高中数学高三教学工作计划高中范文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学高三教学工作计划高中范文时间就如同白驹过隙般的流逝,我们又有了新的学习内容,请一
起努力,写一份教学计划吧。以下是整理的高中数学教学工作计划,欢迎查阅!
高中数学教学工作计划1
1、回归课本、明确复习范围及重点范围。
先把考查的内容分类整理,理清脉络,使考查的知识在心中形成网络系统,并在此基础上明确每一个考点的内涵与外延。在建立知识系统的同时,同学们还要根据考纲要求,掌握试卷结构,明确考查内容、考查的重难点及题型特点、分值分配,使知识结构与试卷结构组合成一个结构体系,并据此进一步完善自己的复习结构,使复习效果事半功倍。
2、弄懂基本概念。
先把你以前学过的却不懂的知识,概念,定理再结合课本、笔记复习,直到弄懂为止。
3、弄会基本方法
复习课上,老师会把最基本,最重要的思想、方法再过一遍,这时候一定认真听(为什么有的同学好像平时没怎么好好学,可是考试成绩不错呢,就是因为他抓紧了这段时间),当然,既然是“过”一遍,不可能还像刚开始讲课那样详细,因此课后你一定要对老师讲的方法做针对性练习,真正把数学复习计划落实到实处。
熟练掌握数学方法,以不变应万变。一般同一份试卷,相同方法不
可能出现多次;同时,数学的主要方法在一份试卷上基本都能用得上。因此遇到思路一下不能突破的难题,要好好想想以前遇到的类似的问题是如何处理的,在已经作答好的题目中用过了哪些方法,常用的方法还有哪些没用得上,能否用来解决这个难题,只要平时多加分析,是不难发现解题思路的。
考试方法指导:
1、规范作答争取少扣分。
一些同学考试时题题被扣分,大多是答题不规范,抓不住得分要点。如立体几何证明的次要条件要交待,分类讨论问题最后有综上可得,应用题最后要回答题目的设问,函数应用题要有定义域等。另外,有的题目是你以前会做,但是过这么长时间了,有可能思路忘了;有的题目你有思路,但是具体的一些解题细节不一定很清楚。最好的克服办法就是,数学复习计划中,无论做没做过,以前是否会做,都当成新题再做一遍!
2、掌握好看与做的时间分配。
好多同学都觉得几天不做数学题后再考试,审题就会迟疑缓慢,入手不顺,运算不畅且易出错。所以每天必须坚持做适量的练习,特别是重点和热点题型,防止思想退化和惰化,保持思维的灵活和流畅。特别是期末复习期间,更要掌握好看和做的时间分配。
3、解题过程
(1)弄清问题.即从题目本身去获得从何处下手、向何方前进的信息。要逐字逐句地分析条件、分析结论、分析条件与结论之间的关系。
(2)拟定计划.也就是寻找解题思路。
(3)实现计划.就是把打通了的解题思路用文字具体表达出来。做到:方法简单、起点明确、层次清楚、定理准确、论证严密、书写规范。
(4)回顾.
能做到以上几点,及格是不在话下了,但要想拿高分,数学期末复习计划还要有亮点才行,要有针对性地进行提高:
(ⅰ)平时有错题纪录本吗?赶紧拿出来看看吧,这是提高分数的办法之一;
(ⅱ)有难题总结本吗?赶紧趁着复习阶段拿出来深化,总结一下; (ⅲ)什么都没有。那就从复习的第一天开始,针对期末考试综合题常出现题型练习吧;每天一道。
“合抱之木,生于毫末;九层之台,起于累土;千里之行,始于足下”。同学们,天道酬勤,从现在起抓住点滴时间有目的、有步骤地进行认真准备,全面复习,相信你们一定能够取得理想的成绩。
高中数学教学工作计划2
一)教材分析
1.知识结构
首先给出推断符号“ ”,并引出充分条件与必要条件的意义,在此基础上讲述了充要条件的初步知识.
2.重点难点分析
本节的重点与难点是关于充要条件的判断.
(1)充分但不必要条件、必要但不充分条件、充要条件、既不充分也
不必要条件是重要的数学概念,主要用来区分命题的条件和结论之间的因果关系.
(2)在判断条件和结论之间的因果关系中应该:
①首先分清条件是什么,结论是什么;
②然后尝试用条件推结论,再尝试用结论推条件.推理方法可以是直接证法、间接证法(即反证法),也可以举反例说明其不成立;
③最后再指出条件是结论的什么条件.
(3)在讨论条件和条件的关系时,要注意:
①若,但,则是的充分但不必要条件;
②若,但,则是的必要但不充分条件;
③若,且,则是的充要条件;
④若,且,则是的充要条件;
⑤若,且,则是的既不充分也不必要条件.
(4)若条件以集合的形式出现,结论以集合的形式出现,则借助集合知识,有助于充要条件的理解和判断.
①若,则是的充分条件;
显然,要使元素,只需就够了.类似地还有:
②若,则是的必要条件;
③若,则是的充要条件;
④若,且,则是的既不必要也不充分条件.
(5)要证明命题的条件是充要条件,就既要证明原命题成立,又要证明它的逆命题成立.证明原命题即证明条件的充分性,证明逆命题即
证明条件的必要性.由于原命题逆否命题,逆命题否命题,当我们证明某一命题有困难时,可以证明该命题的逆否命题成立,从而得出原命题成立.
(二)教法建议
1.学习充分条件、必要条件和充要条件知识,要注意与前面有关逻辑初步知识内容相联系.充要条件中的,与四种命题中的,要求是一样的.它们可以是简单命题,也可以是不能判断真假的语句,也可以是含有逻辑联结词或“若则”形式的复合命题.
2.由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去结概念“下定义”,去体会概念的本质属性.
3.由于“充要条件”与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入“充分条件”的概念,进而引入“必要条件”的概念.
4.教材中对“充分条件”、“必要条件”的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的条件与结论之间的关系来认识“充分条件”的概念,从互为逆否命题的等价性来引出“必要条件”的概念.
高中数学教学工作计划3
一、设计要因人而异。