2012年天津市高考数学(理科)试卷
2012天津市高考数学试卷及答案(理数)
2012年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第I卷(选择题)和第n (非选择题)两部分,共150分,考试用时120分钟。
第I卷1至2页,第n卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I卷注意事项:1. 每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2. 本卷共8小题,每小题5分,共40分.参考公式:•如果事件A, B互斥,那么P(A B) =P(A) P(B) •如果事件A, B相互独立,那么P(AB)二P(A)P(B)•棱柱的体积公式V =Sh 其中S表示棱柱的底面面积, h 表示棱柱的高。
4 3 -球的体积公式V R33其中R表示球的半径、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(1) i是虚数单位,复数=3+i(A) 2 + i (B) 2 -i(C) -2 + i ( D) -2 -i(2 )设R,则“ =0 ”是“ f(x) COS(x •「)(x • R)为偶函数”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分与不必要条件(3)阅读右边的程序框图,运行相应的程序,当输入x的值为-25时,输出x的值为(A) -1 (B) 1(C) 3 ( D) 9(4)函数f (x) = 2x x3 - 2在区间(0,1)内的零点个数是(A) 0 ( B) 1(C) 2 ( D) 32 1 5(5)在(2x --)的二项展开式中,x的系数为x(A) 10 ( B) -(C) 40 (D) -40(6)在ABC中,内角A,B, C所对的边分别是a,b,c,(B )仁'2(D )(8)设 m, n R ,若直线(m 1)x (n 1)y -2 = 0与圆(x - 1)2 (y -1)2 = 1 相切,则 m + n 的取值范围是(A ) [1 - .3,1、3](D )(-二,2 -2、. 2] [2 2 . 2,二)第口卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2012年天津高考数学理科试卷(带详解)
2012年天津高考数学卷解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 是虚数单位,复数7i3iz -==+ ( )A .2i + B.2i - C .2i -+ D .2i --【测量目标】复数代数形式的四则运算.【考查方式】直接给出复数的分式形式求其值. 【难易程度】容易 【参考答案】B 【试题解析】7i (7i)(3i)217i 3i 12i 3i (3i)(3i)10z ------====-++- 2.设ϕ∈R ,则“0ϕ=”是“()cos()()f x x x ϕ=+∈R 为偶函数”的 ( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 【测量目标】三角函数的奇偶性,充分、必要条件.【考查方式】判断三角函数初相参数取值与函数奇偶性的关系. 【难易程度】容易 【参考答案】A【试题解析】∵0ϕ=⇒()cos()()f x x x ϕ=+∈R 为偶函数,反之不成立,∴“0ϕ=”是“()cos()()f x x x ϕ=+∈R 为偶函数”的充分而不必要条件.3.阅读右边的程序框图,运行相应的程序,当输入x 的值为25-时,输出x 的值为 ( ) A.1- B.1 C.3 D.9第3题图【测量目标】循环结构的程序框图.【考查方式】阅读程序框图得出程序运算结果. 【难易程度】容易 【参考答案】C 【试题解析】根据图给的算法程序可知:第一次4x =,第二次1x =,则输出2113x =⨯+=.4.函数3()22xf x x =+-在区间(0,1)内的零点个数是 ( )A.0B.1 C .2 D .3 【测量目标】函数零点的求解与判断.【考查方式】直接给出函数的解析式判断其零点的个数. 【难易程度】容易 【参考答案】B【试题解析】解法1:因为(0)1021f =+-=-,3(1)2228f =+-=,即(0)(1)0f f <且函数()f x 在()0,1内连续不断,故()f x 在()0,1内的零点个数是1.解法2:设3122,2,x y y x ==-在同一坐标系中作出两函数的图像如图所示:可知B 正确.第4题图5.在251(2)x x-的二项展开式中,x 的系数为 ( ) A.10 B.10- C.40 D.40- 【测量目标】二项式定理.【考查方式】直接给出一个二项展开式求某项的系数. 【难易程度】容易 【参考答案】D【试题解析】∵2515103155C (2)()2(1)C r r r r r r rr T x x x ----+=-=-,∴ 1031r -=,即3r =,∴x 的系数为40-.6.在ABC △中,内角,,A B C 所对的边分别是,,a b c ,已知85,2b c C B ==,则cos C =( ) A.725B.725-C.725±D.2425【测量目标】正弦定理,三角函数中的二倍角公式.【考查方式】已知三角形角与边的关系运用正弦定理求一角的余弦值. 【难易程度】容易 【参考答案】A【试题解析】∵85b c =,由正弦定理得8sin 5sin B C =,(步骤1)又∵2C B =,∴8sin 5sin 2B B =,(步骤2)所以8sin 10sin cos B B B =,易知sin 0B ≠,(步骤3)∴4cos 5B =,27cos cos 22cos 125C B B ==-=.(步骤4) 7.已知ABC △为等边三角形,2AB =,设点,P Q 满足,AP AB λ=(1),AQ AC λ=-λ∈R ,若32BQ CP =-,则λ=( )A.12B.122±C.1102±D.3222-±【测量目标】平面向量在平面几何中的应用.【考查方式】给出三角形边的向量关系式,运用平面向量的知识求解未知参数. 【难易程度】中等 【参考答案】A【试题解析】∵(1),BQ AQ AB AC AB λ=-=--CP AP AC AB AC λ=-=-,(步骤1) 又∵32BQ CP =-,且2AB AC ==,,60AB AC ︒<>=,cos602AB AC AB AC ︒==(步骤2),∴3(1)()2AC AB AB AC λλ⎡⎤---=-⎣⎦,2223(1)(1)2AB AB AC AC λλλλ+--+-=,(步骤3)所以2342(1)4(1)2λλλλ+--+-=,解得12λ=. (步骤4)第7题图8.设,m n ∈R ,若直线(1)(1)20m x n y ++--=与圆22(1)(1)1x y -+-=相切,则m n +的取值范围是 ( ) A.13,13⎡⎣ B.(),1313,⎡-∞++∞⎣C.222,222⎡-+⎣D.(),222222,⎤⎡-∞-++∞⎦⎣【测量目标】直线与圆的位置关系.【考查方式】已知一直线与圆的位置关系求未知参数的取值范围. 【难易程度】中等 【参考答案】D【试题解析】∵直线(1)(1)20m x n y ++--=与圆22(1)(1)1x y -+-=相切,(步骤1)∴圆心(1,1)到直线的距离为22(1)(1)21(1)(1)m n d m n +++-==+++,所以212m n mn m n +=++()(步骤2)设t m n =+,则2114t t +,解得(),222222,t ⎤⎡∈-∞-++∞⎦⎣.(步骤3)二、填空题:本大题共6小题,每小题5分,共30分.9.某地区有小学150所,中学75所,大学25所. 现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调査,应从小学中抽取 所学校,中学中抽取 所学校. 【测量目标】分层抽样.【考查方式】运用分层抽样里的按比例抽样知识解决实际问题. 【难易程度】容易 【参考答案】18,9【试题解析】∵分层抽样也叫按比例抽样,由题知学校总数为250所, 所以应从小学中抽取15030=18250⨯,中学中抽取75309250⨯=. 10.―个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m .第10题图【测量目标】由三视图求几何体的表面积与体积.【考查方式】给出一个几何体的三视图求其原几何体的体积. 【难易程度】容易 【参考答案】189π+ 【试题解析】由三视图可该几何体为两个相切的球上方了一个长方体组成的组合体,所以其体积为: 3433612π()189π32V =⨯⨯+⨯⨯=+3m . 11.已知集合{}23A x x =∈+<R ,集合{}()(2)0B x x m x =∈--<R ,且(1,)A B n =-,则m = ,n = .【测量目标】集合的基本运算,集合间的关系.【考查方式】给出含有未知参数的集合通过它们直接的关系求出未知参数. 【难易程度】容易 【参考答案】1-,1【试题解析】∵{}{}2351A x x x x =∈+<=-<<R ,又∵(1,)A B n =-,画数轴可知1,1m n =-=.12.己知抛物线的参数方程为22,2,x pt y pt ⎧=⎨=⎩(t 为参数),其中0p >,焦点为F ,准线为l ,过抛物线上一点M 作的垂线,垂足为E ,若EF ME =,点M 的横坐标是3,则p = . 【测量目标】抛物线的简单几何性质.【考查方式】给出抛物线的参数方程,运用其简单的几何性质求未知数. 【难易程度】中等 【参考答案】2【试题解析】∵22,2,x pt y pt ⎧=⎨=⎩可得抛物线的标准方程为22(0)y px p =>,(步骤1)∴焦点(,0)2pF ,∵点M 的横坐标是3,则(3,6)M p ±,(步骤2)所以点(,6),2p E p -±222()(06)22p pEF p =++±(步骤3)由抛物线得几何性质得2213,,63924p ME EF MF p p p p =+=∴+=++,解得2p =.(步骤4)13.如图,已知AB 和AC 是圆的两条弦.过点B 作圆的切线与AC 的延长线相交于点D ,过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,33,1,,2AF FB EF ===则线段CD 的长为 .第13题图【测量目标】圆的性质的应用.【考查方式】给出与圆相关的直线与线段由圆的性质求未知线段. 【难易程度】中等 【参考答案】43【试题解析】∵33,1,,2AF FB EF ===由相交弦定理得AF FB EF FC =,所以2FC =,(步骤1)又48//,,233AF FC ABBD CE BD FC AB BD AF∴===⨯=,(步骤2)设CD x =,则4AD x =,再由切割线定理得2BD CD AD =,即284()3x x =,解得43x =,故43CD =.(步骤3)14.已知函数211x y x -=-的图象与函数2y kx =-的图象恰有两个交点,则实数k 的取值范围是 .【测量目标】函数图像的应用.【考查方式】已知两个函数的图像的位置关系求解未知参数的取值范围. 【难易程度】中等 【参考答案】(0,1)(1,4)【试题解析】∵函数2y kx =-的图像直线恒过定点(0,2)B -,且(1,2),(1,0),(1,2)A C D --,∴2+2==010AB k --,0+2==210BC k ---,2+2==410BD k -,由图像可知(0,1)(1,4)k ∈.第14题图三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数2ππ()sin(2)sin(2)2cos 1,33f x x x x x =++-+-∈R . (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间ππ,44⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 【测量目标】三角函数的周期性、最值.【考查方式】给出三角函数的函数解析式求解其最小正周期和在某个区间内的最值. 【试题解析】(Ⅰ)2ππ()sin(2)sin(2)2cos 133f x x x x =++-+-ππ2sin 2cos cos 22)34x x x =+=+ (步骤1)函数()f x 的最小正周期为2ππ2T ==(步骤2)(Ⅱ)ππππ3π2π2sin(2)11()24444424x x x f x -⇒-+⇒-+⇔-(步骤3) 当πππ2()428x x +==时,max ()2f x =πππ2()444x x +=-=-时,min ()1f x =-(步骤4)16.(本小题满分13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (Ⅰ)求这4个人中恰有2人去参加甲游戏的概率:(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率: (Ⅲ)用,X Y 分别表示这4个人中去参加甲、乙游戏的人数,记X Y ξ=-,求随机变量ξ的分布列与数学期望E ξ.【测量目标】互斥事件与相对独立事件的相关性质、数学期望.【考查方式】针对实际问题运用互斥事件与相对独立事件的性质求解概率问题. 【难易程度】中等【试题解析】(Ⅰ)每个人参加甲游戏的概率为13p =,参加乙游戏的概率为213p -=(步骤1)这4个人中恰有2人去参加甲游戏的概率为22248C (1)27p p -=.(步骤2)(Ⅱ)44(4,)()C (1)(0,1,2,3,4)k k kXB p P X k p p k -⇒==-=,(步骤3) 这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为1(3)(4)9P X P X =+==(步骤4) (Ⅲ)ξ可取0,2,48(0)(2)2740(2)(1)(3)8117(4)(0)(4)81P P X P P X P X P P X P X ξξξ=======+=====+==(步骤5)随机变量ξ的分布列为84017148024********E ξ=⨯+⨯+⨯=(步骤6)17.(本小题满分13分)如图,在四棱锥P ABCD -中,PA 丄平面ABCD ,,,45,2,1AC AD AB BC BAC PA AD AC ︒⊥⊥∠====.(Ⅰ)证明:PC AD ⊥;(Ⅱ)求二面角A PC D --的正弦值;(Ⅲ)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为30︒,求AE 的长.第17题图【测量目标】线线垂直、异面直线所成的角的正弦值. 【考查方式】通过空间几何体中的线线,线面直接的位置角度关系求证线线垂直以及异面直线所成角的正弦值. 【难易程度】较难【试题解析】(Ⅰ)以,,AD AC AP 为,,x y z 正半轴方向,建立空间直角坐标系A xyz -.(步骤1)则11(2,0,0),(0,1,0),(,,0),(0,0,2)22D C B P -(步骤2) (0,1,2),(2,0,0)0PC AD PC AD PC AD =-=⇒=⇔⊥(步骤3)第17题(1)图(Ⅱ)(0,1,2),(2,1,0)PC CD =-=-,设平面PCD 的法向量(,,)x y z =n则0202200PC y z y z x y x z CD ⎧=-==⎧⎧⎪⇔⇔⎨⎨⎨-===⎩⎩⎪⎩n n 取1(1,2,1)z =⇒=n (步骤4)(2,0,0)AD =是平面PAC 的法向量 630cos ,sin ,66AD AD AD AD <>==⇒<>=n n n n得:二面角A PC D --(步骤5)(Ⅲ)设[]0,2AE h =∈;则(0,0,2)AE =,11(,,),(2,1,0)22BE h CD ==-cos ,10BE CD BE CD hBE CD<>=⇔=⇔=即AE =(步骤6)18.(本小题满分13分)已知{}n a 是等差数列,其前n 项和为n S ,{}n b 是等比数列,且1144442,27,10a b a b S b ==+=-=(Ⅰ)求数列{}n a 与{}n b 的通项公式;(Ⅱ)记112231n n n n n T a b a b a b a b --=++++…;证明:12210()n n n T a b n ++=-+∈N . 【测量目标】等差等比数列的通项及性质.【考查方式】给出等差等比数列中已知项之间的关系求解数列的通项,由两种数列结合成的新数列的性质运用与证明. 【难易程度】较难【试题解析】(Ⅰ)设数列{}n a 的公差为d ,数列{}n b 的公比为q ;则34434412732322710246210a b d d q S b q a d q +==⎧++=⎧⎧⇔⇔⎨⎨⎨-==+-=⎩⎩⎩(步骤1)得:31,2nn n a n b =-=(Ⅱ)121122311211...2222()22n n n n n n n n n n n a a T a b a b a b a b a a a a ----=++++=+++=+++……111213132352222n n n n n n n a n n n c c ------++==-=-(步骤2)[]1223112()()()2()n n n n n n T c c c c c c c c -=-+-++-=-…1022(35)1021212102n n n n n n n b a T b a =⨯-+=--⇔+=-(步骤3)19.(本小题满分14分)设椭圆22221(0)x y a b a b+=>>的左、右顶点分别为,A B ,点P 在椭圆上且异于,A B 两点,O 为坐标原点. (Ⅰ)若直线AP 与BP 的斜率之积为12-,求椭圆的离心率; (Ⅱ)若AP OA =,证明:直线OP 的斜率k 满足k >【测量目标】椭圆的标准方程、椭圆的简单几何性质、直线与椭圆的位置关系. 【考查方式】由椭圆的简单几何性质求解椭圆的标准方程以及椭圆的参数,判断椭圆与直线的位置关系求解未知数的取值范围.【难易程度】较难 【试题解析】(Ⅰ)取(0,),(,0),(,0)P b A a B a -;则221()22AP BP b b k k a b a a ⨯=⨯-=-⇔=(步骤1)222212a b e e a -==⇔=(步骤2)(Ⅱ)设(cos ,sin )(02π)P a b θθθ<;则线段OP 的中点(cos ,sin )22ab Q θθ(步骤3)1AQ AP OA AQ OP k k =⇔⊥⇔⨯=- sin sin cos 22cos AQ AQ AQb k b ak ak a a θθθθ=⇔-=+(步骤4)2223AQAQ ak b a k k ⇒+<⇔<⇔>(步骤5)20.(本小题满分14分)已知函数()ln()f x x x a =-+的最小值为0,其中0a >. (Ⅰ)求a 的值;(Ⅱ)若对任意的[)0,x ∈+∞,有2()f x kx 成立,求实数k 的最小值;(Ⅲ)证明:*12ln(21)2()21ni n n i =-+<∈-∑N .【测量目标】运用导数的相关性质求函数的最值,证明与推理最值问题. 【考查方式】给出函数解析式运用导数的相关性质求解其函数最值. 【难易程度】较难【试题解析】(Ⅰ)函数()f x 的定义域为(,)a -+∞(步骤1)11()ln()()101x a f x x x a f x x a a x a x a+-'=-+⇒=-==⇔=->-++ (步骤2)()01,()01f x x a f x a x a ''>⇔>-<⇔-<<-得:1x a =-时,min ()(1)101f x f a a a =-⇔-=⇔=(步骤3)(Ⅱ)设22()()ln(1)(0)g x kx f x kx x x x =-=-++则()0g x 在[)0,x ∈+∞上恒成立min ()0(0)g x g ⇔=(*)(步骤4)(1)1ln 200g k k =-+⇒>1(221)()2111x kx k g x kx x x +-'=-+=++(步骤5)①当1210()2k k -<<时,0012()00()(0)2k g x x x g x g k -'⇔=⇒<与(*)矛盾②当12k 时,min ()0()(0)0g x g x g '⇒==符合(*)(步骤6)得:实数k 的最小值为12(Ⅲ)由(2)得:21ln(1)2x x x -+<对任意的0x >值恒成立 取[]222(1,2,3,,)ln(21)ln(21)2121(21)x i n i i i i i ==⇒+--<---…(步骤7)当1n =时,2ln32-< 得:12ln(21)221n i n i =-+<-∑ 当2i 时,2211(21)2321i i i <---- 得:121ln(21)ln(21)2ln 3122121n i i i i n =⎡⎤-++-<-+-<⎢⎥--⎣⎦∑(步骤8)。
2012年天津市高考数学试卷(理科)
2012年天津市高考数学试卷(理科)一、选择题1.(3分)i是虚数单位,复数=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i2.(3分)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(3分)阅读程序框图,运行相应的程序,当输入x的值为﹣25时,输出x 的值为()A.﹣1 B.1 C.3 D.94.(3分)函数f(x)=2x+x3﹣2在区间(0,1)内的零点个数是()A.0 B.1 C.2 D.35.(3分)在(2x2﹣)5的二项展开式中,x项的系数为()A.10 B.﹣10 C.40 D.﹣406.(3分)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,则cosC=()A.B.C.D.(3分)已知△ABC为等边三角形,AB=2.设点P,Q满足,,7.λ∈R.若=﹣,则λ=()A.B.C.D.8.(3分)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+] B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2] D.(﹣∞,2﹣2]∪[2+2,+∞)二、填空题9.(3分)某地区有小学150所,中学75所,大学25所.先采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取所学校,中学中抽取所学校.10.(3分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.11.(3分)已知集合A={x∈R||x+2|<3},集合B={x∈R|(x﹣m)(x﹣2)<0},且A∩B=(﹣1,n),则m= ,n= .12.(3分)已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p= .13.(3分)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=,则线段CD的长为.14.(3分)已知函数y=的图象与函数y=kx﹣2的图象恰有两个交点,则实数k的取值范围是.三、解答题15.已知函数f(x)=sin(2x+)+sin(2x﹣)+2cos2x﹣1,x∈R.(1)求函数f(x)的最小正周期;(2)求函数f(x)在区间[]上的最大值和最小值.16.现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.17.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明:PC⊥AD;(2)求二面角A﹣PC﹣D的正弦值;(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.18.已知{an }是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S 4﹣b4=10.(1)求数列{an }与{bn}的通项公式;(2)记Tn =anb1+an﹣1b2+…+a1bn,n∈N*,证明:Tn+12=﹣2an+10bn(n∈N*).19.设椭圆的左右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.(1)若直线AP与BP的斜率之积为,求椭圆的离心率;(2)若|AP|=|OA|,证明直线OP的斜率k满足|k|>.20.已知函数f(x)=x﹣ln(x+a)的最小值为0,其中a>0.(1)求a的值;(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;(3)证明:(n∈N*).2012年天津市高考数学试卷(理科)参考答案与试题解析一、选择题1.(3分)(2012•天津)i是虚数单位,复数=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i【分析】由题意,可对此代数分子分母同乘以分母的共轭,整理即可得到正确选项【解答】解:故选B2.(3分)(2012•天津)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】直接把φ=0代入看能否推出是偶函数,再反过来推导结论即可.【解答】解:因为φ=0时,f(x)=cos(x+φ)=cosx是偶函数,成立;但f(x)=cos(x+φ)(x∈R)为偶函数时,φ=kπ,k∈Z,推不出φ=0.故“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的充分而不必要条件.故选:A.3.(3分)(2012•天津)阅读程序框图,运行相应的程序,当输入x的值为﹣25时,输出x的值为()A.﹣1 B.1 C.3 D.9【分析】根据题意,按照程序框图的顺序进行执行,当|x|≤1时跳出循环,输出结果.【解答】解:当输入x=﹣25时,|x|>1,执行循环,x=﹣1=4;|x|=4>1,执行循环,x=﹣1=1,|x|=1,退出循环,输出的结果为x=2×1+1=3.故选:C.4.(3分)(2012•天津)函数f(x)=2x+x3﹣2在区间(0,1)内的零点个数是()A.0 B.1 C.2 D.3【分析】根据函数f(x)=2x+x3﹣2在区间(0,1)内单调递增,f(0)f(1)<0,可得函数在区间(0,1)内有唯一的零点【解答】解:由于函数f(x)=2x+x3﹣2在区间(0,1)内单调递增,又f(0)=﹣1<0,f(1)=1>0,所以f(0)f(1)<0,故函数f(x)=2x+x3﹣2在区间(0,1)内有唯一的零点,故选B.5.(3分)(2012•天津)在(2x2﹣)5的二项展开式中,x项的系数为()A.10 B.﹣10 C.40 D.﹣40【分析】由题意,可先由公式得出二项展开式的通项==,再令10﹣3r=1,得r=3即可Tr+1得出x项的系数【解答】解:(2x2﹣)5的二项展开式的通项为==Tr+1令10﹣3r=1,得r=3故x项的系数为=﹣40故选D6.(3分)(2012•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,则cosC=()A.B.C.D.【分析】直接利用正弦定理以及二倍角公式,求出sinB,cosB,然后利用平方关系式求出cosC的值即可.【解答】解:因为在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,所以8sinB=5sinC=5sin2B=10sinBcosB,所以cosB=,B为三角形内角,所以B ∈(0,).C.所以sinB==.所以sinC=sin2B=2×=,cosC==.故选:A.7.(3分)(2012•天津)已知△ABC为等边三角形,AB=2.设点P,Q满足,,λ∈R.若=﹣,则λ=()A.B.C.D.【分析】根据向量加法的三角形法则求出,进而根据数量积的定义求出再根据=﹣即可求出λ.【解答】解:∵,,λ∈R∴,∵△ABC为等边三角形,AB=2∴=+λ+(1﹣λ)=2×2×cos60°+λ×2×2×cos180°+(1﹣λ)×2×2×cos180°+λ(1﹣λ)×2×2×cos60°=2﹣4λ+4λ﹣4+2λ﹣2λ2,=﹣2λ2+2λ﹣2∵=﹣∴4λ2﹣4λ+1=0∴(2λ﹣1)2=0∴故选A8.(3分)(2012•天津)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+] B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2] D.(﹣∞,2﹣2]∪[2+2,+∞)【分析】由圆的标准方程找出圆心坐标和半径r,由直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关系式,整理后利用基本不等式变形,设m+n=x,得到关于x的不等式,求出不等式的解集得到x的范围,即为m+n的范围.【解答】解:由圆的方程(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1,∵直线(m+1)x+(n+1)y﹣2=0与圆相切,∴圆心到直线的距离d==1,整理得:m+n+1=mn≤,设m+n=x,则有x+1≤,即x2﹣4x﹣4≥0,∵x2﹣4x﹣4=0的解为:x1=2+2,x2=2﹣2,∴不等式变形得:(x﹣2﹣2)(x﹣2+2)≥0,解得:x≥2+2或x≤2﹣2,则m+n的取值范围为(﹣∞,2﹣2]∪[2+2,+∞).故选D二、填空题9.(3分)(2012•天津)某地区有小学150所,中学75所,大学25所.先采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取18 所学校,中学中抽取9 所学校.【分析】从250所学校抽取30所学校做样本,样本容量与总体的个数的比为3:25,得到每个个体被抽到的概率,根据三个学校的数目乘以被抽到的概率,分别写出要抽到的数目,得到结果.【解答】解:某城地区有学校150+75+25=250所,现在采用分层抽样方法从所有学校中抽取30所,每个个体被抽到的概率是=,∵某地区有小学150所,中学75所,大学25所.∴用分层抽样进行抽样,应该选取小学×150=18所,选取中学×75=9所.故答案为:18,9.10.(3分)(2012•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为18+9πm3.【分析】由三视图可知该几何体为上部是一个长方体,长、宽、高分别为6,3,1(单位:m),下部为两个半径均为的球体.分别求体积再相加即可.【解答】解:由三视图可知该几何体为上部是一个长方体,长、宽、高分别为6,3,1(单位:m),体积6×3×1=18.下部为两个半径均为的球体,体积2ו()3=9π故所求体积等于18+9π故答案为:18+9π11.(3分)(2012•天津)已知集合A={x∈R||x+2|<3},集合B={x∈R|(x﹣m)(x﹣2)<0},且A∩B=(﹣1,n),则m= ﹣1 ,n= 1 .【分析】由题意,可先化简A集合,再由B集合的形式及A∩B=(﹣1,n)直接作出判断,即可得出两个参数的值.【解答】解:A={x∈R||x+2|<3}={x∈R|﹣5<x<1},又集合B={x∈R|(x﹣m)(x﹣2)<0},A∩B=(﹣1,n).如图由图知m=﹣1,n=1,故答案为﹣1,1.12.(3分)(2012•天津)已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p= 2 .【分析】把抛物线的参数方程化为普通方程为y2=2px,则由抛物线的定义可得及|EF|=|MF|,可得△MEF为等边三角形,设点M的坐标为(3,m ),则点E(﹣,m),把点M的坐标代入抛物线的方程可得 p=.再由|EF|=|ME|,解方程可得p的值.【解答】解:抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l,消去参数可得x=2p,化简可得y2=2px,表示顶点在原点、开口向右、对称轴是x轴的抛物线,故焦点F(,0),准线l的方程为x=﹣.则由抛物线的定义可得|ME|=|MF|,再由|EF|=|MF|,可得△MEF为等边三角形.设点M的坐标为(3,m ),则点E(﹣,m).把点M的坐标代入抛物线的方程可得m2=2×p×3,即 p=.再由|EF|=|ME|,可得 p2+m2=,即 p2+6p=9++3p,解得p=2,或p=﹣6 (舍去),故答案为 2.13.(3分)(2012•天津)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=,则线段CD的长为.【分析】由相交弦定理求出FC,由相似比求出BD,设DC=x,则AD=4x,再由切割线定理,BD2=CD•AD求解.【解答】解:由相交弦定理得到AF•FB=EF•FC,即3×1=×FC,FC=2,在△ABD中AF:AB=FC:BD,即3:4=2:BD,BD=,设DC=x,则AD=4x,再由切割线定理,BD2=CD•AD,即x•4x=()2,x=故答案为:14.(3分)(2012•天津)已知函数y=的图象与函数y=kx﹣2的图象恰有两个交点,则实数k的取值范围是(0,1)∪(1,4).【分析】先化简函数的解析式,在同一个坐标系下画出函数y=的图象与函数y=kx﹣2的图象,结合图象,可得实数k的取值范围.【解答】解:y===函数y=kx﹣2的图象恒过点(0,﹣2)在同一个坐标系下画出函数y=的图象与函数y=kx﹣2的图象结合图象可实数k的取值范围是(0,1)∪(1,4)故答案为:(0,1)∪(1,4)三、解答题15.(2012•天津)已知函数f(x)=sin(2x+)+sin(2x﹣)+2cos2x﹣1,x∈R.(1)求函数f(x)的最小正周期;(2)求函数f(x)在区间[]上的最大值和最小值.【分析】(1)利用正弦函数的两角和与差的公式与辅助角公式将f(x)=sin (2x+)+sin(2x﹣)+2cos2x﹣1化为f(x)=sin(2x+),即可求得函数f(x)的最小正周期;(2)可分析得到函数f(x)在区间[]上是增函数,在区间[,]上是减函数,从而可求得f(x)在区间[]上的最大值和最小值.【解答】解:(1)∵f(x)=sin2x•cos+cos2x•sin+sin2x•cos﹣cos2x •sin+cos2x=sin2x+cos2x=sin(2x+),∴函数f (x )的最小正周期T==π.(2)∵函数f (x )在区间[]上是增函数,在区间[,]上是减函数, 又f (﹣)=﹣1,f ()=,f ()=1,∴函数f (x )在区间[]上的最大值为,最小值为﹣1.16.(2012•天津)现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率; (3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X ﹣Y|,求随机变量ξ的分布列与数学期望E ξ.【分析】依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的人数的概率为设“这4个人中恰有i 人去参加甲游戏”为事件A i (i=0,1,2,3,4),故P (A i )=(1)这4个人中恰有2人去参加甲游戏的概率为P (A 2);(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏”为事件B ,则B=A 3∪A 4,利用互斥事件的概率公式可求;(3)ξ的所有可能取值为0,2,4,由于A 1与A 3互斥,A 0与A 4互斥,求出相应的概率,可得ξ的分布列与数学期望.【解答】解:依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的人数的概率为设“这4个人中恰有i 人去参加甲游戏”为事件A i (i=0,1,2,3,4),∴P (A i )=(1)这4个人中恰有2人去参加甲游戏的概率为P(A2)=;(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏”为事件B,则B=A3∪A4,∴P(B)=P(A3)+P(A4)=(3)ξ的所有可能取值为0,2,4,由于A1与A3互斥,A与A4互斥,故P(ξ=0)=P(A2)=P(ξ=2)=P(A1)+P(A3)=,P(ξ=4)=P(A)+P(A4)=∴ξ的分布列是数学期望Eξ=17.(2012•天津)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明:PC⊥AD;(2)求二面角A﹣PC﹣D的正弦值;(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.【分析】解法一(1)以A为原点,建立空间直角坐标系,通过得出•=0,证出PC⊥AD.(2)求出平面PCD,平面PCD的一个法向量,利用两法向量夹角求解.(3)设E(0,0,h),其中h∈[0,2],利用cos<>=cos30°=,得出关于h的方程求解即可.解法二:(1)通过证明AD⊥平面PAC得出PC⊥AD.(2)作AH⊥PC于点H,连接DH,∠AHD为二面角A﹣PC﹣D的平面角.在RT△DAH中求解(3)因为∠ADC<45°,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF,故∠EBF(或其补角)为异面直线BE与CD所成的角.在△EBF中,因为EF<BE,从而∠EBF=30°,由余弦定理得出关于h的方程求解即可.【解答】解法一:如图,以A为原点,建立空间直角坐标系,则A(0,0,0),D(2,0,0),C(0,1,0),B(﹣,,0),P(0,0,2).(1)证明:易得=(0,1,﹣2),=(2,0,0),于是•=0,所以PC ⊥AD.(2)解:=(0,1,﹣2),=(2,﹣1,0),设平面PCD的一个法向量为=(x,y,z),则即取z=1,则以=(1,2,1).又平面PAC的一个法向量为=(1,0,0),于是cos<>==,sin<>=所以二面角A﹣PC﹣D的正弦值为.(3)设E(0,0,h),其中h∈[0,2],由此得=(,﹣,h).由=(2,﹣1,0),故cos<>===所以=cos30°=,解得h=,即AE=.解法二:(1)证明:由PA⊥平面ABCD,可得PA⊥AD,又由AD⊥AC,PA∩AC=A,故AD⊥平面PAC,又PC⊂平面PAC,所以PC⊥AD.(2)解:如图,作AH⊥PC于点H,连接DH,由PC⊥AD,PC⊥AH,可得PC⊥平面ADH,因此DH⊥PC,从而∠AHD为二面角A ﹣PC﹣D的平面角.在RT△PAC中,PA=2,AC=1,所以AH=,由(1)知,AD⊥AH,在RT△DAH中,DH==,因此sin∠AHD==.所以二面角A﹣PC﹣D的正弦值为.(3)解:如图,因为∠ADC<45°,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF,故∠EBF(或其补角)为异面直线BE与CD所成的角.由于BF∥CD,故∠AFB=∠ADC,在RT△DAC中,CD=,sin∠ADC=,故sin ∠AFB=.在△AFB中,由,AB=,sin∠FAB=sin135°=,可得BF=,由余弦定理,BF2=AB2+AF2﹣2ABAFcos∠FAB,得出AF=,设AE=h,在RT△EAF中,EF==,在RT△BAE中,BE==,在△EBF中,因为EF<BE,从而∠EBF=30°,由余弦定理得到,cos30°=,解得h=,即AE=.18.(2012•天津)已知{an }是等差数列,其前n项和为Sn,{bn}是等比数列,且a 1=b1=2,a4+b4=27,S4﹣b4=10.(1)求数列{an }与{bn}的通项公式;(2)记Tn =anb1+an﹣1b2+…+a1bn,n∈N*,证明:Tn+12=﹣2an+10bn(n∈N*).【分析】(1)直接设出首项和公差,根据条件求出首项和公差,即可求出通项.(2)先写出Tn的表达式;方法一:借助于错位相减求和;方法二:用数学归纳法证明其成立.【解答】解:(1)设等差数列的公差为d,等比数列的公比为q,由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,由条件a4+b4=27,s4﹣b4=10,得方程组,解得,故an =3n﹣1,bn=2n,n∈N*.(2)证明:方法一,由(1)得,Tn =2an+22an﹣1+23an﹣2+…+2n a1;①;2Tn =22an+23an﹣1+…+2n a2+2n+1a1;②;由②﹣①得,Tn=﹣2(3n﹣1)+3×22+3×23+…+3×2n+2n+2 =+2n+2﹣6n+2=10×2n﹣6n﹣10;而﹣2an +10bn﹣12=﹣2(3n﹣1)+10×2n﹣12=10×2n﹣6n﹣10;故Tn +12=﹣2an+10bn(n∈N*).方法二:数学归纳法,③当n=1时,T1+12=a1b1+12=16,﹣2a1+10b1=16,故等式成立,④假设当n=k时等式成立,即Tk +12=﹣2ak+10bk,则当n=k+1时有,T k+1=ak+1b1+akb2+ak﹣1b3+…+a1bk+1=ak+1b1+q(akb1+ak﹣1b2+…+a1bk)=ak+1b1+qTk=ak+1b1+q(﹣2ak+10bk﹣12)=2ak+1﹣4(ak+1﹣3)+10bk+1﹣24=﹣2ak+1+10bk+1﹣12.即Tk+1+12=﹣2ak+1+10bk+1,因此n=k+1时等式成立.③④对任意的n∈N*,Tn +12=﹣2an+10bn成立.19.(2012•天津)设椭圆的左右顶点分别为A,B,点P在椭圆上且异于A ,B 两点,O 为坐标原点. (1)若直线AP 与BP 的斜率之积为,求椭圆的离心率;(2)若|AP|=|OA|,证明直线OP 的斜率k 满足|k|>.【分析】(1)设P (x 0,y 0),则,利用直线AP 与BP 的斜率之积为,即可求得椭圆的离心率;(2)依题意,直线OP 的方程为y=kx ,设P (x 0,kx 0),则,进一步可得,利用AP|=|OA|,A (﹣a ,0),可求得,从而可求直线OP 的斜率的范围. 【解答】(1)解:设P (x 0,y 0),∴①∵椭圆的左右顶点分别为A ,B ,∴A (﹣a ,0),B (a ,0)∴,∵直线AP 与BP 的斜率之积为,∴代入①并整理得∵y 0≠0,∴a 2=2b 2 ∴∴∴椭圆的离心率为;(2)证明:依题意,直线OP 的方程为y=kx ,设P (x 0,kx 0),∴∵a >b >0,kx 0≠0,∴∴②∵|AP|=|OA|,A(﹣a,0),∴∴∴代入②得∴k2>3∴直线OP的斜率k满足|k|>.20.(2012•天津)已知函数f(x)=x﹣ln(x+a)的最小值为0,其中a>0.(1)求a的值;(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;(3)证明:(n∈N*).【分析】(1)确定函数的定义域,求导函数,确定函数的单调性,求得函数的最小值,利用函数f(x)=x﹣ln(x+a)的最小值为0,即可求得a的值;(2)当k≤0时,取x=1,有f(1)=1﹣ln2>0,故k≤0不合题意;当k>0时,令g(x)=f(x)﹣kx2,即g(x)=x﹣ln(x+1)﹣kx2,求导函数,令g′=0,,分类讨论:①当k≥时,,(x)=0,可得x1g(x)在(0,+∞)上单调递减,g(x)≤g(0)=0;②当0<k<时,,对于,g′(x)>0,因此g(x)在上单调递增,由此可确定k的最小值;(3)当n=1时,不等式左边=2﹣ln3<2=右边,不等式成立;当n≥2时,,在(2)中,取k=,得f(x)≤x2,从而可得,由此可证结论.【解答】(1)解:函数的定义域为(﹣a,+∞),求导函数可得令f′(x)=0,可得x=1﹣a>﹣a令f′(x)>0,x>﹣a可得x>1﹣a;令f′(x)<0,x>﹣a可得﹣a<x<1﹣a∴x=1﹣a时,函数取得极小值且为最小值∵函数f(x)=x﹣ln(x+a)的最小值为0,∴f(1﹣a)=1﹣a﹣0,解得a=1(2)解:当k≤0时,取x=1,有f(1)=1﹣ln2>0,故k≤0不合题意当k>0时,令g(x)=f(x)﹣kx2,即g(x)=x﹣ln(x+1)﹣kx2,求导函数可得g′(x)=g′(x)=0,可得x1=0,①当k≥时,,g′(x)<0在(0,+∞)上恒成立,因此g(x)在(0,+∞)上单调递减,从而对任意的x∈[0,+∞),总有g(x)≤g(0)=0,即对任意的x∈[0,+∞),有f(x)≤kx2成立;②当0<k<时,,对于,g′(x)>0,因此g(x)在上单调递增,因此取时,g(x0)≥g(0)=0,即有f(x)≤kx2不成立;综上知,k≥时对任意的x∈[0,+∞),有f(x)≤kx2成立,k的最小值为(3)证明:当n=1时,不等式左边=2﹣ln3<2=右边,所以不等式成立当n≥2时,在(2)中,取k=,得f(x)≤x2,∴(i≥2,i∈N*).∴=f(2)+<2﹣ln3+=2﹣ln3+1﹣<2综上,(n∈N*).。
2012年高考真题——理科数学试题及答案(天津卷、山东卷、上海卷、全国新课标卷、大纲版)解析版
2012年普通高等学校招生全国统一考试(天津卷)数 学 (理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:本卷共8小题,每小题5分,共40分.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)i 是虚数单位,复数ii+-37= (A ) 2 + i (B )2 – i (C )-2 + i (D )-2 – i【解析】复数i ii i i i i i -=-=+---=+-2101020)3)(3()3)(7(37,选B. 【答案】B(2)设,R ∈ϕ则“0=ϕ”是“))(cos()(R x x x f ∈+=ϕ为偶函数”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分与不必要条件【解析】函数)cos()(ϕ+=x x f 若为偶函数,则有Z k k ∈=,πϕ,所以“0=ϕ”是“)cos()(ϕ+=x x f 为偶函数”的充分不必要条件,选A.【答案】A(3)阅读右边的程序框图,运行相应的程序,当输入x 的值为-25时,输出x 的值为(A )-1 (B )1 (C )3 (D )9【解析】第一次循环,415125=-=--=x ,第二次循环11214=-=-=x ,第三次循环不满足条件输出3112=+⨯=x ,选C.【答案】C(4)函数22)(3-+=x x f x在区间(0,1)内的零点个数是 (A )0 (B )1 (C )2 (D )3【解析】因为函数22)(3-+=x x f x的导数为032ln 2)('2≥+=x x f x,所以函数22)(3-+=x x f x 单调递增,又0121)0(<-=-=f ,01212)1(>=-+=f ,所以根据根的存在定理可知在区间)1,0(内函数的零点个数为1个,选B. 【答案】B(5)在52)12(xx -的二项展开式中,x 的系数为(A )10 (B )-10 (C )40 (D )-40【解析】二项展开式的通项为k k k k k k kk x C xx C T )1(2)1()2(310555251-=-=---+,令1310=-k ,解得3,93==k k ,所以x x C T 40)1(232354-=-=,所以x 的系数为40-,选D.【答案】D(6)在ABC ∆中,内角A ,B ,C 所对的边分别是c b a ,,,已知8b=5c ,C=2B ,则cosC=(A )257 (B )257- (C )257± (D )2524【解析】因为B C 2=,所以B B B C cos sin 2)2sin(sin ==,根据正弦定理有BbC c sin sin =,所以58sin sin ==B C b c ,所以545821sin 2sin cos =⨯==B C B 。
2012年天津市高考数学试卷(理科)及解析
2012年天津市高考数学试卷(理科)及解析数学(理工类)名师简评该套试卷整体上来说与往年相比,比较平稳,试题中没有偏题和怪题,在考查了基础知识的基础上,还考查了同学们灵活运用所学知识的解决问题的能力。
题目没有很多汉字的试题,都是比较简约型的。
但是不乏也有几道创新试题,像选择题的第8题,填空题的13题,解答题第20题,另外别的试题保持了往年的风格,入题简单,比较好下手,但是做出来并不是很容易。
整体上试题由梯度,由易到难,而且大部分试题适合同学们来解答体现了双基,考查了同学们的四大思想的运用,是一份比较好的试卷。
本试卷分为第I 卷(选择题〉和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟 第I 卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)i 是虚数单位,复数7=3i z i -+=(A )2i + (B)2i - (C)2i -+ (D)2i --1.B【命题意图】本试题主要考查了复数的概念以及复数的加、减、乘、除四则运算.【解析】7=3i z i -+=(7)(3)(3)(3)i i i i --+-=2173110i i ---=2i -(2)设R ϕ∈,则“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的(A )充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件 2.A【命题意图】本试题主要考查了三角函数的奇偶性的判定以及充分条件与必要条件的判定.【解析】∵=0ϕ⇒()=cos(+)f x x ϕ()x R ∈为偶函数,反之不成立,∴“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的充分而不必要条件.(3)阅读右边的程序框图,运行相应的程序,当输入x 的值为25-时,输出x 的值为(A )1- (B)1 (C)3 (D)93.C【命题意图】本试题主要考查了算法框图的读取,并能根据已给的算法程序进行运算. 【解析】根据图给的算法程序可知:第一次=4x ,第二次=1x ,则输出=21+1=3x ⨯.(4)函数3()=2+2x f x x -在区间(0,1)内的零点个数是 (A )0 (B)1 (C)2 (D)34.B【命题意图】本试题主要考查了函数与方程思想,函数的零点的概念,零点存在定理以及作图与用图的数学能力.【解析】解法1:因为(0)=1+02=1f --,3(1)=2+22=8f -,即(0)(1)<0f f ⋅且函1. B并借助于通项公式分【解析】∵25-1+15=(2)()r r r r T C x x -⋅-=5-10-352(1)r r r rC x -,∴103=1r -,即=3r ,∴x 的系数为40-.(6)在△ABC 中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cosC=(A )725 (B)725- (C)725±(D)24256.A【命题意图】本试题主要考查了正弦定理、三角函数中的二倍角公式. 考查学生分析、转化与计算等能力.【解析】∵8=5b c ,由正弦定理得8sin =5sin B C ,又∵=2C B ,∴8si n =5s i n 2B B ,所以8s i n=10B B B ,易知sin 0B ≠,∴4c o s=5B ,2cos =cos 2=2cos 1C B B -=725.(7)已知△ABC 为等边三角形,=2AB ,设点P ,Q 满足=AP AB λ,=(1)AQ AC λ-,R λ∈,若3=2BQ CP ⋅-,则=λ(A )12(B)(C)(D)7.A【命题意图】本试题以等边三角形为载体,主要考查了向量加减法的几何意义,平面向量基本定理,共线向量定理及其数量积的综合运用.【解析】∵=BQ AQ AB -=(1)AC AB λ--,=CP AP AC -=AB AC λ-,又∵3=2B Q CP⋅-,且||=|A B A C,0<,>=60AB AC ,=||||cos 60=2AB AC AB AC ⋅⋅,∴3[(1)]()=2A C AB A BA C λλ----,2223||+(1)+(1)||=2AB AB AC AC λλλλ--⋅-,所以234+2(1)+4(1)=2λλλλ---,解得1=2λ.C(8)设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是(A)[1-(B)(,1[1+3,+)-∞-∞(C)[2-(D)(,2[2+22,+)-∞-∞8.D【命题意图】本试题主要考查了直线与圆的位置关系,点到直线的距离公式,重要不等式,一元二次不等式的解法,并借助于直线与圆相切的几何性质求解的能力.【解析】∵直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,∴圆心(1,1)到直线的距离为d ,所以21()2m n mn m n +=++≤,设=t m n +,则21+14t t ≥,解得(,2[2+22,+)t ∈-∞-∞.二、填空题:本大题共6小题,每小题5分,共30分.(9)某地区有小学150所,中学75所,大学25所. 现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调査,应从小学中抽取 所学校,中学中抽取所学校.9.18,9【命题意图】本试题主要考查了统计中的分层抽样的概念以及样本获取的方法与计算. 【解析】∵分层抽样也叫按比例抽样,由题知学校总数为250所,所以应从小学中抽取15030=18250⨯,中学中抽取7530=9250⨯.(10)―个几何体的三视图如图所示(单位:m),则该几何体的体积为3m.10.18+9π【命题意图】本试题主要考查了简单组合体的三视图的画法与体积的计算以及空间想象能力.【解析】由三视图可该几何体为两个相切的球上方了一个长方体组成的组合体,所以其体积为:343=361+2()32Vπ⨯⨯⨯⨯=18+9π3m.(11)已知集合={||+2|<3}A x R x∈,集合={|()(2)B x R x m x∈--,且=(1,)A B n-,则=m,=n.11.1-,1【命题意图】本试题主要考查了集合的交集的运算及其运算性质,同时考查绝对值不等式与一元二次不等式的解法以及分类讨论思想.【解析】∵={||+2|<3}A x R x∈={||5<<1}x x-,又∵=(1,)A B n-,画数轴可知=1m-,=1n.(12)己知抛物线的参数方程为2=2,=2,x pt y pt ⎧⎨⎩(t 为参数),其中>0p ,焦点为F ,准线为l ,过抛物线上一点M 作的垂线,垂足为E ,若||=||EF MF ,点M 的横坐标是3,则=p .12.2【命题意图】本试题主要考查了参数方程及其参数的几何意义,抛物线的定义及其几何性质.【解析】∵2=2,=2,x pt y pt ⎧⎨⎩可得抛物线的标准方程为2=2y px (>0)p ,∴焦点(,0)2p F ,∵点M 的横坐标是3,则(3)M ,所以点(,)2p E -,222=()+(06)22p p EF p -由抛物线得几何性质得=+32pMF ,∵=EF M F ,∴221+6=+3+94p p p p ,解得=2p .(13)如图,已知AB 和AC 是圆的两条弦.过点B 作圆的切线与AC 的延长线相交于点D,过点C 作BD 的平行线与圆相交于点E,与AB 相交于点F ,=3AF ,=1FB ,3=2EF ,则线段CD 的长为.13.43【命题意图】本试题主要考查了平面几何中直线与圆的位置关系,相交弦定理,切割线定理,相似三角形的概念、判定与性质. 【解析】∵=3AF ,=1FB ,3=2EF ,由相交弦定理得=AF FB EF FC ⋅⋅,所以=2FC ,又∵BD ∥CE ,∴=AF FC AB BD ,4==23AB BD FC AF ⋅⨯=83,设=C D x ,则=4AD x ,再由切割线定理得2=BD CD AD ⋅,即284=()3x x ⋅,解得4=3x ,故4=3CD . (14)已知函数2|1|=1x y x --的图象与函数=2y kx -的图象恰有两个交点,则实数k 的取值范围是 . 14.(0,1)(1,4)【命题意图】本试题主要考查了函数的图像及其性质,利用函数图像确定两函数的交点,从而确定参数的取值范围.【解析】∵函数=2y kx -的图像直线恒过定点B(0,2)-,且(1,2)A -,(1,0)C -,(1,2)D ,∴2+2==010AB k --,0+2==210BC k ---,2+2==410BD k -,由图像可知.2)=sin (2+)+sin(2)+2cos 133x x x ππ--,(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间[,]44ππ-上的最大值和最小值.【命题意图】本试题主要考查了 【参考答案】【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可. (16)(本小题满分13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (Ⅰ)求这4个人中恰有2人去参加甲游戏的概率:(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率: (Ⅲ)用,X Y 分别表示这4个人中去参加甲、乙游戏的人数,记=||X Y ξ-,求随机变量ξ的分布列与数学期望E ξ.【命题意图】本试题主要考查了 【参考答案】【点评】应用性问题是高考命题的一个重要考点,近年来都通过概率问题来考查,且常考常新,对于此类考题,要注意认真审题,从数学与实际生活两个角度来理解问题的实质,将问题成功转化为古典概型,独立事件、互斥事件等概率模型求解,因此对概率型应用性问题,理解是基础,转化是关键.(17)(本小题满分13分)如图,在四棱锥P ABCD -中,PA 丄平面ABCD ,AC 丄AD ,AB 丄BC ,=45ABC ∠,==2PA AD ,=1AC .(Ⅰ)证明PC 丄AD ;(Ⅱ)求二面角A PC D --的正弦值;(Ⅲ)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为030,求AE 的长.【命题意图】本试题主要考查了 【参考答案】【点评】试题从命题的角度来看,整体上题目与我们平时练习的试题相似,但底面是非特殊的四边形,一直线垂直于底面的四棱锥问题,那么创新的地方就是第三问中点E 的位置是不确定的,需要学生根据已知条件进行确定,如此说来就有难度,因此最好使用空间直角坐标系解决该问题为好.(18)(本小题满分13分)已知{na }是等差数列,其前n 项和为nS ,{nb }是等比数列,且1a = 1=2b ,44+=27a b ,44=10S b -.(Ⅰ)求数列{na }与{nb }的通项公式;(Ⅱ)记1121=+++n n n n T a b a b a b -,+n N ∈,证明+12=2+10n n n T a b -+()n N ∈.【命题意图】本试题主要考查了 【参考答案】 【点评】该试题命制比较直接,没有什么隐含的条件,就是等比与等差数列的综合应用,但方法多样,第二问可以用错位相减法求解证明,也可用数学归纳法证明,给学生思维空间留有余地,符合高考命题选拔性的原则.(19)(本小题满分14分)设椭圆2222+=1x y ab (>>0)a b 的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.(Ⅰ)若直线AP 与BP 的斜率之积为12-,求椭圆的离心率;(Ⅱ)若||=||AP OA ,证明直线OP 的斜率k满足|k 【命题意图】本试题主要考查了 【参考答案】【点评】(20)(本小题满分14分)已知函数()=ln(+)f x x x a-的最小值为0,其中>0a.(Ⅰ)求a的值;(Ⅱ)若对任意的[0,+)x∈∞,有2()f x kx≤成立,求实数k的最小值;(Ⅲ)证明=12ln(2+1)<2 21nin i--∑*()n N∈.【命题意图】本试题主要考查了【参考答案】【点评】试题分为三问,题面比较简单,给出的函数比较常规,因此入手对于同学们来说没有难度,第二问中,解含参数的不等式时,要注意题中参数的讨论所有的限制条件,从而做到不重不漏;第三问中,证明不等式,应借助于导数证不等式的方法进行.。
2012年高考理科数学天津卷(含答案解析)
绝密★启用前2012年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至6页.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2. 本卷共8小题,每小题5分,共40分. 参考公式:如果事件A ,B 互斥 ,那么 如果事件A ,B 相互独立,那么 ()()()P AB P A P B =+()()()P AB P A P B =⋅棱柱的体积公式V Sh =球的体积公式34π3V R =其中S 表示锥体的底面积,h 表示锥体的高 其中R 表示球的半径 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. i 是虚数单位,复数7i3i-=+( )A. 2i +B. 2i -C. 2i -+D. 2i --2. 设ϕ∈R 则“0ϕ=”是“()cos()()f x x x ϕ=+∈R 为偶函数”的 ( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件3. 阅读右边的程序框图,运行相应的程序,当输入x 的值为25-时,输出x 的值为 ( ) A. 1- B. 1 C. 3D. 94. 函数3()22x f x x =+-在区间(0,1)内的零点个数是 ( ) A. 0 B. 1 C. 2D. 35. 在251(2)x x-的二项展开式中,x 的系数为 ( )A. 10B. 10-C. 40D. 40-6. 在ABC △中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知85b c =,2C B =,则cos C =( )A. 725B. 725-C. 725±D. 24257. 已知ABC △为等边三角形,2AB =,设点P ,Q 满足AP AB λ=,(1)AQ AC λ=-,λ∈R ,若32BQ CP ⋅=-,则λ=( )A. 1B.C. D. 8. 设,m n ∈R ,若直线(1)(1)20m x n y +++-=与圆22(1)(1)1x y -+-=相切,则m n+的取值范围是( )A. [1B. [,1[13,]-∞++∞ C. [2-+D. [,2[222,]-∞-++∞第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题纸上.2. 本卷共12小题,共110分.二、填空题:本大题共6小题,每小题5分,共30分.9. 某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取_________所学校,中学中抽取_________所学校.10. 一个几何体的三视图如图所示(单位:m ),则该几何体的体积为_________3m .11. 已知集合{|23}A x x =∈+<R ,集合{|()(2)3}B x x m x =∈--<R ,且(1,)A B n =-,则m =_________,n =_________.12. 已知抛物线的参数方程为22,2,x pt y pt ⎧=⎨=⎩(t 为参数),其中0p >,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .若||||EF MF =,点M 的横坐标是3,则p =_________.13. 如图,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于点D .过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,3AF =,1FB =,32EF =,则线段CD 的长为_________.14. 已知函数2|1|1x y x -=-的图象与函数2y kx =-的图象恰有两个交点,则实数k 的取值范围是_________.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程,或演算步骤. 15.(本小题满分13分)已知函数2ππ()sin(2)sin(2)2cos 133f x x x x =++-+-,x ∈R . (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间ππ[,]44-上的最大值和最小值.16.(本小题满分13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(Ⅲ)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记||X Y ξ=-,求随机变量ξ的分布列与数学期望E ξ.17.(本小题满分13分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AC AD ⊥,AB BC ⊥,45BAC ∠=,2PA AD ==,1AC =.(Ⅰ)证明PC AD ⊥;(Ⅱ)求二面角A PC D --的正弦值;(Ⅲ)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为30,求AE 的长.18.(本小题满分13分)已知{}n a 是等差数列,其前n 项和为n S ,{}n b 是等比数列,且112a b ==,4427a b +=,4410S b -=.(Ⅰ)求数列{}n a 与{}n b 的通项公式; (Ⅱ)记1121n n n n T a b a b a b -=+++,*n ∈N ,证明*12210()n n n T a b n +=-+∈N .19.(本小题满分14分)设椭圆22221(0)x y a b a b +=>>的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.(Ⅰ)若直线AP 与BP 的斜率之积为12-,求椭圆的离心率; (Ⅱ)若||||AP OA =,证明直线OP 的斜率k满足||k >.20.(本小题满分14分)已知函数()ln()f x x x a =-+的最小值为0,其中0a >. (Ⅰ)求a 的值;(Ⅱ)若对任意的[0,)x ∈+∞,有2()f x kx ≤成立,求实数k 的最小值; (Ⅲ)证明1*2ln(21)2()21ni n i n =-+-∈∑N <.2012年普通高等学校招生全国统一考试(天津卷)数学(理工类)答案解析)(1)0f<,且函在同一坐标系中作出两函数的图像如图所示:可知B1()2r rx--=【提示】由题意,可先由公式得出二项展开式的通项A【解析】∵(1)BQ AQ AB AC ABλ=-=--,CP AP AC AB ACλ=-=-,又∵32BQ CP=-,且2A B A C==,,60AB AC<>=,cos60AB AC AB AC︒==3[(1)]()2AC AB AB ACλλ---=-,2223(1)(1)2AB AB AC ACλλλλ+--+-=,2(1)4(1)2λλλ+--+-=,解得2λ=.(1)BQ AQ AB AC ABλ=-=--,CP AP AC AB ACλ=-=-进而根据数量积的定义求出BQ CP再根据32BQ CP=-即可求出λ.2][222,+,由直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关系式,整理后利用基本不等式变形.第Ⅱ卷(1,AB n =-213,34EF MF p p p ==++2.AF FB EF FC =,所以FC 又48//,,233AF FC AB BD CE BD FC AB BD AF ∴===⨯=,设CD x =,则4AD =再由切割线定理得2BD CD AD =,即2843x x ⎛⎫= ⎪⎝⎭,解得4x =42FC =,由相似比求出CD AD 求解.【考点】圆的性质的应用. (0,1)(1,4)2y kx =-的图像直线恒过定点010=-,10BC k --10-(0,1)(1,4).2(4,)B p ⇒人中去(4)P X +=【考点】互斥事件与相对独立事件的相关性质,数学期望.(Ⅰ)以,,AD AC AP 为,x y 则(2,0,0),(0,1,0),(0,0,2)D C P(0,1,2),(2,0,0)PC AD PC AD PC AD=-=⇒⇔⊥(Ⅱ)(0,1,2),(2,1,0)PC CD =-=-的法向量(,,)n x y z =0200n PC x y n CD ⎧=⎪⇔⇔⎨⎨⎨-==⎩⎩⎪⎩(1,2,1)n ⇒=(2,0,0)AD =是平面PAC 的法向量630cos ,sin ,6AD n AD n AD n AD n<>==⇒<>=得:二面角A PC D --的正弦值为306. ;则(0,0,2)AE =,11,,,(2,1,0)BE h CD ⎛⎫==- ⎪3310,2101020BE CDBE CD h BE CD <>=⇔⇔=+,10=.为原点,建立空间直角坐标系,通过得出PC AD ,证出的一个法向量,利用两法向量夹角求解.3,BE CD <>=,得出关于h 的方程求解即可.。
2012年天津市高考数学试卷(理科)教师版
2012年天津市高考数学试卷(理科)一、选择题1.(3分)(2012•天津)i是虚数单位,复数=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i【分析】由题意,可对此代数分子分母同乘以分母的共轭,整理即可得到正确选项【解答】解:故选:B.2.(3分)(2012•天津)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】直接把φ=0代入看能否推出是偶函数,再反过来推导结论即可.【解答】解:因为φ=0时,f(x)=cos(x+φ)=cosx是偶函数,成立;但f(x)=cos(x+φ)(x∈R)为偶函数时,φ=kπ,k∈Z,推不出φ=0.故“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的充分而不必要条件.故选:A.3.(3分)(2012•天津)阅读程序框图,运行相应的程序,当输入x的值为﹣25时,输出x的值为()A.﹣1B.1C.3D.9【分析】根据题意,按照程序框图的顺序进行执行,当|x|≤1时跳出循环,输出结果.【解答】解:当输入x=﹣25时,|x|>1,执行循环,x=﹣1=4;|x|=4>1,执行循环,x=﹣1=1,|x|=1,退出循环,输出的结果为x=2×1+1=3.故选:C.4.(3分)(2012•天津)函数f(x)=2x+x3﹣2在区间(0,1)内的零点个数是()A.0B.1C.2D.3【分析】根据函数f(x)=2x+x3﹣2在区间(0,1)内单调递增,f(0)f(1)<0,可得函数在区间(0,1)内有唯一的零点【解答】解:由于函数f(x)=2x+x3﹣2在区间(0,1)内单调递增,又f(0)=﹣1<0,f(1)=1>0,所以f(0)f(1)<0,故函数f(x)=2x+x3﹣2在区间(0,1)内有唯一的零点,故选:B.5.(3分)(2012•天津)在(2x2﹣)5的二项展开式中,x项的系数为()A.10B.﹣10C.40D.﹣40【分析】由题意,可先由公式得出二项展开式的通项T r+1==,再令10﹣3r=1,得r=3即可得出x 项的系数【解答】解:(2x2﹣)5的二项展开式的通项为T r+1==令10﹣3r=1,得r=3故x项的系数为=﹣40故选:D.6.(3分)(2012•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,则cosC=()A.B.C.D.【分析】直接利用正弦定理以及二倍角公式,求出sinB,cosB,然后利用平方关系式求出cosC的值即可.【解答】解:因为在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,所以8sinB=5sinC=5sin2B=10sinBcosB,所以cosB=,B为三角形内角,所以B∈(0,).C<.所以sinB==.所以sinC=sin2B=2×=,cosC==.故选:A.7.(3分)(2012•天津)已知△ABC为等边三角形,AB=2.设点P,Q满足,,λ∈R.若=﹣,则λ=()A.B.C.D.【分析】根据向量加法的三角形法则求出,进而根据数量积的定义求出再根据=﹣即可求出λ.【解答】解:∵,,λ∈R∴,∵△ABC为等边三角形,AB=2∴=+λ+(1﹣λ)=2×2×cos60°+λ×2×2×cos180°+(1﹣λ)×2×2×cos180°+λ(1﹣λ)×2×2×cos60°=2﹣4λ+4λ﹣4+2λ﹣2λ2,=﹣2λ2+2λ﹣2∵=﹣∴4λ2﹣4λ+1=0∴(2λ﹣1)2=0∴故选:A.8.(3分)(2012•天津)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x ﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+]B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2]D.(﹣∞,2﹣2]∪[2+2,+∞)【分析】由圆的标准方程找出圆心坐标和半径r,由直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关系式,整理后利用基本不等式变形,设m+n=x,得到关于x的不等式,求出不等式的解集得到x 的范围,即为m+n的范围.【解答】解:由圆的方程(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1,∵直线(m+1)x+(n+1)y﹣2=0与圆相切,∴圆心到直线的距离d==1,整理得:m+n+1=mn≤,设m+n=x,则有x+1≤,即x2﹣4x﹣4≥0,∵x2﹣4x﹣4=0的解为:x1=2+2,x2=2﹣2,∴不等式变形得:(x﹣2﹣2)(x﹣2+2)≥0,解得:x≥2+2或x≤2﹣2,则m+n的取值范围为(﹣∞,2﹣2]∪[2+2,+∞).故选:D.二、填空题9.(3分)(2012•天津)某地区有小学150所,中学75所,大学25所.先采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取18所学校,中学中抽取9所学校.【分析】从250所学校抽取30所学校做样本,样本容量与总体的个数的比为3:25,得到每个个体被抽到的概率,根据三个学校的数目乘以被抽到的概率,分别写出要抽到的数目,得到结果.【解答】解:某城地区有学校150+75+25=250所,现在采用分层抽样方法从所有学校中抽取30所,每个个体被抽到的概率是=,∵某地区有小学150所,中学75所,大学25所.∴用分层抽样进行抽样,应该选取小学×150=18所,选取中学×75=9所.故答案为:18,9.10.(3分)(2012•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为18+9πm3.【分析】由三视图可知该几何体为上部是一个长方体,长、宽、高分别为6,3,1(单位:m),下部为两个半径均为的球体.分别求体积再相加即可.【解答】解:由三视图可知该几何体为上部是一个长方体,长、宽、高分别为6,3,1(单位:m),体积6×3×1=18.下部为两个半径均为的球体,体积2ו()3=9π故所求体积等于18+9π故答案为:18+9π11.(3分)(2012•天津)已知集合A={x∈R||x+2|<3},集合B={x∈R|(x﹣m)(x﹣2)<0},且A∩B=(﹣1,n),则m=﹣1,n=1.【分析】由题意,可先化简A集合,再由B集合的形式及A∩B=(﹣1,n)直接作出判断,即可得出两个参数的值.【解答】解:A={x∈R||x+2|<3}={x∈R|﹣5<x<1},又集合B={x∈R|(x﹣m)(x﹣2)<0},A∩B=(﹣1,n).如图由图知m=﹣1,n=1,故答案为﹣1,1.12.(3分)(2012•天津)已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p=2.【分析】把抛物线的参数方程化为普通方程为y2=2px,则由抛物线的定义可得及|EF|=|MF|,可得△MEF为等边三角形,设点M的坐标为(3,m ),则点E (﹣,m),把点M的坐标代入抛物线的方程可得p=.再由|EF|=|ME|,解方程可得p的值.【解答】解:抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l,消去参数可得x=2p,化简可得y2=2px,表示顶点在原点、开口向右、对称轴是x轴的抛物线,故焦点F(,0),准线l的方程为x=﹣.则由抛物线的定义可得|ME|=|MF|,再由|EF|=|MF|,可得△MEF为等边三角形.设点M的坐标为(3,m ),则点E(﹣,m).把点M的坐标代入抛物线的方程可得m2=2×p×3,即p=.再由|EF|=|ME|,可得p2+m2=,即p2+6p=9++3p,解得p=2,或p=﹣6 (舍去),故答案为2.13.(3分)(2012•天津)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB 相交于点F,AF=3,FB=1,EF=,则线段CD的长为.【分析】由相交弦定理求出FC,由相似比求出BD,设DC=x,则AD=4x,再由切割线定理,BD2=CD•AD求解.【解答】解:由相交弦定理得到AF•FB=EF•FC,即3×1=×FC,FC=2,在△ABD中AF:AB=FC:BD,即3:4=2:BD,BD=,设DC=x,则AD=4x,再由切割线定理,BD2=CD•AD,即x•4x=()2,x=故答案为:14.(5分)(2012•天津)已知函数y=的图象与函数y=kx﹣2的图象恰有两个交点,则实数k的取值范围是(0,1)∪(1,4).【分析】作出函数图象,根据图象交点个数得出k的范围.【解答】解:y==,或>,<<,作出函数y=与y=kx﹣2的图象如图所示:∵函数y=的图象与函数y=kx﹣2的图象恰有两个交点,∴0<k<1或1<k<4.故答案为:(0,1)∪(1,4).三、解答题15.(2012•天津)已知函数f(x)=sin(2x+)+sin(2x﹣)+2cos2x﹣1,x∈R.(1)求函数f(x)的最小正周期;(2)求函数f(x)在区间[,]上的最大值和最小值.【分析】(1)利用正弦函数的两角和与差的公式与辅助角公式将f(x)=sin(2x+)+sin(2x﹣)+2cos2x﹣1化为f(x)=sin(2x+),即可求得函数f(x)的最小正周期;(2)可分析得到函数f(x)在区间[,]上是增函数,在区间[,]上是减函数,从而可求得f(x)在区间[,]上的最大值和最小值.【解答】解:(1)∵f(x)=sin2x•cos+cos2x•sin+sin2x•cos﹣cos2x•sin+cos2x =sin2x+cos2x=sin(2x+),∴函数f(x)的最小正周期T==π.(2)∵函数f(x)在区间[,]上是增函数,在区间[,]上是减函数,又f(﹣)=﹣1,f()=,f()=1,∴函数f(x)在区间[,]上的最大值为,最小值为﹣1.16.(2012•天津)现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.【分析】依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的人数的概率为设“这4个人中恰有i人去参加甲游戏”为事件A i(i=0,1,2,3,4),故P(A i)=(1)这4个人中恰有2人去参加甲游戏的概率为P(A2);(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏”为事件B,则B=A3∪A4,利用互斥事件的概率公式可求;(3)ξ的所有可能取值为0,2,4,由于A1与A3互斥,A0与A4互斥,求出相应的概率,可得ξ的分布列与数学期望.【解答】解:依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的人数的概率为设“这4个人中恰有i人去参加甲游戏”为事件A i(i=0,1,2,3,4),∴P(A i)=(1)这4个人中恰有2人去参加甲游戏的概率为P(A2)=;(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏”为事件B,则B=A3∪A4,∴P(B)=P(A3)+P(A4)=(3)ξ的所有可能取值为0,2,4,由于A1与A3互斥,A0与A4互斥,故P(ξ=0)=P(A2)=P(ξ=2)=P(A1)+P(A3)=,P(ξ=4)=P(A0)+P(A4)=∴ξ的分布列是数学期望Eξ=17.(2012•天津)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB ⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明:PC⊥AD;(2)求二面角A﹣PC﹣D的正弦值;(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.【分析】解法一(1)以A为原点,建立空间直角坐标系,通过得出•=0,证出PC⊥AD.(2)求出平面PCD,平面PCD的一个法向量,利用两法向量夹角求解.(3)设E(0,0,h),其中h∈[0,2],利用cos<,>=cos30°=,得出关于h的方程求解即可.解法二:(1)通过证明AD⊥平面PAC得出PC⊥AD.(2)作AH⊥PC于点H,连接DH,∠AHD为二面角A﹣PC﹣D的平面角.在RT △DAH中求解(3)因为∠ADC<45°,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF,故∠EBF(或其补角)为异面直线BE与CD所成的角.在△EBF 中,因为EF<BE,从而∠EBF=30°,由余弦定理得出关于h的方程求解即可.【解答】解法一:如图,以A为原点,建立空间直角坐标系,则A(0,0,0),D(2,0,0),C(0,1,0),B(﹣,,0),P(0,0,2).(1)证明:易得=(0,1,﹣2),=(2,0,0),于是•=0,所以PC ⊥AD.(2)解:=(0,1,﹣2),=(2,﹣1,0),设平面PCD的一个法向量为=(x,y,z),则即取z=1,则以=(1,2,1).又平面PAC的一个法向量为=(1,0,0),于是cos<,>==,sin<,>=所以二面角A﹣PC﹣D的正弦值为.(3)设E(0,0,h),其中h∈[0,2],由此得=(,﹣,h).由=(2,﹣1,0),故cos<,>===所以=cos30°=,解得h=,即AE=.解法二:(1)证明:由PA⊥平面ABCD,可得PA⊥AD,又由AD⊥AC,PA∩AC=A,故AD⊥平面PAC,又PC⊂平面PAC,所以PC⊥AD.(2)解:如图,作AH⊥PC于点H,连接DH,由PC⊥AD,PC⊥AH,可得PC⊥平面ADH,因此DH⊥PC,从而∠AHD为二面角A﹣PC﹣D的平面角.在RT△PAC中,PA=2,AC=1,所以AH=,由(1)知,AD⊥AH,在RT△DAH 中,DH==,因此sin∠AHD==.所以二面角A﹣PC﹣D 的正弦值为.(3)解:如图,因为∠ADC<45°,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF,故∠EBF(或其补角)为异面直线BE与CD所成的角.由于BF∥CD,故∠AFB=∠ADC,在RT△DAC中,CD=,sin∠ADC=,故sin ∠AFB=.在△AFB中,由,AB=,sin∠FAB=sin135°=,可得BF=,由余弦定理,BF2=AB2+AF2﹣2ABAFcos∠FAB,得出AF=,设AE=h,在RT△EAF中,EF==,在RT△BAE中,BE==,在△EBF中,因为EF<BE,从而∠EBF=30°,由余弦定理得到,cos30°=,解得h=,即AE=.18.(2012•天津)已知{a n}是等差数列,其前n项和为S n,{b n}是等比数列,且a1=b1=2,a4+b4=27,S4﹣b4=10.(1)求数列{a n}与{b n}的通项公式;(2)记T n=a n b1+a n﹣1b2+…+a1b n,n∈N*,证明:T n+12=﹣2a n+10b n(n∈N*).【分析】(1)直接设出首项和公差,根据条件求出首项和公差,即可求出通项.(2)先写出T n的表达式;方法一:借助于错位相减求和;方法二:用数学归纳法证明其成立.【解答】解:(1)设等差数列的公差为d,等比数列的公比为q,由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,由条件a4+b4=27,s4﹣b4=10,得方程组,解得,故a n=3n﹣1,b n=2n,n∈N*.(2)证明:方法一,由(1)得,T n=2a n+22a n﹣1+23a n﹣2+…+2n a1;①;2T n=22a n+23a n﹣1+…+2n a2+2n+1a1;②;由②﹣①得,T n=﹣2(3n﹣1)+3×22+3×23+…+3×2n+2n+2=+2n+2﹣6n+2=10×2n﹣6n﹣10;而﹣2a n+10b n﹣12=﹣2(3n﹣1)+10×2n﹣12=10×2n﹣6n﹣10;故T n+12=﹣2a n+10b n(n∈N*).方法二:数学归纳法,③当n=1时,T1+12=a1b1+12=16,﹣2a1+10b1=16,故等式成立,④假设当n=k时等式成立,即T k+12=﹣2a k+10b k,则当n=k+1时有,T k+1=a k+1b1+a k b2+a k﹣1b3+…+a1b k+1=a k+1b1+q(a k b1+a k﹣1b2+…+a1b k)=a k+1b1+qT k=a k+1b1+q(﹣2a k+10b k﹣12)=2a k+1﹣4(a k+1﹣3)+10b k+1﹣24=﹣2a k+1+10b k+1﹣12.即T k+1+12=﹣2a k+1+10b k+1,因此n=k+1时等式成立.③④对任意的n∈N*,T n+12=﹣2a n+10b n成立.19.(2012•天津)设椭圆>>的左右顶点分别为A,B,点P 在椭圆上且异于A,B两点,O为坐标原点.(1)若直线AP与BP的斜率之积为,求椭圆的离心率;(2)若|AP|=|OA|,证明直线OP的斜率k满足|k|>.【分析】(1)设P(x0,y0),则,利用直线AP与BP的斜率之积为,即可求得椭圆的离心率;(2)依题意,直线OP的方程为y=kx,设P(x0,kx0),则,进一步可得<,利用AP|=|OA|,A(﹣a,0),可求得,从而可求直线OP的斜率的范围.【解答】(1)解:设P(x0,y0),∴①∵椭圆>>的左右顶点分别为A,B,∴A(﹣a,0),B(a,0)∴,∵直线AP与BP的斜率之积为,∴代入①并整理得∵y0≠0,∴a2=2b2∴∴∴椭圆的离心率为;(2)证明:依题意,直线OP的方程为y=kx,设P(x0,kx0),∴∵a>b>0,kx0≠0,∴<∴<②∵|AP|=|OA|,A(﹣a,0),∴∴∴代入②得<∴k2>3∴直线OP的斜率k满足|k|>.20.(2012•天津)已知函数f(x)=x﹣ln(x+a)的最小值为0,其中a>0.(1)求a的值;(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;(3)证明:<(n∈N*).【分析】(1)确定函数的定义域,求导函数,确定函数的单调性,求得函数的最小值,利用函数f(x)=x﹣ln(x+a)的最小值为0,即可求得a的值;(2)当k≤0时,取x=1,有f(1)=1﹣ln2>0,故k≤0不合题意;当k>0时,令g(x)=f(x)﹣kx2,即g(x)=x﹣ln(x+1)﹣kx2,求导函数,令g′(x)=0,可得x1=0,>,分类讨论:①当k≥时,,g (x)在(0,+∞)上单调递减,g(x)≤g(0)=0;②当0<k<时,>,对于,,g′(x)>0,因此g(x)在,上单调递增,由此可确定k的最小值;(3)当n=1时,不等式左边=2﹣ln3<2=右边,不等式成立;当n≥2时,,在(2)中,取k=,得f(x)≤x2,从而可得<,由此可证结论.【解答】(1)解:函数的定义域为(﹣a,+∞),求导函数可得令f′(x)=0,可得x=1﹣a>﹣a令f′(x)>0,x>﹣a可得x>1﹣a;令f′(x)<0,x>﹣a可得﹣a<x<1﹣a ∴x=1﹣a时,函数取得极小值且为最小值∵函数f(x)=x﹣ln(x+a)的最小值为0,∴f(1﹣a)=1﹣a﹣0,解得a=1(2)解:当k≤0时,取x=1,有f(1)=1﹣ln2>0,故k≤0不合题意当k>0时,令g(x)=f(x)﹣kx2,即g(x)=x﹣ln(x+1)﹣kx2,求导函数可得g′(x)=g′(x)=0,可得x1=0,>①当k≥时,,g′(x)<0在(0,+∞)上恒成立,因此g(x)在(0,+∞)上单调递减,从而对任意的x∈[0,+∞),总有g(x)≤g(0)=0,即对任意的x∈[0,+∞),有f(x)≤kx2成立;②当0<k<时,>,对于,,g′(x)>0,因此g(x)在,上单调递增,因此取,时,g(x0)≥g(0)=0,即有f(x0)≤kx02不成立;综上知,k≥时对任意的x∈[0,+∞),有f(x)≤kx2成立,k的最小值为(3)证明:当n=1时,不等式左边=2﹣ln3<2=右边,所以不等式成立当n≥2时,在(2)中,取k=,得f(x)≤x2,∴<(i ≥2,i∈N*).∴=f(2)+<2﹣ln3+=2﹣ln3+1﹣<2综上,<(n∈N*).。
2012年高考理科数学天津卷
数学试卷 第1页(共6页)数学试卷 第2页(共6页)数学试卷 第3页(共6页)绝密★启用前2012年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至6页.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2. 本卷共8小题,每小题5分,共40分. 参考公式:如果事件A ,B 互斥 ,那么 如果事件A ,B 相互独立,那么()()()P A B P A P B =+U()()()P AB P A P B =⋅棱柱的体积公式V Sh =球的体积公式34π3V R =其中S 表示锥体的底面积,h 表示锥体的高 其中R 表示球的半径 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. i 是虚数单位,复数7i3i-=+( )A. 2i +B. 2i -C. 2i -+D. 2i --2. 设ϕ∈R 则“0ϕ=”是“()cos()()f x x x ϕ=+∈R 为偶函数”的 ( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件3. 阅读右边的程序框图,运行相应的程序,当输入x 的值为25-时,输出x 的值为 ( ) A. 1- B. 1 C. 3D. 94. 函数3()22x f x x =+-在区间(0,1)内的零点个数是 ( ) A. 0 B. 1 C. 2D. 35. 在251(2)x x-的二项展开式中,x 的系数为 ( )A. 10B. 10-C. 40D. 40-6. 在ABC △中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知85b c =,2C B =,则cos C =( )A. 725B. 725-C. 725±D. 24257. 已知ABC △为等边三角形,2AB =,设点P ,Q 满足AP AB λ=u u u r u u u r ,(1)AQ AC λ=-u u u r u u u r ,λ∈R ,若32BQ CP ⋅=-u u u r u u u r ,则λ=( )A.12B.12± C. 110±D. 322-±8. 设,m n ∈R ,若直线(1)(1)20m x n y +++-=与圆22(1)(1)1x y -+-=相切,则m n +的取值范围是( )A. [13,13]-+B. [,13][13,]-∞-++∞UC. [222,222]-+D. [,222][222,]-∞-++∞U第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题纸上.2. 本卷共12小题,共110分.二、填空题:本大题共6小题,每小题5分,共30分.9. 某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取_________所学校,中学中抽取_________所学校.10. 一个几何体的三视图如图所示(单位:m ),则该几何体的体积为_________3m .11. 已知集合{|23}A x x =∈+<R ,集合{|()(2)3}B x x m x =∈--<R ,且(1,)A B n =-I ,则m =_________,n =_________.12. 已知抛物线的参数方程为22,2,x pt y pt ⎧=⎨=⎩(t 为参数),其中0p >,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .若||||EF MF =,点M 的横坐标是3,则p =_________.13. 如图,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于点D .过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,3AF =,1FB =,32EF =,则线段CD 的长为_________.14. 已知函数2|1|1x y x -=-的图象与函数2y kx =-的图象恰有两个交点,则实数k 的取值范围是_________.31363223--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------数学试卷 第4页(共6页)数学试卷 第5页(共6页)数学试卷 第6页(共6页)三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程,或演算步骤. 15.(本小题满分13分)已知函数2ππ()sin(2)sin(2)2cos 133f x x x x =++-+-,x ∈R . (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间ππ[,]44-上的最大值和最小值.16.(本小题满分13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(Ⅲ)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记||X Y ξ=-,求随机变量ξ的分布列与数学期望E ξ.17.(本小题满分13分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AC AD ⊥,AB BC ⊥,45BAC ∠=o ,2PA AD ==,1AC =.(Ⅰ)证明PC AD ⊥;(Ⅱ)求二面角A PC D --的正弦值;(Ⅲ)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为30o ,求AE 的长.18.(本小题满分13分)已知{}n a 是等差数列,其前n 项和为n S ,{}n b 是等比数列,且112a b ==,4427a b +=,4410S b -=.(Ⅰ)求数列{}n a 与{}n b 的通项公式;(Ⅱ)记1121n n n n T a b a b a b -=+++L ,*n ∈N ,证明*12210()n n n T a b n +=-+∈N .19.(本小题满分14分)设椭圆22221(0)x y a b a b +=>>的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.(Ⅰ)若直线AP 与BP 的斜率之积为12-,求椭圆的离心率; (Ⅱ)若||||AP OA =,证明直线OP 的斜率k满足||k >.20.(本小题满分14分)已知函数()ln()f x x x a =-+的最小值为0,其中0a >. (Ⅰ)求a 的值;(Ⅱ)若对任意的[0,)x ∈+∞,有2()f x kx ≤成立,求实数k 的最小值; (Ⅲ)证明1*2ln(21)2()21ni n i n =-+-∈∑N <.。
2012年天津高考数学理科试卷(带详解)
2012年某某高考数学卷解析一、选择题:在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的. 1.i 是虚数单位,复数7i3iz -==+〔〕 A .2i + B.2i -C .2i -+D .2i --[测量目标]复数代数形式的四如此运算. [考查方式]直接给出复数的分式形式求其值. [难易程度]容易 [参考答案]B [试题解析]7i (7i)(3i)217i 3i 12i 3i (3i)(3i)10z ------====-++- 2.设ϕ∈R ,如此"0ϕ=〞是"()cos()()f x x x ϕ=+∈R 为偶函数〞的〔〕 A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[测量目标]三角函数的奇偶性,充分、必要条件.[考查方式]判断三角函数初相参数取值与函数奇偶性的关系. [难易程度]容易 [参考答案]A[试题解析]∵0ϕ=⇒()cos()()f x x x ϕ=+∈R 为偶函数,反之不成立,∴"0ϕ=〞是"()cos()()f x x x ϕ=+∈R 为偶函数〞的充分而不必要条件.3.阅读右边的程序框图,运行相应的程序,当输入x 的值为25-时,输出x 的值为〔〕 A.1- B.1 C.3 D.9第3题图[测量目标]循环结构的程序框图.[考查方式]阅读程序框图得出程序运算结果. [难易程度]容易 [参考答案]C[试题解析]根据图给的算法程序可知:第一次4x =,第二次1x =,如此输出2113x =⨯+=. 4.函数3()22xf x x =+-在区间(0,1)内的零点个数是〔〕C .2D .3[测量目标]函数零点的求解与判断.[考查方式]直接给出函数的解析式判断其零点的个数. [难易程度]容易 [参考答案]B[试题解析]解法1:因为(0)1021f =+-=-,3(1)2228f =+-=,即(0)(1)0f f <且函数()f x 在()0,1内连续不断,故()f x 在()0,1内的零点个数是1.解法2:设3122,2,x y y x ==-在同一坐标系中作出两函数的图像如以下图:可知B 正确.第4题图5.在251(2)x x-的二项展开式中,x 的系数为〔〕A.10B.10-C.40D.40- [测量目标]二项式定理.[考查方式]直接给出一个二项展开式求某项的系数. [难易程度]容易 [参考答案]D[试题解析]∵2515103155C (2)()2(1)C r r r r r r rr T x x x ----+=-=-,∴1031r -=,即3r =,∴x 的系数为40-.6.在ABC △中,内角,,A B C 所对的边分别是,,a b c ,85,2b c C B ==,如此cos C =〔〕 A.725B.725-C.725±D.2425[测量目标]正弦定理,三角函数中的二倍角公式.[考查方式]三角形角与边的关系运用正弦定理求一角的余弦值. [难易程度]容易 [参考答案]A[试题解析]∵85b c =,由正弦定理得8sin 5sin B C =,〔步骤1〕又∵2C B =,∴8sin 5sin 2B B =,〔步骤2〕所以8sin 10sin cos B B B =,易知sin 0B ≠,〔步骤3〕∴4cos 5B =,27cos cos 22cos 125C B B ==-=.〔步骤4〕 7.ABC △为等边三角形,2AB =,设点,P Q 满足,AP AB λ=(1),AQ AC λ=-λ∈R ,假如32BQ CP =-,如此λ=〔〕A.12B.12± D.32-±[测量目标]平面向量在平面几何中的应用.[考查方式]给出三角形边的向量关系式,运用平面向量的知识求解未知参数. [难易程度]中等 [参考答案]A[试题解析]∵(1),BQ AQ AB AC AB λ=-=--CP AP AC AB AC λ=-=-,〔步骤1〕又∵32BQ CP =-,且2AB AC ==,,60AB AC ︒<>=,cos602AB AC AB AC ︒==〔步骤2〕,∴3(1)()2AC AB AB AC λλ⎡⎤---=-⎣⎦,2223(1)(1)2AB AB AC AC λλλλ+--+-=,〔步骤3〕所以2342(1)4(1)2λλλλ+--+-=,解得12λ=. 〔步骤4〕第7题图8.设,m n ∈R ,假如直线(1)(1)20m x n y ++--=与圆22(1)(1)1x y -+-=相切,如此m n +的取值X 围是〔〕A.1⎡⎣B.(),113,⎡-∞++∞⎣C.2⎡-+⎣ D.(),2222,⎡-∞-++∞⎣[测量目标]直线与圆的位置关系.[考查方式]一直线与圆的位置关系求未知参数的取值X 围. [难易程度]中等 [参考答案]D[试题解析]∵直线(1)(1)20m x n y ++--=与圆22(1)(1)1x y -+-=相切,〔步骤1〕∴圆心(1,1)到直线的距离为1d ==,所以212m n mn m n +=++() 〔步骤2〕设t m n =+,如此2114t t +,解得(),2222,t ⎡∈-∞-++∞⎣.〔步骤3〕二、填空题:本大题共6小题,每一小题5分,共30分.9.某地区有小学150所,中学75所,大学25所. 现采用分层抽样的方法从这些学校中抽取30所学校对学生进展视力调査,应从小学中抽取所学校,中学中抽取所学校. [测量目标]分层抽样.[考查方式]运用分层抽样里的按比例抽样知识解决实际问题. [难易程度]容易 [参考答案]18,9[试题解析]∵分层抽样也叫按比例抽样,由题知学校总数为250所, 所以应从小学中抽取15030=18250⨯,中学中抽取75309250⨯=. 10.―个几何体的三视图如以下图<单位:m >,如此该几何体的体积为3m .第10题图[测量目标]由三视图求几何体的外表积与体积.[考查方式]给出一个几何体的三视图求其原几何体的体积. [难易程度]容易 [参考答案]189π+[试题解析]由三视图可该几何体为两个相切的球上方了一个长方体组成的组合体,所以其体积为:3433612π()189π32V =⨯⨯+⨯⨯=+3m . 11.集合{}23A x x =∈+<R ,集合{}()(2)0B x x m x =∈--<R ,且(1,)AB n =-,如此m =,n =.[测量目标]集合的根本运算,集合间的关系.[考查方式]给出含有未知参数的集合通过它们直接的关系求出未知参数. [难易程度]容易 [参考答案]1-,1[试题解析]∵{}{}2351A x x x x =∈+<=-<<R ,又∵(1,)AB n =-,画数轴可知1,1m n =-=.12.己知抛物线的参数方程为22,2,x pt y pt ⎧=⎨=⎩〔t 为参数〕,其中0p >,焦点为F ,准线为l ,过抛物线上一点M 作的垂线,垂足为E ,假如EF ME =,点M 的横坐标是3,如此p =. [测量目标]抛物线的简单几何性质.[考查方式]给出抛物线的参数方程,运用其简单的几何性质求未知数. [难易程度]中等 [参考答案]2[试题解析]∵22,2,x pt y pt ⎧=⎨=⎩可得抛物线的标准方程为22(0)y px p =>,〔步骤1〕∴焦点(,0)2pF ,∵点M 的横坐标是3,如此(3,M ,〔步骤2〕所以点(,2p E -222()(022p pEF =++±〔步骤3〕由抛物线得几何性质得2213,,63924p ME EF MF p p p p =+=∴+=++,解得2p =.〔步骤4〕13.如图,AB 和AC 是圆的两条弦.过点B 作圆的切线与AC 的延长线相交于点D ,过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,33,1,,2AF FB EF ===如此线段CD的长为.第13题图[测量目标]圆的性质的应用.[考查方式]给出与圆相关的直线与线段由圆的性质求未知线段. [难易程度]中等 [参考答案]43[试题解析]∵33,1,,2AF FB EF ===由相交弦定理得AF FB EF FC =,所以2FC =,〔步骤1〕又48//,,233AF FC AB BD CE BD FC AB BD AF ∴===⨯=,〔步骤2〕设CD x =,如此4AD x =,再由切割线定理得2BD CD AD =,即284()3x x =,解得43x =,故43CD =.〔步骤3〕14.函数211x y x -=-的图象与函数2y kx =-的图象恰有两个交点,如此实数k 的取值X 围是.[测量目标]函数图像的应用.[考查方式]两个函数的图像的位置关系求解未知参数的取值X 围. [难易程度]中等 [参考答案](0,1)(1,4)[试题解析]∵函数2y kx =-的图像直线恒过定点(0,2)B -,且(1,2),(1,0),(1,2)A C D --,∴2+2==010AB k --,0+2==210BC k ---,2+2==410BD k -,由图像可知(0,1)(1,4)k ∈.第14题图三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 15.〔本小题总分为13分〕函数2ππ()sin(2)sin(2)2cos 1,33f x x x x x =++-+-∈R . <Ⅰ>求函数()f x 的最小正周期; 〔Ⅱ〕求函数()f x 在区间ππ,44⎡⎤-⎢⎥⎣⎦上的最大值和最小值. [测量目标]三角函数的周期性、最值.[考查方式]给出三角函数的函数解析式求解其最小正周期和在某个区间内的最值. [试题解析]<Ⅰ>2ππ()sin(2)sin(2)2cos 133f x x x x =++-+-ππ2sin 2cos cos 2)34x x x =+=+〔步骤1〕函数()f x 的最小正周期为2ππ2T ==〔步骤2〕〔Ⅱ〕ππππ3π2π2sin(2)11()24444424x x x f x -⇒-+⇒-+⇔-〔步骤3〕当πππ2()428x x +==时,max ()f x =当πππ2()444x x +=-=-时,min ()1f x =-〔步骤4〕16.〔本小题总分为13分〕现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. 〔Ⅰ〕求这4个人中恰有2人去参加甲游戏的概率:〔Ⅱ〕求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率:〔Ⅲ〕用,X Y 分别表示这4个人中去参加甲、乙游戏的人数,记X Y ξ=-,求随机变量ξ的分布列与数学期望E ξ.[测量目标]互斥事件与相对独立事件的相关性质、数学期望.[考查方式]针对实际问题运用互斥事件与相对独立事件的性质求解概率问题. [难易程度]中等[试题解析]〔Ⅰ〕每个人参加甲游戏的概率为13p =,参加乙游戏的概率为213p -=〔步骤1〕 这4个人中恰有2人去参加甲游戏的概率为22248C (1)27p p -=.〔步骤2〕〔Ⅱ〕44(4,)()C (1)(0,1,2,3,4)k k kXB p P X k p p k -⇒==-=,〔步骤3〕 这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为1(3)(4)9P X P X =+==〔步骤4〕 〔Ⅲ〕ξ可取0,2,48(0)(2)2740(2)(1)(3)8117(4)(0)(4)81P P X P P X P X P P X P X ξξξ=======+=====+==〔步骤5〕随机变量ξ的分布列为8401714802427818181E ξ=⨯+⨯+⨯=〔步骤6〕17.〔本小题总分为13分〕如图,在四棱锥P ABCD-中,PA 丄平面ABCD ,,,45,2,1AC AD AB BC BAC PA AD AC ︒⊥⊥∠====.<Ⅰ>证明:PC AD ⊥;〔Ⅱ〕求二面角A PC D --的正弦值;〔Ⅲ〕设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为30︒,求AE 的长.第17题图[测量目标]线线垂直、异面直线所成的角的正弦值.[考查方式]通过空间几何体中的线线,线面直接的位置角度关系求证线线垂直以与异面直线所成角的正弦值. [难易程度]较难[试题解析]<Ⅰ>以,,AD AC AP 为,,x y z 正半轴方向,建立空间直角坐标系A xyz -.〔步骤1〕如此11(2,0,0),(0,1,0),(,,0),(0,0,2)22D C B P -〔步骤2〕(0,1,2),(2,0,0)0PC AD PC AD PC AD =-=⇒=⇔⊥〔步骤3〕第17题〔1〕图〔Ⅱ〕(0,1,2),(2,1,0)PC CD =-=-,设平面PCD 的法向量(,,)x y z =n 如此0202200PC y z y zx y x z CD ⎧=-==⎧⎧⎪⇔⇔⎨⎨⎨-===⎩⎩⎪⎩n n 取1(1,2,1)z =⇒=n 〔步骤4〕(2,0,0)AD =是平面PAC 的法向量得:二面角A PC D --的正弦值为6〔步骤5〕〔Ⅲ〕设[]0,2AE h =∈;如此(0,0,2)AE =,11(,,),(2,1,0)22BE h CD ==-cos ,10BE CD BE CD h BECD<>=⇔=⇔=即AE =〔步骤6〕18.<本小题总分为13分〕{}n a 是等差数列,其前n 项和为n S ,{}n b 是等比数列,且1144442,27,10a b a b S b ==+=-=<Ⅰ>求数列{}n a 与{}n b 的通项公式;<Ⅱ>记112231n n n n n T a b a b a b a b --=++++…;证明:12210()n n n T a b n ++=-+∈N . [测量目标]等差等比数列的通项与性质.[考查方式]给出等差等比数列中项之间的关系求解数列的通项,由两种数列结合成的新数列的性质运用与证明. [难易程度]较难[试题解析]<Ⅰ>设数列{}n a 的公差为d ,数列{}n b 的公比为q ;如此34434412732322710246210a b d d q S b q a d q +==⎧++=⎧⎧⇔⇔⎨⎨⎨-==+-=⎩⎩⎩〔步骤1〕得:31,2nn n a n b =-=<Ⅱ>121122311211...2222()22n n n n n n n n n n n a a T a b a b a b a b a a a a ----=++++=+++=+++ (111)213132352222n n n n n n n a n n n c c ------++==-=-〔步骤2〕[]1223112()()()2()n n n n n n T c c c c c c c c -=-+-++-=-…1022(35)1021212102n n n n n n n b a T b a =⨯-+=--⇔+=-〔步骤3〕19.〔本小题总分为14分〕设椭圆22221(0)x y a b a b+=>>的左、右顶点分别为,A B ,点P 在椭圆上且异于,A B 两点,O 为坐标原点. 〔Ⅰ〕假如直线AP 与BP 的斜率之积为12-,求椭圆的离心率;〔Ⅱ〕假如AP OA =,证明:直线OP 的斜率k 满足k [测量目标]椭圆的标准方程、椭圆的简单几何性质、直线与椭圆的位置关系.[考查方式]由椭圆的简单几何性质求解椭圆的标准方程以与椭圆的参数,判断椭圆与直线的位置关系求解未知数的取值X 围.[难易程度]较难 [试题解析]〔Ⅰ〕取(0,),(,0),(,0)P b A a B a -;如此221()22AP BP b b k k a b a a ⨯=⨯-=-⇔=〔步骤1〕2222122a b e e a -==⇔=〔步骤2〕〔Ⅱ〕设(cos ,sin )(02π)P a b θθθ<;如此线段OP 的中点(cos ,sin )22ab Q θθ〔步骤3〕sin sin cos 22cos AQ AQ AQb k b ak ak a a θθθθ=⇔-=+〔步骤4〕2223AQAQ ak b a k k ⇒+<⇔<⇔>〔步骤5〕20.〔本小题总分为14分〕函数()ln()f x x x a =-+的最小值为0,其中0a >. 〔Ⅰ〕求a 的值;〔Ⅱ〕假如对任意的[)0,x ∈+∞,有2()f x kx 成立,某某数k 的最小值;〔Ⅲ〕证明:*12ln(21)2()21ni n n i =-+<∈-∑N .[测量目标]运用导数的相关性质求函数的最值,证明与推理最值问题. [考查方式]给出函数解析式运用导数的相关性质求解其函数最值. [难易程度]较难[试题解析]〔Ⅰ〕函数()f x 的定义域为(,)a -+∞〔步骤1〕11()ln()()101x a f x x x a f x x a a x a x a+-'=-+⇒=-==⇔=->-++〔步骤2〕得:1x a =-时,min ()(1)101f x f a a a =-⇔-=⇔=〔步骤3〕〔Ⅱ〕设22()()ln(1)(0)g x kx f x kx x x x =-=-++如此()0g x 在[)0,x ∈+∞上恒成立min()0(0)g x g ⇔=〔*〕〔步骤4〕(1)1ln 200g k k =-+⇒>1(221)()2111x kx k g x kx x x +-'=-+=++〔步骤5〕①当1210()2k k -<<时,0012()00()(0)2kg x xx g x g k-'⇔=⇒<与〔*〕矛盾 ②当12k时,min ()0()(0)0g x g x g '⇒==符合〔*〕〔步骤6〕得:实数k 的最小值为12〔Ⅲ〕由〔2〕得:21ln(1)2x x x -+<对任意的0x >值恒成立 取[]222(1,2,3,,)ln(21)ln(21)2121(21)x i n i i i i i ==⇒+--<---…〔步骤7〕当1n =时,2ln32-<得:12ln(21)221ni n i =-+<-∑当2i时,2211(21)2321i i i <----得:121ln(21)ln(21)2ln 3122121ni i i i n =⎡⎤-++-<-+-<⎢⎥--⎣⎦∑〔步骤8〕。
2012年全国普通高等学校招生统一考试理科数学(天津卷)
2021年全国普通高等学校招生统一考试理科数学(天津卷)学校:___________姓名:___________班级:___________考号:___________一、单选题1.i 是虚数单位,复数=A .2 + iB .2 – iC .-2 + iD .-2 – i2.设则“”是“为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分与不必要条件3.阅读右边的程序框图,运行相应的程序,当输入x 的值为25-时,输出x 的值为( )A .1-B .1C .3D .94.函数在区间(0,1)内的零点个数是 A .0 B .1C .2D .35.在的二项展开式中,的系数为A .10B .-10C .40D .-406.在ABC ∆中,内角A ,B ,C 所对的边分别是c b a ,,,已知8b=5c ,C=2B ,则cosC= (A )257 (B )257-(C )257±(D )2524 7.已知ABC ∆为等边三角形,AB=2,设点P ,Q 满足AB AP λ=,AC AQ )1(λ-=,R ∈λ,若32BQ CP ⋅=,则λ=AC 8.设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(22=-+-y x 相切,则m + n 的取值范围是(A )]31,31[+- (B )),31[]31,(+∞+⋃--∞ (C )]222,222[+- (D )),222[]222,(+∞+⋃--∞二、填空题9.某地区有小学150所,中学75所,大学25所. 现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取_________所学校,中学中抽取________所学校.10.一个几何体的三视图如图所示(单位:m ),则该几何体的体积为_________m 3.11.已知集合{}32x <+∈=x R A ,集合},0)2)((|{<--∈=x m x R x B 且),,1(n B A -= 则m =__________,n = __________.12.已知抛物线的参数方程为(t 为参数),其中p>0,焦点为F ,准线为. 过抛物线上一点M 作的垂线,垂足为E. 若|EF|=|MF|,点M 的横坐标是3,则p = ______. 13.如图,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于点D .过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,AF=3,FB=1,EF=23,则线段CD 的长为____________.14.已知函数的图象与函数的图象恰有两个交点,则实数k 的取值范围是_________.三、解答题15.已知函数.,1cos 2)32sin()32sin()(2R x x x x x f ∈-+-++=ππ(Ⅰ)求函数的最小正周期; (Ⅱ)求函数在区间]4,4[ππ-上的最大值和最小值. 16.现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率; (Ⅲ)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望.17.如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC=45°,PA=AD=2,AC=1. (Ⅰ)证明PC ⊥AD ;(Ⅱ)求二面角A-PC-D 的正弦值;(Ⅲ)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.18.已知是等差数列,其前n项和为S n,是等比数列,且,.(Ⅰ)求数列与的通项公式;(Ⅱ)记,,证明().19.设椭圆2222x1(0)ya ba b+=>>的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.(Ⅰ)若直线与的斜率之积为,求椭圆的离心率;(Ⅱ)若,证明直线的斜率满足20.已知函数的最小值为0,其中(Ⅰ)求的值;(Ⅱ)若对任意的有≤成立,求实数的最小值;(Ⅲ)证明().参考答案1.B 【解析】7(7)(3)20102.3+(3)(3)10i i i ii i i i --+-===-+- 【考点定位】本题考查复数运算,考查学生的基础知识和计算能力 2.A 【解析】0,()cos ,()(),()f x x f x f x f x ϕ==-=∴为偶函数;若()f x 为偶函数,则(0)1,cos 1,(),f k k Z ϕϕπ=±∴=±∴=∈故答案为A.【考点定位】本题考查函数为偶函数的性质和条件的判断,考查学生的逻辑思维能力. 3.C 【解析】 试题分析:当输入时,,执行循环,;,执行循环,,退出循环,输出结果为,故选C.考点:循环结构点评:本题考查循环结构的程序框图,弄清楚框图的算法功能是解题的关键,按照程序框图 顺序进行执行求解,属于基础题. 4.B 【解析】2()2ln 23,(0,1)()0x f x x f x =+'>在上恒成立,所以单调递增,(0)10,(1)10,f f =-=故函数在区间(0,1)内的零点个数1个.【考点定位】本题考查函数的单调性和函数的零点的判断,考查学生的分析判断能力 5.D 【解析】551031551(2)()(1)2,r r r r r r r r T C x C x x---+=-=-353351031,3,(1)240.r r C -∴-=∴=∴-=- 【考点定位】本题考查二项式定理求特殊项,考查学生的计算能力6.A【解析】在ABC ∆中,由正弦定理可知:2sin 2847,cos ,cos cos 22cos 1.sin 5525B c BC B B B b ==∴=∴==-= 【考点定位】本题考查解三角形,考查学生灵活应用正弦定理和二倍角公式的解题能力 7.A【解析】设,,2,,,3AB a AC b a b a b π==∴==<>=且(1),,BQ AQ AB b a CP AP AC a b λλ=-=--=-=-231[(1)]()222,.22BQ CP b a a b λλλλλ⋅=--⋅-=-+-=-∴=【考点定位】本题考查向量的数量积和向量的减法运算,考查学生灵活应用数形结合思想的解题和字母的运算能力 8.D【解析】直线与圆相切,则有221, 1.,(),24m n t mn m n m n t mn +=∴=+++=≤=设221,440,4t t t t t ∴+≤∴--≥∴∈),222[]222,(+∞+⋃--∞【考点定位】本题考查直线与圆的位置关系和均值不等式,考查学生的转化能力和换元法的应用 9.18,9 【解析】学校共有150+75+25=250,则小学中抽取1503018;250⨯=中学中抽取75309.250⨯= 【考点定位】本试题主要考查了统计中的分层抽样的概念以及样本获取的方法与计算10.18+9π【解析】由三视图可知,该几何体的顶部为正方体,其长、宽、高分别为6,3,1,底部为两个直径为3的球,故该几何体的体积为343631()18+9.32ππ⨯⨯+⨯= 【考点定位】本题考查三视图和几何体的体积,考查学生的空间想象能力和计算能力 11.-1,1 【解析】{}{}{}x 23=x 51,x ()(1)0,A R x x B R x m x =∈+<-<<=∈--<且),,1(n B A -= 1∴-是方程()(1)0x m x --=的根,故1, 1.n m ==-【考点定位】本题考查绝对值不等式、二次不等式的解法,考查学生利用转化思想的解题能力 12.2【解析】由抛物线的参数方程可知其普通方程为22(0).,,y px p EF MF ME MF MEF =>==∴∆为等边三角形,E 的横坐标为,2p M -∴的横坐标为3, 32, 2.22pp p -∴=∴= 【考点定位】本题考查抛物线的方程、定义和其几何性质,考查学生的转化能力和计算能力 视频 13.43【解析】在圆中,利用相交弦定理可知,8,2,.3AF FB FC AF FC AB AF FB EF FC FC BD EF BD AB AF ⋅⋅⋅=⋅∴===∴==, 由切割线定理可知:222644,4,4..93BD DC DA DA CD DC DB DC =⋅=∴==∴=【考点定位】本题考查几何证明问题如相交弦定理、三角形相似、切割线定理等,考查学生的分析转化能力 14.(0,1)(1,4)⋃ 【分析】211,1,11{1,1,11x x x x x y x x x x -+>+-===-+<--函数过定点(0,-2),由数形结合:11,011 4.AB AC k k k k k k <<<<∴<<<<或或【考点定位】本题考查函数的图像和性质,考查学生画图、识图以及利用图像解决问题的能力.15.(1)22T ππ== (2) ,最小值为-1 【考点定位】本小题主要考查两角和与差的正弦公式、二倍角的余弦公式、三角函数的最小正周期、单调性等基础知识,考查基本运算能力.本题考查了两角和差的正弦公式、二倍角公式,三角函数的最小正周期、单调性等基础知识,考查基本运算能力和划归能力. 该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可【解析】(1)()sin 2coscos 2sinsin 2coscos 2sincos 23333f x x x x x x ππππ=•+•+•-+sin 2cos2x x =+)4x π=+所以,()f x 的最小正周期22T ππ==(2)因为()f x 在区间[,]48ππ-上是增函数,在区间[,]84ππ上是减函数,又()14f π-=-,()8f π=()14f π=,故函数()f x 在区间[,]44ππ-,最小值为-1.16.(1)827(2)19(3)148()81E ξ=【详解】解:依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件(i =0,1,2,3,4),则 (Ⅰ)这4个人中恰有2人去参加甲游戏的概率(Ⅱ)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则,由于与互斥,故所以,这4个人去参加甲游戏的人数大于去参加乙游戏的人数的概率为19(Ⅲ)ξ的所有可能取值为0,2,4.由于与互斥,与互斥,故,.所以ξ的分布列是 随机变量ξ的数学期望考点:1.离散型随机变量的期望与方差;2.相互独立事件的概率乘法公式;3.离散型随机变量及其分布列.17.(1)见解析 (2(3)AE【解析】解法一:如图,以点A 为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), 11,,022B ⎛⎫-⎪⎝⎭,P (0,0,2).(1)证明:易得()0,1,2PC =-, ()2,0,0AD =于是•0PC AD =,所以PC AD ⊥ (2) ()0,1,2PC =-,()2,1,0CD =-设平面PCD 的法向量(),,n x y z =,则•0{ •0n PC n CD ==,即20{20y z x y -=-=.不防设1z =,可得()1,2,1n =.可取平面PAC 的法向量()1,0,0m =于是•cos ,6m n m n m n ===30sin ,m n =.所以二面角A-PC-D . (3)设点E 的坐标为(0,0,h ),其中[]0,2h ∈,由此得11,,22BE h ⎛⎫=-⎪⎝⎭. 由()2,1,0CD =-,故3•cos ,1BECD BE CD BE CD===所以,cos302==,解得10h =,即10AE =.解法二:(1)证明:由PA ABCD ⊥平面,可得PA AD ⊥,又由AD AC ⊥, PA AC A ⋂=,故AD PAC ⊥平面.又PC PAC ⊂平面,所以PC AD ⊥.(2)如图,作AH PC ⊥于点H ,连接DH.由PC AD ⊥, PC AH ⊥,可得PC ADH ⊥平面. 因此DH PC ⊥,从而AHD ∠为二面角A-PC-D 的平面角.在Rt PAC ∆中, 2,1PA AC ==,由此得AH =(1)知AD AH ⊥,故在Rt DAH ∆中, DH ==因此sin AD AHD DH ∠==所以二面角A PC D --. (3)如图,因为045ADC ∠<,故过点B 作CD 的平行线必与线段AD 相交,设交点为F ,连接BE ,EF. 故EBF ∠或其补角为异面直线BE 与CD 所成的角.由于BF ∥CD ,故AFB ADC ∠=∠.在Rt DAC ∆中,CD ADC =∠=故sin AFB ∠=在AFB ∆中,由sin sin BF AB FAB AFB =∠∠, AB =, 0sin sin135FAB ∠==可得BF =.由余弦定理, 2222?•cos BF AB AF AB AF FAB =+-∠,所以AE =. 【考点定位】本小题主要考查空间两条直线的位置关系、二面角、异面直线所成德角、直线与平面垂直等基础知识.考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.试题从命题的角度来看,整体上题目与我们平时练习的试题相似,但底面是非特殊的四边形,一直线垂直于底面的四棱锥问题,那么创新的地方就是第三问中点E 的位置是不确定的,需要学生根据已知条件进行确定,如此说来就有难度,因此最好使用空间直角坐标系解决该问题为好 视频18.(1)31n a n =-,2n n b =,*n N ∈(2)*n N ∈,12210n n n T a b +=-+【考点定位】本小题主要考查等差数列与等比数列的概念、通项公式、前n 项和公式、数列求和等基础知识.考查化归与转化的思想方法.考查运算能力、推理论证能力.该试题命制比较直接,没有什么隐含的条件,就是等比与等差数列的综合应用,但方法多样,第二问可以用错位相减法求解证明,也可用数学归纳法证明,给学生思维空间留有余地,符合高考命题选拔性的原则 【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q.由112a b ==,得423a d =+,342b q =,486S d =+.由条件,得方程组3323227{86210d q d q ++=+-=,解得3{2d q == 所以31n a n =-,2nn b =,*n N ∈.(2)证明:(方法一) 由(1)得231212222n n n n n T a a a a --=++++①23112122222n n n n n T a a a a +-=++++②由②-①得2322(31)3232322n n n T n +=--+⨯+⨯++⨯+1212(12)26212n n n -+-=+-+-102610n n =⨯--而210122(31)10212102610n nn n a b n n -+-=--+⨯-=⨯--故12210n n n T a b +=-+,*n N ∈ (方法二:数学归纳法)① 当n=1时,111121216T a b +=+=,1121016a b -+=,故等式成立. ② 假设当n=k 时等式成立,即12210k k k T a b +=-+,则当n=k+1时,有:11121311k k k k k T a b a b a b a b ++-+=++++ 111121()k k k k a b q a b a b a b +-=++++11k k a b qT +=+11(21012)k k k a b q a b +=+-+-11124(3)1024k k k a a b +++=--+- 1121012k k a b ++=-+-即11112210k k k T a b ++++=-+,因此n=k+1时等式也成立 由①和②,可知对任意*n N ∈,12210n n n T a b +=-+成立.19.(1) e =(2)k >【考点定位】本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面内两点间的距离公式等基础知识.考查用代数方法研究圆锥曲线的性质,以及数形结合的数学思想方法.考查运算求解能力、综合分析和解决问题的能力【解析】(1)解:设点P 的坐标为()00,x y .由题意,有2200221x y a b+=①由()(),0,,0A a B a -,得00AP y k x a =+, 00BP y k x a=- 由12AP BP k k =-,可得22202o x a y =-,代入①并整理得()222020a b y -=由于00y ≠,故222a b =.于是222212a b e a -==,所以椭圆的离心率2e = (2)证明:(方法一)依题意,直线OP 的方程为y kx =,设点P 的坐标为()00,x y .由条件得00220022{ 1y kx x y a b =+=消去0y 并整理得②由AP OA =, (),0A a -及00y kx =,得()222200x a k x a ++=.整理得()2200120k x ax ++=.而00x ≠,于是0221ax k-=+,代入②, 整理得()2222144a k k b ⎛⎫+=+ ⎪⎝⎭由0a b >>,故()222144k k +>+,因此23k >.所以k >(方法二)依题意,直线OP 的方程为y kx =,设点P 的坐标为()00,x y .由P 在椭圆上,有22200221x k x a b+=因为0a b >>, 00kx ≠,所以22200221x k x a a+<,即()22201k x a +<③由AP OA =, (),0A a -,得()222200x a k x a ++=整理得()2200120k x ax ++=.于是0221ax k-=+,代入③, 整理得()()2222411a ka k+<+ 解得23k >, 所以k >视频20.(1)1a =(2)12(3) 见解析 【考点定位】本小题主要考查导数的运算,利用导数研究函数的单调性,不等式基础知识.考查函数思想、分类讨论思想.考查综合分析和解决问题的能力.试题分为三问,题面比较简单,给出的函数比较常规,因此入手对于同学们来说没有难度,第二问中,解含参数的不等式时,要注意题中参数的讨论所有的限制条件,从而做到不重不漏;第三问中,证明不等式,应借助于导数证不等式的方法进行. 【解析】(1)解:()f x 的定义域为(,)a -+∞11'()1x a f x x a x a+-=-=++ 由'()0f x =,得1x a a =->-当x 变化时,'()f x ,()f x 的变化情况如下表:因此,()f x 在1x a =-处取得最小值,故由题意(1)10f a a -=-=,所以1a = (2)解:当0k ≤时,取1x =,有(1)1ln 20f =->,故0k ≤时不合题意.当0k >时,令2()()g x f x kx =-,即2()ln(1)g x x x kx =-+-[2(12)]'()211x x kx k g x kx x x ---=-=++ 令'()0g x =,得12120,12kx x k -==>-①当12k ≥时,1202kk-≤,'()0g x <在(0,)+∞上恒成立.因此()g x 在[0,)+∞上单调递减.从而对于任意的[0,)x ∈+∞,总有()(0)0g x g ≤=,即2()f x kx ≤在[0,)+∞上恒成立,故12k ≥符合题意. ②当102k <<时,1202k k ->,对于12(0,)2k x k -∈,'()0g x >,故()g x 在12(0,)2kk-上单调递增.因此当取12(0,)2kx k-∈时,0()(0)0g x g >=,即20()f x kx ≤不成立. 故102k <<不合题意.综上,k 的最小值为12.(3)证明:当n=1时,不等式左边=2ln32-<=右边,所以不等式成立.当2n ≥时,11222()[ln(1)]212121nni i f i i i ===-+---∑∑ 112[ln(21)ln(21)]21nni i i i i ===-+---∑∑12ln(21)21n i n i ==-+-∑在(2)中取12k =,得2()2x f x ≤(0)x ≥, 从而2222()21(21)(23)(21)f i i i i ≤<----*(,2)i N i ∈≥ 所以有12ln(21)21ni n i =-+-∑ 12()21ni f i ==-∑ 22(2)()21ni f f i ==+-∑ 222ln 3(23)(21)ni i i =<-+--∑2112ln 3()2321ni i i ==-+---∑ 12ln 31221n =-+-<- 综上,12ln(21)221ni n i =-+<-∑,*n N ∈。
范文天津市高考数学试卷及答案理数
2012年普通高等学校招生全国统一考试(天津卷)数 学 (理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分.参考公式:·如果事件A ,B 互斥,那么·棱柱的体积公式Sh V = 其中S 表示棱柱的底面面积,h 表示棱柱的高。
·如果事件A ,B 相互独立,那么·球的体积公式334R Vπ=其中R 表示球的半径一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)i 是虚数单位,复数ii+-37=(A ) 2 + i (B )2 – i(C )-2 + i (D )-2 – i(2)设,R ∈ϕ则“0=ϕ”是“))(cos()(R x x x f ∈+=ϕ为偶函数”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分与不必要条件 (3)阅读右边的程序框图,运行相应的程序,当输入x 的值 为-25时,输出x 的值为(A )-1 (B )1 (C )3 (D )9 (4)函数22)(3-+=x x f x在区间(0,1)内的零点个数是 (A )0 (B )1 (C )2 (D )3(5)在52)12(xx -的二项展开式中,x 的系数为(A )10 (B )-10 (C )40 (D )-40(6)在ABC ∆中,内角A ,B ,C 所对的边分别是c b a ,,, 已知8b=5c ,C=2B ,则cosC=(A )257 (B )257-(C )257±(D )2524 (7)已知ABC ∆为等边三角形,AB=2,设点P ,Q 满足AB AP λ=,)1(λ-=,R ∈λ,若23=•−→−−→−CP BQ ,则λ= (A )21(B )221±(C )2101± (D )2223±- (8)设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(22=-+-y x 相切,则m + n 的取值范围是(A )]31,31[+-(B )),31[]31,(+∞+⋃--∞(C )]222,222[+- (D )),222[]222,(+∞+⋃--∞第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2012年天津卷理科数学高考试卷(原卷 答案)
绝密★启用前2012年普通高等学校招生全国统一考试(天津卷)理科数学本试卷共20题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.(3分)i是虚数单位,复数=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i2.(3分)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(3分)阅读程序框图,运行相应的程序,当输入x的值为﹣25时,输出x的值为()A.﹣1B.1C.3D.94.(3分)函数f(x)=2x+x3﹣2在区间(0,1)内的零点个数是()A.0B.1C.2D.35.(3分)在(2x2﹣)5的二项展开式中,x项的系数为()A.10B.﹣10C.40D.﹣406.(3分)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,则cosC=()A.B.C.D.7.(3分)已知△ABC为等边三角形,AB=2.设点P,Q满足,,λ∈R.若=﹣,则λ=()A.B.C.D.8.(3分)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+]B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2]D.(﹣∞,2﹣2]∪[2+2,+∞)二、填空题9.(3分)某地区有小学150所,中学75所,大学25所.先采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取所学校,中学中抽取所学校.10.(3分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.11.(3分)已知集合A={x∈R||x+2|<3},集合B={x∈R|(x﹣m)(x﹣2)<0},且A∩B=(﹣1,n),则m=,n=.12.(3分)已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p=.13.(3分)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=,则线段CD的长为.14.(3分)已知函数y=的图象与函数y=kx﹣2的图象恰有两个交点,则实数k的取值范围是.三、解答题15.已知函数f(x)=sin(2x+)+sin(2x﹣)+2cos2x﹣1,x∈R.(1)求函数f(x)的最小正周期;(2)求函数f(x)在区间[]上的最大值和最小值.16.现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.17.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明:PC⊥AD;(2)求二面角A﹣PC﹣D的正弦值;(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.18.已知{a n}是等差数列,其前n项和为S n,{b n}是等比数列,且a1=b1=2,a4+b4=27,S4﹣b4=10.(1)求数列{a n}与{b n}的通项公式;(2)记T n=a n b1+a n﹣1b2+…+a1b n,n∈N*,证明:T n+12=﹣2a n+10b n(n∈N*).19.设椭圆的左右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.(1)若直线AP与BP的斜率之积为,求椭圆的离心率;(2)若|AP|=|OA|,证明直线OP的斜率k满足|k|>.20.已知函数f(x)=x﹣ln(x+a)的最小值为0,其中a>0.(1)求a的值;(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;(3)证明:(n∈N*).2012年普通高等学校招生全国统一考试(天津卷)理科数学(参考答案)1.【解答】解:故选B2.【解答】解:因为φ=0时,f(x)=cos(x+φ)=cosx是偶函数,成立;但f(x)=cos(x+φ)(x∈R)为偶函数时,φ=kπ,k∈Z,推不出φ=0.故“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的充分而不必要条件.故选:A.3.【解答】解:当输入x=﹣25时,|x|>1,执行循环,x=﹣1=4;|x|=4>1,执行循环,x=﹣1=1,|x|=1,退出循环,输出的结果为x=2×1+1=3.故选:C.4.【解答】解:由于函数f(x)=2x+x3﹣2在区间(0,1)内单调递增,又f(0)=﹣1<0,f(1)=1>0,所以f(0)f(1)<0,故函数f(x)=2x+x3﹣2在区间(0,1)内有唯一的零点,故选B.5.【解答】解:(2x2﹣)5的二项展开式的通项为T r+1==令10﹣3r=1,得r=3故x项的系数为=﹣40故选D6.【解答】解:因为在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,所以8sinB=5sinC=5sin2B=10sinBcosB,所以cosB=,B为三角形内角,所以B∈(0,).C.所以sinB==.所以sinC=sin2B=2×=,cosC==.故选:A.7.【解答】解:∵,,λ∈R∴,∵△ABC为等边三角形,AB=2∴=+λ+(1﹣λ)=2×2×cos60°+λ×2×2×cos180°+(1﹣λ)×2×2×cos180°+λ(1﹣λ)×2×2×cos60°=2﹣4λ+4λ﹣4+2λ﹣2λ2,=﹣2λ2+2λ﹣2∵=﹣∴4λ2﹣4λ+1=0∴(2λ﹣1)2=0∴故选A8.【解答】解:由圆的方程(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1,∵直线(m+1)x+(n+1)y﹣2=0与圆相切,∴圆心到直线的距离d==1,整理得:m+n+1=mn≤,设m+n=x,则有x+1≤,即x2﹣4x﹣4≥0,∵x2﹣4x﹣4=0的解为:x1=2+2,x2=2﹣2,∴不等式变形得:(x﹣2﹣2)(x﹣2+2)≥0,解得:x≥2+2或x≤2﹣2,则m+n的取值范围为(﹣∞,2﹣2]∪[2+2,+∞).故选D9.【解答】解:某城地区有学校150+75+25=250所,现在采用分层抽样方法从所有学校中抽取30所,每个个体被抽到的概率是=,∵某地区有小学150所,中学75所,大学25所.∴用分层抽样进行抽样,应该选取小学×150=18所,选取中学×75=9所.故答案为:18,9.10.【解答】解:由三视图可知该几何体为上部是一个长方体,长、宽、高分别为6,3,1(单位:m),体积6×3×1=18.下部为两个半径均为的球体,体积2ו()3=9π故所求体积等于18+9π故答案为:18+9π11.【解答】解:A={x∈R||x+2|<3}={x∈R|﹣5<x<1},又集合B={x∈R|(x﹣m)(x﹣2)<0},A∩B=(﹣1,n).如图由图知m=﹣1,n=1,故答案为﹣1,1.12.【解答】解:抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l,消去参数可得x=2p,化简可得y2=2px,表示顶点在原点、开口向右、对称轴是x轴的抛物线,故焦点F(,0),准线l的方程为x=﹣.则由抛物线的定义可得|ME|=|MF|,再由|EF|=|MF|,可得△MEF为等边三角形.设点M的坐标为(3,m ),则点E(﹣,m).把点M的坐标代入抛物线的方程可得m2=2×p×3,即p=.再由|EF|=|ME|,可得p2+m2=,即p2+6p=9++3p,解得p=2,或p=﹣6 (舍去),故答案为2.13.【解答】解:由相交弦定理得到AF•FB=EF•FC,即3×1=×FC,FC=2,在△ABD中AF:AB=FC:BD,即3:4=2:BD,BD=,设DC=x,则AD=4x,再由切割线定理,BD2=CD•AD,即x•4x=()2,x=故答案为:14.【解答】解:y===函数y=kx﹣2的图象恒过点(0,﹣2)在同一个坐标系下画出函数y=的图象与函数y=kx﹣2的图象结合图象可实数k的取值范围是(0,1)∪(1,4)故答案为:(0,1)∪(1,4)15.【解答】解:(1)∵f(x)=sin2x•cos+cos2x•sin+sin2x•cos﹣cos2x•sin+cos2x=sin2x+cos2x=sin(2x+),∴函数f(x)的最小正周期T==π.(2)∵函数f(x)在区间[]上是增函数,在区间[,]上是减函数,又f(﹣)=﹣1,f()=,f()=1,∴函数f(x)在区间[]上的最大值为,最小值为﹣1.16.【解答】解:依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的人数的概率为设“这4个人中恰有i人去参加甲游戏”为事件A i(i=0,1,2,3,4),∴P(A i)=(1)这4个人中恰有2人去参加甲游戏的概率为P(A2)=;(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏”为事件B,则B=A3∪A4,∴P(B)=P(A3)+P(A4)=(3)ξ的所有可能取值为0,2,4,由于A1与A3互斥,A0与A4互斥,故P(ξ=0)=P(A2)=P(ξ=2)=P(A1)+P(A3)=,P(ξ=4)=P(A0)+P(A4)=∴ξ的分布列是数学期望Eξ=17.【解答】解法一:如图,以A为原点,建立空间直角坐标系,则A(0,0,0),D(2,0,0),C(0,1,0),B(﹣,,0),P(0,0,2).(1)证明:易得=(0,1,﹣2),=(2,0,0),于是•=0,所以PC⊥AD.(2)解:=(0,1,﹣2),=(2,﹣1,0),设平面PCD的一个法向量为=(x,y,z),则即取z=1,则以=(1,2,1).又平面PAC的一个法向量为=(1,0,0),于是cos<>==,sin<>=所以二面角A﹣PC﹣D的正弦值为.(3)设E(0,0,h),其中h∈[0,2],由此得=(,﹣,h).由=(2,﹣1,0),故cos<>===所以=cos30°=,解得h=,即AE=.解法二:(1)证明:由PA⊥平面ABCD,可得PA⊥AD,又由AD⊥AC,PA∩AC=A,故AD⊥平面PAC,又PC⊂平面PAC,所以PC⊥AD.(2)解:如图,作AH⊥PC于点H,连接DH,由PC⊥AD,PC⊥AH,可得PC⊥平面ADH,因此DH⊥PC,从而∠AHD为二面角A﹣PC﹣D的平面角.在RT△PAC中,PA=2,AC=1,所以AH=,由(1)知,AD⊥AH,在RT△DAH中,DH==,因此sin∠AHD==.所以二面角A﹣PC﹣D的正弦值为.(3)解:如图,因为∠ADC<45°,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF,故∠EBF(或其补角)为异面直线BE与CD所成的角.由于BF∥CD,故∠AFB=∠ADC,在RT△DAC中,CD=,sin∠ADC=,故sin∠AFB=.在△AFB中,由,AB=,sin∠FAB=sin135°=,可得BF=,由余弦定理,BF2=AB2+AF2﹣2ABAFcos∠FAB,得出AF=,设AE=h,在RT△EAF中,EF==,在RT△BAE中,BE==,在△EBF中,因为EF<BE,从而∠EBF=30°,由余弦定理得到,cos30°=,解得h=,即AE=.18.【解答】解:(1)设等差数列的公差为d,等比数列的公比为q,由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,由条件a4+b4=27,s4﹣b4=10,得方程组,解得,故a n=3n﹣1,b n=2n,n∈N*.(2)证明:方法一,由(1)得,T n=2a n+22a n﹣1+23a n﹣2+…+2n a1;①;2T n=22a n+23a n﹣1+…+2n a2+2n+1a1;②;由②﹣①得,T n=﹣2(3n﹣1)+3×22+3×23+…+3×2n+2n+2=+2n+2﹣6n+2=10×2n﹣6n﹣10;而﹣2a n+10b n﹣12=﹣2(3n﹣1)+10×2n﹣12=10×2n﹣6n﹣10;故T n+12=﹣2a n+10b n(n∈N*).方法二:数学归纳法,③当n=1时,T1+12=a1b1+12=16,﹣2a1+10b1=16,故等式成立,④假设当n=k时等式成立,即T k+12=﹣2a k+10b k,则当n=k+1时有,T k+1=a k+1b1+a k b2+a k﹣1b3+…+a1b k+1=a k+1b1+q(a k b1+a k﹣1b2+…+a1b k)=a k+1b1+qT k=a k+1b1+q(﹣2a k+10b k﹣12)=2a k+1﹣4(a k+1﹣3)+10b k+1﹣24=﹣2a k+1+10b k+1﹣12.即T k+1+12=﹣2a k+1+10b k+1,因此n=k+1时等式成立.③④对任意的n∈N*,T n+12=﹣2a n+10b n成立.19.【解答】(1)解:设P(x0,y0),∴①∵椭圆的左右顶点分别为A,B,∴A(﹣a,0),B(a,0)∴,∵直线AP与BP的斜率之积为,∴,代入①并整理得∵y0≠0,∴a2=2b2∴,∴∴椭圆的离心率为;(2)证明:依题意,直线OP的方程为y=kx,设P(x0,kx0),∴∵a>b>0,kx0≠0,∴11/ 1212 / 12∴②, ∵|AP |=|OA |,A (﹣a ,0),∴,∴,∴代入②得∴k 2>3∴直线OP 的斜率k 满足|k |>.20. 【解答】(1)解:函数的定义域为(﹣a ,+∞),求导函数可得令f′(x )=0,可得x=1﹣a >﹣a令f′(x )>0,x >﹣a 可得x >1﹣a ;令f′(x )<0,x >﹣a 可得﹣a <x <1﹣a∴x=1﹣a 时,函数取得极小值且为最小值∵函数f (x )=x ﹣ln (x +a )的最小值为0,∴f (1﹣a )=1﹣a ﹣0,解得a=1(2)解:当k ≤0时,取x=1,有f (1)=1﹣ln2>0,故k ≤0不合题意当k >0时,令g (x )=f (x )﹣kx 2,即g (x )=x ﹣ln (x +1)﹣kx 2,求导函数可得g′(x )=g′(x )=0,可得x 1=0,①当k ≥时,,g′(x )<0在(0,+∞)上恒成立,因此g (x )在(0,+∞)上单调递减,从而对任意的x ∈[0,+∞),总有g (x )≤g (0)=0,即对任意的x ∈[0,+∞),有f (x )≤kx 2成立;②当0<k <时,,对于,g′(x )>0,因此g (x )在上单调递增, 因此取时,g (x 0)≥g (0)=0,即有f (x 0)≤kx 02不成立;综上知,k ≥时对任意的x ∈[0,+∞),有f (x )≤kx 2成立,k 的最小值为(3)证明:当n=1时,不等式左边=2﹣ln3<2=右边,所以不等式成立当n ≥2时,在(2)中,取k=,得f (x )≤x 2,∴(i ≥2,i ∈N *).∴ =f (2)+<2﹣ln3+ =2﹣ln3+1﹣<2综上,(n ∈N *).。
天津高考试题(理数,word解析版)
2012年普通高等学校招生全国统一考试(天津卷)数学(理科)本试卷分为第I 卷(选择题〉和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟第I 卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)i 是虚数单位,复数7=3iz i-+= (A )2i + (B)2i - (C)2i -+ (D)2i -- 1.B【命题意图】本试题主要考查了复数的概念以及复数的加、减、乘、除四则运算. 【解析】7=3i z i -+=(7)(3)(3)(3)i i i i --+-=2173110i i ---=2i - (2)设R ϕ∈,则“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的(A )充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件 2.A【命题意图】本试题主要考查了三角函数的奇偶性的判定以及充分条件与必要条件的判定.【解析】∵=0ϕ⇒()=cos(+)f x x ϕ()x R ∈为偶函数,反之不成立,∴“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的充分而不必要条件.(3)阅读右边的程序框图,运行相应的程序,当输入x 的值为25-时,输出x 的值为(A )1- (B)1 (C)3 (D)9 3.C【命题意图】本试题主要考查了算法框图的读取,并能根据已给的算法程序进行运算. 【解析】根据图给的算法程序可知:第一次=4x ,第二次=1x ,则输出=21+1=3x ⨯. (4)函数3()=2+2xf x x -在区间(0,1)内的零点个数是(A )0 (B)1 (C)2 (D)3 4.B【命题意图】本试题主要考查了函数与方程思想,函数的零点的概念,零点存在定理以及作图与用图的数学能力.2=8-,即(0)(1)<0f f⋅且函数()f x在(0,1)内连续不B正确..,∴103=1r-,即=3r,∴x的系数为40-.(6)在△ABC中,内角A,B,C所对的边分别是,,a b c,已知8=5b c,=2C B,则cosC=(A)725(B)725-(C)725±(D)24256.A【命题意图】本试题主要考查了正弦定理、三角函数中的二倍角公式.考查学生分析、转化与计算等能力.【解析】∵8=5b c,由正弦定理得8sin=5sinB C,又∵=2C B,∴8s i n=5s i nB B,所以8sin=10sin cosB B B,易知sin0B≠,∴4cos=5B,2cos=cos2=2cos1C B B-=725.(7)已知△ABC为等边三角形,=2AB,设点P,Q满足=AP ABλ,=(1)AQ ACλ-,Rλ∈,若3=2B QC P⋅-,则=λ(A)12(B)12±(C)12±(D)32-±7.A【命题意图】本试题以等边三角形为载体,主要考查了向量加减法的几何意义,平面向量基本定理,共线向量定理及其数量积的综合运用.【解析】∵=BQ AQ AB-=(1)AC ABλ--,=CP AP AC-=AB ACλ-,又∵3=2B QC P⋅-,且||=||A B A C,0<,>=60AB AC,0=||||cos60=2AB AC AB AC⋅⋅,∴3[(1)]()=2A C AB A B A Cλλ----,2223||+(1)+(1)||=2AB AB AC ACλλλλ--⋅-,所以234+2(1)+4(1)=2λλλλ---,解得1=2λ. C(8)设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是 (A)[1(B)(,1)-∞∞(C)[2-(D)(,2)-∞-∞8.D【命题意图】本试题主要考查了直线与圆的位置关系,点到直线的距离公式,重要不等式,一元二次不等式的解法,并借助于直线与圆相切的几何性质求解的能力.【解析】∵直线(1)+(1)2=0m x ny ++-与圆22(1)+(y 1)=1x --相切,∴圆心(1,1)到直线的距离为d ,所以21()2m n mn m n +=++≤,设=t m n +, 则21+14t t≥,解得(,2)t ∈-∞-∞ . 二、填空题:本大题共6小题,每小题5分,共30分.(9)某地区有小学150所,中学75所,大学25所. 现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调査,应从小学中抽取 所学校,中学中抽取 所学校. 9.18,9【命题意图】本试题主要考查了统计中的分层抽样的概念以及样本获取的方法与计算. 【解析】∵分层抽样也叫按比例抽样,由题知学校总数为250所, 所以应从小学中抽取15030=18250⨯,中学中抽取7530=9250⨯. (10)―个几何体的三视图如图所示(单位:m),则该几何体的体积为 3m .10.18+9π【命题意图】本试题主要考查了简单组合体的三视图的画法与体积的计算以及空间想象能力.【解析】由三视图可该几何体为两个相切的球上方了一个长方体组成的组合体,所以其体积为:343=361+2()32V π⨯⨯⨯⨯=18+9π3m .(11)已知集合={||+2|<3}A x R x ∈,集合={|()(2)B x R xm x ∈--,且=(1,)A B n - ,则=m ,=n .11.1-,1【命题意图】本试题主要考查了集合的交集的运算及其运算性质,同时考查绝对值不等式与一元二次不等式的解法以及分类讨论思想.【解析】∵={||+2|<3}A x R x ∈={||5<<1}x x -,又∵=(1,)A B n - ,画数轴可知=1m -,=1n .(12)己知抛物线的参数方程为2=2,=2,x pt y pt ⎧⎨⎩(t 为参数),其中>0p ,焦点为F ,准线为l ,过抛物线上一点M作的垂线,垂足为E ,若||=||EF MF ,点M 的横坐标是3,则=p .12.2【命题意图】本试题主要考查了参数方程及其参数的几何意义,抛物线的定义及其几何性质.【解析】∵2=2,=2,x pt y pt ⎧⎨⎩可得抛物线的标准方程为2=2y px (>0)p ,∴焦点(,0)2pF ,∵点M 的横坐标是3,则(3,M ,所以点(,2p E -±,222=()+(022p pEF - 由抛物线得几何性质得=+32p MF ,∵=EF MF ,∴221+6=+3+94p p p p ,解得=2p .(13)如图,已知AB 和AC 是圆的两条弦.过点B 作圆的切线与AC 的延长线相交于点D,过点C 作BD 的平行线与圆相交于点E,与AB 相交于点F ,=3AF ,=1FB ,3=2EF ,则线段CD 的长为 .13.43【命题意图】本试题主要考查了平面几何中直线与圆的位置关系,相交弦定理,切割线定理,相似三角形的概念、判定与性质.【解析】∵=3AF ,=1FB ,3=2EF ,由相交弦定理得=AF FB EF FC ⋅⋅,所以=2FC ,又∵B D ∥CE ,∴=AF FC AB BD ,4==23AB BD FC AF ⋅⨯=83,设=CD x ,则=4AD x ,再由切割线定理得2=BD CD AD ⋅,即284=()3x x ⋅,解得4=3x ,故4=3CD .(14)已知函数2|1|=1x y x --的图象与函数=2y kx -的图象恰有两个交点,则实数k 的取值范围是 .14.(0,1)(1,4)【命题意图】本试题主要考查了函数的图像及其性质,利用函数图像确定两函数的交点,从而确定参数的取值范围.【解析】∵函数=2y kx -的图像直线恒过定点B(0,2)-,且(1,2)A -,(1,0)C -,(1,2)D ,∴2+2==010AB k --,(0,1)(1,4)k ∈ . .2sin (2+)+sin(2)+2cos 133x x x ππ--,x R ∈.44. 【命题意图】本试题主要考查了 【参考答案】 (1)2()=sin (2+)+sin(2)+2cos 133fx x x x ππ--2sin 2coscos 2)34x x x ππ=+=+ 函数()f x 的最小正周期为22T ππ== (2)32sin(2)11()444444x x x f x ππππππ-≤≤⇒-≤+≤⇒≤+≤⇔-≤≤ 当2()428x x πππ+==时,()max f x =2()444x x πππ+=-=-时,min ()1f x =-【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可.(16)(本小题满分13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加个游戏,掷出点数为1或2的人去 参加甲游戏,掷出点数大于2的人去参加乙游戏. (Ⅰ)求这4个人中恰有2人去参加甲游戏的概率:(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率:(Ⅲ)用,X Y 分别表示这4个人中去参加甲、乙游戏的人数,记=||X Y ξ-,求随机变量ξ的分布列与数学期望E ξ.【命题意图】本试题主要考查了 【参考答案】(1)每个人参加甲游戏的概率为13p =,参加乙游戏的概率为213p -= 这4个人中恰有2人去参加甲游戏的概率为22248(1)27C p p -=(2)44(4,)()(1)(0,1,2,3,4)k kk X B p P X k C p p k -⇒==-= ,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为1(3)(4)9P X P X =+== (3)ξ可取0,2,48(0)(2)2740(2)(1)(3)8117(4)(0)(4)81P P X P P X P X P P X P X ξξξ=======+=====+==随机变量ξ的分布列为84017148024********E ξ=⨯+⨯+⨯=【点评】应用性问题是高考命题的一个重要考点,近年来都通过概率问题来考查,且常考常新,对于此类考题,要注意认真审题,从数学与实际生活两个角度来理解问题的实质,将问题成功转化为古典概型,独立事件、互斥事件等概率模型求解,因此对概率型应用性问题,理解是基础,转化是关键.(17)(本小题满分13分)如图,在四棱锥P ABCD -中,PA 丄平面ABCD ,AC 丄AD ,AB 丄BC ,45BAC ︒∠=,==2PA AD ,=1AC .(Ⅰ)证明:PC 丄AD ;(Ⅱ)求二面角A PC D --的正弦值;(Ⅲ)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为030, 求AE 的长.【命题意图】本试题主要考查了 【参考答案】(1)以,,AD AC AP为,,x y z 正半轴方向,建立空间直角左边系A xyz -则11(2,0,0),(0,1,0),(,,0),(0,0,2)22D C B P -(0,1,2),(2,0,0)0PC AD PC AD PC AD =-=⇒=⇔⊥(2)(0,1,2),(2,1,0)PC CD =-=- ,设平面PCD 的法向量(,,)n x y z =则0202200n PC y z y z x y x z n CD ⎧=-==⎧⎧⎪⇔⇔⎨⎨⎨-===⎩⎩⎪⎩取1(1,2,1)z n =⇒= (2,0,0)AD =是平面PAC 的法向量cos ,sin ,AD n AD n AD n AD n<>==⇒<>= 得:二面角A PC D --(3)设[0,2]AE h =∈;则(0,0,2)AE =,11(,,),(2,1,0)22BE h CD =-=-c o s ,B E C D B E C D B E C D <>=⇔即AE =【点评】试题从命题的角度来看,整体上题目与我们平时练习的试题相似,但底面是非特殊的四边形,一直线垂直于底面的四棱锥问题,那么创新的地方就是第三问中点E 的位置是不确定的,需要学生根据已知条件进行确定,如此说来就有难度,因此最好使用空间直角坐标系解决该问题为好.DCBAP(18)(本小题满分13分)已知{n a }是等差数列,其前n 项和为n S ,{n b }是等比数列,且1a =1=2b , 44+=27a b ,44=10S b -.(Ⅰ)求数列{n a }与{n b }的通项公式;(Ⅱ)记112231n n n n n T a b a b a b a b --=++++ ;证明:+12=2+10n n n T a b -+()n N ∈. 【命题意图】本试题主要考查了 【参考答案】(1) 设数列{}n a 的公差为d ,数列{}n b 的公比为q ;则 34434412732322710246210a b d d q S b q a d q +==⎧++=⎧⎧⇔⇔⎨⎨⎨-==+-=⎩⎩⎩ 得:31,2n n n a n b =-=(2)1211223112112222()22nn n n n n n n n n n a a T a b a b a b a b a a a a ----=++++=+++=+++111213132352222n n n n n n n a n n n c c +-----++==-=- 1223112[()()()]2()n nn n n n T c c c c c c c c ++=-+-++-=- 1022(35)1021212102n n n n n n n b a T b a =⨯-+=--⇔+=-【点评】该试题命制比较直接,没有什么隐含的条件,就是等比与等差数列的综合应用,但方法多样,第二问可以用错位相减法求解证明,也可用数学归纳法证明,给学生思维空间留有余地,符合高考命题选拔性的原则.(19)(本小题满分14分)设椭圆2222+=1x y a b(>>0)a b 的左、右顶点分别为,A B ,点P 在椭圆上且异于,A B 两点,O 为坐标原点.(Ⅰ)若直线AP 与BP 的斜率之积为12-,求椭圆的离心率; (Ⅱ)若||=||AP OA ,证明:直线OP 的斜率k满足|k 【命题意图】本试题主要考查了 【参考答案】(Ⅰ)设点P 的坐标为(0x ,0y ).由题意,有+=1. ①由A(-a,0),B(a,0),得k =,k =.由k ·k =-,可得=a -2,代入①并整理得(a -2b )=0.由于0y ≠0,故a =2b .于是e ==,所以椭圆的离心率e=.(Ⅱ)解法一 依题意,直线OP 的方程为y=kx,设点P 的坐标为(0x ,0y ).由条件得消去y 并整理得=. ②由|AP|=|OA|,A(-a,0)及y 0y =kx ,得(0x +a)+k=a .整理得(1+k )+2a 0x =0.而0x ≠0,于是0x =,代入②,整理得(1+k )=4k ()+4.由a>b>0,故(1+k )>4k +4,即k +1>4,因此k >3,所以|k|>.解法二 依题意,直线OP 的方程为y=kx,可设点P 的坐标为(0x ,k 0x ).由点P 在椭圆上,有+=1.因为a>b>0,kx ≠0,所以+<1,即(1+k )<a . ③由|AP|=|OA|,A(-a,0),得(x +a)+k =a ,整理得(1+k )+2ax =0,于是x =.代入③,得(1+k )<a ,解得k >3,所以|k|>.解析本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面内两点间的距离公式等基础知识.考查用代数方法研究圆锥曲线的性质,以及数形结合的数学思想方法.考查运算求解能力、综合分析和解决问题的能力.(Ⅰ)根据椭圆的性质直接求解离心率;(Ⅱ)将直线方程与椭圆方程联立,利用a>b>0建立不等式求解. (20)(本小题满分14分)已知函数()ln()f x x x a =-+的最小值为0,其中>0a .(Ⅰ)求a 的值;(Ⅱ)若对任意的[0,+)x ∈∞,有2()f x kx ≤成立,求实数k 的最小值; (Ⅲ)证明:=12ln (2+1)<221ni n i --∑*()n N ∈. 【参考答案】(1)函数()f x 的定义域为(,)a -+∞()l n ()f x x x a =-+11()101x a f x x a a x a x a+-'⇒=-==⇔=->-++ ()01,()01f x x a f x a x a ''>⇔>-<⇔-<<-得:1x a =-时,min ()(1)101f x f a a a =-⇔-=⇔=(2)设22()()ln(1)(0)g x kx f x kx x x x =-=-++≥则()0g x ≥在[0,+)x ∈∞上恒成立min ()0(0)g x g ⇔≥=(*) (1)1ln 200g k k =-+≥⇒> 1(221)()2111x kx k g x kx x x +-'=-+=++ ①当1210()2k k -<<时,0012()00()(0)02k g x x x g x g k-'≤⇔≤≤=⇒<=与(*)矛盾 ②当12k ≥时,min ()0()(0)0g x g x g '≥⇒==符合(*) 得:实数k 的最小值为12(3)由(2)得:21ln(1)2x x x -+<对任意的0x >值恒成立取2(1,2,3,,)21x i n i ==- :222[ln(21)ln(21)]21(21)i i i i -+--<-- 当1n =时,2ln 32-< 得:=12ln (2+1)<221ni n i --∑ 当2i ≥时,2211(21)2321i i i <----得:121[ln(21)ln(21)]2ln 3122121ni i i i n =-++-<-+-<--∑ 【点评】试题分为三问,题面比较简单,给出的函数比较常规,因此入手对于同学们来说没有难度,第二问中,解含参数的不等式时,要注意题中参数的讨论所有的限制条件,从而做到不重不漏;第三问中,证明不等式,应借助于导数证不等式的方法进行.第11页。
2012年高考数学真题(天津卷)理科精编解析word版
天津理科1.(2012天津,理1)i 是虚数单位,复数7i 3i-+=( ).A.2+iB.2-iC.-2+iD.-2-iB 7i 3i -+=(7i)(3i)(3i)(3i)--+-=22217i 3i i 9i --+-=2010i 10-=2-i.2.(2012天津,理2)设φ∈R ,则“φ=0”是“f(x)=cos (x+φ)(x ∈R )为偶函数”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件A φ=0时,f(x)=cos x,f(-x)=f(x),∴f(x)为偶函数;若f(x)为偶函数,则f(0)=±1,∴cos φ=±1,∴φ=k π(k ∈Z ).∴是充分而不必要条件.3.(2012天津,理3)阅读右边的程序框图,运行相应的程序,当输入x 的值为-25时,输出x 的值为( ). A .-1 B .1 C .3D .9Cx=|1|>1不成立, ∴x=2×1+1=3.4.(2012天津,理4)函数f(x)=2x +x 3-2在区间(0,1)内的零点个数是( ). A .0 B .1 C .2D .3B f'(x)=2x ln 2+3x 2,在(0,1)上f'(x)>0恒成立,∴f(x)在区间(0,1)上单调递增.又∵f(0)=20+03-2=-1<0,f(1)=21+13-2=1>0, ∴f(x)在区间(0,1)上存在一个零点.5.(2012天津,理5)在5212x x ⎛⎫- ⎪⎝⎭的二项展开式中,x 的系数为( ).A .10B .-10C .40D .-40D T r+1=r 5C(2x 2)5-r r1x ⎛⎫- ⎪⎝⎭=(-1)r 25-r r 5C x 10-3r , ∴当10-3r=1时,r=3.∴(-1)325-335C =-40.6.(2012天津,理6)在△ABC 中,内角A,B,C 所对的边分别是a,b,c.已知8b=5c,C=2B,则cos C=( ). A .725B .-725C .±725D .2425A 在△ABC 中,由正弦定理:b Bsin =c Csin ,∴C Bsin sin =c b,∴2B Bsin sin =85,∴cos B=45.∴cos C=cos 2B=2cos 2B-1=725.7.(2012天津,理7)已知△ABC 为等边三角形,AB =2.设点P ,Q 满足AP =λAB ,AQ =(1-λ)AC ,λ∈R.若BQ ·CP =-32,则λ=( ).A .12B C D A设AB =a ,AC =b ,则|a|=|b|=2,且<a,b>=3π.BQ =AQ -AB =(1-λ)b -a ,CP =AP -AC =λa -b .BQ ·CP =[(1-λ)b -a ]·(λa -b ) =[λ(1-λ)+1]a ·b -λa 2-(1-λ)b 2 =(λ-λ2+1)×2-4λ-4(1-λ) =-2λ2+2λ-2=-32.即(2λ-1)2=0,∴λ=12.8.(2012天津,理8)设m ,n ∈R,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( ).AB.(-∞∪∞)CD.(-∞∪∞) D直线与圆相切,∴即:mn=m+n+1,设m+n=t,则mn≤2m n2+⎛⎫⎪⎝⎭=2t4,∴t+1≤2t4,∴t2-4t-4≥0,解得:t≤t≥9.(2012天津,理9)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取所学校,中学中抽取所学校.189共有学校150+75+25=250所,∴小学中应抽取:30×150250=18所,中学中应抽取:30×75250=9所.10.(2012天津,理10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.18+9π由几何体的三视图可知该几何体的顶部是长、宽、高分别为6 m,3 m,1 m的长方体,底部为两个直径为3 m的球.∴该几何体的体积为:V=6×3×1+2×43π×332⎛⎫⎪⎝⎭=18+9π(m3).11.(2012天津,理11)已知集合A={x||x2|3}R∈+<,集合B={x|(x m)(x2)0}R∈--<,且A∩B=(-1,n),则m=,n=.-11A={x∈R||x+2|<3},∴|x+2|<3.∴-3<x+2<3,∴-5<x<1.又∵B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),∴-1是方程(x-m)(x-2)=0的根,n是区间(-5,1)的右端点,∴m=-1,n=1.12.(2012天津,理12)已知抛物线的参数方程为2x 2pt ,y 2pt⎧=⎨=⎩(t 为参数),其中p>0,焦点为F,准线为l.过抛物线上一点M 作l 的垂线,垂足为E.若|EF|=|MF|,点M 的横坐标是3,则p= .2 由参数方程2x 2pt ,y 2pt⎧=⎨=⎩(t 为参数),p>0,可得曲线方程为:y 2=2px(p>0). ∵|EF|=|MF|,且|MF|=|ME|(抛物线定义), ∴△MEF 为等边三角形,E 的横坐标为-p 2,M 的横坐标为3.∴EM 中点的横坐标为:p322-,与F 的横坐标p 2相同,∴p322-=p 2,∴p=2.13.(2012天津,理13)如图,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于点D.过点C 作BD 的平行线与圆相交于点E,与AB 相交于点F,AF=3,FB=1,EF=32,则线段CD 的长为 .43在圆中,由相交弦定理:AF·FB=EF·FC, ∴FC=AF?FB EF=2,由三角形相似,FC BD=AF AB,∴BD=FC?AB AF=83.由切割弦定理:DB 2=DC·DA,又DA=4CD, ∴4DC 2=DB 2=649.∴DC=43.14.(2012天津,理14)已知函数y=2|x 1|x 1--的图象与函数y=kx-2的图象恰有两个交点,则实数k 的取值范围是 .(0,1)∪(1,4) y=2|x 1|x 1--=|x 1||x 1|x 1+--=x 1,x 1,-|x 1|,x 1,+>⎧⎨+<⎩ 函数y=kx-2过定点(0,-2),由数形结合:k AB <k<1或1<k<k AC , ∴0<k<1或1<k<4.15.(2012天津,理15)已知函数f(x)=sin 2x 3π⎛⎫+ ⎪⎝⎭+sin 2x 3π⎛⎫- ⎪⎝⎭+2cos 2x-1,x ∈R . (1)求函数f(x)的最小正周期;(2)求函数f(x)在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.解:(1)f(x)=sin 2x·cos 3π+cos 2x·sin 3π+sin 2x·cos 3π-cos 2x·sin 3π+cos 2x=sin 2x+cos 2x 4π⎛⎫+ ⎪⎝⎭. 所以,f(x)的最小正周期T=22π=π.(2)因为f(x)在区间,48ππ⎡⎤-⎢⎥⎣⎦上是增函数,在区间,84ππ⎡⎤⎢⎥⎣⎦上是减函数,又f 4π⎛⎫- ⎪⎝⎭=-1,f 8π⎛⎫ ⎪⎝⎭4π⎛⎫ ⎪⎝⎭=1,故函数f (x )在区间,44ππ⎡⎤-⎢⎥⎣⎦最小值为-1.16.(2012天津,理16)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X-Y|,求随机变量ξ的分布列与数学期望E(ξ).解:依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i=0,1,2,3,4), 则P(A i )=i4ii 41233C -⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭. (1)这4个人中恰有2人去参加甲游戏的概率P(A 2)=22241233C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B,则B=A 3∪A 4.由于A 3与A 4互斥,故P(B)=P(A 3)+P(A 4) =3341233C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+44413C ⎛⎫ ⎪⎝⎭=19.所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能取值为0,2,4. 由于A 1与A 3互斥,A 0与A 4互斥,故 P(ξ=0)=P(A 2)=827,P(ξ=2)=P(A 1)+P(A 3)=4081,P(ξ=4)=P(A 0)+P(A 4)=1781.所以ξ的分布列是随机变量ξ的数学期望E(ξ)=0×827+2×4081+4×1781=14881.17.(2012天津,理17)如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD,AC ⊥AD,AB ⊥BC,∠BAC=45°,PA=AD=2,AC=1. (1)证明PC ⊥AD;(2)求二面角A-PC-D 的正弦值;(3)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长. 解法一:如图,以点A 为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0),B(-12,12,0),P(0,0,2).(1)证明:易得PC =(0,1,-2),AD =(2,0,0), 于是PC ·AD =0, 所以PC ⊥AD.(2)PC =(0,1,-2),CD =(2,-1,0). 设平面PCD 的法向量n =(x ,y ,z ),则n?0,n?0,PC CD ⎧=⎪⎨=⎪⎩即y 2z 0,2x y 0.-=⎧⎨-=⎩不妨令z =1, 可得n =(1,2,1).可取平面PAC 的法向量m =(1,0,0). 于是cos <m,n>=m?n |m||n |从而sin所以二面角A-PC-D(3)设点E 的坐标为(0,0,h),其中h ∈[0,2],由此得BE =11,-,h 22⎛⎫ ⎪⎝⎭.由CD =(2,-1,0),故 cos <BE ,CD >=BE?CD |BE||CD |=3所以cos 30°解得即.解法二:(1)证明:由PA ⊥平面ABCD,可得PA ⊥AD,又由AD ⊥AC,PA ∩AC=A,故AD ⊥平面PAC.又PC ⊂平面PAC,所以PC ⊥AD.(2)如图,作AH ⊥PC 于点H,连接DH. 由PC ⊥AD,PC ⊥AH,可得PC ⊥平面ADH.因此DH ⊥PC,从而∠AHD 为二面角A-PC-D 的平面角. 在Rt △PAC 中,PA=2,AC=1,由此得由(1)知AD ⊥AH,故在Rt △DAH 中因此sin ∠AHD=AD DH 所以二面角A-PC-D (3)如图,因为∠ADC<45°,故过点B 作CD 的平行线必与线段AD 相交,设交点为F,连接BE,EF.故∠EBF 或其补角为异面直线BE 与CD 所成的角.由于BF ∥CD,故∠AFB=∠ADC.在Rt △DAC 中sin ∠故sin ∠在△AFB 中,由BFFAB sin ∠=AB AFB sin ∠,AB sin ∠FAB=sin 135°可得由余弦定理,BF 2=AB 2+AF 2-2AB·AF·cos ∠FAB, 可得AF=12.设AE=h.在Rt △EAF 中在Rt △BAE 中在△EBF 中,因为EF<BE,从而∠EBF=30°,由余弦定理得cos 30°=222BE BF EF 2BE?BF +-.可解得.所以. 18.(2012天津,理18)已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=27,S 4-b 4=10.(1)求数列{a n }与{b n }的通项公式;(2)记T n =a n b 1+a n -1b 2+…+a 1b n ,n ∈N *,证明T n +12=-2a n +10b n (n ∈N *).(1)解:设等差数列{a n }的公差为d,等比数列{b n }的公比为q.由a 1=b 1=2,得a 4=2+3d,b 4=2q 3,S 4=8+6d.由条件,得方程组3323d 2q 27,86d 2q 10.⎧++=⎨+-=⎩解得d 3,q 2.=⎧⎨=⎩ 所以a n =3n -1,b n =2n ,n ∈N *. (2)证明:(方法一)由(1)得T n =2a n +22a n-1+23a n-2+…+2n a 1,① 2T n =22a n +23a n-1+…+2n a 2+2n+1a 1.② 由②-①,得T n =-2(3n-1)+3×22+3×23+…+3×2n +2n+2=n 112(12)12---+2n+2-6n+2=10×2n -6n-10.而-2a n +10b n -12=-2(3n-1)+10×2n -12=10×2n -6n-10,故 T n +12=-2a n +10b n ,n ∈N *. (方法二:数学归纳法)①当n=1时,T 1+12=a 1b 1+12=16,-2a 1+10b 1=16,故等式成立; ②假设当n=k 时等式成立,即T k +12=-2a k +10b k ,则当n=k+1时有: T k+1=a k+1b 1+a k b 2+a k-1b 3+…+a 1b k+1 =a k+1b 1+q(a k b 1+a k-1b 2+…+a 1b k ) =a k+1b 1+qT k=a k+1b 1+q(-2a k +10b k -12) =2a k+1-4(a k+1-3)+10b k+1-24 =-2a k+1+10b k+1-12,即T k+1+12=-2a k+1+10b k+1,因此n=k+1时等式也成立. 由①和②,可知对任意n ∈N *,T n +12=-2a n +10b n 成立.19.(2012天津,理19)设椭圆22x a+22y b=1(a>b>0)的左、右顶点分别为A,B,点P 在椭圆上且异于A,B 两点,O 为坐标原点.(1)若直线AP 与BP 的斜率之积为-12,求椭圆的离心率;(2)若|AP|=|OA|,证明直线OP 的斜率k 满足(1)解:设点P 的坐标为(x 0,y 0).由题意,有202x a +202y b=1① 由A(-a,0),B(a,0),得k AP =00y x a +,k BP =00y x a-.由k AP ·k BP =-12,可得20x =a 2-220y ,代入①并整理得(a 2-2b 2)20y =0.由于y 0≠0,故a 2=2b 2.于是e 2=222a b a -=12,所以椭圆的离心率(2)证明:(方法一)依题意,直线OP 的方程为y=kx,设点P 的坐标为(x 0,y 0).由条件得00220022y kx ,x y 1,ab =⎧⎪⎨+=⎪⎩ 消去y 0并整理得 2x =22222a b k a b +.② 由|AP|=|OA|,A(-a,0)及y 0=kx 0,得(x 0+a)2+k 220x =a 2.整理得(1+k 2)20x +2ax 0=0.而x 0≠0,于是x 0=22a 1k-+,代入②,整理得(1+k 2)2=4k 22a b ⎛⎫ ⎪⎝⎭+4.由a>b>0,故(1+k 2)2>4k 2+4,即k 2+1>4,因此k 2>3.所以(方法二)依题意,直线OP 的方程为y=kx,可设点P 的坐标为(x 0,kx 0),由点P 在椭圆上,有202x a +2202k x b=1.因为a>b>0,kx 0≠0,所以202x a +2202k x a<1,即(1+k 2)20x <a 2.③ 由|AP|=|OA|,A(-a,0),得(x 0+a)2+k 220x =a 2,整理得(1+k 2)20x +2ax 0=0,于是x 0=22a 1k-+.代入③,得(1+k 2)2224a (1k )+<a 2,解得k 2>3,所以20.(2012天津,理20)已知函数f(x)=x-ln (x+a)的最小值为0,其中a>0. (1)求a 的值;(2)若对任意的x ∈[0,+∞),有f(x)≤kx 2成立,求实数k 的最小值;(3)证明ni 122i 1=∑--ln (2n+1)<2(n ∈N *).。
2012年高考理数真题试卷(天津卷)
第1页,总20页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………2012年高考理数真题试卷(天津卷)考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共8题),则“φ=0”是“f (x )=cos (x+φ)(x∈R )为偶函数”的( ) A . 充分而不必要条件 B . 必要而不充分条件 C . 充分必要条件 D . 既不充分也不必要条件2. (2012•天津)函数f (x )=2x +x 3﹣2在区间(0,1)内的零点个数是( ) A . 0 B . 1 C . 2 D . 33. (2012•天津)设m ,n∈R ,若直线(m+1)x+(n+1)y ﹣2=0与圆(x ﹣1)2+(y ﹣1)2=1相切,则m+n 的取值范围是( ) A . [1﹣ ,1+ ] B . (﹣∞,1﹣]∈[1+,+∞)C . [2﹣2 ,2+2] D . (﹣∞,2﹣2 ]∈[2+2,+∞)4. (2012•天津)阅读程序框图,运行相应的程序,当输入x 的值为﹣25时,输出x 的值为( )答案第2页,总20页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . ﹣1B . 1C . 3D . 95. (2012•天津)已知∈ABC 为等边三角形,AB=2.设点P ,Q 满足,,λ∈R .若=﹣ ,则λ=( )A .B .C .D .6. (2012•天津)在∈ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知8b=5c ,C=2B ,则cosC=( ) A . B .C .D .7. (2012•天津)i 是虚数单位,复数=( )A . 2+iB . 2﹣iC . ﹣2+iD . ﹣2﹣i8. (2012•天津)在(2x 2﹣ )5的二项展开式中,x 项的系数为( ) A . 10 B . ﹣10 C . 40 D . ﹣40第Ⅱ卷 主观题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年天津市高考数学试卷(理科)
一、选择题
1.(3分)(2012•天津)i是虚数单位,复数=()
A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i
2.(3分)(2012•天津)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的()A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
3.(3分)(2012•天津)阅读程序框图,运行相应的程序,当输入x的值为﹣25时,输出x 的值为()
A.﹣1 B.1C.3D.9
4.(3分)(2012•天津)函数f(x)=2x+x3﹣2在区间(0,1)内的零点个数是()A.0B.1C.2D.3
5.(3分)(2012•天津)在(2x2﹣)5的二项展开式中,x项的系数为()
A.10 B.﹣10 C.40 D.﹣40
6.(3分)(2012•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,则cosC=()
A.B.C.D.
7.(3分)(2012•天津)已知△ABC为等边三角形,AB=2.设点P,Q满足,,λ∈R.若=﹣,则λ=()
A.B.C.D.
8.(3分)(2012•天津)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y ﹣1)2=1相切,则m+n的取值范围是()
A.[1﹣,1+]B.(﹣∞,1﹣]∪[1+,+∞)
C.[2﹣2,2+2]D.(﹣∞,2﹣2]∪[2+2,+∞)
二、填空题
9.(3分)(2012•天津)某地区有小学150所,中学75所,大学25所.先采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取所学校,中学中抽取所学校.
10.(3分)(2012•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.
11.(3分)(2012•天津)已知集合A={x∈R||x+2|<3},集合B={x∈R|(x﹣m)(x﹣2)<0},且A∩B=(﹣1,n),则m=,n=.
12.(3分)(2012•天津)已知抛物线的参数方程为(t为参数),其中p>0,焦点
为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p=.
13.(3分)(2012•天津)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC
的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=,则线段CD的长为.
14.(3分)(2012•天津)已知函数y=的图象与函数y=kx﹣2的图象恰有两个交
点,则实数k的取值范围是.
三、解答题
15.(2012•天津)已知函数f(x)=sin(2x+)+sin(2x﹣)+2cos2x﹣1,x∈R.(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[]上的最大值和最小值.
16.(2012•天津)现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求这4个人中恰有2人去参加甲游戏的概率;
(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.
17.(2012•天津)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(1)证明:PC⊥AD;
(2)求二面角A﹣PC﹣D的正弦值;
(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.
18.(2012•天津)已知{a n}是等差数列,其前n项和为S n,{b n}是等比数列,且a1=b1=2,a4+b4=27,s4﹣b4=10.
(1)求数列{a n}与{b n}的通项公式;
(2)记T n=a n b1+a n﹣1b2+…+a1b n,n∈N*,证明:T n+12=﹣2a n+10b n(n∈N*).
19.(2012•天津)设椭圆的左右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.
(1)若直线AP与BP的斜率之积为,求椭圆的离心率;
(2)若|AP|=|OA|,证明直线OP的斜率k满足|k|>.
20.(2012•天津)已知函数f(x)=x﹣ln(x+a)的最小值为0,其中a>0.
(1)求a的值;
(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;
(3)证明:(n∈N*).。