电子时钟设计
基于单片机电子时钟设计

基于单片机电子时钟设计电子时钟是一种利用单片机技术来实现精确时间显示的装置。
它可以准确地显示时间,并且可以根据需要进行闹铃功能等扩展。
接下来,我将详细介绍基于单片机的电子时钟设计。
首先,我们需要选择合适的单片机来实现电子时钟。
目前,常用的单片机有STC51系列、PIC系列、AVR系列等。
在选择单片机时,我们需要考虑其性能参数、价格以及开发环境等因素。
接下来,我们需要设计电子时钟的电路结构。
电子时钟的核心是单片机,通过连接显示屏、RTC(实时时钟)、按键以及扬声器等设备,来实现时间的显示、调整以及报警功能。
首先,我们需要选择合适的显示屏。
常用的显示屏有数码管、液晶显示屏、LED点阵等。
数码管和液晶显示屏可以直接连接到单片机的IO口,而LED点阵需要借助驱动芯片来完成控制。
其次,我们需要选择合适的RTC模块,以确保时钟的准确性。
RTC模块可以借助于DS1302等实时时钟芯片来实现。
同时,我们还需要连接按键,来实现对时钟进行调整的功能。
通过按键的组合操作,我们可以调整年、月、日、小时、分钟等时间参数。
此外,如果我们希望实现报警功能,我们还需要连接一个扬声器。
通过控制扬声器的开关,我们可以在设定的时间点播放报警铃声。
在硬件设计完成后,我们就可以进行软件开发工作了。
首先,我们需要编写主程序来初始化硬件设备,并进入主循环。
在主循环中,我们需要不断读取RTC模块的时间数据,并在显示屏上进行实时显示。
同时,我们也需要编写按键检测和处理的程序。
按键检测可以通过查询IO口的状态来实现,而按键处理则需要根据按键的值进行相应的功能调整。
如果需要实现报警功能,我们还需要编写报警处理的程序。
在设定的时间点,我们可以通过控制扬声器的开关来实现报警铃声的播放。
最后,我们需要进行整体的调试和测试工作。
通过不断地调整和优化程序,来确保整个电路和软件的正常运行。
总结起来,基于单片机的电子时钟设计包括硬件设计和软件开发两部分。
通过选择合适的单片机、显示屏、RTC模块、按键和扬声器等设备,并编写相应的程序,我们可以实现一个功能完善的电子时钟。
基于单片机电子时钟的设计与实现

基于单片机电子时钟的设计与实现一、设计目标设计一个基于单片机的电子时钟,能够准确显示时间并能够进行设置和调整。
二、硬件设计1.时钟部分:采用晶振芯片提供准确的时钟信号2.数码管显示部分:使用共阴数码管进行数字显示3.按键部分:设计几个按键用于设置和调整时间4.电源部分:采用直流电源供电三、软件设计1.功能设计a.时间设置功能:通过按键可以设置当前的时间,包括小时、分钟和秒钟。
b.时间调整功能:通过按键可以调整当前的时间,包括小时、分钟和秒钟。
c.时间显示功能:通过数码管可以实时显示当前的时间。
2.代码实现以C语言为例,以下是一个基于单片机的电子时钟的代码实现示例:```c#include <reg51.h>sbit DS18B20=P1^3; // 定义18B20数据线接口sbit beep=P2^3; // 定义蜂鸣器接口unsigned char hour,min,sec; // 定义小时、分钟、秒钟变量//函数声明void Delay_1ms(unsigned int count);bit Ds18b20Init(;unsigned char Ds18b20ReadByte(;void ReadTime(;void WriteTime(;void DisplayTime(;//主函数void mainP2=0x00;WriteTime(; // 写入时间while(1)ReadTime(; // 读取时间DisplayTime(; // 显示时间Delay_1ms(1000); // 延时1秒}//毫秒延时函数void Delay_1ms(unsigned int count) unsigned int i, j;for(i=0; i<count; i++)for(j=0; j<1275; j++);//18B20初始化函数bit Ds18b20Initbit presence;DS18B20=0;Delay_1ms(100); // 延时450us~1000us DS18B20=1;Delay_1ms(10); // 延时15us~60us presence=DS18B20;Delay_1ms(30); // 延时60us~240us return presence;//18B20读取字节函数unsigned char Ds18b20ReadByte unsigned char i, dat;for(i=0; i<8; i++)DS18B20=0;//主机发起读时序_nop_(; // 延时1us_nop_(; // 延时1us_nop_(; // 延时1usDS18B20=1;//主机释放总线_nop_(; // 延时1us_nop_(; // 延时1us_nop_(; // 延时1usdat,=(DS18B20<<i); // 读取数据位,存放在dat变量中Delay_1ms(3); // 读时序完成后等待48us再接收下一位}return dat;//读取时间函数void ReadTimeunsigned char temp;temp=0x00;while(temp!=0xaa)Ds18b20Init(; // 初始化温度传感器Delay_1ms(1);DS18B20=0xcc;Delay_1ms(1);DS18B20=0xbe;Delay_1ms(1);temp=Ds18b20ReadByte(; // 读取时间数组的标志位}for(temp=0; temp<7; temp++)//写入时间函数void WriteTimeunsigned char i,j;while(1)Ds18b20Init(;Delay_1ms(1);DS18B20=0xcc;Delay_1ms(1);DS18B20=0x4e;Delay_1ms(1);for(i=0; i<7; i++)DS18B20=0x55;Delay_1ms(1);DS18B20=0xaa;Delay_1ms(1);Ds18b20Init(;Delay_1ms(1);DS18B20=0xcc;Delay_1ms(1);DS18B20=0x48;Delay_1ms(1);j=Ds18b20ReadByte(; // 判断是否写入成功if(j==0x0a)break;}//显示时间函数void DisplayTimeP1=seg[hour/10]; // 显示十位小时P2=(P2&0xf0),0x08; // 点亮第一个数码管Delay_1ms(5); // 延时一段时间P2=0x0f;//熄灭数码管P1=seg[hour%10]; // 显示个位小时P2=(P2&0xf0),0x04; // 点亮第二个数码管Delay_1ms(5); // 延时一段时间P2=0x0f;//熄灭数码管P1=seg[min/10]; // 显示十位分钟P2=(P2&0xf0),0x02; // 点亮第三个数码管Delay_1ms(5); // 延时一段时间P2=0x0f;//熄灭数码管P1=seg[min%10]; // 显示个位分钟P2=(P2&0xf0),0x01; // 点亮第四个数码管Delay_1ms(5); // 延时一段时间P2=0x0f;//熄灭数码管P1=0x00;//空显示P2=0x00;//熄灭数码管```四、总结通过以上的硬件设计和软件实现,可以实现一个基于单片机的电子时钟。
毕业设计论文_单片机电子时钟的设计

毕业设计论文_单片机电子时钟的设计摘要:电子时钟作为一种常见的时间显示装置,在现代社会中应用广泛。
本文设计了一款基于单片机的电子时钟,使用DS1307实时时钟芯片来获取系统时间,并通过数码管进行显示。
设计过程中,通过对单片机的编程和电路的连接,实现了时间的显示与调节功能,具有较高的准确性和稳定性。
该设计方案简单、实用,可用于各种场合。
关键词:单片机;电子时钟;DS1307;数码管1.引言电子时钟是一种利用电子技术构造的显示时间的装置,具有时间准确、使用简单、显示清晰等特点,广泛应用于生活和工作中。
本文以单片机为核心,设计了一款实时准确的电子时钟,提高了时间的准确度和稳定性。
2.设计原理该设计的核心是通过单片机与DS1307实时时钟芯片的连接,使得单片机可以获取到准确的系统时间,并通过数码管进行显示。
DS1307芯片通过I2C总线与单片机连接,通过读取芯片中的时间寄存器,单片机可以获得当前的时间信息。
3.硬件设计本设计中使用了AT89S52单片机作为主控芯片,通过引脚与DS1307芯片相连。
单片机的P0口接到数码管的段选信号,P1口接到数码管的位选信号,通过控制这两个口的输出状态,可实现对数码管上显示的数字进行控制。
同时,为了使时钟可以正常运行,需外接一个晶振电路为单片机提供时钟信号。
4.软件设计通过对单片机的编程,实现了以下功能:(1)初始化DS1307芯片,设置初始时间;(2)每隔一秒读取一次DS1307芯片的时间寄存器,将时间信息保存到单片机的RAM中;(3)根据当前时间信息,在数码管上显示对应的小时和分钟。
5.调试与测试经过硬件的连接以及软件的编写,进行了调试与测试。
将初始时间设置为08:30,观察数码管上的显示是否正确,以及时间是否准确。
同时,通过手动调节DS1307芯片中的时间,检查单片机是否能正确获取时间,并进行显示。
6.总结与展望本文设计了一款基于单片机的电子时钟,通过单片机与DS1307芯片的连接和编程,实现了准确的时间显示功能。
VHDL电子时钟的设计

VHDL电子时钟的设计VHDL(Very High Speed Integrated Circuit Hardware Description Language)是一种硬件描述语言,用于设计和模拟数字电路和系统。
在这篇文章中,我们将探讨VHDL电子时钟的设计。
设计一个VHDL电子时钟需要考虑以下几个方面:时钟的显示方式、时钟的时钟源以及时钟的控制逻辑。
首先,我们需要确定时钟的显示方式。
常见的电子时钟显示方式有7段LED显示和LCD显示。
在这里,我们选择使用7段LED显示。
7段LED 显示由7个LED灯组成,可以显示0到9的数字。
此外,还需要考虑到显示小时和分钟的两个时钟。
接下来,我们需要确定时钟的时钟源。
时钟源决定了时钟的精度和稳定性。
在VHDL设计中,常用的时钟源有晶体振荡器和时钟发生器。
晶体振荡器由晶体和振荡电路组成,可以提供非常精确和稳定的时钟信号。
时钟发生器则基于计数器和除频器的原理产生时钟信号。
根据实际需求选择合适的时钟源。
最后,我们需要设计时钟的控制逻辑。
控制逻辑决定了时钟的功能和操作方式。
在这里,我们将设计一个简单的时钟,包括设置时间、调节时间、显示时间和闹钟功能。
我们可以使用按钮和开关控制时钟的功能。
下面是一个VHDL电子时钟的示例设计代码:```vhdl--时钟显示模块entity ClockDisplay isportclk : in std_logic;reset : in std_logic;hours : in integer range 0 to 23;minutes : in integer range 0 to 59;alarm : in std_logic;seg7 : out std_logic_vector(6 downto 0) end entity ClockDisplay;architecture Behavioral of ClockDisplay is signal count : integer := 0;signal sec : integer := 0;signal disp_hours : integer := 0;signal disp_minutes : integer := 0;beginprocess (clk, reset)beginif reset = '1' thencount <= 0;sec <= 0;disp_hours <= 0;disp_minutes <= 0;elsif rising_edge(clk) thencount <= 0;sec <= sec + 1;elsecount <= count + 1;end if;end if;end process;process (sec, reset, hours, minutes, alarm)beginif reset = '1' thendisp_hours <= 0;disp_minutes <= 0;elsif rising_edge(sec) thenif alarm = '1' and hours = disp_hours and minutes = disp_minutes then--闹钟触发逻辑elsif sec = 59 thenif minutes = 59 thenif hours = 23 thendisp_hours <= 0;disp_minutes <= 0;elsedisp_hours <= hours + 1; disp_minutes <= 0;end if;elsedisp_hours <= hours;disp_minutes <= minutes + 1; end if;elsedisp_hours <= hours;disp_minutes <= minutes;end if;end if;end process;process (disp_hours, disp_minutes)begincase disp_hours is...end case;case disp_minutes is...end case;end process;end architecture Behavioral;```这个代码中,我们使用了两个进程来处理时钟的计时和显示逻辑。
基于单片机电子时钟的设计

基于单片机电子时钟的设计一、设计背景随着科技的不断进步,电子设备在我们的生活中扮演着越来越重要的角色。
时钟作为时间的测量工具,也从传统的机械时钟逐渐发展为电子时钟。
单片机作为一种集成度高、功能强大的微控制器,为电子时钟的设计提供了高效、可靠的解决方案。
基于单片机的电子时钟具有精度高、易于编程、成本低等优点,能够满足人们对时间测量和显示的各种需求。
二、系统设计方案1、硬件设计单片机选择:选择合适的单片机是整个系统设计的关键。
常见的单片机如STM32、AT89C51 等,具有不同的性能和特点。
根据系统需求,我们选择了 AT89C51 单片机,其具有成本低、性能稳定等优点。
时钟芯片:为了保证时间的准确性,需要选择高精度的时钟芯片。
DS1302 是一款常用的实时时钟芯片,具有低功耗、高精度等特点,能够为系统提供准确的时间信息。
显示模块:显示模块用于显示时间。
常见的显示模块有液晶显示屏(LCD)和数码管。
考虑到显示效果和成本,我们选择了 1602 液晶显示屏,能够清晰地显示时间、日期等信息。
按键模块:按键模块用于设置时间和调整功能。
通过按键可以实现时间的校准、闹钟的设置等功能。
电源模块:为整个系统提供稳定的电源。
可以选择电池供电或外部电源供电,根据实际使用场景进行选择。
2、软件设计编程语言:选择合适的编程语言进行软件编程。
C 语言是单片机编程中常用的语言,具有语法简单、可读性强等优点。
主程序流程:主程序首先进行系统初始化,包括单片机端口初始化、时钟芯片初始化、显示模块初始化等。
然后读取时钟芯片中的时间信息,并将其显示在液晶显示屏上。
通过按键检测模块,判断是否有按键操作,如果有,则进行相应的处理,如时间校准、闹钟设置等。
中断服务程序:为了保证时间的准确性,需要使用定时器中断来实现时钟的计时功能。
在中断服务程序中,对时钟芯片进行时间更新,确保时间的准确性。
三、硬件电路设计1、单片机最小系统单片机:AT89C51 单片机是整个系统的核心,负责控制和协调各个模块的工作。
基于单片机的电子时钟设计

基于单片机的电子时钟设计电子时钟是一种显示时间的设备,通常基于单片机设计。
它不仅可以准确显示时间,还可以具备闹钟、日历等功能。
本文将介绍基于单片机的电子时钟的设计。
首先,我们来看单片机的选择。
在设计电子时钟时,常用的单片机有PIC、AVR和STM32等。
这些单片机都有较强的计算能力和丰富的外设接口,非常适合用于电子时钟的设计。
具体的选择可以根据需求和个人熟悉程度做出决定。
接下来,我们需要设计时钟的显示部分。
一般来说,电子时钟的显示可以采用液晶显示屏或LED数码管。
液晶显示屏具有占用空间小、显示效果清晰等优点,适合用于大号时钟;而数码管则适合用于小型时钟。
根据具体需求选择合适的显示器件。
在电子时钟设计中,如何准确获取时间是关键。
可以利用主频计数的方法,通过单片机的定时器来获取时间。
比如用32.768kHz的振荡源作为单片机的时钟源,然后每秒进行一次中断计数,通过累加中断计数值,即可得到秒数、分钟数、小时数等。
在此基础上,可以进一步添加日历计算功能,如年、月、日的计算。
闹钟功能是电子时钟的重要组成部分之一、我们可以通过按键输入设置闹钟的时间和开关状态。
当闹钟时间到达时,可以通过蜂鸣器或液晶显示器等方式提醒用户。
闹钟的开关状态可以通过EEPROM等非易失性存储器来保存,以实现断电重启后不丢失设置的功能。
除了基本的显示和计时功能,电子时钟还可以增加其他实用的功能。
比如温湿度显示功能,可以通过外部传感器获取环境的温度和湿度,并显示在屏幕上。
还可以添加定时开关机功能,通过按键设置时间和开关状态,控制电源的开关。
这些功能的实现都需要通过合理的硬件设计和软件编程来完成。
总的来说,基于单片机的电子时钟设计需要首先选择合适的单片机,并根据具体需求设计显示部分、时间获取部分、闹钟部分以及其他扩展功能。
其中涉及到硬件设计和软件编程的内容,需要有一定的电子和计算机基础知识。
通过合理的设计和编程,我们可以实现一个功能齐全、准确可靠的电子时钟。
基于单片机的电子时钟设计

基于单片机的电子时钟设计电子时钟是人们日常生活中常见的设备之一,它不仅能够准确显示时间,还可以搭配其他功能,如闹钟、温度显示等。
本文将介绍基于单片机的电子时钟的设计原理和步骤,并探讨其在现代生活中的应用。
一、设计原理基于单片机的电子时钟主要由以下几个模块组成:时钟模块、显示模块、控制模块和电源模块。
时钟模块负责获取当前时间并进行计时,显示模块用于将时间信息显示出来,控制模块用于处理用户的输入操作,电源模块为电子时钟提供稳定的电源。
1. 时钟模块时钟模块的核心是一个定时器,它可以定时触发中断,通过中断服务程序来更新时间。
在单片机中,我们可以使用定时器模块来实现这个功能,通过设定合适的定时器参数,可以实现从毫秒级到秒级的计时精度。
2. 显示模块显示模块通常采用数码管或者液晶显示屏来显示时间信息。
数码管可以直接显示数字,在低功耗和成本方面具有优势;液晶显示屏可以显示更多的信息,具有更好的可视角度和美观性。
在电子时钟中,我们可以通过控制显示模块的引脚,以适当的方式显示小时、分钟和秒数。
3. 控制模块控制模块主要用于处理用户的输入操作,如设置闹钟时间、调整时间等。
可以通过按键开关、旋转编码器或者触摸屏等方式来实现用户交互。
当用户按下按键或者滑动触摸屏时,控制模块会相应地改变时钟模块中的时间数据或者触发其他操作。
4. 电源模块电子时钟需要一个稳定的电源来工作,通常使用交流电转直流电的方式进行供电。
电源模块可以通过整流、滤波和稳压等电路来提供稳定的直流电源。
二、设计步骤基于单片机的电子时钟的设计步骤如下:1. 确定需求和功能:首先需要明确设计的需求和功能,包括显示方式、时间格式、附加功能等。
2. 选择单片机:根据需求选择适合的单片机型号,考虑处理性能、存储空间、外设接口等因素。
3. 设计电路图:根据选择的单片机和其他模块,设计电子时钟的电路图。
包括时钟模块、显示模块、控制模块和电源模块的连接方式。
4. 编写源代码:根据电路图和功能需求,编写单片机的源代码。
单片机电子时钟课程设计报告

单片机电子时钟课程设计报告一、设计目的。
本课程设计旨在通过单片机技术的应用,设计并制作一个简单的电子时钟。
通过这一设计,学生将能够掌握单片机的基本原理和应用,培养学生的动手能力和创新意识,提高学生的实际操作能力。
二、设计原理。
本电子时钟采用单片机作为控制核心,通过晶振产生的时钟信号来实现时间的计时和显示。
利用数码管来显示小时和分钟,通过按键来调整时间。
同时,通过蜂鸣器发出报时信号,实现基本的闹钟功能。
三、设计方案。
1. 硬件设计。
(1)单片机选择,本设计选用常见的51单片机作为控制核心,具有成本低、易于编程的特点。
(2)时钟电路,采用晶振作为时钟信号源,通过单片机的定时器来实现时间的计时。
(3)显示模块,采用数码管来显示小时和分钟,通过数码管的扫描显示来实现时间的动态显示。
(4)按键输入,设计按键来调整时间,包括调整小时和分钟。
(5)报时功能,通过蜂鸣器来实现基本的报时功能,可以设置闹钟时间。
2. 软件设计。
(1)时钟控制,通过单片机的定时器来实现时间的计时和更新。
(2)显示控制,设计数码管的扫描显示程序,实现时间的动态显示。
(3)按键处理,设计按键扫描程序,实现对时间的调整。
(4)报时功能,设计蜂鸣器的报时程序,实现基本的闹钟功能。
四、设计实现。
1. 硬件实现。
根据上述设计方案,完成了电子时钟的硬件连接和布线,保证各个模块之间的正常通讯和工作。
2. 软件实现。
编写了单片机的程序,实现了时钟的计时、显示和控制功能,保证了电子时钟的正常运行。
五、实验结果。
经过调试,电子时钟能够准确显示当前的时间,并能够通过按键调整时间和设置闹钟功能,报时功能也能够正常工作。
六、总结与展望。
通过本课程设计,学生掌握了单片机的基本原理和应用,培养了动手能力和创新意识。
在今后的学习和工作中,学生将能够更好地应用单片机技术,设计和制作更加复杂的电子产品。
同时,也为学生今后的科研和创新工作奠定了良好的基础。
数字电子时钟设计

数字电子时钟设计数字电子时钟是一种简单易用、精度高、使用方便的时钟仪器。
在现代化的生活中,数字电子时钟已经成为人们生活和工作中不可缺少的一部分。
本文将介绍数字电子时钟的设计及其原理。
1. 数字电子时钟的结构数字电子时钟一般由数字显示器、电源、时钟芯片、振荡电路和控制电路等几个部分组成。
数字显示器:数字电子时钟采用的是七段数码管作为显示器,显示出当前时刻的时间。
电源:数字电子时钟的电源一般采用直流电源,可以通过普通的插座或者电池供电。
时钟芯片:时钟芯片是数字电子时钟的核心部分,可以提供高精度的时钟信号,并且可以根据用户设置的时间来进行计时。
振荡电路:振荡电路是数字电子时钟的发挥器,用于产生一个稳定的高精度的时钟信号。
控制电路:控制电路主要用于对数字电子时钟进行各种设置,并且可以控制数字电子时钟的各种功能。
2. 数字电子时钟的操作原理数字电子时钟的操作原理是通过时钟芯片来实现的。
时钟芯片可以提供一个高精度的时钟信号,这个时钟信号可以被控制电路所接收,并且控制电路可以将这个信号转化为秒、分、时等时间单位。
随着科技的发展,数字电子时钟的精度越来越高,可以达到秒级甚至毫秒级的精度。
这些高精度的时钟芯片可以通过电子时钟所连接的振荡电路来产生非常稳定的时钟信号。
3. 数字电子时钟设计的技术要求数字电子时钟的设计需要考虑以下几个方面的技术要求:(1)高精度的时钟信号数字电子时钟的时钟信号需要具有高精度,通常要求时钟误差不超过几秒钟。
这就需要时钟芯片具有非常高的精度的时钟信号源,同时还需要连接高精度的振荡电路。
(2)显示效果清晰明了数字电子时钟的显示效果要求非常的清晰明了,这就需要采用高质量的七段数码管,并且数量要足够,以显示出完整的时间信息。
(3)快速响应、稳定性好由于数字电子时钟是人们生活和工作中不可缺少的一部分,因此数字电子时钟的响应速度和稳定性也非常的重要,需要在设计时特别注重。
4. 数字电子时钟的优点和缺点数字电子时钟有以下几个优点:(1)高精度稳定数字电子时钟可以提供高精度的时钟信号,并且可以保持这个时钟信号的稳定性,误差范围非常小。
基于51单片机的电子时钟的设计与实现综述

基于51单片机的电子时钟的设计与实现综述基于51单片机的电子时钟是一种常见的嵌入式系统设计项目。
它通过使用51单片机作为核心处理器,结合外部电路和显示设备,实现了时间的计时和显示功能。
本文将对基于51单片机的电子时钟的设计和实现进行综述,包括硬件设计和软件设计两个部分。
一、硬件设计1.时钟电路时钟电路是电子时钟的核心部分,它提供稳定的时钟信号供给单片机进行计时。
常用的时钟电路有晶振电路和RTC电路两种。
晶振电路通过外接晶体振荡器来提供时钟信号,具有较高的精度和稳定性;RTC电路则是通过实时时钟芯片来提供时钟信号,具有较高的时钟精度和长期稳定性。
2.显示电路显示电路用于将时钟系统计算得到的时间信息转换为人们可以直接观察到的显示结果。
常用的显示器有数码管、液晶显示屏、LED显示屏等。
显示电路还需要与单片机进行通讯,将计时的结果传输到显示器上显示出来。
3.按键电路按键电路用于实现对电子时钟进行设置和调节的功能。
通过设置按键可以实现修改时间、调节闹钟等功能。
按键电路需要与单片机进行接口连接,通过读取按键的输入信号来实现对时钟的操作。
4.供电电路供电电路为电子时钟提供电源,通常使用直流电源。
供电电路需要满足单片机和其他电路的电源需求,同时还需要考虑电源的稳定性和保护措施等。
二、软件设计1.系统初始化系统初始化主要包括对单片机进行外设初始化、时钟初始化和状态变量初始化等。
通过初始化将各个外设配置为适合电子时钟功能运行的状态,并设置系统初始时间、闹钟时间等。
2.计时功能计时功能是电子时钟的核心功能,通过使用定时器和中断技术来实现。
通过设置一个固定时间间隔的定时器中断,单片机在每次定时器中断时对计时寄存器进行增加,实现时间的累加。
同时可以将计时结果转化为小时、分钟、秒等形式。
3.显示功能显示功能通过将计时结果传输到显示器上,实现时间信息的显示。
通过设置显示器的控制信号,将时间信息依次发送到各个显示单元上,实现数字或字符的显示功能。
基于单片机的电子时钟设计

基于单片机的电子时钟设计电子时钟是一种数字化表示时间的装置,广泛应用于家居、办公场所和公共场所。
它以数字形式显示时、分、秒,并且具备日历功能。
本文将介绍基于单片机的电子时钟设计方案。
电子时钟的设计核心是单片机,我们选择了常用的8051单片机。
这款单片机具有低功耗、低成本、易于编程等特点,非常适合用于电子时钟的设计。
整个电子时钟的系统可以分为四个模块:时钟模块、显示模块、设置模块和控制模块。
时钟模块是电子时钟的基础,它通过取自系统主频的时钟信号来驱动单片机的计时器。
计时器负责记录时间的变化,并触发相应的事件。
我们设置一个定时中断,每秒钟触发一次,用于更新时钟的显示。
显示模块负责将时钟的时间以数字的形式进行显示。
我们选用了常见的七段数码管显示技术。
七段数码管可以灵活地显示数字0~9和一些字母,非常适用于时钟的显示需求。
通过控制七段数码管的每个段的亮灭状态,就可以显示不同的数字。
我们通过连接相应的端口到单片机的I/O口,通过编程控制I/O口的输出,来实现对七段数码管显示的控制。
设置模块允许用户设置时间、日期等参数。
我们通过增加几个按键来实现时间的设置。
通过编程监控按键的状态变化,可以实现按键的响应和处理,进而实现时间参数的设置。
控制模块是整个电子时钟系统的大脑,它主要负责协调和控制各个模块的工作。
在时钟模块中,它通过定时中断来触发时钟的更新;在显示模块中,它负责将更新的时间数据传递给七段数码管;在设置模块中,它通过监控按键的状态变化,触发相应的设置事件。
在电子时钟的设计过程中,我们需要考虑以下几个方面:1.时钟的准确性:时钟的准确性是电子时钟的基础,我们可以利用单片机的计时器来实现时钟的计时功能,并通过连接时钟信号源来保证时钟的准确性。
2.时钟的显示:时钟的显示是电子时钟的核心功能,我们选择七段数码管进行显示。
通过控制七段数码管的亮灭状态,我们可以实现不同数字的显示。
3.时间的设置:我们设置了几个功能按键,用于时间的设置。
单片机电子时钟的设计

单片机电子时钟的设计单片机电子时钟是一个用于显示时间的电子装置,是一种非常常见和实用的电子设备之一。
设计一款单片机电子时钟需要掌握一定的电子知识和编程技能,本文将介绍单片机电子时钟的设计原理和具体实现步骤。
一、设计原理单片机电子时钟的设计原理比较简单,其核心是一个单片机芯片,通过单片机芯片控制液晶显示屏显示时间,并通过操作键盘来实现对时间的设置和校准。
具体来说,单片机电子时钟的设计原理包括以下几个方面:1. 外设器件单片机电子时钟的外设器件要包括单片机芯片、晶振、电源模块、LCD液晶显示屏和按键模块等,其中晶振是单片机以时钟的形式工作的关键部件,LCD液晶显示屏可以显示时间和各种提示信息,按键模块可以实现对时间的设置和调整。
2. 时间计算单片机电子时钟的原理其核心部分是时间计算,电子时钟需要能够计算出当前的时间,用于更新时间显示。
在计算当前时间时,我们需要对时间、日期等进行加减,同时设定一个基准时间,比如说格林威治标准时间(GMT),然后通过加减偏移来得到当前时间。
3. 时间显示时间显示模块的核心是一个LCD液晶显示屏,屏幕上显示的时间应该是易于读取,时分秒的划分应该清晰,以免产生误解。
同时,还需要考虑到屏幕的亮度和占用空间等问题。
4. 操作控制单片机电子时钟的操作控制要包括时间设置、时间调整、闹铃设定、亮度设置、背光设置等,这些都可以通过按键模块控制。
二、实现步骤1. 确定单片机型号和晶振型号确定单片机型号和晶振型号是单片机电子时钟设计的第一步。
单片机的型号要选取适合于自己的技能水平的型号,晶振型号的选择要考虑到单片机的时钟频率和计算精度等问题。
2. 电路设计根据单片机型号和晶振型号进行电路设计,主要包括单片机芯片、晶振、电源电路、LCD液晶显示屏和键盘模块,可以参考一些开源的资料或者进行自己的设计,注意要根据实际情况进行调整和改进。
3. 程序编写程序编写是电子时钟设计的关键环节,主要需要完成时间计算、时间显示和操作控制等功能。
基于单片机的电子时钟的设计

基于单片机的电子时钟的设计基于单片机的电子时钟是一种采用单片机作为主控芯片的数字显示时钟。
它能够准确显示时间,并可以通过编程实现其他功能,如闹钟、倒计时、温湿度显示等。
本文将介绍基于单片机的电子时钟的设计原理、硬件电路和软件编程等内容。
1.设计原理基于单片机的电子时钟的设计原理是通过单片机的计时器和定时器模块来实现时间的计数和显示。
单片机的计时器可以通过设定一个固定的时钟频率进行计数,而定时器可以设定一个固定的计数值,当计数到达设定值时,会触发一个中断,通过中断服务程序可以实现时间的更新和显示。
2.硬件电路基于单片机的电子时钟的硬件电路主要包括单片机、显示模块、按键模块和时钟模块。
其中,单片机作为主控芯片,负责控制整个电子时钟的运行;显示模块一般采用数字管或液晶屏,用于显示时间;按键模块用于设置和调整时间等功能;时钟模块用于提供稳定的时钟信号。
3.软件编程基于单片机的电子时钟的软件编程主要分为初始化和主程序两个部分。
初始化部分主要是对单片机进行相关寄存器的设置,包括计时器和定时器的初始化、中断的使能等;主程序部分是一个循环程序,不断地进行时间的计数和显示。
3.1初始化部分初始化部分首先要设置计时器模块的时钟源和计数模式,一般可以选择内部时钟或外部时钟作为时钟源,并设置计时器的计数模式,如自动重装载模式或单次模式;然后要设置定时器模块的计数值,一般可以通过设定一个固定的计数值和计数频率来计算出定时时间;最后要设置中断使能,使得当定时器计数器达到设定值时触发一个中断。
3.2主程序部分主程序部分主要是一个循环程序,通过不断地读取计时器的计数值,并计算得到对应的时间,然后将时间转换成显示的格式,并显示在显示模块上。
同时,还可以通过按键来实现时间的设置和调整功能,如增加和减少小时和分钟的值,并保存到相应的寄存器中。
4.功能扩展-闹钟功能:设置闹钟时间,并在设定的时间到达时触发报警;-温湿度显示:通过连接温湿度传感器,实时显示当前的温度和湿度数据;-倒计时功能:设置一个倒计时的时间,并在计时到达时触发相应的动作。
基于单片机的电子时钟的设计与实现

基于单片机的电子时钟的设计与实现电子时钟是一种使用微处理器或单片机作为主控制器的数字时钟。
它不仅能够显示当前时间,还可以具备其他附加功能,如闹钟、日历、温度显示等。
一、设计目标设计一个基于单片机的电子时钟,实现以下功能:1.显示时间:小时、分钟和秒钟的显示,采用7段LED数码管来显示。
2.闹钟功能:设置闹钟时间,到达设定的时间时会发出提示音。
3.日历功能:显示日期、星期和月份。
4.温度显示:通过温度传感器获取当前环境温度,并显示在LED数码管上。
5.键盘输入和控制:通过外部键盘进行时间、日期、闹钟、温度等参数的设置和调整。
二、硬件设计1.单片机选择:选择一款适合的单片机作为主控制器,应具备足够的输入/输出引脚、中断和定时器等功能,如STC89C522.时钟电路:使用晶振为单片机提供稳定的时钟源。
3.7段LED数码管:选择合适的尺寸和颜色的数码管,用于显示小时、分钟和秒钟。
4.温度传感器:选择一款适合的温度传感器,如DS18B20,用于获取环境温度。
5.喇叭:用于发出闹钟提示音。
6.外部键盘:选择一款适合的键盘,用于设置和调整时间、日期、闹钟等参数。
三、软件设计1.初始化:设置单片机定时器、外部中断和其他必要的配置。
2.时间显示:通过定时器中断,更新时间,并将小时、分钟和秒钟分别显示在相应的LED数码管上。
3.闹钟功能:设置闹钟时间,定时器中断检测当前时间是否与闹钟时间一致,若一致则触发警报。
4.日历功能:使用定时器中断,更新日期、星期和月份,并将其显示在LED数码管上。
5.温度显示:通过定时器中断,读取温度传感器的数据,并将温度显示在LED数码管上。
6.键盘输入和控制:通过外部中断,读取键盘输入,并根据输入进行相应的操作,如设置时间、闹钟、日期等。
7.警报控制:根据设置的闹钟时间,触发警报功能,同时根据用户的设置进行控制。
四、测试与调试完成软件设计后,进行系统测试与调试,包括验证显示时间、日期、温度等功能的准确性,以及闹钟和警报功能的触发与控制。
电子时钟课程设计51

电子时钟课程设计51一、教学目标本课程旨在让学生了解和掌握电子时钟的工作原理和设计方法。
通过本课程的学习,学生将能够:1.知识目标:理解电子时钟的基本构成,包括时钟芯片、显示器、按键等;掌握电子时钟的编程方法,包括定时器、中断、I/O口控制等。
2.技能目标:能够独立完成电子时钟的电路设计,包括元器件的选择、电路连接等;能够使用编程语言进行电子时钟的编程,实现基本功能。
3.情感态度价值观目标:培养学生的创新意识和团队合作精神,提高学生对电子科技的兴趣和热情。
二、教学内容本课程的教学内容主要包括以下几个部分:1.电子时钟的基本构成和工作原理;2.电子时钟的编程方法,包括定时器、中断、I/O口控制等;3.电子时钟的电路设计,包括元器件的选择、电路连接等;4.电子时钟的实际应用案例分析。
三、教学方法为了提高教学效果,本课程将采用多种教学方法,包括:1.讲授法:讲解电子时钟的基本原理和编程方法;2.讨论法:引导学生进行思考和讨论,提高学生的理解能力;3.案例分析法:分析电子时钟的实际应用案例,帮助学生了解电子时钟的应用场景;4.实验法:让学生动手设计电子时钟电路,提高学生的实践能力。
四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:电子时钟设计的相关教材,用于引导学生学习;2.参考书:提供电子时钟设计的详细资料,帮助学生深入理解;3.多媒体资料:包括电子时钟的设计视频、图片等,丰富学生的学习体验;4.实验设备:提供电子时钟设计所需的电路板、元器件等,让学生动手实践。
五、教学评估本课程的评估方式包括以下几个方面:1.平时表现:评估学生在课堂上的参与程度、提问回答等情况,占总评的30%;2.作业:评估学生完成的作业质量,包括电路设计、编程等,占总评的30%;3.考试:进行一次电子时钟设计相关的考试,评估学生的知识掌握程度,占总评的40%。
六、教学安排本课程的教学安排如下:1.教学进度:共10次课,每次课2小时;2.教学时间:每周六上午9:00-11:00;3.教学地点:学校实验室。
电子时钟课程设计绪论

电子时钟课程设计绪论一、教学目标本课程旨在让学生了解电子时钟的基本原理,掌握电子时钟的制作方法,培养学生的动手能力和创新能力。
具体目标如下:1.知识目标:学生能够了解电子时钟的组成部分,理解各部分的工作原理,掌握电子时钟的制作流程。
2.技能目标:学生能够独立完成电子时钟的制作,具备一定的电子电路调试能力。
3.情感态度价值观目标:学生通过制作电子时钟,培养对电子科技的兴趣,增强创新意识,提高团队协作能力。
二、教学内容本课程的教学内容主要包括电子时钟的原理、电子时钟的制作方法以及电子时钟的调试与优化。
具体安排如下:1.电子时钟的原理:介绍电子时钟的组成部分,如时钟芯片、分频器、显示器等,以及它们的工作原理。
2.电子时钟的制作方法:讲解电子时钟的制作流程,包括电路设计、焊接、调试等环节。
3.电子时钟的调试与优化:教授如何对电子时钟进行调试,使其精确显示时间,以及如何优化电路,提高时钟的性能。
三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法,如讲授法、讨论法、案例分析法、实验法等。
具体应用如下:1.讲授法:用于讲解电子时钟的原理和制作方法,使学生掌握基本知识。
2.讨论法:在课堂上学生进行讨论,培养学生的思考能力和团队协作精神。
3.案例分析法:分析实际案例,让学生了解电子时钟在现实生活中的应用,提高学生的实践能力。
4.实验法:安排实验室实践环节,让学生动手制作电子时钟,培养学生的实际操作能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:选用权威、实用的电子时钟制作教材,为学生提供系统的学习资料。
2.参考书:提供相关的电子科技书籍,方便学生深入研究电子时钟的相关知识。
3.多媒体资料:制作精美的课件、教学视频等,帮助学生更好地理解电子时钟的原理和制作方法。
4.实验设备:准备充足的实验设备,确保每个学生都能在实验室实践环节动手制作电子时钟。
基于单片机的简易电子时钟设计

基于单片机的简易电子时钟设计引言:电子时钟是人们日常生活中广泛应用的一种设备,基于单片机的电子时钟可以实现精确的时间显示、闹钟设置、定时功能等。
本设计将使用单片机控制电子时钟的各种功能,通过一个LCD显示屏来显示时间和其他信息。
一、设计目标:1.实现准确显示时间功能;2.设计带有闹钟设置的功能;3.实现定时功能。
二、设计原理:该电子时钟工作原理主要是通过单片机将外部的时钟信号进行调整和处理,然后控制液晶显示屏显示时间。
电子时钟的核心是单片机,通过单片机的计时功能实现时钟的准确显示,并通过输入设备设置闹钟功能和定时功能。
三、设计流程:1.系统初始化:首先,将单片机初始化,设置时钟和计时器的相关参数,开启显示屏的显示功能。
2.时间显示功能:通过计时器中断,定时更新时间,并将时间值传递给液晶显示屏显示出来。
3.闹钟设置功能:通过按键输入设置闹钟时间,将设置好的闹钟时间存储到单片机中。
4.定时功能:通过按键输入设置定时时间,将设置好的定时时间存储到单片机中,当定时时间到达时,触发相应的动作,如报警等。
四、硬件设计:1.单片机选择:选用一款适合的单片机,如51系列单片机。
2.时钟电路:通过外部晶振或者RTC芯片来提供准确的时钟信号。
3.输入设备:使用按键作为输入设备,用于设置闹钟和定时功能;4.显示屏:选用合适的液晶显示屏,用于显示时间。
五、软件设计:1.系统初始化:设置时钟和计时器的相关参数,开启显示屏的显示功能。
2.时间显示功能:通过计时器中断,定时更新时间,并将时间值传递给液晶显示屏显示出来。
3.闹钟设置功能:通过按键输入设置闹钟时间,将设置好的闹钟时间存储到单片机中。
4.定时功能:通过按键输入设置定时时间,将设置好的定时时间存储到单片机中,当定时时间到达时,触发相应的动作,如报警等。
六、实验结果:本设计可以准确显示时间,并可以设置闹钟和定时功能。
当闹钟和定时时间到达时,会触发相应的动作,实现了基本要求。
基于51单片机的电子时钟设计

基于51单片机的电子时钟设计
电子时钟是一种使用电子元件和计算机技术制造的时计,它可以显示年、月、日、时、分、秒等时间信息,并且具有显示精确、功能齐全、操
作简便等特点。
本文将基于51单片机设计一个电子时钟。
一、硬件设计:
1.时钟模块:我们可以使用DS1302时钟模块作为实时时钟芯片,它
可以提供精确的时间信息,并且可以通过单片机与之进行通信。
2.显示模块:我们可以使用共阳数码管进行时间的显示,将时钟设计
成6位7段显示器。
3.按键模块:我们可以使用按键作为输入方式,通过按键调整时间信息。
二、软件设计:
1.初始化:首先,我们需要初始化时钟模块和显示模块,使它们正常
工作。
同时,设置时钟的初始时间为系统当前时间。
2.获取时间:通过与时钟模块的通信,获取当前的时间信息,包括年、月、日、时、分、秒等。
3.显示时间:将获取到的时间信息通过显示模块显示出来,分别显示
在6个数码管上。
4.时间调整:通过按键模块的输入,判断用户是否需要调整时间。
如
果需要,可以通过按键的不同组合来调整时、分、秒等时间信息。
5.刷新显示:通过不断更新显示模块的输入信号来实现时钟的流动性,保持秒针不断运动的效果。
6.时间保存:为了保证时钟断电后依然能够保持时间,我们需要将时
钟模块获取到的时间信息保存在特定的EEPROM中。
7.闹钟功能:可以通过按键设置闹钟,当到达闹钟时间时,会通过蜂
鸣器发出响声。
以上就是基于51单片机的电子时钟设计方案。
通过对硬件和软件的
综合设计,我们可以实现一个功能齐全的电子时钟。
单片机电子时钟的设计

单片机电子时钟的设计一、设计目标与原理设计原理:1.使用单片机作为主控制器,通过系统时钟控制并计时,从而实现准确的时间显示。
2.利用矩阵键盘作为输入装置,通过按键输入来设置时间、闹钟等参数。
3.通过液晶显示屏显示时间、日期,以及其他相关信息。
4.利用蜂鸣器作为报警器,实现闹钟功能。
二、硬件设计1.单片机选择:选择一款适合的单片机芯片,如8051系列、PIC系列等,具备较强的扩展性和丰富的外设接口。
2.时钟模块:选择一个准确、稳定的时钟模块,如DS1302、DS3231等,可以提供标准的时间信号。
3.矩阵键盘:使用4x4的矩阵键盘,方便操作,实现对时钟的时间设置和闹钟等功能。
4.液晶显示屏:选择适合的液晶显示屏,显示时间、日期以及状态信息。
5.蜂鸣器:使用适当的蜂鸣器实现报警和闹钟功能。
6.电源:提供适当的电源电压和电流,保证设备正常运行。
三、系统架构设计1.硬件连接:将单片机与时钟模块、矩阵键盘、液晶显示屏和蜂鸣器连接起来,保证数据传输的正常进行。
2.时钟控制:通过单片机与时钟模块通信,获取当前的时间信息,并进行计时。
3.键盘输入:通过矩阵键盘检测按键输入,并根据不同的按键操作来实现时间设置、闹钟设置等功能。
4.显示控制:通过单片机控制液晶显示屏,将时间、日期等信息显示出来。
5.报警控制:根据闹钟设置的时间,通过单片机控制蜂鸣器实现报警和闹钟功能。
四、软件设计1.系统初始化:包括各个外设的初始化配置,如时钟模块的初始化、矩阵键盘的初始化等。
2.时钟控制:包括从时钟模块获取当前时间、计时等功能。
3.键盘输入处理:通过检测矩阵键盘的按键输入,实现对时间和闹钟等参数的设置。
4.显示控制:根据当前时间和设置的参数,将相应的信息显示在液晶显示屏上。
5.报警控制:根据闹钟设置的时间,控制蜂鸣器发出声音来实现报警和闹钟功能。
五、系统测试与优化1.硬件测试:对各个硬件模块进行测试,检查其是否正常工作。
2.软件测试:通过对软件功能的逐一测试,检查其是否符合设计要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
源码分析 1.程序预处理 #include<graphics.h> #include<stdio.h> #include<conio.h> #include<math.h> #include<dos.h> #define PI 3.1415926 #define UP 0x4800 #define DOWN 0x5000 #define ESC 0x11b #define TAB 0xf09 int keyhandle(int,int); int timeupchange(int); int timedownchange(int);
} if(count==2){ t[0].ti_min++; if(t[0].ti_min==60) t[0].ti_min=0; settime(t); /*设置新的系统时间*/ } if(count==3){ t[0].ti_sec++; if(t[0].ti_sec==60) t[0].ti_sec=0; settime(t); /*设置新的系统时间*/ } } int timedownchange(int count) /*处理光标下移的按键*/ { if(count==1) { t[0].ti_hour--; if(t[0].ti_hour==0) t[0].ti_hour=23; settime(t);/*设置新的系统时间*/ } if(count==2) { t[0].ti_min--; if(t[0].ti_min==0) t[0].ti_min=59; settime(t);/*设置新的系统时间*/ } if(count==3) { t[0].ti_sec--; if(t[0].ti_sec==0) t[0].ti_sec=59; settime(t);/*设置新的系统时间*/ } } 数字时钟处理模块 在数字时钟处理模块中,主要实现数字时钟的显示和数字时钟的修改。
电子时钟设计
1 课程设计要求和内容 1 设计目的 本程序旨在训练读者的基本编程能力,使读者熟悉C语言图形模式下 的编程。本程序涉及时间结构体、数组、绘图等方面的知识。通过本程 序的训练,使读者能对C语言有一个更深刻的了解,掌握利用C语言相 关函数开发电子时钟的基本原理,为进一步开发出高质量的程序打下坚 实的基础。 2 功能描述 如图(1)所示,此电子时钟主要有以下4个功能组成 (1) 电子时钟界面显示模块。电子时钟界面显示在调用电 子钟 运行处理之前完成,在这里主要调用了C语言图形系统函数 和字符屏幕处理函数画出时钟程序的主界面。 主界面包括类似Windows 自带的电子时钟的界面和帮助界面两部分。 电子时钟界面包括一个模拟时钟运转的钟表和一个显示时间的数字钟 表。在帮助界面中,主要包括 一些按键的操作说明。 (2) 电子时钟按键控制模块。按键控制模块主要完成两大部分功能。 第一,读取用户按键的键值。第二,通过对键盘按键值的判断, 执行相应的操作,如光标移动、修改时间。 (3)时钟动画处理模块。在时钟动画处理模块中,通过对 相关条件的判断和时钟指针坐标点值的计算,完成时、分、秒指针的擦 除和重绘,以达到模拟始终时钟运转的功能。 (4)数字时钟处理模块。在数字时钟处理模块中,主要实现了数字时 钟的显示和数字时钟的修改。其中,在数字时钟的修改中,用户可先按 Tab键定位需要修改内容的位置,然后通过移动按光标(↑)或下移 (↓)键来修改当前时间。
3) timedownchange() 函数原型:int timedownchange(int count) timedownchange()函数用于减少时、分、秒数,然后将新的时间设 置为当前时间。 4)digitclock() 函数原型:void digitclock(int x,int y,int clock ); Digitclock()函数用于在(x,y)位置显示clock值为时、分、秒 值。 5) drawcursor() 函数原型:void drawcursor(intcount); drawcursor()函数用于对count进行判断后,在相应位置绘制一条直 线作为光标。 6) clearcursor() 函数原型:void clearcursor(int count); clearcursor()函数用于对count进行判断后,在相应位置擦除原来的 光标。 7) void clockhandle() 函数原型:void clockhandle(); void clockhandle()函数用于完成时钟转动和数字时钟的显示。 (8) main() 函数原型:void main() main()为主函数。
其中,在数字时钟的修改中,用户先按Tab健定位需要修改的内容,然 后通过按光标上移(↑)或下移(↓)键来修改当前时间。 void digitclock(int x,int y,int clock)/*在指定位置显示数字时钟:时\分\秒*/ {char buffer1[10]; setfillstyle(0,2); bar(x,y,x+15,328); if(clock==60) clock=0; sprintf(buffer1,"%d",clock); outtextxy(x,y,buffer1); } int digithour(double h)/*将double型的小时数转换成int型*/ {int i; for(i=0;i<=23;i++) {if(h==i) return i;} } int digitmin(double m)/*将double型的分钟数转换成int型*/ {int i; for(i=0;i<=59;i++) {if(m==i) return i;} } int digitsec(double s) /*将double型的秒钟数转换成int型*/ {int i; for(i=0;i<=59;i++) {if(s==i) return i;} } void drawcursor(int count) /*根据count的值,画一个光标*/ {switch(count) { case 1:line(424,315,424,325);break; case 2:line(465,315,465,325);break; case 3:line(505,315,505,325);break; }
调试分析
在此次课程设计中,遇到了一些问题,通过和同学那个学以及老师 之间的沟通交流,最终把问题解决了。 (1) 要减少在部分功能上浪费时间,则在实践之前, 将源代码以及函数所代表的意义搞清楚,才能做 到节省做好程序的时间的目的。 (2) 对应函数问题的不同意思要搞清,才能把功能搞 清,对后面整个程序有较好的帮助。 (3) 在做完程序后,要及时检验可能会出现的问题 (4) 最终要运行程序,才能算是彻底做完程序。
小结
此次课程设计,从理论到实践,不仅巩固了以前学过的知识,而且学到 了很多在书本上学不到的知识,在设计中,我们遇到了许多以前编程从 未遇见过的问题,发现自己仍然存在许多知识上的不足,对一些学过的 知识理解的不够深刻,掌握的不够牢固,进过同学以及老师的帮助,是 我理解到了更多,同时,我也体会到了团队合作的重要性,如果是一个 人,根本不可能在短时间内完成这项编程任务。通过这次课程设计,我 们进一步巩固了大一学到的编程知识,而且体会到完成一个大的程序设 计工作,应努力增强团队精神和协作能力,准确的完成老师交给的编程 任务。
总体设计
功能模块设计 1. 电子时钟执行主流程
此电子时钟执行主流程如图(2)所示。首先,程序调用 initgraph()函数,使系统进入图形模式,然后通过使用 line()、arc()、outtextxy()和circle()等函数来绘制主窗 口及电子时钟界面,最后调用 Clockhandle()函数来处理时钟的运转及数字时钟的显示。在 clockhandle()函数中,使用了bioskey() 函数来获取用户的按键值,当用户按键Esc时,程序会从 clockhandle()函数中返回,从而退出函数。 2. 电子时钟界面显示 电子时钟界面的实现比较简单。值得一提的是,模拟电子时钟 的运转的动画时钟的时间刻度是用大小不同的圆来表示的,3根 长度不同但有一端在相同坐标位置的直线分别表示时、分、秒 针。 3电子时钟按键处理模块 在按键处理模块中,使用bioskey()函数来读取用户按键的键 值,然后调用keyhandle()函数对键盘按键值进行判断,执行 相应的操作。具体按键判断如下。 (1) 若用户按下Tab键,程序会调用clearcursor()函数 来清除上一个位置的光标,然后调用 drawcursor()函数在新位置处绘制一个光标。 (2) 若用户按下光标上移键,程序会调用 timeupchange()函数来增加相应的时、分、秒 值。 (3) 若用户按下光标下移键,程序会调用 timedownchange()函数来减少相应的时、分、秒 值。 (4) 若用户按下Esc键,程序会结束时钟运行,从而退 出系统。 3. 数字时钟处理模块 在数字时钟处理模块中,会每隔一秒调用gettime(t) 函数,获取系统时间,然后调用digitclock()函数在相应的位 置显示时、分、秒值。至于数字适时钟的修改,主要由当前光 标位置和光标上移(↑)或下移(↓)按键两者共同决定。例 如,若当前光标在分钟显示位置,且按下光标上移键,程序会 将当前时间的分钟值增加1,即增加一分钟,若加1后的分钟值 等于60,则将当前分钟值设置为0,最后调用settime(t)函数来
int digithour(double); int digitmin(double); int digitsec(double); void digitclock(int,int,int ); void drawcursor(int); void clearcursor(int); void clockhandle(); double h,m,s; double x,x1,x2,y,y1,y2; struct time t; 时钟按键处理模块 在电子时钟中,按键控制模块最主要的工作就是必须能够读取用户按 键,对按键值进行判断,并调用相关函数来执行相关操作。 int keyhandle(int key,int count) /*键盘控制 */ { switch(key) {case UP: timeupchange(count-1); /*因为count的初始值为2,所以此处 减1*/ break; case DOWN:timedownchange(count-1); /*因为count的初始值为2,所 以此处减1*/ break; case TAB:setcolor(15); clearcursor(count); /*清除原来的光标*/ drawcursor(count); /*显示一个新的光标*/ count++; break; } return count; } int timeupchange(int count) /*处理光标上移的按键*/ { if(count==1){ t[0].ti_hour++; if(t[0].ti_hour==24) t[0].ti_hour=0; settime(t); /*设置新的系统时间*/