理论力学考试重点题型
理论力学复习题(含答案)
《理论力学》复习题A一、填空题1、二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是 二力平衡是作用在一个物体上,作用效果能抵消、作用力与反作用力是作用在两个物体上,作用效果不能抵消。
2、平面汇交力系平衡的几何条件是顺次将表示各个力Fi 的有向线段首尾相接,可以构成闭合n 边形;平衡的解析条件是 ∑Fxi=0;且∑Fyi=o 。
3、静滑动摩擦系数与摩擦角之间的关系为 tanφ=fs 。
4、点的切向加速度与其速度的 方向 变化率无关,而点的法向加速度与其速度 大小 的变化率无关。
5、点在运动过程中,满足0,0=≠n a a 的条件,则点作 牵连 运动。
6、动点相对于的 定系 运动称为动点的绝对运动;动点相对于 动系 的运动称为动点的相对运动;而 动系 相对于 定系 的运动称为牵连运动。
7、图示机构中,轮A (只滚不滑)作 平面 运动;杆DE 作 定轴转动 运动。
题7图 题8图8、图示均质圆盘,质量为m ,半径为R ,则其对O 轴的动量矩为 。
9、在惯性参考系中,不论初始条件如何变化,只要质点不受力的作用,则该质点应保持 静止或等速直线 运动状态。
10. 任意质点系(包括刚体)的动量可以用 其质心 的动量来表示。
二、选择题1. 在下述公理、规则、原理和定律中,对所有物体都完全适用的有( D )。
A.二力平衡公理B.力的平行四边形规则C.加减平衡力系原理D.力的可传性2. 分析图中画出的5个共面力偶,与图(a )所示的力偶等效的力偶是(B )。
A. 图(b ) B. 图(c ) C.图(d ) D. 图(e )题2图3. 平面力系向点1简化时,主矢0='RF ,主矩01≠M ,如将该力系向另一点2简化,则( D )。
A. 12,0M M F R≠≠' B. 12,0M M F R ≠='C. 12,0M M F R=≠' D. 12,0M M F R ==' 4. 将大小为100N 的力F 沿x 、y 方向分解,若F 在x 轴上的投影为86.6 N ,而沿x 方向的分力的大小为115.47 N ,则F 在y 轴上的投影为( B )。
理论力学试题库及答案(通用篇)
理论力学试题库及答案(通用篇)一、理论力学试题库(通用篇)试题一:已知一质点在平面直角坐标系中的运动方程为 x = 2t² + 3,y = 4t² - t + 1。
求该质点在t = 2s 时的速度和加速度。
试题二:一质点沿圆周运动,其半径为 r,角速度为ω,角加速度为α。
求质点在任意时刻 t 的速度和加速度。
试题三:一质点从静止开始沿直线运动,受到恒力F 的作用。
求质点在任意时刻 t 的速度和位移。
试题四:一质点在平面内做匀速圆周运动,半径为r,角速度为ω。
求质点在任意时刻 t 的速度和加速度。
试题五:一质点在平面内做匀速运动,速度大小为v,方向与水平方向成θ 角。
求质点在任意时刻 t 的位移。
试题六:一质点在重力作用下做自由落体运动,求质点在任意时刻 t 的速度和位移。
试题七:一质点在水平地面上受到一斜向上的拉力F,拉力与水平方向的夹角为θ。
求质点在任意时刻 t 的速度和加速度。
试题八:一质点在平面内做匀速圆周运动,半径为r,角速度为ω。
求质点在任意时刻 t 的切向加速度和法向加速度。
试题九:一质点在平面内做匀速运动,速度大小为v,方向与水平方向成θ 角。
求质点在任意时刻 t 的位移和速度。
试题十:一质点在水平地面上受到一恒力 F 的作用,力与水平方向的夹角为θ。
求质点在任意时刻 t 的速度和位移。
二、答案答案一:t = 2s 时,速度 v = (4t, 8t - 1) = (8, 15) m/s;加速度 a = (8, 8) m/s²。
答案二:质点在任意时刻 t 的速度v = (rω, 0),加速度a = (0, rα)。
答案三:质点在任意时刻 t 的速度 v = (F/m)t,位移 s = (F/m)t²/2。
答案四:质点在任意时刻 t 的速度 v =(rωcos(ωt), rωsin(ωt)),加速度 a = (-rω²sin(ωt), rω²cos(ωt))。
理论力学复习题
理论力学复习题理论力学是物理学的一个重要分支,它主要研究物体在力的作用下的运动规律。
以下是一些理论力学的复习题,可以帮助同学们巩固和检验学习效果。
1. 牛顿运动定律- 描述牛顿第一定律的内容。
- 根据牛顿第二定律,解释力与加速度之间的关系。
- 牛顿第三定律在实际问题中的应用。
2. 静力学基础- 解释什么是平衡状态。
- 描述如何使用力的合成和分解来解决平衡问题。
- 举例说明摩擦力在静力学问题中的作用。
3. 动力学分析- 解释什么是惯性参考系。
- 描述牛顿运动定律在非惯性参考系中的应用。
- 举例说明如何使用牛顿定律解决动力学问题。
4. 功和能- 定义功和能,并解释它们之间的关系。
- 描述保守力和非保守力的区别。
- 举例说明如何应用机械能守恒定律解决实际问题。
5. 角动量和角动量守恒定律- 定义角动量,并解释它在物理系统中的重要性。
- 描述角动量守恒定律的应用条件。
- 举例说明如何使用角动量守恒定律解决旋转问题。
6. 刚体的转动- 解释刚体转动的基本原理。
- 描述转动惯量的概念及其计算方法。
- 举例说明如何使用转动定律解决刚体转动问题。
7. 振动和波动- 描述简谐振动的基本特征。
- 解释波的传播和波速的概念。
- 举例说明如何分析机械波的传播特性。
8. 拉格朗日力学- 介绍拉格朗日方程的基本概念。
- 描述如何使用拉格朗日方程解决复杂系统的动力学问题。
- 举例说明拉格朗日力学在物理问题中的应用。
9. 哈密顿力学- 解释哈密顿原理和哈密顿方程。
- 描述哈密顿量和拉格朗日量之间的关系。
- 举例说明哈密顿力学在解决动力学问题中的优势。
10. 非线性动力学和混沌理论- 描述非线性动力学的特点。
- 解释混沌理论的基本概念。
- 举例说明如何识别和分析混沌系统。
通过这些复习题,同学们可以检验自己对理论力学各个主题的理解程度,并为进一步的学习打下坚实的基础。
希望这些题目能够帮助同学们更好地掌握理论力学的知识点。
理论力学重难点及相应题解
运动学部分:一、点的运动学重点难点分析1.重点:点的运动的基本概念(速度与加速度,切向加速度和法向加速度的物理意义等);选择坐标系,建立运动方程,求速度、加速度。
求点的运动轨迹。
2.难点:运动方程的建立。
解题指导:1.第一类问题(求导):建立运动方程然后求导。
若已知点的运动轨迹,且方程易于写出时,一般用自然法,否则用直角坐标法。
根据点的运动性质选取相应的坐标系,对于自然法要确定坐标原点和正向。
不管用哪种方法,注意将点置于一般位置,而不能置于特殊位置。
根据运动条件和几何关系把点的坐标表示为与时间有关的几何参数的函数,即可得点的运动方程。
2.第二类问题(积分):由加速度和初始条件求运动方程,即积分并确定积分常数。
二、刚体的简单运动重点难点分析:1.重点:刚体平移、定轴转动基本概念;刚体运动方程,刚体上任一点的速度和加速度。
2.难点:曲线平移。
解题指导:首先正确判断刚体运动的性质。
其后的分析与点的运动分析一样分两类问题进行。
建立刚体运动方程时,应将刚体置于一般位置。
三、点的合成运动(重要)重点难点分析:1.重点:动点和动系的选择;三种运动的分析。
速度合成与加速度合成定理的运用。
2.难点:动点和动系的选择。
解题指导:1.动点的选择、动系的确定和三种运动的分析常常是同时进行的,不可能按顺序完全分开。
2.常见的运动学问题中动点和动系的选择大致可分以下五类:(1)两个(或多个)不坟大小的物体独立运动,(如飞机、海上的船舶等)对该类问题,可根据情况任选一个物体为动点,而将动系建立在另一个物体上。
由于不考虑物体的大小,因此动系(刚体)与物体(点)只在一个点上连接,可视为铰接,建立的是平移动坐标系。
(2)一个小物体(点)相对一个大物体(刚体)运动,此时选小物体为动点,动系建立在大物体上。
(3)两个物体通过接触而产生运动关系。
其中一个物体的接触只发生在一个点上,而另一个物体的接触只发生在一条线上。
选动点为前一物体的接触点,动系则建立在后一物体上。
理论力学复习题及答案
理论力学自测复习题静力学部分一、填空题:(每题2分)1、作用于物体上的力的三要素是指力的 大小 、 方向 和 作用点 。
2、当物体处于平衡状态时,作用于物体上的力系所满足的条件称为 平衡条件 ,此力系称为 平衡 力系,并且力系中的任一力称为其余力的 平衡力 。
3、力的可传性原理适用于 刚体 ,加减平衡力系公理适用于 刚体 。
4、将一平面力系向其作用面内任意两点简化,所得的主矢相等,主矩也相等,且主矩不为零,则此力系简化的最后结果为 一个合力偶5、下列各图为平面汇交力系所作的力多边形,试写出各力多边形中几个力之间的关系。
A 、 0321=++F F F、 B 、 2341F F F F =++ C 、 14320F F F F +++= D 、 123F F F =+ 。
6、某物体只受三个力的作用而处于平衡状态,已知此三力不互相平行,则此三力必 并且 汇交于一点、共面7、一平面力系的汇交点为A ,B 为力系作用面内的另一点,且满足方程∑m B =0。
若此力系不平衡,则其可简化为 作用线过A 、B 两点的一个合力 。
8、长方形平板如右图所示。
荷载集度分别为q 1、q 2、q 3、q 4的均匀分布荷载(亦称剪流)作用在板上,欲使板保持平衡,则荷载集度间必有如下关系: q 3=q 1= q 4=q 2 。
9、平面一般力系平衡方程的二力矩式为 ∑F x = 0、∑M A = 0、∑M B= 0 ,其适用条件是 A 、B 两点的连线不垂直于x 轴10、平面一般力系平衡方程的三力矩式为 ∑M A =0、∑M B =0、∑M C=0 ,其适用条件是 A 、B 、C 三点不共线 。
11、正方形平板受任意平面力系作用,其约束情况如下图所示,则其中 a b c f h属于静定问题; d e g 属于超静定问题。
12、已知平面平行力系的五个力(下左图示)分别为F 1 = 10 N , F 2 = 4 N ,F 3 = 8 N ,F 4 = 8 N 和F 5 = 10 N ,则该力系简化的最后结果为 大小0.4 N·m、顺时针转的力偶 。
理论力学复习题(答案)
理论⼒学复习题(答案)课程名称:⼯程⼒学B⼀、理论⼒学部分1、平⾯⽀架由三根直杆AC 、BE 、BC 铰接⽽成,其中AC 杆铅直,BE 杆⽔平,各杆⾃重不计,受⼒如图所⽰, BD =DE =CD =DA =a ,A 处为固定端,B 、C 、D 三处为铰接,试求A 处的约束反⼒和BC 杆的内⼒。
解:(1)整体分析00000cos 4500sin 450cos 45sin 450x Ax y Ay AA F F P F F P M m M P a P a =-==-==++-=∑∑∑解得:,,22Ax Ay A F P F P M Pa ===-∑ (2)分析BDE 杆000sin 45sin 450DBC MP a F a =--=∑,解得:BC F P =(拉⼒)2、图中各杆件之间均为铰链连接,杆⾃重不计,B 为插⼊端P=1000N,AE=EB=CE=ED=1m ,求插⼊端B 的约束反⼒,以及AC 杆的内⼒。
解:(1)整体分析0xF =∑,0Bx F = 0yF=∑,1000By F P N ==0BM=∑,11000.B M P N m =?=(2)分析CD 杆0EM =∑,0sin 4511AC F P ?=?1414AC F N ==3、图⽰结构由AB 、CE 与BC 三杆和滑轮E ⽤铰链连接组成,AD =DB =2m ,CD =DE =1.5m ,物体重Q =1200N ,⽤绳索通过滑轮系于墙上,不计杆与滑轮的⾃重和摩擦,试求固定铰链⽀座A 和活动铰链⽀座B 的约束⼒,以及杆BC 所受的⼒。
解:(1)研究整体1200T F P N ==00xAx T FF F =-=∑ 00yAy NB FF F P =+-=∑0(2)4(1.5)0BAy T MP r F F r =----=∑解得:1200Ax F N =,150Ay F N =,1050NB F N = (2)研究杆ADB2sin 220DBC NB Ay MF F F θ=+-=∑解得:1500BC F N =-4、图⽰构架中,各杆重均略去不计,C 为光滑铰链,已知:32/,.q kN m M kN m ==,2L m =。
理论力学复习题(答案)
理论力学复习题一、填空题1、力对物体的作用效果一般分为力的外效应和力的内效应。
2、作用在刚体上的力可沿其作用线任意移动,而不改变该力对刚体的作用效果。
3、质点动力学的三个基本定律:惯性定律、力与加速度之间的关系定律、作用力与反作用力定律4、质点系动能定理建立了质点系动能的改变量和作用力的功之间的关系。
5、一对等值、反向、不共线的平行力组成的特殊力系,称为力偶6、两个或两个以上力偶的组合称为力偶系。
7、力矩与矩心的位置有关,力偶矩与矩心的位置无关。
8、物体质量的改变与发生这种改变所用合外力的比值叫做加速度。
9、力的三要素为大小、方向和作用点。
10、物体相对于地球静止或作匀速直线运动称为平衡状态。
11、作用在一个物体上的两个力使物体平衡,这两个力一定是大小相等、方向相反、作用在同一条直线上。
12、平面运动的速度分析法有三种方法基点法、速度瞬心法和速度投影法。
13、在刚体的平面运动中,刚体的平移和转动是两种最基本运动。
14、动力学的三个基本定律:动量定理、动量矩定理、动能定理。
15、空间力系分为空间汇交力系和空间力偶。
16、带传动中,带所产生的约束力属于柔性约束,带只能承受拉约束。
17、质点动力学的三个基本定律:惯性定律、力与加速度之间的关系定律、作用力与反作用力定律18、质点系动能定理建立了质点系动能的改变量和作用力的功之间的关系。
19、当力为零或力的作用线过矩心时,力矩为零,物体不产生效果。
二、判断题1实际位移和虚位移是位移的两种叫法(×)2.作用力和反作用力等值、反向、共线、异体、且同时存在。
(√)3.力偶无合力。
(×)4.运动物体的加速度大,它的速度也一定大。
(×)5.平面任意力系的合力对作用面内任一点之矩等于力系中各分力对于同一点之矩的代数和。
(√)6.若力偶有使物体顺时针旋转的趋势,力偶矩取正号;反之,取负号。
(×)7.既不完全平行,也不完全相交的力系称为平面一般力系(√)8.二力构件是指两端用铰链连接并且只受两个力作用的构件。
理论力学总复习
1 a a 2 ( J p ) 0 m g( ) 2 2 2
式中:
a 2 1 a 2 5 2 J p J c m( ) ma m( ) ma 2 2 6 2 12 3.12 解得: rad/s a
感谢大家的支持与配合
祝期末考试取得优异成绩!
图6
解: A的速度水平向右,B的速度竖直向下,AB杆的速
度瞬心为P点。
所以: AB PA VA
而:AB PC VC
因为 PC=PA=1m
所以: VC VA 2 PC 1 2m / s PA 1
所以:OC VC / OC 2 / 1 2rad / s
答案:B
二、填空题 1. 一质量为m的质点从距地面高h处自由下落(初速度为零),
如不考虑空气阻力,则该质点从开始下落至落到地面这一过程
中,质点所受冲量的大小为( )。
答案:m 2gh
2. 小小的螺旋千斤顶之所以能支撑起庞大重量的物体,在于 利用了螺纹斜面上存在的 现象,亦即斜面上的主动力
合力作用线位于斜面的
MaC Fi
(e )
动量矩定理 1、质点系的动量矩 2.定轴转动刚体的动量矩
Lz J z
3.质点系的动量矩定理
dLO (e ) (e) mO ( Fi ) M O dt
(e) dLx (e) m x ( Fi ) M x dt
4、刚体定轴转动微分方程
J z M z
明确的运动(比如平动、定轴转动或平面运动)。
3 速度合成定理:三种速度间的关系。
va ve vr
绝对速度是平行四边形的对角线。
动力学
动量定理
1.质点系的动量:质点系中所有各质点的动量的矢量和。
理论力学复习题试题库及答案
理论力学试题静力学部分一、填空题:(每题2分)1、作用于物体上的力的三要素是指力的 大小 、 方向 和 作用点 。
2、当物体处于平衡状态时,作用于物体上的力系所满足的条件称为 平衡条件 ,此力系称为 平衡 力系,并且力系中的任一力称为其余力的 平衡力 。
3、力的可传性原理适用于 刚体 ,加减平衡力系公理适用于 刚体 。
4、将一平面力系向其作用面内任意两点简化,所得的主矢相等,主矩也相等,且主矩不为零,则此力系简化的最后结果为 一个合力偶5、下列各图为平面汇交力系所作的力多边形,试写出各力多边形中几个力之间的关系。
A 、 0321=++F F F 、B 、 2341F F F F =++C 、 14320F F F F +++=D 、 123F F F =+ 。
6、某物体只受三个力的作用而处于平衡状态,已知此三力不互相平行,则此三力必 并且 汇交于一点、共面7、一平面力系的汇交点为A ,B 为力系作用面内的另一点,且满足方程∑m B =0。
若此力系不平衡,则其可简化为 作用线过A 、B 两点的一个合力 。
8、长方形平板如右图所示。
荷载集度分别为q 1、q 2、q 3、q 4的均匀分布荷载(亦称剪流)作用在板上,欲使板保持平衡,则荷载集度间必有如下关系: q 3=q 1= q 4=q 2 。
9、平面一般力系平衡方程的二力矩式为 ∑F x = 0、∑M A = 0、∑M B = 0 ,其适用条件是 A 、B 两点的连线不垂直于x 轴10、平面一般力系平衡方程的三力矩式为 ∑M A =0、∑M B=0、∑M C =0 ,其适用条件是 A 、B 、C 三点不共线 。
、正方形平板受任意平面力系作用,其约束情况如下图所示,则其中 a b c f h属于静定问题; d e g 属于超静定问题。
12、已知平面平行力系的五个力(下左图示)分别为F 1 = 10 N ,F 2 = 4 N ,F 3 = 8 N ,F 4 = 8 N 和F 5 = 10 N ,则该力系简化的最后结果为 大小0.4 N ·m 、顺时针转的力偶 。
理论力学期末复习
讨论三种可能发生
FD f D FND 0.4 300N 120N, 的运动情况 FE f E FNE 0.2 643N 128.6N
Fx 0, FT1 FD FE 0
FT1 FD FE 248.6N
线圈架沿AB梁滚动而无滑动
FD f D FND , FE f E FNE =128.6 N
解:解除约束,画整体受力图
列平衡方程
M A F 0
•
FNB AB FT AD r FT DE r 0
FNB FT AD DE 120 2 1.5 kN 105 kN AB 4
FAy FNB FT 0
•
Fy 0
2-4-2 物系平衡问题解法
受力分析
① 首先从二力构件入手,可使受力图比较简单,易于求解。
② 解除约束时,要严格地按照约束的性质,画出相应的约 束力,切忌凭主观想象。对于一个销钉连接三个或三个以上物 体时,要明确所选对象中是否包括该销钉?解除了哪些约束? 然后正确画出相应的约束力。
③ 画受力图时,关键在于正确画出铰链约束力,除二力构
d FR
MO FR
FR 0 M O 0
FR 0
MO 0
合力 力螺旋
FR 0 M O 0 FR // MO
FR 0 M O 0 ( FR , MO )= 力螺旋
1-3-3 力系的最简形式
1.图示力系沿正方体棱边作用,F1=F2=F3=F,
三 点的复合运动
3-1 运动学基础(填空题) 3-2 点的复合运动概念 3-3 点的运动合成定理(注意科氏加速度) 3-4 点的复合运动问题(计算题2)
理论力学考试题和答案
理论力学考试题和答案****一、选择题(每题2分,共20分)1. 质点系中,若质点间的作用力都是中心力,则该质点系的()守恒。
A. 动量B. 动能C. 角动量D. 机械能答案:C2. 刚体绕固定轴转动时,其转动惯量I与()有关。
A. 质量B. 质量分布C. 轴的位置D. 以上都是答案:D3. 在理论力学中,虚位移是指()。
A. 真实发生的位移B. 可能发生的位移C. 任意微小的位移D. 以上都不是答案:B4. 两个质点组成的系统,若它们之间的万有引力为F,当它们之间的距离增大为原来的2倍时,万有引力变为原来的()。
A. 1/4B. 1/2C. 2D. 4答案:A5. 刚体的平面运动可以分解为()。
A. 平移和旋转B. 平移和滑动C. 旋转和滑动D. 平移和滚动答案:A6. 质点系的质心位置由()决定。
A. 质点系的几何形状B. 质点系的质量分布C. 质点系的运动状态D. 质点系的初始位置答案:B7. 刚体的转动惯量与()无关。
A. 质量B. 质量分布C. 旋转轴的位置D. 刚体的形状答案:D8. 动量守恒定律适用于()。
A. 只有重力作用的系统B. 只有弹力作用的系统C. 外力为零的系统D. 外力的合力为零的系统答案:D9. 刚体的惯性矩是关于()的量。
A. 质量B. 质量分布C. 旋转轴的位置D. 以上都是答案:D10. 质点系的动能守恒的条件是()。
A. 只有保守力作用B. 只有非保守力作用C. 外力为零D. 外力的功为零答案:D二、填空题(每题2分,共20分)1. 质点系的总动量等于所有质点动量的矢量______。
答案:和2. 刚体绕固定轴转动的角速度与角位移的关系是______。
答案:导数关系3. 虚功原理表明,当系统处于平衡状态时,所有虚位移的虚功之和为______。
答案:零4. 刚体的转动惯量I与质量m和距离轴的距离r的关系是I=mr^2,这表明转动惯量与______成正比。
答案:质量与距离轴的平方5. 质点系的质心速度等于所有质点速度的矢量______。
理论力学试题及答案1精选全文完整版
可编辑修改精选全文完整版理论力学题库简答题1-1.简述伽利略相对性原理和牛顿运动定律成立的参考系。
答:(1)内容:不能借助任何力学实验来判断参考系是静止的还是在匀速直线运动;(2)相对与惯性系作匀速直线运动的参考系都是惯性参考系;(3)牛顿运动定理只能在惯性系成立。
1-2. 简述有心力的性质. 并证明质点在有心力作用下只能在一个平面内运动.证明:只要证明角动量是一个常矢量即可.性质:(1)力的作用线始终通过一定点;(角动量是一个常矢量或质点始终在垂直于角动量的平面内运动)(2) 角动量守恒,或掠面速度守恒;(3) 有心力是保守力, 或机械能守恒.1-3.什么情况下质心与几何中心、重心重合?质心系有何特性?(1) 密度均匀物体质心与几何中心重合;(2) 重力加速度为常量时物体质心与重心重合;质心系的特性:(1) 质心系中各质点相对于质心的总动量为零;(2) 质心系的惯性力矩为零;(3) 质心系的惯性力做功为零。
1-4.太阳和地球组成的两体系统中,分别以地球、太阳、质心为参照系,简述地球、太阳的运动情况。
答: (1)质心参照系中地球、太阳的运动:地球,太阳相对于质心作椭圆运动。
(2)地球参照系中太阳运动:太阳相对于地球作椭圆运动。
(3)太阳参照系中地球的运动:地球相对于太阳作椭圆运动。
2-1.分别说明质点组动量守恒定律、动量矩守恒定律、机械能守恒定律成立的条件。
2-2.说明 质点组 对某定点,如原点O ,的动量矩守恒定律成立的条件(要求写出分量式)。
质点组对原点O 的动量矩守恒定律成立的条件为:0)(1=⨯=∑=e i n i i F r M ,分量守恒。
即: 对x 轴:0)()(1=-∑=e iy i e iz n i i F z F y ;对y 轴:0)()(1=-∑=e iz i e ixn i i F x F z ; 对z 轴:0)()(1=-∑=e ixi e iy n i i F y F x 。
大学理论力学期末考试题库及答案
大学理论力学期末考试题库及答案一、选择题(每题2分,共20分)1. 质点系的质心位置取决于()。
A. 质点系的总质量B. 质点系中各质点的质量C. 质点系中各质点的位置D. 质点系中各质点的速度答案:C2. 刚体的转动惯量与()有关。
A. 质量B. 质量分布C. 质量分布和形状D. 形状3. 两个质点组成的系统,若两质点间的作用力大小相等,方向相反,则这两个力()。
A. 是一对平衡力B. 是一对作用力和反作用力C. 是一对内力D. 不能确定答案:B4. 质点沿直线做匀加速运动,加速度为a,初速度为v0,则经过时间t后的速度v为()。
A. v = v0 + atB. v = v0 - atC. v = v0 + 1/2atD. v = v0 - 1/2at5. 两个质点组成的系统,若两质点间的作用力大小相等,方向相反,则这两个力()。
A. 是一对平衡力B. 是一对作用力和反作用力C. 是一对内力D. 不能确定答案:B6. 刚体绕固定轴转动时,其转动惯量与()有关。
A. 质量B. 质量分布C. 质量分布和形状D. 形状答案:C7. 质点沿直线做匀加速运动,加速度为a,初速度为v0,则经过时间t后的位移s为()。
A. s = v0t + 1/2at^2B. s = v0t - 1/2at^2C. s = v0t + at^2D. s = v0t - at^2答案:A8. 刚体绕固定轴转动时,其角加速度与()有关。
A. 质量B. 质量分布C. 质量分布和形状D. 形状答案:B9. 质点沿直线做匀加速运动,加速度为a,初速度为v0,则经过时间t后的位移s为()。
A. s = v0t + 1/2at^2B. s = v0t - 1/2at^2C. s = v0t + at^2D. s = v0t - at^2答案:A10. 两个质点组成的系统,若两质点间的作用力大小相等,方向相反,则这两个力()。
A. 是一对平衡力B. 是一对作用力和反作用力C. 是一对内力D. 不能确定答案:B二、填空题(每题2分,共20分)1. 质点系的质心位置取决于质点系中各质点的________和________。
理论力学复习题及参考答案
理论力学复习题一、判断题:正确的划√,错误的划×1.力的可传性适用于刚体和变形体。
()2.平面上一个力和一个力偶可以简化成一个力。
()3.在刚体运动过程中,若其上有一条直线始终平行于它的初始位置,这种刚体的运动就是平动。
()4.两相同的均质圆轮绕质心轴转动,角速度大的动量矩也大。
()5.质点系的动量为零,其动能也必为零。
()6.刚体上只作用三个力,且它们的作用线汇交于一点,该刚体必处于平衡状态。
()7.如图只要力F处于摩擦角之内,物体就静止不动。
()8.各点都作圆周运动的刚体一定是定轴转动。
()9.两相同的均质圆轮绕质心轴转动,角速度大的动量也大。
()10.质点系的内力不能改变质点系的动量和动量矩。
()二、选择题:1.将图a所示的力偶m移至图b的位置,则()。
A . A、B、C处约束反力都不变B . A处反力改变,B、C处反力不变C . A 、C处反力不变,B处反力改变D . A、B、C处约束反力都要改变2.图示一平衡的空间平行力系,各力作用线与z轴平行,如下的哪些组方程可作为该力系的平衡方程组()。
3.如图所示,质量为m ,长为L 的匀质杆OA ,以匀角速度ω绕O 轴转动,图示位置时,杆的动量、对O 轴的动量矩的大小分别为( )。
A .12/2/12ωωmL L mL p O ==B .12/02ωmL L p O ==C .L mL L mL p O )21(212/1ωω== D .3/2/12ωωmL L mL p O ==4.点M 沿半径为R 的圆周运动,其速度为 是有量纲的常数。
则点M 的全加速度为( )。
A .B .C .D .5. 动点沿其轨迹运动时( )。
A .若0,0≠≡n a a τ,则点作变速曲线运动 B .若0,0≠≡n a a τ,则点作匀速率曲线运动 C .若0,0≡≠n a a τ,则点作变速曲线运动 D .若0,0≡≠n a a τ,则点作匀速率曲线运动6.一刚体上只有两个力偶M A 、M B 作用,且M A + M B = 0,则此刚体( )。
理论力学考试重点题型
析(公式和图形)、科氏加速度、
典型题:P178
P196
例题7-5、例题7-11、例题7-12、
题7-20、题7-26、
四、刚体的平面运动:运动分解、 基点法求速度和加速度、 瞬心法求角速度和速度。 典型题:P213、例题8-10、 例题8-11、
P228 题8-16、题8-18、
五、动量定理:三种运动刚体动量计算、质心计算、动量定理
例7-8
刨床的急回机构如图所示。曲柄OA的一端A与滑块用铰
链连接。当曲柄OA以匀角速度ω绕固定轴O转动时,滑块在摇杆
O1B上滑动,并带动杆O1B绕定轴O1摆动。设曲柄长为OA=r,两 轴间距离OO1=l。 求:摇杆O1B在如图所示位
置时的角加速度。
例:弯成直角的曲杆OBC绕O转动,小环M同时套在曲杆和固定杆 OA上,已知,OB=10cm,曲杆的角速度ω =0.5rad/s,求当
的三种形式、质心运动定理。
六、动量矩定理:三种运动刚体动量矩计算、对定点的动量矩 定理的三种形式、定轴转动微分方程、转动惯量、相对质心的 动量矩定理、平面运动微分方程。
典型题: P261、例题11-1、例题11-10、例题11-11 P283 题11-12、题11-14、
七、动能定理:外力所做的功、力的功率、三种运动刚体动 能计算、动能定理的三种形式、功率方程。
则:vB vA r 1.57m / s
例题2、 均质曲柄OC的质量为m ,均质杆AB的质量为 2m,
滑块A和B的质量均为m;已知OC=AC=CB=l ,曲柄绕O轴转
动的角速度为常量。求图示瞬时系统的动量、质点系对点O 的动量矩、瞬时系统的动能。
A
C
o
t
B
理论力学题库及答案详解
理论力学题库及答案详解一、选择题1. 在经典力学中,牛顿第一定律描述的是:A. 物体在没有外力作用下,将保持静止或匀速直线运动状态B. 物体在受到外力作用时,其加速度与所受合力成正比,与物体质量成反比C. 物体的动量守恒D. 物体的角动量守恒答案:A2. 以下哪一项不是牛顿运动定律的内容?A. 惯性定律B. 力的作用与反作用定律C. 动量守恒定律D. 力的独立作用定律答案:C二、填空题1. 根据牛顿第二定律,物体的加速度 \( a \) 与作用力 \( F \) 和物体质量 \( m \) 的关系是 \( a = \frac{F}{m} \)。
2. 一个物体在水平面上以初速度 \( v_0 \) 滑行,摩擦力 \( f \) 与其质量 \( m \) 和加速度 \( a \) 的关系是 \( f = m \cdot a \)。
三、简答题1. 简述牛顿第三定律的内容及其在实际问题中的应用。
答案:牛顿第三定律,也称为作用与反作用定律,指出作用力和反作用力总是成对出现,大小相等、方向相反,作用在两个不同的物体上。
在实际问题中,如火箭发射时,火箭向下喷射气体产生向上的推力,这是作用力;而气体向下的反作用力则推动火箭向上运动。
2. 解释什么是刚体的转动惯量,并给出计算公式。
答案:刚体的转动惯量是描述刚体绕某一轴旋转时惯性大小的物理量,其计算公式为 \( I = \sum m_i r_i^2 \),其中 \( m_i \) 是刚体各质点的质量,\( r_i \) 是各质点到旋转轴的垂直距离。
四、计算题1. 一个质量为 \( m \) 的物体在水平面上以初速度 \( v_0 \) 滑行,受到一个大小为 \( \mu mg \) 的摩擦力作用,求物体滑行的距离\( s \)。
答案:首先应用牛顿第二定律 \( F = ma \),得到 \( \mu mg = ma \)。
解得加速度 \( a = \mu g \)。
理论力学试题及答案
理论力学试题一、单项选择题1. 关于力的概念,错误的有()A.力是物体之间相互机械作用B. 力的三要素:大小、方向、作用点C. 力的单位为:KN或ND. 力是代数量2. 三力平衡汇交定理适用于下列哪一种情况?()A.只适用于变形体B.只适用于刚体C. 只适用于平衡系统D. 物体系统3. F1、F2 、F3及F4是作用在刚体上的平面汇交力系,其力矢之间有如图所示的关系,合力为FR,以下情况中哪几种是正确的?()A. FR= F4B. FR= 2F4C. FR= - F4D. FR= - 2F44. 关于力在直角坐标轴上的投影描述错误的是()A. 力的投影是代数量B.力的投影,从始端到末端的指向与坐标轴正向相同时为正,反之为负。
C.从力的起点和终点作坐标轴的垂线,则垂足之间的线段称为力在该坐标轴上的投影D. 力的投影是矢量5. 如图所示,如果两力偶均作用在杆BC上,铰链A或B的反力方位属于下列哪一种情况?A. 垂直于ACB. 垂直于BCC. 垂直于ABD. AC两点连线6. 关于力对点之矩描述错误的是()A. 力对点之矩是量度力使物体绕点转动效应的物理量B. 平面力对点之矩只取决于力矩的大小及旋转方向C. 平面力对点之矩是一个代数量D. 力对点之矩的大小与矩心的位置选取无关7. 下述说法哪一个正确?()A. 凡是力偶都不能用一个力来平衡B. 凡是力偶都能用一个力来平衡C. 凡是力偶有时能用一个力来平衡8. 判断下图中桁架内力为零的杆件,哪一个答案是正确的?A.一个B.二个C.三个D.四个9. 对于平面一般力系,叙述正确的有()A. 平面一般力系可以简化为主矢和主矩。
B. 主矢和简化中心位置无关,主矩与简化中心位置有关。
C. 主矢和主矩都与简化中心位置有关。
D. 主矢和主矩都与简化中心位置无关。
10. 关于摩擦,下列叙述错误的有()简单(﹡)A.摩擦分为滑动摩擦和滚动摩擦B.静滑动摩擦力等于静滑动摩擦系数与两物体间法向反力的乘积,即F=fNC.摩擦是机械运动中的普遍现象,既有有利的一面,也有不利的一面D.滑动摩擦分为静滑动摩擦和动滑动摩擦11. 关于摩擦角,叙述错误的是()A. 摩擦角的正切等于静摩擦因数B. 摩擦角确定全反力作用线的位置C. 摩擦角是一个范围值D. 摩擦力达到最大值时,与法向反力之间的夹角称为摩擦角12. 关于空间力对轴之矩描述错误的是()A. 力对轴之矩是量度力使物体绕轴转动效应的物理量B. 力对轴之矩只取决于力矩的大小及旋转方向C. 力对轴之矩是一个矢量D. 力对轴之矩的大小等于力在垂直于该轴的平面内的投影与力臂的乘积13. 空间任意力系向两个不同的点简化,下述哪种情况可能?()A. 主矢相等,主矩相等B. 主矢不相等,主矩相等C. 主矢、主矩不相等14. 在某瞬时,若点的切向加速度和法向加速度都等于零,则此点()A. 必定静止不动B. 必作匀速直线运动C. 可能作匀速直线运动D. 可能作匀速曲线运动15. 点作曲线运动时,下述说法哪一个正确?()A. 若切向加速度为正,则点作加速运动B. 若切向加速度与速度符号相同,则点作加速运动C. 若切向加速度与速度符号相反,则点作加速运动D. 若切向加速度为零,则速度为常矢量16. 汽车通过双曲拱桥(桥面曲线为抛物线)时,车厢作()A.平移B.定轴转动C.除平移与转动外的其他运动17. 刚体绕定轴转动时,下述哪一个说法正确?()A. 当转角时,角速度为正B. 当角速度时,角加速度为正C. 当时,必有角加速度D. 当角加速度与角速度同号时为加速转动,当角加速度与角速度异号时为减速转动18. 一平面机构,在图示位置,OA杆的角速度为,若取套管B为动点,动系固结于摇杆OA上,则该瞬时动点的相对速度大小为()A.OBB.0C.BCD.不确定19. 对于点的合成运动,叙述错误的是()A.点的合成运动有三种运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
写要规范认真、铅笔及绘图工具绘图,答题的思路和步骤、
主要公式是得分重点,不要追求结果,以免耽误时间。
《材料力学》考试复习重点内容:轴向拉压变形-----轴力图、 扭矩计算、切应力强度校核、刚度校核。弯曲变形-------铸铁简支 梁内力图绘制、正应力强度校核。组合变形------偏心拉伸问题-----最大正应力计算。综合题-------简支梁与压杆稳定性问题的综合-----计算许可载荷、注意稳定性问题的直线公式应用。综合题-----
分析:滑动、纯滚 分析:圆盘可能出 分析: 12 、圆柱受挤压, 分析: 、圆柱受挤压, 动、滚动?顺时针? 现的运动情况。 向右滑动趋势, B、E两 作顺时针纯滚动趋势, 逆时针? 点同时达到临界。 假设绕 点纯滚动时, 分析:E 3、圆柱受挤压, B 点达到临界, E点没 作顺时针纯滚动趋势, 分析: 4、圆柱虽受挤压, 有达到临界。 假设绕 B 点纯滚动时, 但同时在 M 作用下,可能 E点达到临界,B点没有 作逆时针纯滚动趋势,此 达到临界。 时M值较大。
滚轮B的半径为 r 0.5m ,在水平地面上作纯滚动。连杆AB 长为1m 。图示瞬时OA在铅垂位置, OB为水平线,求⑴该瞬 时滚轮B的角加速度。⑵C点的加速度。 解:(1)取AB为研究对象, 进行速度分析,由 vA与vB方向可知: AB做瞬时平移, AB 0
因: 2 n 3.14rad / s 60
例7-8
刨床的急回机构如图所示。曲柄OA的一端A与滑块用铰
链连接。当曲柄OA以匀角速度ω绕固定轴O转动时,滑块在摇杆
O1B上滑动,并带动杆O1B绕定轴O1摆动。设曲柄长为OA=r,两 轴间距离OO1=l。 求:摇杆O1B在如图所示位
置时的角加速度。
例:弯成直角的曲杆OBC绕O转动,小环M同时套在曲杆和固定杆 OA上,已知,OB=10cm,曲杆的角速度ω =0.5rad/s,求当
1
1
B
C
O
不能以切点B 为动点啊。
o1
这是相对运动。 这是绝对运动。 注意:动点必须是一个明确的、 这是牵连运动。 不变的、运动的点。
y
A
B
y
O O 3ห้องสมุดไป่ตู้
O2
3
1
2
O1
O2
x
x
四、在曲柄连杆机构中,曲杆OA 绕轴O转动,其角速
度为 0 ,角加速度为 0 。在图示瞬时,曲柄与水平线间夹角
mvD 2mvC mvA mvB m(vD 2vC vA vB )
动量的矢量表达式: P Px i Py j
P POC PAB PA PB
vA
A E
滑块A和B与尺AB组成质点系,
其质心为点C。
P OC mvD 1 ml 2
vc
vD
应力计算、轴向变形量计算。传动轴扭转变形-------外力偶矩计算、
--冲击问题与超静定梁问题及梁的弯曲问题的综合------计算约束
反力,该题有难度,基础差的同学可以放弃这一部分内容。其中 有三道题考点包括梁的弯曲问题,复习时一定要注意。弯曲问题
掌握不好,想要考试及格将成问题啊。
考试卷面书写要规范认真、铅笔及绘图工具绘图,答题的思路和 步骤、主要公式是得分重点,不要追求结果,以免耽误时间。
的三种形式、质心运动定理。
六、动量矩定理:三种运动刚体动量矩计算、对定点的动量矩 定理的三种形式、定轴转动微分方程、转动惯量、相对质心的 动量矩定理、平面运动微分方程。
典型题: P261、例题11-1、例题11-10、例题11-11 P283 题11-12、题11-14、
七、动能定理:外力所做的功、力的功率、三种运动刚体动 能计算、动能定理的三种形式、功率方程。
典型题: P298 例题12-3、例题12-5、例题12-11、 例题12-12、 P320 题12-11、题12-14、 题综-14、题综-15、
《理论力学》考试通常包括六道(或七道)计算大题, 难度不小,请认真对待,争取好成绩。考题主要内容: 1、三种约束的约束反力、受力图、物系受力计算、力偶 只能与力偶平衡; 2、考虑摩擦力的力系平衡问题、物体的滑动趋势判断、 摩擦力方向判断、纯滚动问题;
φ =600 时小环M的速度和加速度。
C
O
M
A
直接用直角坐 标法。
B
在偏心轮机构中,摇杆 O1 A借助弹簧压在半径为R 的偏心轮C上。偏心轮C绕轴O往复摆动。设OC OO1 时,轮C的角 60 。求此时摇杆O1 A 的角速度 1 速度为 ,角加速度为零, 和角加速度1 。
A
1 vD l , 2
A
vA
E
vC l
vc
vD
C
滑块A和B的速度如何求解?
AB作平面运动,瞬心为E。
o
t
D B
vB
CE = OC =l , 可以计算A、B速度。
P POC PAB PA PB
注意:动量是自由矢 有点复杂,如 注意:将三个构件作 量。速度方向不同, 何简化? 为一个质点系。 要矢量合成。
例2-2 已知: F =20kN,q =10kN/m,L=1m; M 20kN m,
30 , 60 .
此处什么 约束?
M M
求: A,B 处的约束力. 解: 1、取CD 梁,画受力图.
均布载荷如 何处理?
M
c
0
l FB sin 60 l ql F cos300 2l 0 2
例2-1 如图所示的三铰拱桥,每一部分的重量P1=40KN,其重 心分别在点D和点E。桥上载荷P=20KN。 求A、B、C三处的约束力。 解:1、取整体为研究对象,受力 如图(b)。由平衡方程
Y 0 M (F ) 0 B
不是平面平行 力系?
FBx
FBy
FBy 2 P 1PF Cy 0 10FCy (10 1)P1 (1 3)P P1 0
FAy P 1 FCy 0
FCx 20 KN 解得 FAx FCx 20 KN F 8 KN Ay
3、取整体为研究对象,由平衡方程:
X 0
FBx FCx 0
解得
FBx 20KN
FBx
FBy
FCx
FCy
A、B、C三处的约束 力可以进一步合成。
析(公式和图形)、科氏加速度、
典型题:P178
P196
例题7-5、例题7-11、例题7-12、
题7-20、题7-26、
四、刚体的平面运动:运动分解、 基点法求速度和加速度、 瞬心法求角速度和速度。 典型题:P213、例题8-10、 例题8-11、
P228 题8-16、题8-18、
五、动量定理:三种运动刚体动量计算、质心计算、动量定理
解得 FBy 52KN , FCy 48KN
FCx
FCy
2、再取右半桥为研究对象,受 力如图(c)所示。由平衡方程
M A (F) 0 X 0 Y 0
FBy
FAx
FAy
FBx
FCx
FCy
4 FCx (4 1) FCy 4 P 1 0 FAx FCx 0
3、点的运动合成、动点与动系的选择、动点与动系不能
在一个运动构件上、三种运动要清晰、画好速度合成图与加速
度合成图、科氏加速度问题;
4、刚体的平面运动、用基点法和瞬心法计算速度和角速度、
瞬心如何确定、切记只能用基点法分析计算加速度(此处忘掉 瞬心法、忘掉瞬心)、画好速度合成图与加速度合成图、正确 判断已知的速度加速度方向; 5、计算三种运动刚体的动量、动量矩、动能,注意大小和
1 1 2 2 2 2 2 22 2 2 2 TA TB m2 (v A vB ) 2m m (2 l cos t ) (2 l sin t ) l (cos t ) (sin t ) 2 m l 2 2 2 2 2
方向问题。首先利用“刚体平面运动” 计算某点速度和角速度;
6、综合利用动量矩定理或者动能定理分析计算速度、加速
度、角速度、角加速度、某处的约束力等问题、注意应用不同
定理的条件、能解决的问题。
注意纯滚动刚体的条件和可以直接应用的公式,摩擦力的 方向和大小、其圆盘质心的运动轨迹与运动轨道的关系,质
心的速度和加速度的确定。
解得
FAx 32.89kN
FAy 2.32kN
M A 10.37kN
一、
如图所示,刚杆AB和BC通过铰链B连接构成连续梁,不
计各杆自重,图中参数M、a 、q为已知。求连续梁A、B、C处
的约束力。
二、(15分)均质圆柱重为P,半径为r,放置在不计自重的水平 杆和固定斜面之间,杆端A为光滑铰链连接,D端作用一铅垂向上 的力F,且有F=P,圆柱上作用一力偶M。只考虑滑动摩擦,两处 的静滑动摩擦因数皆为 f s 0.3 ,当 45 时,AB=BD。 求此时 能够保持系统静止的力偶矩M的最小值。
0
q
F
FCx
C
解得
FB = 45.77kN
FCy
FB
D
2、取整体,画受力图.
Fix 0 Fiy 0 M A 0
FAx A A FAx MA
FAy F Ay
M M
q q
C C
B B
F F
F F B B
D D
为什么是固定 端约束?
FAx FB cos 600 F sin 300 0 FAy FB sin 600 2ql F cos300 0 M M 2ql 2l F sin 600 3l F cos300 4l 0 A B