单色发光二极管检测

合集下载

发光二极管的简易测试(精)

发光二极管的简易测试(精)

发光二极管的简易测试发光二极管,简称LED,是一种能把电能转换成光能的半导体器件,当管子上通过一定的正向电流时,便可以光的形式将能量释放出来,发光强度与正向电流近似成正比,发光颜色与管子的材料有关。

一、LED的主要特点(1)工作电压低,有的仅需1.5 - 1.7V即能导通发光;(2)工作电流小,典型值约1OmA;(3)具有和普通二极管相似的单向导电特性,只是死区电压略高些;(4)具有和硅稳压二极管相似的稳压特性;(5)响应时间快、从加电压到发出光的时间仅1一1Oms,响应频率可达100Hz;则使用寿命长,一般可达10万小时以上。

目前常用的发光二极管有发红光和绿光的磷化稼(GaP)LED,其正向压降V F=2.3V;发红光的磷砷化稼(GaASP) LED,其正向压降V F= 1.5 - 1.7V;以及采用碳化硅和蓝宝石材料的黄色、蓝色LED,其正向压降V F=6V。

由于LED的正向伏安曲线较陡,故在应用时,必须串接限流电阻,以免烧坏管子。

在直流电路中,限流电阻R可用下式估算:R=(E-V F)/I F在交流电路中,限流电阻R可用下式估算:R= (e-V F )/2I F,式中e为交流电源电压的有效值。

二、发光二极管的测试在无专用仪器的情况下,LED也可用万用表估测(这里以MF30型万用表为例)。

首先,将万用表置于Rx1k档或Rx100档,测量LED的正反向电阻,若正向电阻小于50kΩ,反向电阻无穷大,表明管子正常。

若正、反向均为零或均为无穷大,或正反向电阻值比较接近,均说明管子有问题。

然后,还须测量LED的发光情况。

因其正向压降为1.5V以上,故无法用Rx1, Rx1O, Rx1k档直接测量,R x1Ok档虽然使用15V电池;但内阻太高,也不能使管子导通发光。

但可采用双表法测试。

将两块万用表串联起来,均置于Rx1档,这样电池总电压为3V,总内阻为50Ω,则提供给L印的工作电流大于1OmA,足以使管子导通发光。

发光二极管的测试方法

发光二极管的测试方法

发光二极管的测试方法发光二极管(LED)是一种能够将电能直接转化为光能的半导体元件。

从市场上常见的LED的类型来看,有红、绿、蓝、黄等不同颜色的LED。

为了确保LED的质量和性能,需要对其进行测试。

下面将介绍一些常用的LED测试方法。

首先是对LED光电参数的测试,主要包括:1. 测试光通量(Luminous Flux): 光通量是LED的发光亮度的量度,单位为流明(lm)。

可以使用一台光度计来测量LED的光通量值。

2. 测试光强度(Luminous Intensity): 光强度是LED光线在特定方向上发射的明亮程度,单位为坎德拉(cd)。

光强度的测试可以通过使用一个集成球、透镜和接口装置结合光度计来完成。

3. 测试色度坐标(Chromaticity Coordinates): 色度坐标是用来描述LED的颜色特性的参数。

可以使用色度仪来测量LED的色度坐标。

此外,还需要对LED的电性能进行测试,主要包括:1. 测试正向电压(Forward Voltage): 当LED处于导通状态时,正向电压是LED正向电流通过后产生的电压降。

可以使用数字式万用表或特定的LED测试仪进行测量。

2. 测试正向电流(Forward Current): 正向电流是指在正向电压下流过LED的电流。

可以通过直流电源和电流表进行测试。

3. 测试反向电流(Reverse Current): 当LED处于反向偏置状态时,如果流过LED的电流过高,则可能导致LED短路。

可以使用数字式万用表或特定的LED测试仪进行测试。

4. 测试开启电压(Breakdown Voltage): LED在反向偏置状态下的电压,即开启电压。

可以使用数字式万用表或特定的LED测试仪进行测试。

最后,还需要对LED的可靠性进行测试,主要包括:1.高温寿命测试:将LED置于恒定高温环境中,通电并持续观察其工作性能的变化情况,以判断其在高温环境下的寿命和稳定性。

发光二极管检验标准

发光二极管检验标准

发光二极管检验标准发光二极管(LED)是一种半导体器件,具有发光、低功耗、长寿命等特点,广泛应用于照明、显示、通信等领域。

为了确保LED产品的质量,制定了一系列的检验标准,以保证LED产品的性能和可靠性。

本文将介绍LED检验标准的相关内容,以帮助生产厂家和检验机构更好地进行LED产品的检验工作。

一、外观检验。

LED产品的外观检验是确保产品外观质量的重要环节。

外观检验项目包括外观缺陷、尺寸和标识等内容。

外观缺陷主要包括裂纹、气泡、污渍、杂质等,尺寸检验主要包括外形尺寸、引线长度、引线间距等。

此外,产品标识的完整性和清晰度也是外观检验的重点内容之一。

二、光电性能检验。

光电性能是LED产品最重要的性能之一,包括光通量、光强度、波长、色坐标、色温等指标。

光通量是LED产品发光强度的重要指标,通常通过积分球或光度计进行测量。

光强度是LED产品单位立体角内的发光强度,波长和色坐标是LED产品发光的颜色特性,色温是LED产品发光颜色的暖白度。

三、电气性能检验。

电气性能是LED产品的另一个重要性能指标,包括正向电压、正向电流、反向电流、漏电流等。

正向电压是LED产品工作时的电压值,正向电流是LED产品工作时的电流值,反向电流和漏电流是LED产品在非工作状态下的电流值。

电气性能检验可以通过电参数测试仪进行测量。

四、环境适应性检验。

LED产品在不同的环境条件下需要具有良好的适应性,包括温度适应性、湿度适应性、耐盐雾性等。

温度适应性是LED产品在不同温度条件下的性能表现,湿度适应性是LED产品在不同湿度条件下的性能表现,耐盐雾性是LED产品在盐雾环境下的耐受能力。

五、可靠性检验。

LED产品的可靠性是产品质量的重要保证,包括寿命测试、热冲击测试、湿热循环测试等。

寿命测试是LED产品在规定条件下的使用寿命测试,热冲击测试是LED产品在高温和低温交替的条件下的测试,湿热循环测试是LED产品在高温高湿和低温低湿交替的条件下的测试。

半导体发光二极管测试国标(精)

半导体发光二极管测试国标(精)

基于LED各个应用领域的实际需求,LED的测试需要包含多方面的内容,包括:电特性、光特性、开关特性、颜色特性、热学特性、可靠性等。

1、电特性LED是一个由半导体无机材料构成的单极性PN结二极管,它是半导体PN结二极管中的一种,其电压-电流之间的关系称为伏安特性。

由图1可知,LED电特性参数包括正向电流、正向电压、反向电流和反向电压,LED必须在合适的电流电压驱动下才能正常工作。

通过LED电特性的测试可以获得LED的最大允许正向电压、正向电流及反向电压、电流,此外也可以测定LED的最佳工作电功率。

图 1 LED伏安特性曲线LED电特性的测试一般利用相应的恒流恒压源供电下利用电压电流表进行测试。

2、光特性类似于其它光源,LED光特性的测试主要包括光通量和发光效率、辐射通量和辐射效率、光强和光强分布特性和光谱参数等。

(1)光通量和光效有两种方法可以用于光通量的测试,积分球法和变角光度计法。

变角光度计法是测试光通量的最精确的方法,但是由于其耗时较长,所以一般采用积分球法测试光通量。

如图2所示,现有的积分球法测LED光通量中有两种测试结构,一种是将被测LED放置在球心,另外一种是放在球壁。

_h:^E8(_ d图 2 积分球法测LED光通量此外,由于积分球法测试光通量时光源对光的自吸收会对测试结果造成影响,因此,往往引入辅助灯,如图3所示。

图3 辅助灯法消除自吸收影响在测得光通量之后,配合电参数测试仪可以测得LED的发光效率。

而辐射通量和辐射效率的测试方法类似于光通量和发光效率的测试。

(2)光强和光强分布特性图4 LED光强测试中的问题如图4所示,点光源光强在空间各方向均匀分布,在不同距离处用不同接收孔径的探测器接收得到的测试结果都不会改变,但是LED由于其光强分布的不一致使得测试结果随测试距离和探测器孔径变化。

因此,CIE-127提出了两种推荐测试条件使得各个LED在同一条件下进行光强测试与评价,目前CIE-127条件已经被各LED制造商和检测机构引用。

发光二极管

发光二极管

发光二极管科技名词定义中文名称:发光二极管英文名称:light-emitting diode;LED;light emitting diode定义1:注入一定的电流后,电子与空穴不断流过PN结或与之类似的结构面,并进行自发复合产生辐射光的二极管半导体器件。

应用学科:测绘学(一级学科);测绘仪器(二级学科)定义2:在半导体p-n结或与其类似结构上通以正向电流时,能发射可见或非可见辐射的半导体发光器件。

应用学科:机械工程(一级学科);仪器仪表元件(二级学科);显示器件(三级学科)本内容由全国科学技术名词审定委员会审定公布百科名片发光二极管简称为LED。

由镓(Ga)与砷(AS)、磷(P)的化合物制成的二极管,当电子与空穴复合时能辐射出可见光,因而可以用来制成发光二极管。

在电路及仪器中作为指示灯,或者组成文字或数字显示。

磷砷化镓二极管发红光,磷化镓二极管发绿光,碳化硅二极管发黄光。

目录简介公式物理特性发光原理分类普通单色发光二极管高亮度单色发光二极管变色发光二极管闪烁发光二极管电压控制型发光二极管红外发光二极管蓝光与白光LEDLED光源的特点电压效能适用性稳定性响应时间对环境污染颜色价格LED光参数介绍发光效率和光通量发光强度和光强分布波长发光二极管的检测普通发光二极管的检测红外发光二极管的检测LED光度测量原理光强度的测量方法光通量的测量方法LED的光谱功率分布测量方法简介公式物理特性发光原理分类普通单色发光二极管高亮度单色发光二极管变色发光二极管闪烁发光二极管电压控制型发光二极管红外发光二极管蓝光与白光LEDLED光源的特点电压效能适用性稳定性响应时间对环境污染颜色价格LED光参数介绍发光效率和光通量发光强度和光强分布波长发光二极管的检测普通发光二极管的检测红外发光二极管的检测LED光度测量原理光强度的测量方法光通量的测量方法LED的光谱功率分布测量方法展开编辑本段简介发光二极管它是半导体二极管的一种,可以把电能转化成光能;常简写为LED。

发光二极管测量方法

发光二极管测量方法

发光二极管测量方法发光二极管(LED)是一种高效率、节能、环保的光源,被广泛应用于LED灯的照明、显示屏、信号灯、车灯等各个领域。

为了保证LED的品质,我们需要进行LED的测量。

下面,我们来分步骤阐述发光二极管测量方法。

第一步:准备工作在进行LED测量之前,需要准备相应仪器。

首先是电源,需要选择一种稳定可靠的电源,以保证LED的工作电流稳定。

其次是万用表或者LED专用测试仪,可以测量LED的电压和电流等参数。

还需要一个适合分波长的光度计,可以测量LED的光通量和光效等参数。

第二步:测量前检查在进行LED测量之前,需要对LED进行检查。

首先是外观,检查是否有损坏、腐蚀等情况。

其次是极性,要清楚哪个引脚是正极哪个引脚是负极。

最后是电气特性,需要检查电压、电流和发光强度等参数是否在规定范围内。

第三步:测量在检查完成后,可以开始测量。

首先是电气测量,将LED连接到电源上,通过电流表测量电流值,通过万用表或者LED专用测试仪测量电压值。

最后将测量结果填入测量数据表格中。

其次是光学测量,通过光度计测量LED的光通量和光效等参数,并将结果填入测量数据表格中。

第四步:数据分析在测量完成后,需要对数据进行分析。

可以将测量结果与LED的规格书进行比较,了解LED是否符合规格。

还可以对数据进行统计,根据数据绘制相应的统计图表,以更直观地了解LED的性能。

以上就是发光二极管测量方法的分步骤阐述。

在进行LED测量时既要注意仪器的选用,也要注意测量前的检查,以保证测量结果的准确性。

同时,对测量数据的分析也是非常重要的,可以帮助我们更全面地了解LED的性能。

发光二极管亮度 检测方法

发光二极管亮度 检测方法

发光二极管亮度检测方法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!发光二极管亮度检测方法引言发光二极管(LED)作为一种常见的光电器件,在各种应用中都扮演着重要角色。

二极管实训报告

二极管实训报告

实训报告1 《二极管的识别与检测》2节课[ 岗位描述] 实际工作中,电子元器件检测是第一道电子产品质量控制点。

一般大中型电子企业都设有专门从事电子元器件检测的部门。

因此掌握电子元器件的识别与检测技能,即可胜任电子企业质量检测部门相关岗位。

[ 实训目的 ] 1. 掌握普通二极管的识别与简易检测方法。

2.掌握专用二极管的识别与简易检测方法。

[ 实训器材 ] 表11.普通单色二极管的检测:a.正向导通电压1.5-2.5v.外加电压越大越亮。

注意实际电压不能使led超过其最大工作电流。

b. 检测时,要用r×10k挡(因内电池电压为9v),方法同普通二极管,只是正向电大得多,甚至测量时还微微发光。

2.稳压二极管的检测:a.工作在反压状态,具有稳压作用,检测方法同普通二极管。

b.不同处:用r×1k挡测反向电阻很大,换用r×10k, 其反向电阻减小很多。

若换挡电阻基本不变,说明是普通二极管。

变化则为稳压二极管。

[ 原理 ] 使用r×10k挡内电池9v,若稳压二极管反向击穿电压比<9v,则因击穿而电阻减小很多。

而普通二极管反向击穿电压比普通管大得多,不会击穿。

3.普通光电二极管的检测:a.光电二极管工作在反向偏置状态。

b.无光照时,光电二极管与普通管一样,反向电流小,反向电阻大(几十兆以上);有光照时,反向电流明显增加,反向电阻明显减小(几千-几十千),反向电流与光照成正比。

检测有无光照电阻相差很大。

检测结果相差不大说明已坏或不是光电二极管。

[ 实训步骤 ] 1.普通二极管的识别与检测。

在下表中填好检测结果。

【注意】a.塑封白环一端为负极,玻璃封装黑环一端为负极。

b.检测时两手不能同时接触两引脚,表至于r×1k挡,并欧姆调零。

调零时间不能太长。

c.读数要用平面镜成像规律。

2.专用二极管的识别与检测。

在下表中填好测量结果。

【注意】a.测试发光二极管,应用r×10k挡并调零。

用万用表检测各种见二极管的极性

用万用表检测各种见二极管的极性

用万用表检测各种见二极管的极性,好坏等参数的方法本文主要介绍用万用表检测常用二极管,如高速开关二极管,快恢复二极管,小功率通用二极管,双向触发二极管,TVS管,红外二极管的引脚极性及性能的方法.1、检测玻封硅高速开关二极管检测硅高速开关二极管的方法与检测普通二极管的方法相同。

不同的是,这种管子的正向电阻较大。

用R×1k电阻挡测量,一般正向电阻值为5k~10k,反向电阻值为无穷大。

2、检测快恢复、超快恢复二极管用万用表检测快恢复、超快恢复二极管的方法基本与检测塑封硅整流二极管的方法相同。

即先用R×1k挡检测一下其单向导电性,一般正向电阻为4.5k左右,反向电阻为无穷大;再用R×1挡复测一次,一般正向电阻为几欧,反向电阻仍为无穷大。

3、检测小功率晶体二极管A、判别正、负电极(a)、观察外壳上的的符号标记。

通常在二极管的外壳上标有二极管的符号,带有三角形箭头的一端为正极,另一端是负极。

(b)、观察外壳上的色点。

在点接触二极管的外壳上,通常标有极性色点(白色或红色)。

一般标有色点的一端即为正极。

还有的二极管上标有色环,带色环的一端则为负极。

(c)、以阻值较小的一次测量为准,黑表笔所接的一端为正极,红表笔所接的一端则为负极。

B、检测最高工作频率FM。

晶体二极管工作频率,除了可从有关特性表中查阅出外,实用中常常用眼睛观察二极管内部的触丝来加以区分,如点接触型二极管属于高频管,面接触型二极管多为低频管。

另外,也可以用万用表R×1k挡进行测试,一般正向电阻小于1k 的多为高频管。

C、检测最高反向击穿电压VRM。

对于交流电来说,因为不断变化,因此最高反向工作电压也就是二极管承受的交流峰值电压。

需要指出的是,最高反向工作电压并不是二极管的击穿电压。

一般情况下,二极管的击穿电压要比最高反向工作电压高得多(约高一倍)。

4、检测双向触发二极管A、将万用表置于R×1k挡,测双向触发二极管的正、反向电阻值都应为无穷大。

发光二极管LED最新测试方法

发光二极管LED最新测试方法

发光二极管LED最新测试方法1.电压测试:测试LED在额定电流下的电压降,通常使用数字万用表进行测量。

测试时需要将LED连接到稳流电源上,并在额定电流下测量其电压降。

2.亮度测试:测试LED的亮度是其最常见的测试方法之一、可以使用光度计或光度计系统对LED的辐射光通量进行测量。

测试时需要将LED置于测试装置中,并将测量结果与标准亮度进行比较。

3.色度测试:测试LED的颜色特性是测试LED的另一个重要指标。

常用的测试方法是使用光谱分析仪测量LED的光谱分布,并根据光谱数据计算出色坐标和相关色度指标,如色温、色容差等。

4.色品测试:测试LED的色品是测试其色彩性能的重要方法之一、可以使用色差仪进行测量,通过比较样品光源和标准光源的颜色差异来评估LED的色品效果。

5.效率测试:测试LED的光电转换效率是衡量其能量利用率的重要指标。

可以使用光度计和功率计对LED的光输出和电功率进行测量,并计算出光电转换效率。

6.可靠性测试:测试LED的可靠性是评估其寿命和稳定性的关键。

常用的可靠性测试方法包括温度循环测试、湿热循环测试、阻尼振动测试等。

7.稳定性测试:测试LED的稳定性是评估其长期性能保持能力的重要方法。

可以通过长时间连续使用LED,并检测其亮度、电流和电压等参数的变化来评估其稳定性。

8.一致性测试:测试LED的一致性是确保生产的LED具有相似的电气和光学性能的重要方法。

可以使用测试电路对一批LED进行批量测试,并对测试结果进行统计和分析。

综上所述,LED的测试涉及多个方面的指标,包括电气特性、光电特性、可靠性和一致性等。

在测试过程中,需要使用专业的测试设备和仪器,并严格按照测试标准和规程进行操作,以确保测试结果的准确性和可靠性。

LED测试方法及测试内容

LED测试方法及测试内容

LED 测试方法及要求半导体发光二极管(led)是新型的发光体,电光效率高、体积小、寿命长、电压低、节能和环保,是下一代理想的照明器件。

LED光电测试是检验LED光电性能的重要而且唯一的手段,相应的测试结果是评价和反映当前我国LED产业发展水平的依据。

制定LED光电测试方法的标准是统一衡量LED产品光电性能的重要途径,是使测试结果真实反映我国LED产业发展水平的前提。

本文结合最新的LED测试方法的国家标准,介绍了LED的光电性能测试的几个主要方面。

一、引言半导体发光二极管(LED)已经被广泛应用于指示灯、信号灯、仪表显示、背光源、车载光源等场合,尤其是白光LED技术的发展,LED在照明领域的应用也越来越广泛。

但是过去对于LED的测试没有较全面的国家标准和行业标准,在生产实践中只能以相对参数为依据,不同的厂家、用户、研究机构对此争议很大,导致国内LED产业的发展受到严重影响。

因此,半导体发光二极管测试方法国家标准应运而生。

二、LED测试方法基于LED各个应用领域的实际需求,LED的测试需要包含多方面的内容,包括:电特性、光特性、开关特性、颜色特性、热学特性、可靠性等。

1、电特性LED是一个由半导体无机材料构成的单极性PN结二极管,它是半导体PN结二极管中的一种,其电压-电流之间的关系称为伏安特性。

由图1可知,LED电特性参数包括正向电流、正向电压、反向电流和反向电压,LED必须在合适的电流电压驱动下才能正常工作。

通过LED电特性的测试可以获得LED的最大允许正向电压、正向电流及反向电压、电流,此外也可以测定LED的最佳工作电功率。

图1:LED伏安特性曲线LED电特性的测试一般利用相应的恒流恒压源供电下利用电压电流表进行测试。

2、光特性类似于其它光源,LED光特性的测试主要包括光通量和发光效率、辐射通量和辐射效率、光强和光强分布特性和光谱参数等。

(1)光通量和光效有两种方法可以用于光通量的测试,积分球法和变角光度计法。

插件式发光二极管检验标准

插件式发光二极管检验标准

色差 胶体 外 观 胶体含杂物
气泡
目测
芯片
芯片位置处于胶体横面中央位置,不得偏移,竖面上下位置 一致,与前后批次要求一致 芯片以上区域允许有小于0.2mm*1.0mm的划伤一条,其他区域 以不影响出光效果为限
目测
胶体表面划伤
卡尺
电压 漏电流
VF(V)正向电压不能超出0.2V IR(uA)小于2uA以上
DIP发光二极管检验标准
使用设备 项目 发光二极管测 试仪 检验项目 型号 尺寸 使用工具 判定标准 与BOM一致 外形尺寸符合产品说明书或图纸要求。 引脚有卡位,尺寸一致 引脚无直观弯曲,前后批次长短一致 引脚支架 管脚根部无爬胶或残胶,管脚可焊性合格,管脚光亮,无生 锈,焊后无发黑现象 胶体内支架外露或偏心小于0.2mm 同一单号整批胶体颜色一致,不能直观的看出来. 表面有无污垢,无残胶存在.胶体表面光滑,不能有油性物质存 在,没有少胶渗胶凹凸不平等缺陷 灯珠/杯内含杂质不大于0.1mm,所有杂质不允许连接任意两 个电极或形成导通状态。 碗内芯片正上方不能有气泡,芯片以上区域不能有影响出光 的气泡,其他部位气泡直径小于0.3mm,数量不超过3个 游标卡尺、放大镜、 烙铁、发光二极管测 试仪 检验方法 查对BOM要求 卡尺 卡尺 目测 目测 卡尺 目测 目测 目测
发光二极管测试仪
发光二极管测试仪
发光二极管测试仪
全彩:1:1.15(蓝灯按20mA分光) 单双色:1:1.2 性 能 亮度 点亮后无色差,无亮度差,通过白纸覆盖检测透光目测一致 性良好 波长 RGB都须为正波段 全彩≤5nm 单色≤8nm
发光二极管测试仪
目测 发光二极管测试仪 发光二极管测试仪

角度
单双色 ≤±10° 全彩 ≤±7.5° 各颜色平均角度差别≤15° 插在PCB上点亮不能有花屏现象

光信息专业实验说明:发光二极管特性测量实验

光信息专业实验说明:发光二极管特性测量实验

光信息专业实验说明:发光二极管特性测量实验一、实验目的和内容1、了解发光二极管的发光机理、光学特性与电学特性,并掌握其测试方法。

2、设计简单的测试装置,并对发光二极管进行V-I特性曲线、P-I特性曲线的测量。

二、实验基本内容1、概述50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。

LED是英文light emitting diode(发光二极管)的缩写,它属于固态光源,其基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。

LED结构图如下面图1所示:发光二极管的核心部分是由P型半导体和N型半导体组成的芯片。

常规的发光二极管芯片的结构如图二所示,主要分为衬底,外延层(图2中的N型氮化镓,铝镓铟磷有源区和P型氮化镓),透明接触层,P型与N型电极、钝化层几部分。

钝化层的作用是保护透明接触层。

N型电极P型电极图2、常规InGaN / 蓝宝石LED芯片剖面图图3、InGaN LED芯片俯视图在 p 型半导体和 n 型半导体之间存在一个过渡层,称为p -n 结。

跨过此p -n 结,电子从n 型材料扩散到p 区,而空穴则从p 型材料扩散到 n 区,如右面的图4(a )所示。

作为这一相互扩散的结果,在p -n 结处形成了一个高度的e ΔV 的势垒,阻止电子和空穴的进一步扩散,达到平衡状态(见图4(b ))。

当外加一足够高的直流电压V ,且 p 型材料接正极, n型材料接负极时,电子和空穴将克服在p -n 结处的势垒,分别流向 p 区和 n 区。

在p -n 结处,电子与空穴相遇,复合,电子由高能级跃迁到低能级,电子将多余的能量将以发射光子的形式释放出来,产生电致发光现象。

这就是发光二极管的发光原理。

(见图2.1.2(c ))。

通过材料的 选择可以改变半导体的能带带 隙,从而就可以发出从紫外到红外不同波长的光线,且发光的强弱与注入电流有关。

LED特性测量

LED特性测量

LED 特性测量实验者:林巧玲(11343046) 合作者:洪艺江(12342020) 光信息科学与技术专业 实验地点:物理楼 组别:A14 物理科学与工程技术学院实验时间:2015.05.27 上午 8:20一、实验目的1.了解发光二极管的发光机理、光学特性与电学特性,并掌握其测试方法。

2.设计简单的测试装置,并对发光二极管进行 V-I 特性曲线、P-I 特性曲线的测量。

二、实验原理 LED(light emitting diode)即发光二极管,它属于固态光源。

1.发光二极管的基本原理 发光二极管的核心部分是由 p 型半导体和 n 型半导体组成的晶片。

当外加一足够高的正 向偏压 V 时,电子和空穴将克服在 p-n 结处的势垒相遇、复合,电子由高能级跃迁到低能 级,电子将多余的能量将以发射光子的形式释放出来,产生电致发光现象。

选择可以改变半 导体的能带隙, 从而就可以发出从紫外到红外不同波长的光线, 且发光的强弱与注入电流有 关。

2.发光二极管的主要特性 (1)光谱分布、峰值波长和光谱辐射带宽:发光二极管所发之光并非单一波长,其波长具 有正态分布的特点,在最大光谱能量(功率)处的波长成为峰值波长。

即使有两个 LED 的峰 值波长是一样的, 但它们在人眼中引起的色感觉也是可能不同的。

光谱辐射带宽是指光谱辐 射功率大于等于最大值一半的波长间隔,它表示发光管的光谱纯度。

(2)光通量:LED 向整个空间在单位时间内发射的能引起人眼视觉的辐射通量 ΦV(单位 是流明 lm)。

国际照明委员会(CIE)为人眼对不同波长单色光的灵敏度作了总结,在明视觉 条件(亮度为 3cd/m2 以上), 归结出人眼标准光 度观测者光谱光效率函数 V (  ),它在 555nm 上有最大值,此时 1W 辐射通量等于 683lm。

通常,光通量的测量以明视觉条件作为测 量条件,可以用积分球来把 LED 发射的光辐 射能量收集起来,并用合适的探测器将它线性 图 1.积分球结构示意图 地转换成光电流,再通过定标确定被测量的大 小。

晶体二极管与晶体三极管

晶体二极管与晶体三极管

第四章晶体二极管与晶体三极管本章概述:晶体管是采用半导体晶体材料(如硅、锗、砷化镓等)制成的,在电子产品中应用十分广泛。

本章从二、三极管的型号、分类、外形识别及检测等多个方面,对常用二、三极管进行了较为详细和系统的讲解。

第一节晶体二极管和晶体三极管的型号命名方法一、中华人民共和国国家标准(GB249-74)国标(GB249-74)半导体器件型号命名由五部分组成,见表4-1。

表4-1 国标半导体器件型号命名方法例如:锗PNP高频小功率管为3AG11C,即3(三极管)A(PNP型锗材料)G(高频小功率管)11(序号)C(规格号)二、美国电子半导体协会半导体器件型号命名法表4-2 美国电子半导体协会半导体器件型号命名法三、日本半导体器件型号命名方法表4-3 日本半导体器件型号命名方法第二节半导体器件的外形识别一、晶体二极管的外形识别1.晶体二极管的结构与特性定义:晶体二极管由一个PN结加上引出线和管壳构成。

所以,二极管实际就是一个PN结。

电路图中文字表示符号为用V表示。

基本结构:PN结加上管壳和引线,就成为了半导体二极管。

图4-1 二极管的结构和电路符号二极管最主要的特性是单向导电性,其伏安特性曲线如图4-2所示。

1)正向特性当加在二极管两端的正向电压(P为正、N为负)很小时(锗管小于0.1伏,硅管小于0.5伏),管子不导通,处于“截止”状态,当正向电压超过一定数值后,管子才导通,电压再稍微增大,电流急剧暗加(见曲线I段)。

不同材料的二极管,起始电压不同,硅管为0.5-0.7伏左右,锗管为0.1-0.3左右。

2)反向特性二极管两端加上反向电压时,反向电流很小,当反向电压逐渐增加时,反向电流基本保持不变,这时的电流称为反向饱和电流(见曲线II段)。

不同材料的二极管,反向电流大小不同,硅管约为1微安到几十微安,锗管则可高达数百微安,另外,反向电流受温度变化的影响很大,锗管的稳定性比硅管差。

3)击穿特性当反向电压增加到某一数值时,反向电流急剧增大,这种现象称为反向击穿。

单色发光二极管检测

单色发光二极管检测

单色发光二极管检测1、发光二极管LED主要特点(1)在低电压(1.5~2.5V)、小电流(5~30mA)的条件下工作,即可获得足够高的亮度。

(2)发光响应速度快(10-7~10-9 s),高频特性好,能显示脉冲信息。

(3)单色性好,常见颜色有红、绿、黄、橙等。

(4)体积小。

发光面形状分圆形、长方形、异形(三角形等)。

其中圆形管子的外径有φ1、φ2、φ3、φ4、φ5、φ8、φ10、φ12、φ15、φ20(mm)等规格,直径1mm的属于超微型LED。

(5)防震动及抗冲击穿性能好,功耗低,寿命长。

由于LED的PN结工作在正向导通状态,本射功耗低,只要加必要的限流措施,即可长期使用,寿命在10万小时以上,甚至可达100万小时。

(6)使用灵活,根据需要可制成数码管、字符管、电平显示器、点阵显示器、固体发光板、LED平极型电视屏等。

(7)容易与数字集成电路匹配。

2.发光二极管的原理发光二极管内部是具有发光特性的PN结。

当PN结导通时,依靠少数载流子的注入以及随后的复合而辐射发光。

普通发光二极管的外形、符号及伏安特性如图1所示。

LED正向伏安特性曲线比较陡,在正向导通之前几乎有电流。

当电压超过开启电压时,电流就急剧上升。

因此,LED属于电流控制型半导体器件,其发光亮度L(单位cd/m2,读作坎德拉每平方米)与正向电流IF近似成正双,有公式L =K IFm式中,K为比例系数,在小电流范围内(IF=1~10mA),m=1.3~1.5。

当IF>10mA时,m=1,式(5.10.1)简化成L =K IF即亮度与正向电流成正比。

以磷砷化镓黄色LED为例,相对发光强度与正向电流的关系如图2所示。

LED的正向电压则与正向电流以及管芯的半导体材料有关。

使用时应根据所要求的显示亮度来选取合适的IF值(一般选10mA左右,对于高亮度LED可选1~2mA),既保证亮度适中,也不会损坏LED。

若电流过大,会烧毁LED的PN结。

LED检测的标准

LED检测的标准

LED产品质量检测标准一、全面考虑性能参数半导体发光二极管(LED)因其体积小、定向发射光、高亮度、PN结电特性等特点,从而在品质的评价和检测方法方面产生许多新的问题。

不同的应用场合,决定了对LED产品的性能要求。

从光学性能来看,用于显示的LED,主要是亮度、视角分布、颜色等参数。

用于普通照明的LED,更注重光通量、光束的空间分布、颜色、显色特性等参数,而生物应用的LED,则更关心生物有效辐射功率、有效辐射照度等参数。

此外,发光二极管既是一种光源,又是一种功率型的半导体器件,因此有关它的质量必须从光学、电学和热学等诸多方面进行综合评价。

从目前LED产品的结构及产业发展的角度看,照明LED产品主要需考虑光学性能、电性能、热性能、辐射安全和寿命等几方面的参数光学性能。

LED的光学性能主要涉及到光谱、光度和色度等方面的性能要求。

根据新制定的行业标准“半导体发光二极管测试方法”,主要有发光峰值波长、光谱辐射带宽、轴向发光强度、光束半强度角、光通量、辐射通量、发光效率、色品坐标、相关色温、色纯度和主波长、显色指数等参数。

显示用的LED,主要是视觉的直观效果,因此对相关色温和显色指数不作要求,而照明用的白光LED,上述两个参数就尤为重要,它是照明气氛和效果的重要指标,而色纯度和主波长一般没有要求。

电性能。

LED的PN结电特性,决定了LED在照明应用中区别于传统光源的电气特性,即单向非线性导电特性、低电压驱动以及对静电敏感等特点。

目前主要的测量参数包括正向驱动电流、正向压降、反向漏电流、反向击穿电压和静电敏感度等。

热性能。

照明用LED发光效率和功率的提高是当前LED产业发展的关键问题之一,与此同时,LED的PN结温度及壳体散热问题显得尤为重要,一般用热阻、壳体温度、结温等参数表示。

辐射安全。

目前,国际电工委员会IEC将LED产品等同于半导体激光器的要求进行辐射的安全测试和论证。

因LED是窄光束、高亮度的发光器件,考虑到其辐射可能对人眼视网膜的危害,因此,对于不同场合应用的LED,国际标准规定了其有效辐射的限值要求和测试方法,目前在欧盟和美国,照明LED产品的辐射安全作为一项强制性的安全要求执行。

发光二极管的测试方法

发光二极管的测试方法

发光二极管的测试方法发光二极管(LED)是一种半导体器件,广泛应用于照明、显示、通信等领域。

测试LED的特性和性能是确保其质量和可靠性的关键步骤。

下面是发光二极管的测试方法,可分为外观检查、静态电参数测试和光电参数测试三部分。

一、外观检查1.外观检查是发光二极管最基本的一个测试。

用肉眼或显微镜检查LED是否有裂纹、杂质、污染等缺陷。

2.外观检查还包括引线的焊接是否齐全、导电是否可靠。

二、静态电参数测试1.正向电压-电流特性测试*在限制电流下,应用逐步增大的正向电压,记录电流的变化。

绘制LED的电流-电压曲线,可以得到正向击穿电压、正向导通电阻、正向压降等参数。

*正向电压一般范围是0.2V到5V,根据不同的LED型号和应用需求可能有所差异。

2.反向电压测试*在限制电流下,应用逐步增大的反向电压,记录电流的变化。

根据电流的大小和反向电压的极限,可以判断LED对反向电压的抗性。

3.反向漏电流测试*测量未加正向电压时,LED器件上的反向漏电流。

使用特定的测试电路和仪器,精确测量反向电流的大小,一般单位是微安(μA)级别。

4.导通压降测试*测量在给定的正向电流条件下,LED两端的电压降。

通常用万用表或电源仪表进行测量。

三、光电参数测试1.亮度测试* 使用亮度计,将LED表面与亮度计接触,测量出LED的亮度。

常用的亮度单位是流明(lm)或坎德拉(cd)。

2.发光效率测试* 测量LED发出的光功率和输入的电功率,通过光电功率比可以计算出发光效率。

常见的单位是lm/W。

3.光谱测试*使用光谱仪测量LED发光的光谱分布。

通过测量不同波长下的辐射功率,可以得到LED的光谱特性。

4.色度坐标测试*使用色差仪或分光光度仪来测量LED发光的色度坐标,通常使用CIE1931色度坐标系或CIE1976色度坐标系。

5.显色性测试*使用光谱仪配合专用测试软件,测量LED发光的光谱以及色容差等参数,评估其显色性能。

6.角度测试*使用专用光度计或光强计,测量LED的发光角度。

二极管的识别与检测

二极管的识别与检测

变容二极管的检测
1.变容二极管其极性与性能好坏的测量与普通二极管的
测量方法相似,不同之处在于:稳压二极管与变容
二极管的PN结都具有正向电阻小反向电阻大的 特点 .
7. 光敏二极管的外形及特点 光敏二极管是当受到光照射时反向电阻会 随之变化的二极管。随着光照射的增强, 光敏二极管反向电阻由大到小变化,常用 做光电传感器件使用。
闪烁发光二极管 闪烁发光二极管在通电后会时亮时暗闪烁发光,它是将集成电路
(IC)和 二极管制作并封装在一起的。常见的闪烁发光二极管有红、
绿、橙和黄四种,它们的正常工作电压一般为3~5.5V左右。
6. 变容二极管的外形及特点
变容二极管是利用PN结的空间电荷层具有电容特性 的原理制成的特殊二极管。它的特点是结电容随加 到管子上的反向电压大小而变化。人们利用变容二 极管的这种特性取代可变电容器的功能。
判断出检波二极管的质量好坏与极性。 首先,把万用表置于电阻“R×100”或“R×1k”档。 测量判断的依据:二极管的正向电阻小,反向电阻 大。测量的结果:两次阻值都很大,二极管断路。 两次阻值都很小,二极管短路。
3.稳压二极管的外形及特点
稳压二极管国外又称齐纳二极管,它是利用硅二极管的 反向击穿特性(雪崩现象)来稳定直流电压的,根据击 穿电压来决定稳压值,在电路上应用时一定要串联限流 电阻,不能让二极管击穿后电流无限增大,否则二极管 将立即被烧毁稳压二极管是加反向偏压的。
5. 发光二极管的外形及特点
发光二极管(LED)是除了具有普通二极管的单向导电特性之外,还 可以将电能转化为光能的器件。给发光二极管外加正向电压时,它处 于导通状态,当正向电流流过管芯时,发光二极管就会发光,将电能 转化成光能。常见的发光二极管发光颜色有红色、黄色、绿色、橙色、
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单色发光二极管检测1、发光二极管LED主要特点 (1)在低电压(1.5~2.5V)、小电流(5~30mA)的条件下工作,即可获得足够高的亮度。

(2)发光响应速度快(10-7~10-9 s),高频特性好,能显示脉冲信息。

(3)单色性好,常见颜色有红、绿、黄、橙等。

(4)体积小。

发光面形状分圆形、长方形、异形(三角形等)。

其中圆形管子的外径有φ1、φ2、φ3、φ4、φ5、φ8、φ10、φ12、φ15、φ20(mm)等规格,直径1mm的属于超微型LED。

(5)防震动及抗冲击穿性能好,功耗低,寿命长。

由于LED的PN 结工作在正向导通状态,本射功耗低,只要加必要的限流措施,即可长期使用,寿命在10万小时以上,甚至可达100万小时。

(6)使用灵活,根据需要可制成数码管、字符管、电平显示器、点阵显示器、固体发光板、LED平极型电视屏等。

(7)容易与数字集成电路匹配。

2.发光二极管的原理 发光二极管内部是具有发光特性的PN结。

当PN结导通时,依靠少数载流子的注入以及随后的复合而辐射发光。

普通发光二极管的外形、符号及伏安特性如图1所示。

LED正向伏安特性曲线比较陡,在正向导通之前几乎有电流。

当电压超过开启电压时,电流就急剧上升。

因此,LED属于电流控制型半导体器件,其发光亮度L(单位cd/m2,读作坎德拉每平方米)与正向电流IF近似成正双,有公式 L =K IFm 式中,K为比例系数,在小电流范围内(IF=1~10mA),m=1.3~1.5。

当IF>10mA时,m=1,式(5.10.1)简化成 L =K IF 即亮度与正向电流成正比。

以磷砷化镓黄色LED为例,相对发光强度与正向电流的关系如图2所示。

LED的正向电压则与正向电流以及管芯的半导体材料有关。

使用时应根据所要求的显示亮度来选取合适的IF 值(一般选10mA左右,对于高亮度LED可选1~2mA),既保证亮度适中,也不会损坏LED。

若电流过大,会烧毁LED的PN结。

此外,LED的使用寿命将缩短。

由于发光二极管的功耗低、体积小,色彩鲜艳、响应速度快、寿命长,所以常用作收录机、收音机和电子仪器的电平指示器、调谐指示器、电源指示器等。

发光二极管在正向导通时有一定稳压作用,还可作直流稳压器中的稳压二极管,提供基准电压,兼作电源指示灯。

目前市场上还有一种带反射腔及固定装置的发光二要管(例如BT104-B2、BT102-F),很容易固定在仪器面板上。

LED的输出光谱决定其发光颜色及光辐射纯度,也反映出半导体材料的特性。

常见管芯材料有磷化镓(GaP)、砷化镓(GaAsP)、磷砷化镓(GaAlAs)、砷铝化镓(GaN)氮化镓可发蓝光。

3.使用注意事项 (1)管子极性不得接反,一般讲引线较长的为正极,引线较短的是负极。

(2)使用中各项参数不得超过规定极限值。

正向电流IF不允许超过极限工作电流IFM值,并且随着环境温度的升高,必须作降额使用。

长期使用温度不宜超过75℃。

(3)焊接时间应尽量短,焊点不能在管脚根部。

焊接时应使用镊子夹住管脚根部散热,宜用中性助焊剂(松香)或选用松香焊锡丝。

(4)严禁用有机溶液浸泡或清洗。

(5)LED的驱动电路必须加限流电阻,一般可取一百欧至几百欧,视电源电压而定。

(6)在发光亮度基本不变的情况下,采用脉冲电压驱动可以节省耗电。

对于LED点阵显示器,采用扫描显示方式能大大降低整机功耗。

4.检查发光二极管的好坏 发光二极管具有单向导电性,使用R×10k档可测出其正、反向电阻。

一般正向电阻应小于30k欧姆,反向电阻应大于1M欧姆。

若正、反向电阻均为零,说明内部击穿短路。

若正、反向电阻均为无穷大,证明内部开路。

常见发光二极管的种类及主要参数见表2。

需要说明两点:第一,对于同种材料的管芯,由于所掺杂质的不同,发光颜色亦不同;第二,LED属于电流控制型器件,VF随IF而变化,所标VF值仅供参考。

此外,根据外形也可以区分发光二极管的正、负极。

早期生产的管子带金属管座,上面罩一光学透镜,管侧有一突起,靠近突起的是正极。

目前生产的LED,全部用透明或半透明的环氧树脂封装而成,并且利用环氧树脂构成透镜,起放大和聚焦作用,这类管子引线较长的为正极。

注意事项: 本书不推荐使用R×1k档测量LED的正、反向电阻。

因为该档电池电压E 仅仅测量正、反向电阻,并不能检查其能否正常发光。

由于发光二极管的正向电压VF一般1.5~2.5V,而万用表R×1或R×10档的电池电压为1.5V,所以不能使管子正向导通并且发光。

R×10k档的电池电压虽然较高,但因内阻太大,提供的正向电流很小,管子也不会正常发光。

采用双表法可以检查发光二极管的发光情况。

最好选同一种型号的两块万用表,均拨一R×1或R×10档,按图1(a)所示串联使用,以提供较高的正向电压。

等效电路见(b)图。

假定两块万用表均采用MF30型,并且均拨到R×1档。

因为一块表的电池电压E=1.5V,欧姆中心值R0=25欧姆,所以总电压和总电阻分别是 E′= 2E= 2×1.5=3V R0′= 2R0= 2×25=50欧姆 如果把它们看成一块新表,等效电路就简成(c)图。

新表的满度电流是: IM′= E′/ R0′=2E/ 2R0= E/ R0=IM 可见满度电流值并未改变。

发光二极管在使用时应加上限流电阻R,将正向电流IF限制在10~30mA为宜,避免功耗太记而损坏管子。

一般典型正向电流可选10mA,IF的计算公式为 IF= E-VF/ R (c)图中的R0′能起到限流作用,因此不必另接限流电阻。

磷砷化镓发光二极管的正向压降较低,为1.7V左右。

E′=3V将R0′=50欧姆,可求出用双表法测量时的正向电流为 IF= E′-VF/ R0′=3-1.7/50=26 mA <30 mA 因此对管子没有危险。

电路接通之后,管子能发出晶莹夺目的红光。

如果选用的两块万用表R×1档欧姆中心值不等,设分别为R01、R02,而两表R×1档的电池电压均为E(E=1.5V),则此时 IM′=2 E / R01 R02 IF=2 E -VF / R01 R02 实例:测量一只型号不明的发光二极管。

第一步,判定正、负极。

用MF30型万用表的R×10k档测得正向电阻为26k欧姆,反向电阻接近无穷大。

测正向电阻时,黑表笔接的就是正极。

第二步,将两块MF30型万用表均拨至R×1档采用双表测量,被测管发出艳丽的红光。

若把发光二极管的极性反接,加上反向电压时管子就不能发光。

然后将两块万用表拨于R×10档,管子发光暗淡。

这是因为总电阻R0′=2×250=500欧姆,提供的正向电流较小所致。

此时 IF≈3-1.7/500=2.6 mA 注意事项: (1)采用双表法必须先调整好两块万用表的欧姆零点。

(2)为了不损坏被测发光二极管,测量前应计算IM′值,若IM′≥50mA,需选择R×10档。

例如,两块500型万用表R×1档串联后的总电阻R0=20欧姆,IM′=IM=75mA>50mA。

改用R×1档时IM′=7.5 mA,与典型正向电流IF=10mA就比较接近。

实际上发光二极管本身尚有1.5~2.5V压降,因此上述结果均留有一定余量。

假如不知道被测发光二极管的正向电压,也不清楚IM′值。

建议先把两块表都拨到R×10档,若发光很暗,再改拨R×1档。

1.普通发光二极管的检测(1)用万用表检测。

利用具有×10kΩ挡的指针式万用表可以大致判断发光二极管的好坏。

正常时,二极管正向电阻阻值为几十至200kΩ,反向电阻的值为∝。

如果正向电阻值为0或为∞,反向电阻值很小或为0,则易损坏。

这种检测方法,不能实地看到发光管的发光情况,因为×10kΩ挡不能向LED提供较大正向电流。

如果有两块指针万用表(最好同型号)可以较好地检查发光二极管的发光情况。

用一根导线将其中一块万用表的“ ”接线柱与另一块表的“-”接线柱连接。

余下的“-”笔接被测发光管的正极(P区),余下的“”笔接被测发光管的负极(N区)。

两块万用表均置×10Ω挡。

正常情况下,接通后就能正常发光。

若亮度很低,甚至不发光,可将两块万用表均拨至×1Ω若,若仍很暗,甚至不发光,则说明该发光二极管性能不良或损坏。

应注意,不能一开始测量就将两块万用表置于×1Ω,以免电流过大,损坏发光二极管。

(2)外接电源测量。

用3V稳压源或两节串联的干电池及万用表(指针式或数字式皆可)可以较准确测量发光二极管的光、电特性。

为此可按图10所示连接电路即可。

如果测得VF在1.4~3V之间,且发光亮度正常,可以说明发光正常。

如果测得VF=0或VF≈3V,且不发光,说明发光管已坏。

2.红外发光二极管的检测由于红外发光二极管,它发射1~3μm的红外光,人眼看不到。

通常单只红外发光二极管发射功率只有数mW,不同型号的红外LED发光强度角分布也不相同。

红外LED的正向压降一般为1.3~2.5V。

正是由于其发射的红外光人眼看不见,所以利用上述可见光LED的检测法只能判定其PN结正、反向电学特性是否正常,而无法判定其发光情况正常否。

为此,最好准备一只光敏器件(如2CR、2DR型硅光电池)作接收器。

用万用表测光电池两端电压的变化情况。

来判断红外LED加上适当正向电流后是否发射红外光。

其测量电路。

半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。

事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。

相关文档
最新文档