,根据菱形性质求出OB=OC=BC,求出△BOC是等边三角形,求出∠COB=60°,根据弧长公式求出即可.本题考查了弧长公式,菱形的性质,等边三角形的性质和判定,能求出∠COB的度数是解此题的关键.13.【答案】8【解析】解:∵a※b=,∴2※3-4※3=3×3-(4-3)=9-1=8,根据新定义规定的运算法则列式计算,即可解答本题.本题主要考查有理数的混合运算,解题的关键是掌握新定义规定的运算法则及有理数的混合运算顺序和运算法则.14.【答案】【解析】解:在Rt△ABC中,∠C=90°,BC=4,BA=5,∴AC==3,设DC=x,则AD=3-x,∵DF∥AB,∴=,即=,∴CE=∴BE=4-,∵矩形CDGE和矩形HEBF,∴AD∥BF,∴四边形ABFD是平行四边形,∴BF=AD=3-x,则S阴=S矩形CDGE+S矩形HEBF=DC•CE+BE•BF=x•x+(3-x)(4-x)=x2-8x+12,∵>0,∴当x=-=时,有最小值,∴DC=,有最小值,即AD=3-=时,矩形CDGE和矩形HEBF的面积和最小,故答案为.利用勾股定理求得AC=3,设DC=x,则AD=3-x,利用平行线分线段成比例定理求得CE=进而求得BE=4-,然后根据S阴=S矩形CDGE+S矩形HEBF得到S阴=x2-8x+12,根据二次函数的性质即可求得.本题考查了二次函数的性质,矩形的性质,勾股定理的应用等,表示出线段的长度是解题的关键.15.【答案】(,)【解析】解:如图,过点A′作A′D⊥x轴与点D;设A′D=λ,OD=μ;∵四边形ABCO为矩形,∴∠OAB=∠OCB=90°;四边形ABA′D为梯形;设AB=OC=γ,BC=AO=ρ;∵OB=,tan∠BOC=,∴,解得:γ=2,ρ=1;由题意得:A′O=AO=1;△ABO≌△A′BO;由勾股定理得:λ2+μ2=1①,由面积公式得:②;联立①②并解得:λ=,μ=.故答案为(,).如图,作辅助线;根据题意首先求出AB、BC的长度;借助面积公式求出A′D、OD 的长度,即可解决问题.该题以平面直角坐标系为载体,以翻折变换为方法构造而成;综合考查了矩形的性质、三角函数的定义、勾股定理等几何知识点;对分析问题解决问题的能力提出了较高的要求.16.【答案】②⑤【解析】解:①∵点M,N分别为PA,PB的中点,∴MN=AB,即线段MN的长为定值;②MN=AB,PM、PN的值随点P的变化而变化,∴△PAB的周长随点P的移动而发生变化;③∵PM=MA,PN=NB,∴MN=AB,∵AB的长为定值,∴MN的长不变,△PMN的面积不变,直线MN与AB之间的距离不变,④∵MN∥AB,∴直线MN与AB之间的距离不变;⑤随点P的移动∠APB的大小变化;故答案为:②⑤.根据三角形中位线定理、三角形的面积公式判断即可.本题考查的是三角形中位线定理、三角形的面积公式,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.【答案】解:∵(x-1)(x+3)=x2+3x-x-3=x2+2x-3,∴a=1、b=2、c=-3,则原式=9×1-3×2-3=9-6-3=0.【解析】先根据多项式乘多项式法则计算等式左边,根据题意得出a、b、c的值,再代入计算可得.此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.18.【答案】解:,由①得,x≥-2;由②得,x<1,故此不等式的解集为:-2≤x<1,其整数解为:-2,-1,0.【解析】分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出x的整数解即可.本题考查的是解一元一次不等式组及不等式组的整数解,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的规律是解答此题的关键.19.【答案】解:过点D作DH⊥BC于点H,如图所示:则四边形DHCE是矩形,DH=EC,DE=HC=5m,设建筑物BC的高度为xm,则BH=(x-5)m,在Rt△DHB中,∠BDH=30°,∴DH=(x-5)m,AC=EC-EA=[(x-5)-30]m,在Rt△ACB中,∠BAC=60°,tan∠BAC=,∴=解得:x=,答:建筑物BC的高为m.【解析】过点D作DH⊥BC于点H,则四边形DHCE是矩形,DH=EC,DE=HC,设建筑物BC的高度为xm,则BH=(x-5)m,由三角函数得出DH=(x-5)m,AC=EC-EA=[(x-5)-30]m,得出x=tan60°•[(x-5)-30],解方程即可.本题考查了仰角、坡角的定义,解直角三角形的应用,能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形是解题的关键.20.【答案】解:(1)令x=3,代入y=x-2,则y=1,∴A(3,1),∵点A(3,1)在双曲线y=(k≠0)上,∴k=3;(2)联立得:,解得:或,即B(-1,-3),如图所示:当点M在N右边时,n的取值范围是n>1或-3<n<0.【解析】此题考查了一次函数与反比例函数的交点问题,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.(1)把A横坐标代入一次函数解析式求出纵坐标,确定出A坐标,代入反比例解析式求出k的值即可;(2)根据题意画出直线,根据图象确定出点M在N右边时n的取值范围即可.21.【答案】(1)300,12;(2)补全的条形图如下图所示:223.2;(3)这名学生该项成绩在8分及8分以下的概率是=.【解析】【分析】本题考查概率公式、扇形统计图、条形统计图等知识,解题的关键是熟练掌握基本知识,所以中考常考题型.(1)求出各个分数段的男生人数和,根据百分比=计算即可;(2)求出8分以下的女生人数,10分的女生人数画出条形图即可,根据圆心角=百分比×360°计算即可;(3)根据概率公式计算即可.本题考查概率公式、扇形统计图、条形统计图等知识,解题的关键是熟练掌握基本知识,所以中考常考题型.【解答】解:(1)校毕业生中男生有:20+40+60+180=300人,∵×100%=12%,∴a=12,故答案为300,12;(2)由题意b=1-10%-12%-16%=62%,∴成绩为10分的所在扇形的圆心角是360°×62%=223.2°,500×62%-180=130人,∵500×10%=50,∴女生人数=50-20=30人,故答案为:223.2;(3)见答案.22.【答案】(1)等边;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤m<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA-DA=6-4=2,∴m=2;③当6<m<10时,由∠DBE=120°>90°,∴此时不存在;④当m>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴m=14,综上所述:当m=2或14时,以D、E、B为顶点的三角形是直角三角形.【解析】解:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;故答案为:等边;(2)见答案;(3)见答案.【分析】(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<m<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D与点B重合时,D,B,E不能构成三角形,②当0≤m<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2=m③当6<m<10时,此时不存在;④当m>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到m=14.本题考查了几何变换的综合题,旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.23.【答案】10 30【解析】解:(1)(300-100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30.(2)当0≤x≤2时,y=15x;当x≥2时,y=30+10×3(x-2)=30x-30.当y=30x-30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=.(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100-(30x-30)=50时,解得:x=4;当30x-30-(10x+100)=50时,解得:x=9;当300-(10x+100)=50时,解得:x=15.答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.24.【答案】解:(1)如图1中,∵四边形ABCD是矩形,∴AD=BC=10,AB=CD=8,∴∠B=∠BCD=90°,由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8-x.在Rt△ABF中,BF==6,∴CF=BC-BF=10-6=4,在Rt△EFC中,则有:(8-x)2=x2+42,∴x=3,∴EC=3.(2)①如图2中,∵AD∥CG,∴=,∴=,∴CG=6,∴BG=BC+CG=16,在Rt△ABG中,AG==8,在Rt△DCG中,DG==10,∵AD=DG=10,∴∠DAG=∠AGD,∵∠DMG=∠DMN+∠NMG=∠DAM+∠ADM,∠DMN=∠DAM,∴∠ADM=∠NMG,∴△ADM∽△GMN,∴=,∴=,∴y=x2-x+10.当x=4时,y有最小值,最小值=2.②存在.有两种情形:如图3-1中,当MN=MD时,∵∠MDN=∠GMD,∠DMN=∠DGM,∴△DMN∽△DGM,∴=,∵MN=DM,∴DG=GM=10,∴x=AM=8-10.如图3-2中,当MN=DN时,作MH⊥DG于H.∵MN=DN,∴∠MDN=∠DMN,∵∠DMN=∠DGM,∴∠MDG=∠MGD,∴MD=MG,∵BH⊥DG,∴DH=GH=5,由△GHM∽△GBA,可得=,∴=,∴MG=,∴x=AM=8-=.综上所述,满足条件的x的值为8-10或.【解析】(1)由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8-x.在Rt△ECF 中,利用勾股定理构建方程即可解决问题.(2)①证明△ADM∽△GMN,可得=,由此即可解决问题.②存在.有两种情形:如图3-1中,当MN=MD时.如图3-2中,当MN=DN时,作MH⊥DG 于H.分别求解即可解决问题.本题属于四边形综合题,考查了矩形的性质,翻折变换,解直角三角形,相似三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

台州市2020年中考数学模拟试题及答案

台州市2020年中考数学模拟试题及答案

台州市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。

2.考生必须把答案写在答题卡上,在试卷上答题一律无效。

考试结束后,本试卷和答题卡一并交回。

3.本试卷满分120分,考试时间120分钟。

一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1.下列运算正确的是()A.a3+a3=2a6 B.a6÷a﹣3=a3 C.a3•a2=a6 D.(﹣2a2)3=﹣8a62.⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交 B.相切 C.相离 D.无法确定3. 已知x+y=﹣4,xy=2,则x2+y2的值()A.10B.11C.12D.134.人类的遗传物质是DNA,人类的DNA是很大的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为( )A.3×108B.3×107C.3×106D.0.3×1085.如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是()A.200 cm2 B.600 cm2C.100πcm2D.200πcm26.如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=3,AC=4,则sin∠ABD的值是()A.B.C.D.7.如图,ABCD为平行四边形,BC=2AB,∠BAD的平分线AE交对角线BD于点F,若△BEF的面积为1,则四边形CDFE的面积是()A.3 B.4C.5 D.68.已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A.6 B.8 C.10 D.8或109.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥ABC.MN=CB D.CM=AC10.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数 C.平均数、方差 D.众数、方差11.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示.根据图象所提供的信息有:①甲队挖掘30m时,用了3h;②挖掘6h时甲队比乙队多挖了10m;③乙队的挖掘速度总是小于甲队;④开挖后甲、乙两队所挖河渠长度相等时,x=4.其中一定正确的有()A.1个B.2个C.3个D.4个12.“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S与时间t之间函数关系的是()A. B.C. D.二、填空题(本题共6小题,满分18分。

2020年浙江省台州市中考数学模拟试卷

2020年浙江省台州市中考数学模拟试卷

2020年浙江省台州市中考数学模拟试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)1.2019的相反数()A. 12019 B. -2019 C. - 12019D. 20192.如图,水平的讲台上放置的圆柱笔筒和长方体形粉笔盒,它的俯视图是()A. B. C. D.3.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.若每天用水时间按2小时计算,那么一天中的另外22小时水龙头都在不断的滴水.请计算,一个拧不紧的水龙头,一个月(按30天计算)浪费水()A. 23760毫升B. 2.376×105毫升C. 23.8×104毫升D. 237.6×103毫升4.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=55°,则∠2的度数是()A. 35°B. 25°C. 65°D. 50°5.下列说法正确的个数是()①一组数据的众数只有一个②样本的方差越小,波动性越小,说明样本稳定性越好③一组数据的中位数一定是这组数据中的某一数据④数据:1,1,3,1,1,2的众数为4 ⑤一组数据的方差一定是正数.A. 0个B. 1个C. 2个D. 4个6.统计局信息显示,2018年嘉兴市农家乐旅游营业收入达到27.49亿元,若2020年全市农家乐旅游营业收入要达到38亿元,设平均每年比上一年增长的百分率是x ,则下列方程正确的是( )A. 27.49+27.49x 2=38B. 27.49(1+2x )=38C. 38(1﹣x )2=27.49D. 27.49(1+x )2=38 7.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,⊙O 为△ABC 的内切圆,点D 是斜边AB 的中点,则cos ∠ODA= ( )A. √55B. √35C. √32D. 12 8.如图,在平面直角坐标系中,OABC 是正方形,点A 的坐标是(4,0),点P 为边AB 上一点,∠CPB =60°,沿CP 折叠正方形,折叠后,点B 落在平面内点B′处,则B′点的坐标为( )A. (2,2 √3 )B. ( 32 , 2−√3 )C. (2, 4−2√3 )D. ( 32 , 4−2√3 ) 9.已知:如图,直线y =kx +b (k , b 为常数)分别与x 轴、y 轴交于点A (﹣4,0),B (0,3),抛物线y =﹣x 2+4x +1与y 轴交于点C , 点E 在抛物线y =﹣x 2+4x +1的对称轴上移动,点F 在直线AB 上移动,CE +EF 的最小值是( )A. 2B. 4C. 2.5D. 310.如图甲,已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…如图乙,是六次旋转的位置图象,图中虚线是点M的运动轨迹,则在第四次旋转的过程中,点B,M间的距离可能是()A. 0.6B. 0.8C. 1.1D. 1.4二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:3a3﹣12a =________.12.若−x+2y=5,则7−3x+6y=________.13.在某国际乡村音乐周活动中,来自中、韩、美的三名音乐家准备在同一节目中依次演奏本国的民族音乐,若他们出场先后的机会是均等的,则按“中—美—韩”顺序演奏的概率是________.14.如图,AB是半圆0的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心0,则图中阴影部分的面积是________。

台州市2020年(春秋版)数学中考模拟试卷(4月)A卷

台州市2020年(春秋版)数学中考模拟试卷(4月)A卷

台州市2020年(春秋版)数学中考模拟试卷(4月)A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七上·江都期末) 已知实数a,b在数轴上的位置如图,则()A .B .C .D .2. (2分)(2020·济源模拟) 下面几何体的主视图是()A .B .C .D .3. (2分)(2019·福田模拟) 下表来源市气象局2019年3月7日发布的全市六个监测点监测到空气质量指数(AQ)数据监测点福田罗田盐田大鹏南山宝安AQI595917134638质量良良优优优优上述(AQI)数据中,中位数是()A . 15B . 42C . 46D . 594. (2分) (2019七下·官渡期末) 估计的值在两个整数()A . 3与4之间B . 5与6之间C . 6与7之间D . 3与10之间5. (2分)二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是()A . k<3B . k<3且k≠0C . k≤3D . k≤3且k≠06. (2分)如图,已知点A,B的坐标分别为(4,0)、(0,3),将线段AB平移到CD,若点C的坐标为(6,3),则点D的坐标为()A . (2,6)B . (2,5)C . (6,2)D . (3,6)7. (2分)(2018·淄博) 化简的结果为()A .B . a﹣1C . aD . 18. (2分)《九章算术》“方程”篇中有这样一道题“今有甲乙二人持钱不知其数,甲得乙半面钱五十,乙得甲太半(注:太半,意思为三分之二)而钱亦五十.问甲、乙持钱各几何?”若设甲、乙原各持钱x,y,则根据题意可列方程组()A .B .C .D .9. (2分)(2019·齐齐哈尔) “六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计).下列图象能大致反映战士们离营地的距离S与时间t之间函数关系的是()A .B .C .D .10. (2分)(2016·金华) 一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A . 米2B . 米2C . (4+ )米2D . (4+4tanθ)米2二、填空题 (共6题;共6分)11. (1分)(2016·海宁模拟) 因式分解:1﹣x2=________.12. (1分) (2017八下·蒙阴期末) 数据 , , , 的平均数是40,方差是3,则数据 +1, +1, +1, +1的平均数和方差分别是________.13. (1分)(2018·宁波) 如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cosB的值为________。

2020年浙江省台州市中考数学摸底测试试卷附解析

2020年浙江省台州市中考数学摸底测试试卷附解析

2020年浙江省台州市中考数学摸底测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.中央电视台“幸福52”栏目中“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张笑脸,若某人前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( )A .14B .15C .16D .320把Rt △ABC 各边的长度都扩大3倍得Rt △A ˊB ˊC ˊ,那么锐角A 、A ˊ的余弦值的关系为( )A .cosA =cosA ˊB .cosA =3cosA ˊC .3cosA =cosA ˊD .不能确定3.如图,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向行走.按照这种方式,小华第四次走到场地边缘E 处时,∠AOE =56º,则α的度数是( )A .52ºB .60ºC .72ºD .76º4.如图,是一次函数y =kx+b 与反比例函数y =2x 的图像,则关于x 的方程kx+b =2x的解为( )A . x l =1,x 2=2B .x l =-2,x 2=-1C . x l =1,x 2=-2D . x l =2,x 2=-15.如图,在梯形ABCD 中,AD BC ∥,AB a DC b ==,,DC 边的垂直平分线EF 交BC 边于E ,且E 为BC 边的中点,又DE AB ∥,则梯形ABCD 的周长等于( )A .22a b +B .3a b +C .4a b +D .5a b +6.下列命题中是真命题的是 ( )A .对角线互相垂直的四边形是平行四边形B .对角线相等的四边形是平行四边形c .对角线互相垂直且相等的四边形是平行四边形D .对角线互相平分的四边形是平行四边形7.要了解全市八年级学生身高在某一范围内的学生所占比例的大小,需要知道相应样本的 ( )A .平均数B .最大值C .众数D .频率分布8. 已知m 是整数,且满足210521m m ->⎧⎨->-⎩,则关于x 的方程2242(2)34mx x m x x --=+++的解为( )A .12x =-,232x =-B .12x =,232x =C .67x =-D .12x =-,232x =-或67x =- 9.如图,CD 是等腰直角三角形斜边AB 上的中线,DE ⊥BC 于E ,则图中等腰直角三角形的个数是( )A .3个B .4个C .5个D .6个10.如图,△ABD ≌△DCA ,B 和C 是对应顶点,则∠ADB 和∠DAC 所对的边是( )A .A0和DOB .AB 和DC C .A0和BD D .D0和AC11. -a 表示的数是( )A .负数B .负数或正数C .正数D .以上都不对12.为确保信息安全,信息需加密传翰,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为2a -b 、2a +b.例如,明文1、2对应的密文是0、4.当接收方收到密文是1、7时,解密得到的明文是( )A .-1,1B .2,3C . 3,1D .1,l13.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.......在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换......过程中,两个对应三角形(如图2)的对应点所具有的性质是( )A .对应点连线与对称轴垂直B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行二、填空题14.如图所示,Rt △ABC 中,∠B=15°,若 AC=2,则BC= .A CB A ' B 'C ' 图2 图115.将抛物线23(1)3y x=---向右平移 1个单位,再向上平移 2个单位,得到的抛物线的解析式为.16.:yx-y-xx-y=__________.17.一个三角形最多有个钝角,最多有个直角.18.二次函数y=mx2-3x+2m-m2的图像经过原点,则m=.2三、解答题19.如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).请在图中画出△ABC的一个以点P (12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧).20.小明的爸爸开着一辆满栽西瓜的大卡车经过一个底部为矩形、上部为半圆形形状(如图所示)的古城门,若已知卡车的高是3m,顶部宽是2.5m,古城门底部矩形的宽3m,高 2m.问该卡车能否通过城门?21.要做一个高是8cm,底面的长比宽多5cm,体积是528cm3的长方体木箱,问底面的长和宽各是多少?22. 计算:22432()||3553---. 11523.一个几何体的表面展开图如图所示,说出它是一个怎样的几何体.24.如图 ,CD ⊥AB ,EF ⊥AB ,∠1 =∠2,试说明∠AGD =∠ACB.25.如图,已知:A ,F ,C ,D 四点在一条直线上,AF=CD ,∠D=∠A ,且AB=DE .请将下面说明△ABC ≌△DEF 的过程和理由补充完整.解:∵AF=CD( ),∴AF+FC=CD+ ,即AC=DF .在△ABC 和△DEF 中,____(__________(AC D AAB =⎧⎪∠=∠⎨⎪=⎩已证)()已知)(已证), ∴△ABC ≌△DEF( ).26.已知2286250x y x y -+-+=,试求34x y +的值.27.将分式10(2)(1)(2)(1)(1)x x x x x +++-+约分,再讨论x 取哪些整数时,能使分式的值是正整数.28.把下列各数填人相应的集合内:-133|8-251π,0.7⋅,35-,039-(1)有理数集合:(2)无理数集合:(3)负数集合:(4)正数集合:29.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.04L/km ,则这次养护共耗油多少升?30.如图所示,以Rt △ABC 的两直角边AB ,BC 为边向外作正△ABE 和正△BCF ,连结EF ,EC,请说明EF=EC.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.A4.C5.C6.D7.D8.D9.C10.B11.D12.B13.B二、填空题14.7.4615.2=---16.y x3(1)1-117.1,118.三、解答题19.略.20.设AB为半圆的直径,O为圆心,高3m处城门的宽为CD,作OE⊥CD于E,连结 OC,则OE= 1 m,OC= 1.5m ,由勾股定理,得22=⋅=≈(m),CE-151 1.25 1.1所以 CD=2.2 m<2. 5m,所以卡车不能过城门.21.11 cm,6cm22.123.15长方体24.∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠2=∠3.∵∠l=∠2,∴∠1=∠3,∴DG ∥BC ,∴∠AGD=∠ACB . 25.已知,FC ,DF ,已知,DE ,SAS26.由已知得:22816690x x y y -++-+=,即22(4)(3)0x y -+-= ∴x= 4 ,y= 3,∴3424x y +=27.101x -,当 x=2或3 或6或 1128.略29.(1)在出发点的向东方向,距出发点15千米;(2)3.88升 30.略。

2020年浙江省台州市中考数学全真模拟试卷4解析版

2020年浙江省台州市中考数学全真模拟试卷4解析版

2020年浙江省台州市中考数学全真模拟试卷4解析版一.选择题(共10小题,满分40分,每小题4分)1.下列各对数中,互为相反数的是()A.2和B.﹣0.5和C.﹣3和D.和﹣22.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103.下列运算正确的是()A.a2•a3=a6B.a3÷a3=a C.4a3﹣2a2=2a D.(a3)2=a64.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.棱锥D.球5.如图,数轴上表示实数的点可能是()A.点P B.点Q C.点R D.点S6.近年来,我国持续大面积雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某中学举行了“建设宜居白银,关注环境保护”的知识竞赛,某班学生的成绩统计如下表.则该班学生成绩的众数和中位数分别是()A.70分80分B.80分80分C.90分80分D.80分90分7.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=()A.70°B.110°C.120°D.140°8.如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN 交BA的延长线于点E,则AE的长是()A.B.1C.D.9.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y 轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,2)B.(4,1)C.(4,)D.(4,2)10.如图,在平面直角坐标系xOy中,A(2,0),B(0,2),点M在线段AB上,记MO+MP最小值的平方为s,当点P沿x轴正向从点O运动到点A时(设点P的横坐标为x),s关于x的函数图象大致为()A.B.C.D.二.填空题(共6小题,满分30分,每小题5分)11.因式分解:(a﹣b)2﹣(b﹣a)=.12.若二次根式在实数范围内有意义,则x的取值范围是.13.在矩形ABCD中,对角线AC,BD相交于点O,AC+BD=20,AB=6,点E是BC边上一点,直线OE交CD边所在的直线于点F,若OE=,则DF=.14.二次函数y=x2﹣3x+2的图象不经过第象限.15.如图,在反比例函数图象中,△AOB是等边三角形,点A在双曲线的一支上,将△AOB绕点O 顺时针旋转α(0°<α<360°),使点A仍在双曲线上,则α=.16.如图,⊙O的直径AB=8,C为的中点,P为⊙O上一动点,连接AP、CP,过C作CD⊥CP 交AP于点D,点P从B运动到C时,则点D运动的路径长为.三.解答题(共8小题,满分80分)17.(8分)计算:4cos30°﹣+20180+|1﹣|18.(8分)先化简,再求值:(x﹣2+)÷,其中x=﹣.19.(8分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(l)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数.(3)请估计全校共征集作品的什数.(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.20.(8分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线A→D →C→B到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,∠A=45°,∠B=30°,桥DC和AB平行.(1)求桥DC与直线AB的距离;(2)现在从A地到达B地可比原来少走多少路程?(以上两问中的结果均精确到0.1km,参考数据:≈1.14,≈1.73)21.(10分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA、PB、AB、OP,已知PB是⊙O的切线.(1)求证:∠PBA=∠C;(2)若OP∥BC,且OP=9,⊙O的半径为3,求BC的长.22.(12分)问题情境有一堵长为am的墙,利用这堵墙和长为60m的篱笆围成一个矩形养鸡场,怎样围面积最大?最大面积是多少?题意理解根据题意,有两种设计方案:一边靠墙(如图①)和一边“包含”墙(如图②).特例分析(1)当a=12时,若按图①的方案设计,则该方案中养鸡场的最大面积是m2;若按图②的方案设计,则该方案中养鸡场的最大面积是m2.(2)当a=20时,解决“问题情境”中的问题.解决问题(3)直接写出“问题情境”中的问题的答案.23.(12分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD =80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,∠EAF=75°且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:≈1.41,≈1.73)24.(14分)已知直线l经过A(6,0)和B(0,12)两点,且与直线y=x交于点C,点P(m,0)在x轴上运动.(1)求直线l的解析式;(2)过点P作l的平行线交直线y=x于点D,当m=3时,求△PCD的面积;(3)是否存在点P,使得△PCA成为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据相反数定义,只有符号不同的两个数互为相反数,即可得出答案.【解答】解:只有符号不同的两个数互为相反数,且互为相反数两个数相加得0,﹣0.5+=0.故选:B.【点评】题目考查了相反数的定义,解决题目的关键是掌握相反数的定义,并且了解互为相反数的两个数相加得0.2.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:44亿=4.4×109.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.【分析】直接利用同底数幂的除法运算法则以及合并同类项法则、幂的乘方运算法则分别化简得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、a3÷a3=1,故此选项错误;C、4a3﹣2a2,无法计算,故此选项错误;D、(a3)2=a6,故此选项正确;故选:D.【点评】此题主要考查了同底数幂的除法运算以及合并同类项法则、幂的乘方运算,正确掌握运算法则是解题关键.4.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选:A.【点评】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.5.【分析】根据图示,判断出在哪两个整数之间,即可判断出数轴上表示实数的点可能是哪个.【解答】解:∵2<<3,∴数轴上表示实数的点可能是点Q.故选:B.【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.6.【分析】中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:由表可知,80分出现次数最多,所以众数为80分;由于一共调查了4+8+12+11+5=40人,所以中位数为第20、21个数据的平均数,即中位数为=80(分),故选:B.【点评】考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.【分析】作所对的圆周角∠ADB,如图,利用圆内接四边形的性质得∠ADB=70°,然后根据圆周角定理求解.【解答】解:作所对的圆周角∠ADB,如图,∵∠ACB+∠ADB=180°,∴∠ADB=180°﹣110°=70°,∴∠AOB=2∠ADB=140°.故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.【分析】只要证明BE=BC即可解决问题;【解答】解:∵由题意可知CE是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=3,∵AB=2,∴AE=BE﹣AB=1,故选:B.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.9.【分析】由已知条件得到AD′=AD=4,AO=AB=2,根据勾股定理得到OD′==2,于是得到结论.【解答】解:∵AD′=AD=4,AO=AB=2,∴OD′==2,∵C′D′=4,C′D′∥AB,∴C′(4,2),故选:D.【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.【分析】本题是直线同侧两定点到直线上动点距离之和最短问题,取点O关于直线AB的对称点C,连接CP,则CP为所求最小值.用勾股定理表示s即可.【解答】解:作点O关于直线AB的对称点C,∵A(2,0),B(0,2)∴易得C(2,2)连接CP,则OM+MP的最小值为此时的CP记CP2=s∴s=CP2=AC2+AP2=22+(2﹣x)2=x2﹣4x+8故选:A.【点评】本题是动点问题的函数图象问题,考查了轴对称,两点之间线段最短和勾股定理得有关性质.二.填空题(共6小题,满分30分,每小题5分)11.【分析】原式变形后,提取公因式即可得到结果.【解答】解:原式=(a﹣b)2+(a﹣b)=(a﹣b)(a﹣b+1),故答案为:(a﹣b)(a﹣b+1)【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.【分析】直接利用二次根式的性质得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x﹣2019≥0,解得:x≥2019.故答案为:x≥2019.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.13.【分析】作ON⊥BC于N,由矩形的性质得出∠ABC=90°,AD∥BC,CD=AB=6,OA=OC=AC,OB=OD=BD,AC=BD,得出OB=OC,AC=BD=10,由勾股定理求出BC,由等腰三角形的性质得出BN=CN=BC=4,由三角形中位线定理得出ON=AB=3,再由勾股定理求出EN,分两种情况:①求出CE的长,由平行线得出△DMF∽△CEF,得出对应边成比例,即可得出结果;②求出CE的长,由平行线证出△ONE∽△FCE,得出对应边成比例求出CF,即可得出DF的长.【解答】解:作ON⊥BC于N,∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,CD=AB=6,OA=OC=AC,OB=OD=BD,AC=BD,∴OB=OC,∵AC+BD=20,∴AC=BD=10,∴BC===8,∵ON⊥BC,且OB=OC∴BN=CN=BC=4,且OA=OC∴ON=AB=3,∴EN==1,分两种情况:①如图1所示:∵AD∥BC,OB=OD,∴=1,△DMF∽△CEF,∴DM=BE=BC﹣CN﹣EN=3,,∴解得:DF=9;②如图2所示:由①得:CE=CN﹣EN=3,∵CD⊥BC,ON⊥BC,∴ON∥CD,∴△ONE∽△FCE,∴,∴解得:CF=9,∴DF=CD+CF=6+9=15;故答案为:9或15【点评】本题考查了矩形的性质、勾股定理、等腰三角形的性质、三角形中位线定理、相似三角形的判定与性质;熟练掌握矩形的性质和勾股定理,证明三角形相似得出比例式是解决问题的关键.14.【分析】根据题目中的函数解析式和二次函数的性质可以得到该函数图象不经过哪个象限.【解答】解:∵y=x2﹣3x+2=(x﹣)2﹣,∴该函数图象的顶点坐标为(,﹣)且经过点(0,2),函数图象开口向上,∴该函数图象不经过第三象限,故答案为:三.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.15.【分析】根据等边三角形的性质,双曲线的轴对称性和中心对称性即可求解.【解答】解:根据反比例函数的轴对称性,A点关于直线y=x对称,∵△OAB是等边三角形,∴∠AOB=60°,∴AO与直线y=x的夹角是15°,∴α=2×15°=30°时点A落在双曲线上,根据反比例函数的中心对称性,∴点A旋转到直线OA上时,点A落在双曲线上,∴此时α=180°,根据反比例函数的轴对称性,继续旋转30°时,点A落在双曲线上,∴此时α=210°;故答案为:30°、180°、210°.【点评】本题考查了反比例函数的综合运用,旋转的性质,等边三角形的性质.关键是通过旋转及双曲线的对称性得出结论.16.【分析】以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,即可得到点D运动的路径长为=2π.【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴AC=4,∴△ACQ中,AQ=4,∴点D运动的路径长为=2π.故答案为:2π.【点评】本题考查了轨迹,等腰直角三角形的性质,圆周角定理以及弧长的计算,正确作出辅助线是解题的关键.三.解答题(共8小题,满分80分)17.【分析】先代入三角函数值、化简二次根式、计算零指数幂、取绝对值符号,再计算乘法,最后计算加减可得.【解答】解:原式==2﹣2+1+﹣1=.【点评】本题主要考查实数的混合运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则及零指数幂、绝对值和二次根式的性质.18.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.19.【分析】(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24﹣4﹣6﹣4=10(件);继而可补全条形统计图;(3)先求出抽取的4个班每班平均征集的数量,再乘以班级总数可得;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名学生性别相同的情况,再利用概率公式即可求得答案.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为:抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,C班有24﹣(4+6+4)=10件,补全条形图如图所示,扇形统计图中C班作品数量所对应的圆心角度数360°×=150°;故答案为:150°;(3)∵平均每个班=6件,∴估计全校共征集作品6×30=180件.(4)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好选取的两名学生性别相同的概率为=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.20.【分析】(1)要求桥DC与直线AB的距离,只要作CH⊥AB于点H,求出CH的长度即可,由BC和∠B可以求得CH的长,本题得以解决;(2)要求现在从A地到达B地可比原来少走多少路程,只要求出AD与BC的和比AB﹣EF的长度多多少即可,由于DC=EF,有题意可以求得各段线段的长度,从而可以解答本题.【解答】解:(1)作CH⊥AB于点H,如下图所示,∵BC=12km,∠B=30°,∴km,BH=km,即桥DC与直线AB的距离是6.0km;(2)作DM⊥AB于点M,如下图所示,∵桥DC和AB平行,CH=6km,∴DM=CH=6km,∵∠DMA=90°,∠B=45°,MH=EF=DC,∴AD=km,AM=DM=6km,∴现在从A地到达B地可比原来少走的路程是:(AD+DC+BC)﹣(AM+MH+BH)=AD+DC+BC﹣AM﹣MH﹣BH=AD+BC﹣AM﹣BH==6≈4.1km,即现在从A地到达B地可比原来少走的路程是4.1km.【点评】本题考查解直角三角形的应用,解题的关键是明确题意,作出合适的图形,利用数形结合的思想解答问题,注意ME=DC=EF.21.【分析】(1)连接OB,根据切线的性质和圆周角定理求出∠PBO=∠ABC=90°,即可求出答案;(2)求出△ABC∽△PBO,得出比例式,代入求出即可.【解答】(1)证明:连接OB,∵PB是⊙O的切线,∴PB⊥OB,∴∠PBA+∠OBA=90°,∵AC是⊙O的直径,∴∠ABC=90°,∠C+∠BAC=90°,∵OA=OB,OC=OB,∴∠OBA=∠BAO,∠C=∠OBC,∴∠PBA+∠OBA=∠C+∠OBA,∴∠PBA=∠C;(2)解:∵⊙O的半径是3,∴OB=3,AC=6,∵OP∥BC,∴∠BOP=∠OBC,∵OB=OC,∴∠OBC=∠C,∴∠BOP=∠C,∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴=,∴=,∴BC=4.【点评】本题考查了平行线的性质,切线的性质,相似三角形的性质和判定,圆周角定理等知识点,能综合运用知识点进行推理是解此题的关键.22.【分析】(1)如图,设:AB=x,则BC=60﹣2x,则0<60﹣2x≤12,即:24≤x<30,即可求解;(2)如图①,设AB=xm,则BC=(60﹣2x)m.所以S=x(60﹣2x)=﹣2(x﹣15)矩形ABCD2+450即可求解,如图②,同理可解;(3)分0<a≤20、20<a<30、a≥30,三种情况求解即可.【解答】解:(1)如图,设:AB=x,则BC=60﹣2x,则0<60﹣2x≤12,即:24≤x<30,S=x(60﹣2x)=﹣2(x﹣15)2+450.矩形ABCD∵24≤x<30,则x=24时,S取得最大值为288,矩形ABCD取得最大值为324,同理,图②的方案设计,S矩形ABCD故:答案为288,324;(2)如图①,设AB=x m,则BC=(60﹣2x)m.=x(60﹣2x)=﹣2(x﹣15)2+450.所以S矩形ABCD根据题意,得20≤x<30.因为﹣2<0,随x的增大而减小.所以当20≤x<30时,S矩形ABCD有最大值,最大值是400(m2).即当x=20时,S矩形ABCD如图②,设AB=x m,则BC=(40﹣x)m.所以S=x(40﹣x)=﹣(x﹣20)2+400.矩形ABCD根据题意,得0<x≤20.因为﹣1<0,所以当x=20时,S有最大值,最大值是400(m2).矩形ABCD综上,当a=20时,该养鸡场围成一个边长为20m的正方形时面积最大,最大面积是400 m2.(3)当0<a≤20时,围成边长为m的正方形面积最大,最大面积是m2.当20<a<30时,围成两邻边长分别为a m,m的养鸡场面积最大,最大面积为m2.当a≥30时,当矩形的长为30m,宽为15m时,养鸡场最大面积为450m2.【点评】本题为二次函数综合运用的题目,主要考查函数最值问题,此类题目通常要综合考虑自变量的取值范围,结合对称轴位置情况进行综合分析再行求解.23.【分析】【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可.【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案;【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,只要再证明∠GAF=∠FAE即可得出EF=BE+FD.【解答】解:【发现证明】如图(1),∵△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴BE+DF=EF.【类比引申】∠BAD=2∠EAF.理由如下:如图(2),延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.故答案是:∠BAD=2∠EAF.【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF.∵∠BAD=150°,∠DAE=90°,∴∠BAE=60°.又∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=80米.根据旋转的性质得到:∠ADG=∠B=60°,又∵∠ADF=120°,∴∠GDF=180°,即点G在CD的延长线上.易得,△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAG=∠BAD=150°,∠FAE=75°∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴EF=BE+DF=80+40(﹣1)≈109(米),即这条道路EF的长约为109米.【点评】此题主要考查了四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,旋转的性质,解本题的关键是作出辅助线,构造全等三角形.24.【分析】(1)由A 、B 两点的坐标,利用待定系数法即可求得直线l 的解析式;(2)联立直线l 和直线y =x ,可求得C 点坐标,由条件可求得直线PD 的解析式,同理可求得D 点坐标,则可分别求得△POD 和△POC 的面积,则可求得△PCD 的面积;(3)由P 、A 、C 的坐标,可分别表示出PA 、PC 和AC 的长,由等腰三角形的性质可得到关于m 的方程,则可求得m 的值,则可求得P 的坐标.【解答】解:(1)设直线l 解析式为y =kx +b ,把A 、B 两点坐标代入可得,解得,∴直线l 解析式为y =﹣2x +12;(2)解方程组,可得, ∴C 点坐标为(4,4),设PD 解析式为y =﹣2x +n ,把P (3,0)代入可得0=﹣6+n ,解得n =6,∴直线PD 解析式为y =﹣2x +6,解方程组,可得, ∴D 点坐标为(2,2),∴S △POD =×3×2=3,S △POC =×3×4=6,∴S △PCD =S △POC ﹣S △POD =6﹣3=3;(3)∵A (6,0),C (4,4),P (m ,0),∴PA 2=(m ﹣6)2=m 2﹣12m +36,PC 2=(m ﹣4)2+42=m 2﹣8m +32,AC 2=(6﹣4)2+42=20,当△PAC 为等腰三角形时,则有PA =PC 、PA =AC 或PC =AC 三种情况,①当PA =PC 时,则PA 2=PC 2,即m 2﹣12m +36=m 2﹣8m +32,解得m =1,此时P 点坐标为(1,0);②当PA=AC时,则PA2=AC2,即m2﹣12m+36=20,解得m=6+2或m=6﹣2,此时P点坐标为(6+2,0)或(6﹣2,0);③当PC=AC时,则PC2=AC2,即m2﹣8m+32=20,解得m=2或m=6,当m=6时,P与A 重合,舍去,此时P点坐标为(2,0);综上可知存在满足条件的点P,其坐标为(1,0)或(6+2,0)或(6﹣2,0)或(2,0).【点评】本题为一次函数的综合应用,涉及待定系数法、函数图象的交点、三角形的面积、等腰三角形的性质、勾股定理、分类讨论思想及方程思想等知识.在(1)中注意待定系数法的应用,在(2)中求得C、D的坐标是解题的关键,在(3)中用P点坐标分别表示出PA、PC的长是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,难度适中.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省台州市部分中学2020年中考数学模拟试卷(4月份)一.选择题(每小题4分,满分40分)1.﹣的倒数的绝对值是()A.﹣2020 B.C.2020 D.﹣2.2022年冬奥运即将在北京举行,北京也即将成为迄今为止唯一个既举办过夏季奥运会,又举办过冬季奥运会的城市,据了解北京冬奥会的预算规模为15.6亿美元,政府补贴6%(9400万美元).其中1 560 000 000用科学记数法表示为()A.1.56×109B.1.56×108C.15.6×108D.0.156×1010 3.导学案课前预习要求设计4幅既是轴对称又是中心对称的图案,小明设计完成了下列4幅图案,其中符合要求的个数是()A.1个B.2个C.3个D.4个4.如图,P是∠ABC内一点,点Q在BC上,过点P画直线a∥BC,过点Q画直线b∥AB,若∠ABC=115°,则直线a与b相交所成的锐角的度数为()A.25°B.45°C.65°D.85°5.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为()A.42 B.45 C.46 D.486.书架上放着三本古典名著和两本外国小说,小明从中随机抽取两本,两本都是古典名著的概率是()A.B.C.D.7.如图,点A,B,C是⊙O上的三点,若∠BOC=50°,则∠A的度数是()A.25°B.20°C.80°D.100°8.如图,一次函数y=﹣x与二次函数为y=ax2+bx+c的图象相交于点M,N,则关于x的一元二次方程ax2+(b+1)x+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.以上结论都正确9.如图,在Rt△ABC中,∠B=90°,AC=10,BC=6,线段AC的垂直平分线MN分别交AC、AB于M、N两点,则△BCN的面积是()A.B.C.D.10.如图,矩形OABC的顶点A、C分别在x轴、y轴上,OA=4,OC=3,直线m:y=﹣x 从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M,N,直线m运动的时间为t(秒),设△OMN的面积为S,则能反映S 与t之间函数关系的大致图象是()A.B.C.D.二.填空题(满分30分,每小题5分)11.分解因式:3x2﹣12x+12=.12.如图,在边长为6的菱形ABCD中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是.(结果保留π)13.如果定义新运算:a※b=(a≠b),那么(1※2)※3的值为.14.如图,在Rt△ABC中,∠C=90°,BC=4,BA=5,点D在边AC上的一动点,过点D 作DE∥AB交边BC于点E,过点B作BF⊥BC交DE的延长线于点F,分别以DE,EF为对角线画矩形CDGE和矩形HEBF,则在D从A到C的运动过程中,当矩形CDGE和矩形HEBF 的面积和最小时,则EF的长度为.15.将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B的对应点E落在坐标平面内,当△ADE是等腰直角三角形时,点E的坐标为.16.如图,在直角坐标系中,A,B为定点,A(2,﹣3),B(4,﹣3),定直线l∥AB,P 是l上一动点,l到AB的距离为6,M,N分别为PA,PB的中点下列说法中:①线段MN的长始终为1;②△PAB的周长固定不变;③△PMN的面积固定不变;④若存在点Q使得四边形APBQ是平行四边形,则Q到MN所在直线的距离必为9.其中正确的说法是.三.解答题17.(8分)已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.18.(8分)解不等式组,并将解集在数轴上表示出来.19.(8分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)20.(8分)如图,一次函数y 1=x +4的图象与反比例函数y 2=的图象交于A (﹣1,a ),B 两点,与x 轴交于点C .(1)求k .(2)根据图象直接写出y 1>y 2时,x 的取值范围.(3)若反比例函数y 2=与一次函数y 1=x +4的图象总有交点,求k 的取值.21.(10分)为了解家长对“学生在校带手机”现象的看法,某校“九年级兴趣小组”随机调查了该校学生家长若干名,并对调查结果进行整理,绘制如下不完整的统计图.根据以上信息,解答下列问题:(1)这次接受调查的家长总人数为 人.(2)在扇形统计图中,求“很赞同”所对应的扇形圆心角的度数;(3)若在这次接受调查的家长中,随机抽出一名家长,恰好抽到“无所谓”的家长概率是多少?22.(12分)已知∠MON =120°,点A ,B 分别在ON ,OM 边上,且OA =OB ,点C 在线段OB 上(不与点O ,B 重合),连接CA .将射线CA 绕点C 逆时针旋转120°得到射线CA ′,将射线BO 绕点B 逆时针旋转150°与射线CA ′交于点D .(1)根据题意补全图1;(2)求证:①∠OAC =∠DCB ;②CD =CA (提示:可以在OA 上截取OE =OC ,连接CE );(3)点H 在线段AO 的延长线上,当线段OH ,OC ,OA 满足什么等量关系时,对于任意的点C 都有∠DCH =2∠DAH ,写出你的猜想并证明.23.(12分)甲、乙两车分别从A 、B 两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B 地行驶,两车之间的路程y (千米)与出发后所用时间x (小时)之间的函数关系如图所示.(1)求甲、乙两车行驶的速度V 甲、V 乙.(2)求m 的值.(3)若甲车没有故障停车,求可以提前多长时间两车相遇.24.(14分)如图,正方形ABCD 的边长为4,点E ,F 分别在边AB ,AD 上,且∠ECF =45°,CF 的延长线交BA 的延长线于点G ,CE 的延长线交DA 的延长线于点H ,连接AC ,EF ,GH .(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.参考答案一.选择题1.解:﹣的倒数为:﹣2020,﹣2020的绝对值是:2020.故选:C.2.解:1 560 000 000用科学记数法表示为1.56×109.故选:A.3.解:第一、二、三个图形既是轴对称图形又是中心对称图形;第四个图形是轴对称图形,不是中心对称图形.故选:C.4.解:∵b∥AB,∴∠1+∠B=180°,∵∠ABC=115°,∴∠1=65°,∵a∥BC,∴∠2=∠1=65°,故选:C.5.解:将这组数据重新排列为42,44,45,46,46,46,47,48,所以这组数据的中位数为=46(次/分),故选:C.6.解:用列表法列出所有可能出现的情况如下:共有20种等可能的情况,其中两本都是古典名著的有6种,==,∴P(两本古典名著)故选:C.7.解:∵∠BOC=50°,∴∠A=∠BOC=25°.故选:A.8.解:∵一次函数y=﹣x与二次函数为y=ax2+bx+c的图象有两个交点,∴ax2+bx+c=﹣x有两个不相等的实数根,ax2+bx+c=﹣x变形为ax2+(b+1)x+c=0,∴ax2+(b+1)x+c=0有两个不相等的实数根,故选:A.9.解:∵∠B=90°,AC=10,BC=6,∴AB===8,∵线段AC的垂直平分线MN分别交AC、AB于M、N两点,∴AN=CN,设AN=CN=x,则BN=8﹣x,在Rt△BCN中,由勾股定理得:62+(8﹣x)2=x2,解得:x=,∴AN=,∴NB=8﹣=,∴△BCN的面积=BN×BC=××6=.故选:B.10.解:如图1中,当0<t≤4时,∵MN∥CA,∴OM:OA=ON:OC,∴OM:ON=OA:OC=4:3,∴OM=t,ON=t,∴y=•OM•ON=t2.如图2中,当4<t≤8时,y=S△EOF ﹣S△EON﹣S△OFM=t2﹣t•(t﹣4)﹣(t﹣4)=﹣2+3t.综上所述y=.故选:D.二.填空11.解:原式=3(x2﹣4x+4)=3(x﹣2)2,故答案为:3(x﹣2)212.解:由题意可得:所有的弧的半径为3,所有圆心角的和为:菱形的内角和,故图中阴影部分的周长是:=6π.故答案为:6π.13.解:∵a※b=(a≠b),∴(1※2)※3=※3=﹣3※3===0,故答案为:0.14.解:在Rt△ABC中,∠C=90°,BC=4,BA=5,∴AC==3,设DC=x,则AD=3﹣x,∵DF∥AB,∴=,即=,∴CE=∴BE=4﹣,∵矩形CDGE和矩形HEBF,∴AD∥BF,∴四边形ABFD是平行四边形,∴BF=AD=3﹣x,则S阴=S矩形CDGE+S矩形HEBF=DC•CE+BE•BF=x•x+(3﹣x)(4﹣x)=x2﹣8x+12,∵>0,∴当x=﹣=时,有最小值,∴DC=,有最小值,∴BE=4﹣×=2,BF=3﹣=,∴EF==,即矩形CDGE和矩形HEBF的面积和最小时,则EF的长度为故答案为.15.解:∵四边形OABC为矩形,点A的坐标为(0,4),点D的坐标为(m,1),∴BD=3,∵将矩形OABC沿AD折叠压平,使点B的对应点E落在坐标平面内,∴AB=AE,BD=DE,∠ABD=∠AED=90°,∵当△ADE是等腰直角三角形时,AE=ED,∴AB=BD,∠BAD=45°,∴∠DAE=∠BAD=45°,∴E在y轴上,AB=BD=AE=DE=3,∴四边形ABDE是正方形,OE=1,∴点E的坐标为(0,1);故答案为:(0,1).16.解:∵点A的坐标为(2,﹣3),点B的坐标(4,﹣3),∴AB=2,∵M,N分别为PA,PB的中点,∴MN=AB=1,①正确;当点P在直线l上运动时,PA、PB发生变化,∴△PAB的周长是变化的,②错误;S=×h×MN=×3×1=△PMN∴△PMN的面积固定不变,③正确;当四边形APBQ是平行四边形时,点Q到直线l的距离为12,∵直线l到MN所在直线的距离为3,∴Q到MN所在直线的距离为9,④正确;故答案为:①③④.三.解答17.解:(1)原式=ab+a+b+1﹣ab=a+b+1,当a+b=4时,原式=4+1=5;(2)∵a2﹣2ab+b2+2a+2b=(a﹣b)2+2(a+b),∴(a﹣b)2+2×4=17,∴(a﹣b)2=9,则a﹣b=3或﹣3.18.解:,解不等式①,得x≤3,解不等式②,得x>﹣2,不等式①、②的解集在数轴表示如下图所示,故原不等式组的解集为:﹣2<x≤3.19.解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt△ADF中,AF=AB﹣BF=70m,∠ADF=45°,∴DF=AF=70m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(70﹣10)m.答:障碍物B,C两点间的距离为(70﹣10)m.=x+4的图象过A(﹣1,a),20.解:(1)一次函数y1∴a=﹣1+4=3,=得,∴A(﹣1,3)代入反比例函数y2k=﹣3(2)反比例函数y=﹣,由题意得,2,解得,,,∴点B(﹣3,1)当y1>y2,即一次函数的图象位于反比例函数图象上方时,自变量的取值范围为:﹣3<x<﹣1;(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,即,方程=x+4有实数根,也就是x2+4x﹣k=0有实数根,∴16+4k≥0,解得,k≥﹣4,∵k≠0,∴k的取值范围为:k≥﹣4且k≠0.21.解:(1)这次接受调查的家长总人数为50÷25%=200人,故答案为:200;(2)∵“无所谓”的人数为200×20%=40人,∴“很赞同”的人数为200﹣(50+40+90)=20人,则“很赞同”所对应的扇形圆心角的度数为360°×=36°;(3)∵在所抽取的200人中,表示“无所谓”的人数为40,∴恰好抽到“无所谓”的家长概率是=0.2.22.(1)解:根据题意补全图形,如图1所示:(2)证明:①由旋转得:∠ACD=120°,∴∠DCB+∠ACO=180°﹣120°=60°,∵∠MON=120°,∴∠OAC+∠ACO=180°﹣120°=60°,∴∠OAC=∠DCB;②在OA上截取OE=OC,连接CE,如图2所示:则∠OEC=∠OCE=(180°﹣∠MON)=(180°﹣120°)=30°,∴∠AEC=180°﹣∠OEC=180°﹣30°=150°,由旋转得:∠CBD=150°,∴∠AEC=∠CBD,∵OA=OB,OE=OC,∴AE=BC,在△AEC和△CBD中,,∴△AEC≌△CBD(ASA),∴CD=CA;(3)解:猜想OH﹣OC=OA时,对于任意的点C都有∠DCH=2∠DAH;理由如下:在OH上截取OF=OC,连接CF、CH,如图3所示:则FH=OA,∠COF=180°﹣∠MON=180°﹣120°=60°,∴△OFC是等边三角形,∴CF=OC,∠CFH=∠COA=120°,在△CFH和△COA中,,∴△CFH≌△COA(SAS),∴∠H=∠OAC,∴∠BCH=∠COF+∠H=60°+∠H=60°+∠OAC,∴∠DCH=60°+∠H+∠DCB=60°+2∠OAC,∵CA=CD,∠ACD=120°,∴∠CAD=30°,∴∠DCH=2(∠CAD+∠OAC)=2∠DAH.23.解:(1)由图可得,,解得,,答:甲的速度是60km/h乙的速度是80km/h;(2)m=(1.5﹣1)×(60+80)=0.5×140=70,即m的值是70;(3)甲车没有故障停车,则甲乙相遇所用的时间为:180÷(60+80)=,若甲车没有故障停车,则可以提前:1.5﹣=(小时)两车相遇,即若甲车没有故障停车,可以提前小时两车相遇.24.解:(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=45°,∴AC==4,∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°,∴△AHC∽△ACG,=,∴AC2=AG•AH.(3)①△AGH的面积不变.=•AH•AG=AC2=×(4)2=16.理由:∵S△AGH∴△AGH的面积为16.②如图1中,当GC=GH时,易证△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴==,∴AE=AB=.如图2中,当CH=HG时,易证AH=BC=4(可以证明△GAH≌△HDC得到)∵BC∥AH,∴==1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.5°.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=45°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.5°,∴CM=EM,设BM=BE=x,则CM=EM=x,∴x+x=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,综上所述,满足条件的m的值为或2或8﹣4.。

相关文档
最新文档