常见聚合物的红外光谱
常见聚合物的红外光谱

材料研究方法
材料研究方法
Polypropylene 3000 - 2800 cm-1区域 多重叠合的CH2,CH,CH3中的C—H 伸 缩振动; 1462 cm-1附近的CH2和CH3的弯曲振动; 1380 cm-1附
材料研究方法
材料研究方法
PA 1640 cm-1的最强谱带,是酰胺基的羰基伸缩振动的吸收,即酰胺Ⅰ带; 1560 cm-1次强谱带,是N—H弯曲振动和C—N伸缩振动的组合吸收,即酰胺Ⅱ带; 3090 cm-1谱带是酰胺Ⅱ带的倍频; 1260 cm-1区域的谱带也是由C—N—H振动产生的,酰胺Ⅲ带; 690 cm-1谱带归属于N-H面外摇摆振动。
材料研究方法
图3 未知聚合物的IR谱图 (肯定法)
肯定法 在3100 - 3000 cm-1区域的谱带是由芳环或烯类的C—H 伸缩振动产生的。 在3000 - 2800 cm-1区域的谱带是饱和烃化合物的吸收。 2000 - 1668 cm-1区域的一系列弱谱带是对应芳环 Ar-H 的倍频和组频的吸收。这些谱带的位置和数目表明化合物中有单取代芳环的存在。 760 cm-1是芳环上的5个相邻的质子 Ar-H,进一步证实有单取代芳环的存在。 芳环的结构还可由1600,1580,1500和1450cm-1谱带证实。
材料研究方法
常见聚合物的红外光谱 定性分析 区: 区 1800 ~ 1700 cm-1:聚酯、聚碳酸酯和聚酰亚胺等; 区 1700 ~ 1500 cm-1:聚酰胺、三聚氰胺-甲醛树脂; 区 1500 ~ 1300 cm-1:饱和聚烃、极性基团取代的聚烃; 区 1300 ~ 1200 cm-1:芳香族聚密、含氯聚合物; 区 1200 ~ 1000 cm-1:聚醚、醇类、含氯、含氮聚合物; 区 1000 ~ 600 cm-1:取代苯、不饱和双键和含氯聚合物 以及含有硅和卤素的聚合物。
常见聚合物红外光谱

常见聚合物红外光谱红外光谱是一种常用的分析方法,可用于研究聚合物的结构和化学环境。
下面将介绍常见聚合物红外光谱的主要特征。
1、聚合物的类型不同类型的聚合物在红外光谱上表现出不同的特征。
例如,聚烯烃在红外光谱上表现出明显的C-H伸缩振动,而聚酰胺则表现出N-H伸缩振动和C-N伸缩振动的双峰。
因此,通过红外光谱可以区分不同类型的聚合物。
2、聚合物链的构型聚合物的链构型也会影响红外光谱的特征。
例如,等规聚合物和无规聚合物在红外光谱上表现出不同的特征。
等规聚合物在红外光谱上表现出等规序列的C-H 伸缩振动,而无规聚合物则表现出非等规序列的C-H伸缩振动。
3、聚合物链的取代基聚合物链中的取代基也会影响红外光谱的特征。
例如,聚合物链中的烷基、芳基、酯基等不同的取代基在红外光谱上表现出不同的特征。
因此,通过红外光谱可以研究聚合物链中的取代基类型和数量。
4、聚合物链的序列结构聚合物的序列结构也会影响红外光谱的特征。
例如,在聚合物链中,如果存在序列结构的变化,如序列分布、嵌段共聚物等,那么在红外光谱上就会表现出不同的特征。
因此,通过红外光谱可以研究聚合物的序列结构。
5、聚合物链的立体结构聚合物的立体结构也会影响红外光谱的特征。
例如,结晶聚合物和非晶聚合物在红外光谱上表现出不同的特征。
结晶聚合物在红外光谱上表现出有序的结晶结构,而非晶聚合物则表现出无序的结构。
此外,聚合物的立构构型也会影响红外光谱的特征。
例如,等规立构和间规立构在红外光谱上表现出不同的特征。
因此,通过红外光谱可以研究聚合物的立体结构。
6、聚合物链的聚集态结构聚合物的聚集态结构也会影响红外光谱的特征。
例如,不同形态的聚合物在红外光谱上表现出不同的特征。
粉末状的聚合物在红外光谱上表现出颗粒状的结构,而纤维状的聚合物则表现出丝状的结构。
此外,不同温度下的聚合物聚集态结构也会影响红外光谱的特征。
因此,通过红外光谱可以研究聚合物的聚集态结构。
7、聚合物链的化学环境聚合物的化学环境也会影响红外光谱的特征。
丙烯酸酯及其共聚物的红外光谱鉴

丙烯酸酯及其共聚物的红外光谱鉴定顾福铭 刘宏光(丹东轻化工研究院118002)摘 要本文较系统地阐述了丙烯酸酯、甲基丙烯酸酯聚合物、丙烯酸酯或甲基丙烯酸酯与其他单体的共聚物的分子结构及其对应的红外光谱。
提供了分辨该类聚合物所用的单体的方法,对丙烯酸酯系列产品的鉴定、剖析、检验和新产品开发具有一定的指导作用。
关键词 〗丙烯酸酯 皮革涂饰 红外光谱丙烯酸酯或甲基丙烯酸酯的聚合物及与其他单体的共聚物在涂料工业中应用领域很广泛。
该树脂有色浅、柔软、光亮、耐候、耐热、耐腐蚀等多种特点,通过配方及工艺方法改进,可制出各具特色的多种树脂。
在皮革涂饰方面也长期占有重要的位子。
下面材料仅是根据多年来对红外光谱鉴定、剖析工作的归纳和总结。
但愿对从事这方面工作的同志有帮助,作参考。
1 一种单体组成的丙烯酸酯聚合物1.1丙烯酸和甲基丙烯酸型聚合物红外光谱特征峰在2500—3600cm[-1]之间,这是代表COOH中缔合OH的特征与2800—3000cm[-1]的烷基特征峰形成山峰形状。
1700cm[-1]是COOH中C=O峰,1240—1260cm[-1]和1160—1180cm[-1]这一对峰是C—O反对称和对称伸展振动特征峰。
两者区别是甲基丙烯酸还是丙烯酸的聚合物就在于这对峰。
前者两峰明显分开,且1170cm[-1]峰的强度大于1250cm[-1]。
后者该两峰连在一起,两峰强度几乎相等,形成1160cm[-1]到1260cm[-1]一个宽峰。
如果对美国的Rohm H aas公司的Retan540皮革鞣剂做红外光谱图就是前者。
1.2 丙烯酸酯及甲基丙烯酸酯型的聚合物丙烯酸酯聚合物及甲基丙烯酸酯型的聚合物红外光谱特征有相同的地方即都有羰基C=O,在1730cm[-1]的强峰及1250cm[-1]、1170cm[-1]处分别是C—O)的反对称和对称伸展振动的特征峰,且1170cm[-1]峰大于1250cm[-1]的峰。
两者的明显区别是甲基丙烯酸的酯在1170cm[-1]处峰分裂成1160cm[-1]和1180cm[-1]两个峰,而1250cm[-1]处峰也分裂成1240cm[-1]和1260cm[-1]两个峰。
聚苯硫醚红外光谱分析

聚苯硫醚红外光谱分析Spectrochimica Acta Part A51(1995) 2397-2409Dean A. Zimmerman, Jack L. Koenig, Hatssuo Ishida*美国俄亥俄州克里夫兰,凯斯西储大学,大分子科学系1994-9-16受到,1995-1-9接受摘要傅立叶转换红外光谱用于考察聚苯硫醚(PPS)。
PPS的基础振动的归属是以已知的对位取代的苯模式为基础的。
得到了退火和淬火的PPS的光谱。
以这些光谱为基础,得到了提高结晶度的PPS傅立叶光谱。
在分子对称的基础上PPS的光谱被解释。
加热的晶胞被用于研究在线的PPS熔融状态和固态结晶进程的IR光谱变化。
从不同的光谱检测结晶过程中的变化。
熟化的和熔融状态的PPS光谱也被考察。
高和低分子量PPS光谱也被研究。
1 绪言聚苯硫醚是重要的半结晶工程聚合物,具有韧性,化学惰性和温度稳定性的很好的结合[1].聚苯硫醚的这些性能是受它的热处理的和很大的影响是已经知道的.[2]在热处理期间分子出现的变化能够使用振动光谱来考察.IR光谱已用于研究在结晶过程中[3-5],压缩模塑[6],硫化[7-8],化学氧化[9]和PPS的掺杂[5,10-12]中出现的变化.拉曼光谱也可用于考察由于结晶过程引起的变化,[4,13].使用振动光谱研究分子变化要求对不同振动模的基本的理解.波谱的归属研究在前面已经通过使用基团频率 [6],模化合物[4,13]和理论方法[14-16]实现.对于这些研究,在大多数的主要波谱上是普遍一致的.然而,在某些弱波谱上仍有不确定性和缺乏波谱的完全的理解.本文在对位取代芳香族化合物的基础上通过波谱的归属提供PPS光谱的更好的理解.使用符号或注解完全地叙述振动是很难的(例如C-H变形);因此在取代苯模型基础上叙述振动模式应当给出PPS振动模的完全的理解.因为PPS是对位取代的芳香族,卤素对位取代苯衍生物[17-24]是特别感兴趣的,能够预期由于卤素在质量和电负性的相似性.当含硫的衍生物和卤代苯比较时他们的峰的位置和强度是不同,然而必须呈现相同的基础谱带。
常见聚合物的红外光谱

2
材
6
红外吸收光谱分析
图3 未知聚合物的IR谱图 (肯定法)
2
材
7
红外吸收光谱分析
4.肯定法 ⑴ 在3100 - 3000 cm-1区域的谱带是由芳环或烯类的C—H 伸缩 振动产生的。
⑵ 在3000 - 2800 cm-1区域的谱带是饱和烃化合物的吸收。 ⑶ 2000 - 1668 cm-1区域的一系列弱谱带是对应芳环 Ar-H 的倍 频和组频的吸收。这些谱带的位置和数目表明化合物中有单
红外吸收光谱分析
常见聚合物的红外光谱
定性分析 1. 六个区:
Ⅰ区 1800 ~ 1700 cm-1:聚酯、聚碳酸酯和聚酰亚胺等; Ⅱ区 1700 ~ 1500 cm-1:聚酰胺、三聚氰胺-甲醛树脂; Ⅲ区 1500 ~ 1300 cm-1:饱和聚烃、极性基团取代的聚烃; Ⅳ区 1300 ~ 1200 cm-1:芳香族聚密、含氯聚合物; Ⅴ区 1200 ~ 1000 cm-1:聚醚、醇类、含氯、含氮聚合物; Ⅵ区 1000 ~ 600 cm-1:取代苯、不饱和双键和含氯聚合物
取代芳环的存在。
⑷
760
cm-1是芳环上的5个相邻的质子
,进一步证实有单
Ar-H
取代芳580,1500和1450cm-1谱带证实。
2
材
8
红外吸收光谱分析
⑹ 在1500 - 1400 cm-1区域的谱带与CH2或CH变形有关。 ⑺ 965 cm-1的谱带归属与反式不饱和基团的面外弯曲振动。 ⑻ 990 - 910 cm-1的谱带是和末端乙烯基有关,进一步证实不 饱和性。 ⑼ 1640 cm-1的谱带是归属与C=C伸缩振动,其强度较弱,说 明不饱和双键的含量不太高。
757及699cm-1处的谱带,归属与苯环的5个相邻碳上
聚合物分析测试—傅立叶红外光谱(FTIR)与拉曼光谱法

聚合物分析测试—傅立叶红外光谱(FTIR)与拉曼光谱法高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。
相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。
一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。
科标分析实验室可以通过多种大型仪器对样品进行全方位的测试,提供专业聚合物分析测试服务。
以下是傅立叶红外光谱(FTIR)与拉曼光谱法介绍:分子吸收红外光后会引起分子的转动和振动。
红外光谱就是由于分子的振动和转动引起的,因而又称为振-转光谱。
分别通过基团的特征吸收波数和吸收峰的面积(或峰高)进行定性和定量分析。
波数是波长的倒数,单位是cm-1,与频率有正比关系。
红外光谱的研究范围是2~25µm(相当于200~4000cm-1)。
红外光谱在高分子方面的应用有如下一些方面:(1)高聚物品种的定性鉴别图11-1是高分子红外光谱中主要谱带的波数与结构的关系图,可用作高分子鉴别的快速指南。
图11-1高分子红外光谱中主要谱带位置的快速鉴别指南(2)高聚物的主链结构、取代基的位置、双键的位置、侧链的结构等定性鉴别(3)定量测定高聚物的结晶度、键接方式含量、等规度、支化度和共聚(或共混)组成、共聚序列分布等。
定量时需利用一个无关谱带作为参比谱带以扣除厚度变化的影响,例如结晶度的计算公式为:结晶度=K(4)通过对单体或产物的测定,分析单体纯度或研究反应(包括交联、老化等)过程。
(5)用红外二向色性比R表征取向程度。
(使用偏振红外光,在取向方向和与取向方向垂直的方向上测定,两个方向的强度比为二向色性比)。
由于计算机技术的发展,近代的红外光谱都采用了傅立叶变换技术,称傅立叶变换红外光谱(FTIR)。
FTIR不仅速度快,而且精度高。
通过差示分析还可以检出微量的混合组分、添加剂或杂质。
pvdf红外光谱特征峰

pvdf红外光谱特征峰
PVDF是一种聚合物材料,广泛应用于电池、太阳能电池和传感器等领域。
红
外光谱是一种常用的表征PVDF材料结构和性质的方法。
在PVDF的红外光谱中,有许多特征峰,其中一些峰具有重要的研究意义。
PVDF的红外光谱特征峰主要有C-H伸缩振动峰、C=O伸缩振动峰、CF2对称伸缩振动峰、CF2非对称伸缩振动峰、CF2振弯振动峰、CF2振扭振动峰和C-F伸缩振动峰等。
其中,C-H伸缩振动峰是PVDF红外光谱中较为明显的特征峰之一,该峰位在2930 cm-1左右。
C=O伸缩振动峰是另一个明显的特征峰,位于1775 cm-1左右。
CF2对称伸缩振动峰、CF2非对称伸缩振动峰、CF2振弯振动峰和CF2振扭振动峰,分别位于1140 cm-1左右、1210 cm-1左右、650 cm-1左右和540 cm-1左右。
而C-
F伸缩振动峰则位于1200 cm-1左右。
这些特征峰的位置和强度可以反映出PVDF的分子结构和化学键的类型与数量。
因此,在研究PVDF的应用和性质时,红外光谱特征峰的分析非常重要。
对于PVDF的红外光谱特征峰的研究也有一定的发展历程,现在已经有一些比较成熟的红外光谱分析方法。
以上是对于PVDF红外光谱特征峰的简要介绍,希望能为您提供一些参考。
常见聚合物的红外光谱精选PPT

根据基团频率的肯定法分析,看出存在着甲基、亚 甲基及可能存在的次甲基,以及酯基官能团。否定法发现, 样品中不存在胺、芳香烃、氰基、醇、酰胺、环及亚胺等 结构。查对烷烃酯类聚合物谱图,证明该材料为聚丙烯酸 丁酯。
18.04.2021
12
红外吸收光谱分析
18.04.2021
13
红外吸收光谱分析
2. Polypropylene ⑴ 3000 - 2800 cm-1区域
多重叠合的CH2,CH,CH3中的C—H 伸 缩振动;
⑵ 1462 cm-1附近的CH2和CH3的弯曲振动;
⑶ 1380 cm-1附近的CH3弯曲振动。
18.04.2021
11
红外吸收光谱分析
1.Polyethylene ⑴ 低压聚乙烯为线型结构,一般含有烯类端基,在990和 909 cm-1出有两条弱谱带,分别归属与RCH=CH2中CH反 式面外弯曲振动及CH2面外弯曲振动。 ⑵ 线型聚乙烯结晶度较高,在图中还可看到其分裂较为明 显的双峰。 ⑶ 高压聚乙烯有较多的支链,主要是乙基和丁基侧链,在 1379 cm-1处有甲基的对称变形,振动谱带,同时在890和 1080 cm-1处也有弱谱带。
由上可知,化合物中包含单取代苯环,同时有反式双键和 末端双键。样品是聚合物,因此只要用少数标准谱图进行核 对,证明未知物为苯乙烯-丁二烯共聚物。
18.04.2021
9
红外吸收光谱分析
图4 未知聚合物的IR谱图 (肯定法与否定法相结合)
18.04.2021
10
红外吸收光谱分析
5.肯定法与否定法相结合 在审视一张未知高聚物的样品谱图时,往往同时采用
常见聚合物的红外光谱参考幻灯片

2020/4/2
材料研究方法
26
红外吸收光谱分析
2020/4/2
材料研究方法
27
红外吸收光谱分析
9. PA ⑴ 1640 cm-1的最强谱带,是酰胺基的羰基伸缩振动的吸收,即 酰胺Ⅰ带; ⑵ 1560 cm-1次强谱带,是N—H弯曲振动和C—N伸缩振动的组 合吸收,即酰胺Ⅱ带; ⑶ 3090 cm-1谱带是酰胺Ⅱ带的倍频; ⑷ 1260 cm-1区域的谱带也是由C—N—H振动产生的,酰胺Ⅲ带; ⑸ 690 cm-1谱带归属于N-H面外摇摆振动。
2020/4/2
材料研究方法
31
红外吸收光谱分析
由上可知,化合物中包含单取代苯环,同时有反式双键和 末端双键。样品是聚合物,因此只要用少数标准谱图进行核 对,证明未知物为苯乙烯-丁二烯共聚物。
2020/4/2
材料研究方法
9
红外吸收光谱分析
图4 未知聚合物的IR谱图 (肯定法与否定法相结合)
2020/4/2
材料研究方法
10
红外吸收光谱分析
5.肯定法与否定法相结合 在审视一张未知高聚物的样品谱图时,往往同时采用
2020/4/2
材料研究方法
5
红外吸收光谱分析
❖ 在1300cm-1波数以上,从高波数检查起,可知不存在羟 基、胺基、不饱和烃、氰基、异腈酸酯基和羰基, 在1000cm-1以下,仅有一对双峰(731cm-1和720cm-1), 由于不存在芳香族和烯类,因此只可能是n〉4的长链(CH2)-n的吸收, 由于在1000-1300cm-1也没有吸收,因此醚键也可以排除, 最后,可能确定该未知聚合物可能是聚乙烯。
2020/4/2
材料研究方法
28
红外吸收光谱分析
聚丙烯酸钠红外光谱

聚丙烯酸钠红外光谱摘要:1.聚丙烯酸钠简介2.红外光谱原理3.聚丙烯酸钠红外光谱的应用4.聚丙烯酸钠红外光谱的优点5.聚丙烯酸钠红外光谱的局限性正文:1.聚丙烯酸钠简介聚丙烯酸钠是一种高分子聚合物,具有高分子量和水溶性特点。
它是丙烯酸钠单体的聚合物,广泛应用于水处理、涂料、油田开采等领域。
2.红外光谱原理红外光谱是一种分析物质结构和化学组成的有效手段,其原理是利用物质对不同波长的红外辐射的吸收特性来确定物质的结构和成分。
当红外光照射到物质上时,物质会吸收能量并产生振动,根据吸收峰的位置、强度和形状,可以推断出物质的结构和化学键的信息。
3.聚丙烯酸钠红外光谱的应用聚丙烯酸钠红外光谱被广泛应用于以下几个方面:(1) 聚丙烯酸钠结构分析:通过红外光谱可以确定聚丙烯酸钠的分子结构,包括肽键、羧基等官能团的存在情况。
(2) 聚丙烯酸钠与其他物质的相互作用研究:红外光谱可以用于研究聚丙烯酸钠与其他物质(如金属离子、有机分子等)的相互作用机制。
(3) 聚丙烯酸钠在环境中的行为研究:红外光谱可以用于研究聚丙烯酸钠在环境中的降解行为、迁移转化等过程。
4.聚丙烯酸钠红外光谱的优点(1) 高灵敏度:红外光谱可以检测到聚丙烯酸钠分子中极微小的结构变化,具有很高的灵敏度。
(2) 高分辨率:红外光谱可以提供聚丙烯酸钠分子中各种官能团的详细信息,具有很高的分辨率。
(3) 快速、简便:红外光谱测试过程相对较快,操作简单,便于聚丙烯酸钠的快速检测和分析。
5.聚丙烯酸钠红外光谱的局限性(1) 受样品状态影响:红外光谱测试需要对样品进行处理,不同的样品状态(如固态、溶液等)可能影响测试结果。
(2) 需与其他分析方法结合:红外光谱只能提供聚丙烯酸钠分子的结构和化学组成信息,需要与其他分析方法(如质谱、核磁共振等)结合,才能获得更全面的信息。
常见高分子红外光谱谱图解析

常见高分子红外光谱谱图解析1. 红外光谱的基本原理1)红外光谱的产生能量变化ννhch==E-E=∆E12ννh∆E=对于线性谐振子μκπνc21=2)偶极矩的变化3)分子的振动模式多原子分子振动伸缩振动对称伸缩不对称伸缩变形振动AX2:剪式面外摇摆、面外扭摆、面内摇摆AX3:对称变形、反对称变形. 不同类型分子的振动线型XY2:对称伸缩不对称伸缩弯曲弯曲型XY2:不对称伸缩对称伸缩面内弯曲(剪式)面内摇摆面外摇摆卷曲平面型XY3:对称伸缩不对称伸缩面内弯曲面外弯曲角锥型XY3:对称弯曲不对称弯曲面内摇摆4)聚合物红外光谱的特点1、组成吸收带2、构象吸收带3、立构规整性吸收带4、构象规整性吸收带5、结晶吸收带2 聚合物的红外谱图1)聚乙烯各种类型的聚乙烯红外光谱非常相似。
在结晶聚乙烯中,720 cm-1的吸收峰常分裂为双峰。
要用红外光谱区别不同类型的聚乙烯,需要用较厚的薄膜测绘红外光谱。
这些光谱之间的差别反映了聚乙烯结构与线性—CH2—链之间的差别,主要表现在1000-870㎝-1之间的不饱和基团吸收不同,甲基浓度不同以及在800-700㎝-1之间支化吸收带不同。
低压聚乙烯(热压薄膜)中压聚乙烯(热压薄膜)高压聚乙烯(热压薄膜)2.聚丙烯无规聚丙烯等规聚丙烯的红外光谱中,在1250-830 cm-1区域出现一系列尖锐的中等强度吸收带(1165、998、895、840 cm-1)。
这些吸收与聚合物的化学结构和晶型无关,只与其分子链的螺旋状排列有关。
3.聚异丁烯CH3H2C CnCH3丁二烯聚合可以生成多种结构不同的异构体。
H2 CHCHC CH2C CHCH2HH2CC CHCH2H2CH 1,2- 顺式1,4- 反式1,4-990、910 cm-1 775、741、690 cm-1 970 cm-1 1,2-聚丁二烯顺式1,4-聚丁二烯用于橡胶的顺式1,4-丁二烯的光谱中,730 cm-1的宽强吸收很特征,但反式1,4-和1,2-结构的吸收虽弱但仍很明显。
常见聚合物的红外光谱课件

分子内相互作用
红外光谱可以研究聚合物分子内的 相互作用,如羰基与羟基的相互作 用等。
构效关系
红外光谱可以研究聚合物的构效关 系,如分子量、取代基、交联度等 对性能的影响。
利用红外光谱研究聚合物表面性能
表面组成
红外光谱可以测定聚合物表面的组成,如表面官 能团、吸附物种等。
表面改性
红外光谱可以研究聚合物表面改性的方法,如接 枝、涂层等。
03
红外光谱可以用于研究聚合物的结构、组成、化学键信息等,
对于聚合物材料的研发、生产和质量控制具有重要意义。
展望
红外光谱技术的未来发展
随着科技的不断进步,红外光谱技术将不断改进和优化,提高分辨率和灵敏度,拓展应用 领域。
聚合物红外光谱研究的挑战与机遇
尽管红外光谱在聚合物分析中取得了一定的成果,但仍存在一些挑战,如复杂样品的分析 、多组分同时检测等。同时,随着新材料和新技术的不断发展,红外光谱在聚合物研究中 也面临着新的机遇。
聚合物性能表征
红外光谱还可以用于表征聚合物的性能。例如, 通过分析聚合物的红外光谱,可以了解其热稳定 性、结晶度、取向度等性能参数。
高分子材料改性
红外光谱在研究高分子材料的改性中也发挥了重 要作用。通过对聚合物进行化学改性或物理改性 ,其红外光谱会发生相应的变化,从而可以了解 改性效果及改性产物的性质。
N-H伸缩振动峰。
聚丙烯腈在波数范围为33503250 cm-1处表现出强烈的
C≡N伸缩振动峰。
03
红外光谱பைடு நூலகம்聚合物鉴别中 的应用
利用红外光谱对聚合物进行分类和鉴别
聚合物类型的快速鉴别
红外光谱可以提供聚合物的大致类型 ,如PE、PP、PV、PT等,通过对特 征峰的识别,可以快速区分不同的聚 合物。
2.6 常见聚合物的红外光谱

2011-11-3
材料研究方法
18
红外吸收光谱分析
2011-11-3
材料研究方法
19
红外吸收光谱分析
5. PVC (1) 1250和1340 cm-1的较强谱带,归属于 的较强谱带,归属于C—H弯曲振 和 弯曲振 由于它与氯原子连接在同一碳原子上, 动,由于它与氯原子连接在同一碳原子上,使其吸收强度 大大增强; 大大增强; (2) 1430 cm-1的强谱带归属于 的强谱带归属于CH2的变形振动,和正 的变形振动, 的变形振动频率( 比较, 常 CH2的变形振动频率( ~1475 cm-1)比较,谱带向低频 方向位移了约45 同时强度显着增加, 方向位移了约 cm-1,同时强度显着增加,这也是受氯原 子的影响所造成的; 子的影响所造成的; 有一些较宽、较强的谱带, ⑶ 800-600 cm-1有一些较宽、较强的谱带,彼此重叠 在一起,它们是C—Cl伸缩振动的吸收; 伸缩振动的吸收; 在一起,它们是 伸缩振动的吸收 处的谱带是C—C伸缩振动的吸收; 伸缩振动的吸收; ⑷ 1100cm-1处的谱带是 伸缩振动的吸收 处的谱带是CH 面内摇摆振动吸收。 ⑸ 960cm-1处的谱带是 2面内摇摆振动吸收。
2011-11-3
材料研究方法
16
红外吸收光谱分析
2011-11-3
材料研究方法
17
红外吸收光谱分析
5.肯定法与否定法相结合 . 在审视一张4. 在审视一张 .Poly(vinyl acetate) ( ) ⑴ ⑵ 1740cm-1的最强谱带,是羰基伸缩振动的吸收; 的最强谱带,是羰基伸缩振动的吸收; 的最强谱带 1240和1020cm-1的两条谱带是 和 的两条谱带是PVAc最特征的吸收谱 的两条谱带是 最特征的吸收谱
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图10 PMMA、PAN、PVA
2020/4/3
材料研究方法
22
红外吸收光谱分析
6. MMA、PAN、PVA
在审视一张4.Poly(vinyl acetate) ⑴ 1740cm-1 的 最 强 谱 带 , 是 羰 基 伸 缩 振 动 的 吸 收 ; ⑵ 1240和1020cm-1的两条谱带是PVAc最特征的吸收谱带 ,归属与-COOH3,中的-COO-和-O-CH-的伸缩振动; ⑶ 1370cm-1的谱带归属于甲基的变形振动。由于相连羰 基的加强,使得它比亚甲基的变形振动谱带强得多。
以及含有硅和卤素的聚合物。
2020/4/3
材料研究方法
1
红外吸收光谱分析
1. 直接查对谱图 (1) Hummel & Scholl, Infrared Analysis of Polymers, Resins and Additives, An Atlas, ⑵ Afremow & IsaKson, Infrared Spectroscopy: Its Use in the Coating Industry ⑶ Colthup, Daly & Wiberley, Introduction to Infrared and Raman Spectroscopy ⑷ Sadtler, 单体和聚合物的红外光谱图
2020/4/3
材料研究方法
31
C-H伸缩振动。 ⑶ 2000-1680 cm-1区域是PS特有的一系列较弱谱带,它们 是对应芳环Ar-H的倍频和组频的吸收。这些谱带的位置和 数目表明化合物中有单取代芳环的存在。 ⑷ 1601cm-1是苯环的骨架伸缩振动,由于一个氢被取代 ,原有的苯的对称性被破坏,振动时分子偶极距变化增 大,所以谱带很强。
2020/4/3
材料研究方法
26
红外吸收光谱分析
2020/4/3
材料研究方法
27
红外吸收光谱分析
9. PA ⑴ 1640 cm-1的最强谱带,是酰胺基的羰基伸缩振动的吸收,即 酰胺Ⅰ带; ⑵ 1560 cm-1次强谱带,是N—H弯曲振动和C—N伸缩振动的组 合吸收,即酰胺Ⅱ带; ⑶ 3090 cm-1谱带是酰胺Ⅱ带的倍频; ⑷ 1260 cm-1区域的谱带也是由C—N—H振动产生的,酰胺Ⅲ带; ⑸ 690 cm-1谱带归属于N-H面外摇摆振动。
2020/4/3
材料研究方法
28
红外吸收光谱分析
2020/4/3
材料研究方法
29
红外吸收光谱分析
10.Epox ⑴ 830 cm-1谱带是对位取代苯环上两个相邻氢原子 的面外弯曲振动吸收。 ⑵ 915 cm-1谱带是链端环氧基的吸收。
2020/4/3
材料研究方法
30
红外吸收光谱分析
11.聚甲基硅氧烷 ⑴ 1100 ~ 1000 cm-1区域的谱带是Si—O—Si伸缩振动的吸收。 ⑵ 1260 cm-1和1410 cm-1两条谱带分别是由Si—CH3基团的CH3 对称变形振动和不称变形振动引起的。 ⑶ 800 cm-1谱带是由Si—C伸缩振动和CH3面内摇摆振动产生的。 ⑷ 3000 ~ 2800区域的谱带是甲基C—H的伸缩振动。 ⑸ 510和390 cm-1谱带分别由Si—O—Si和O—Si—CH3弯曲振动 引起的。
取代芳环的存在。
⑷
760
cm-1是芳环上的5个相邻的质子
,进一步证实有单
Ar-H
取代芳环的存在。
⑸ 芳环的结构还可由1600,1580,1500和1450cm-1谱带证实。
2020/4/3
材料研究方法
8
红外吸收光谱分析
⑹ 在1500 - 1400 cm-1区域的谱带与CH2或CH变形有关。 ⑺ 965 cm-1的谱带归属与反式不饱和基团的面外弯曲振动。 ⑻ 990 - 910 cm-1的谱带是和末端乙烯基有关,进一步证实不 饱和性。 ⑼ 1640 cm-1的谱带是归属与C=C伸缩振动,其强度较弱,说 明不饱和双键的含量不太高。
2020/4/3
材料研究方法
24
红外吸收光谱分析
2020/4/3
材料研究方法
25
红外吸收光谱分析
8. UP ⑴ 1735 cm-1的最强谱带,归属于酯的羰基伸缩振动; ⑵ 1275 cm-1的C—O伸缩振动证实酯基存在; ⑶ 3100 ~ 3000 cm-1的谱带为不饱和=C-H伸缩振动; ⑷ 1460 cm-1谱带为直链C=C伸缩振动; ⑸ 1600,1500和1490 cm-1谱带为芳环的C=C伸缩振动吸收引起; ⑹ 740 cm-1为邻二取代的四个相邻氢面外弯曲振动谱带; ⑺ 710 cm-1的为芳环骨架弯曲振动谱带; ⑻ 750 ~ 790 cm-1之间的谱带,加上上述两个谱带,构成典型的邻苯 二酯的光谱特征;
红外吸收光谱分析
常见聚合物的红外光谱
定性分析 1. 六个区:
Ⅰ区 1800 ~ 1700 cm-1:聚酯、聚碳酸酯和聚酰亚胺等; Ⅱ区 1700 ~ 1500 cm-1:聚酰胺、三聚氰胺-甲醛树脂; Ⅲ区 1500 ~ 1300 cm-1:饱和聚烃、极性基团取代的聚烃; Ⅳ区 1300 ~ 1200 cm-1:芳香族聚密、含氯聚合物; Ⅴ区 1200 ~ 1000 cm-1:聚醚、醇类、含氯、含氮聚合物; Ⅵ区 1000 ~ 600 cm-1:取代苯、不饱和双键和含氯聚合物
2020/4/3
材料研究方法
23
红外吸收光谱分析
7.PET ⑴ 1730 cm-1的最强谱带,是羰基伸缩振动的吸收;
⑵ 1265和1110cm-1的两条谱带归属于-COOC-上C-O的伸缩 振动。上述谱带证明该聚合物为聚酯;
⑶ 3000 ~ 2800 cm-1及1450 ~ 1350 cm-1区域的谱带是由 CH2振动引起的;
由上可知,化合物中包含单取代苯环,同时有反式双键和 末端双键。样品是聚合物,因此只要用少数标准谱图进行核 对,证明未知物为苯乙烯-丁二烯共聚物。
2020/4/3
材料研究方法
9
红外吸收光谱分析
图4 未知聚合物的IR谱图 (肯定法与否定法相结合)
2020/4/3
材料研究方法
10
红外吸收光谱分析
5.肯定法与否定法相结合 在审视一张未知高聚物的样品谱图时,往往同时采用
2020/4/3
材料研究方法
5
红外吸收光谱分析
❖ 在1300cm-1波数以上,从高波数检查起,可知不存在羟 基、胺基、不饱和烃、氰基、异腈酸酯基和羰基, 在1000cm-1以下,仅有一对双峰(731cm-1和720cm-1), 由于不存在芳香族和烯类,因此只可能是n〉4的长链(CH2)-n的吸收, 由于在1000-1300cm-1也没有吸收,因此醚键也可以排除, 最后,可能确定该未知聚合物可能是聚乙烯。
2020/4/3
材料研究方法
12
红外吸收光谱分析
2020/4/3
材料研究方法
13
红外吸收光谱分析
2. Polypropylene ⑴ 3000 - 2800 cm-1区域
多重叠合的CH2,CH,CH3中的C—H 伸 缩振动;
⑵ 1462 cm-1附近的CH2和CH3的弯曲振动;
⑶ 1380 cm-1附近的CH3弯曲振动。
757及699cm-1处的谱带,归属与苯环的5个相邻碳上
质子的面外伸缩振动,是典型的单取代苯的特征谱带。
2020/4/3
材料研究方法
16
红外吸收光谱分析
2020/4/3
材料研究方法
17
红外吸收光谱分析
5.肯定法与否定法相结合 在审视一张4.Poly(vinyl acetate)
⑴ 1740cm-1的最强谱带,是羰基伸缩振动的吸收; ⑵ 1240和1020cm-1的两条谱带是PVAc最特征的吸收谱 带,归属与-COOH3,中的-COO-和-O-CH-的伸缩振动; ⑶ 1370cm-1的谱带归属于甲基的变形振动。由于相连 羰基的加强,使得它比亚甲基的变形振动谱带强得多。
肯定法和否定法,即根据谱带,一方面肯定某些官能团的 存在,一方面又排除某些结构存在的可能。
根据基团频率的肯定法分析,看出存在着甲基、亚 甲基及可能存在的次甲基,以及酯基官能团。否定法发现, 样品中不存在胺、芳香烃、氰基、醇、酰胺、环及亚胺等 结构。查对烷烃酯类聚合物谱图,证明该材料为聚丙烯酸 丁酯。
2020/4/3
材料研究方法
2
红外吸收光谱分析
1. 否定法 如果某个基团的特征频率吸收区,找不到吸收峰,
我们就判断样品中部不存在该基团。
2020/4/3
材料研究方法
3
红外吸收光谱分析
对应与否定法认别光谱的特征基团频率2020/4/3来自材料研究方法4
红外吸收光谱分析
图2 未知聚合物的IR谱图 (否定法)
⑷ 1230、1199、1131 cm-1 间规PP非晶带。
2020/4/3
材料研究方法
14
红外吸收光谱分析
2020/4/3
材料研究方法
15
红外吸收光谱分析
3.Polystylene ⑴ 3103 - 3000 cm-1区域的谱带是由芳环的C—H 伸缩
振动产生的特征带。 ⑵ 3000-2800 cm-1区域的谱带是由CH2或CH上的
⑷ 3100 ~ 3000 cm-1区域的谱带是由芳环上的C-H伸缩振动引 起的; ⑸ 730 cm-1处的谱带是面外弯曲振动吸收; ⑹ 873 cm-1处的谱带归属于芳环上两个相邻的CH变形振动; ⑺ 1620 ~ 1450 cm-1间的谱带较弱,可能与分子对称性有关;
⑻ 3540 cm-1处的谱带是未反应羟基O—H伸缩振动引起的。
2020/4/3
材料研究方法
6
红外吸收光谱分析