活性炭在建筑给水深度处理中的应用
城市水厂中的给水深度处理技术应用
城市水厂中的给水深度处理技术应用相比于传统处理而言,深度处理工艺往往在净水处理的标准处理工艺之后,旨在加强原处理工艺的功能或者清除某些微量污染物。
当前,给水深度处理技术在城市水厂中得到了普遍应用,并且积累了大量经验,成为世界各国改善水质的重要技术。
本文主要对三种常见的给水深度处理技术即活性炭吸附、臭氧-生物活性炭组合程序以及薄膜净水技术进行了主要分析,并且对该三种技术在具体的城市水厂中的应用情况进行了简要阐述。
标签:城市水厂活性炭吸附臭氧-生物活性炭组合程序薄膜净水技术应用1 活性炭吸附及其在城市水厂中的应用1.1 活性炭吸附。
作为一种能够清除水体中溶解性物质的有效处理技术,活性炭吸附被广泛地应用于给水工程。
活性炭吸附主要受到以下三方面因子的影响:①水质条件:包括有机物之间的竞争、水中阳离子、温度以及PH等等,都会使活性碳吸附平衡的能力受到一定的影响。
②有机物特性:亲水性、溶解度、分子极性、分子大小以及分子量等都是有机物的特性。
鉴于水是高极性分子,碳表面是非极性,所以其有机分子的极性特别小,同水分子间的吸引力也就极小,造成比较容易被活性碳吸附。
通常来讲,活性碳吸附量随着溶质极性和溶解度的降低以及相同族类分子量的增多而增加。
③活性炭自身性质:活性炭主要有3种,分别是纤维状活性炭、颗粒状活性炭以及粉末状活性炭。
在给水处理技术方面,纤维状活性炭是把活性炭制成织状,能够有效地吸附碳氢氯化物,纤维状活性炭在澄清湖原水中的应用表明,相比较于传统活性炭,纤维状活性炭在吸附饱和率与吸附速度方面具有优越性;颗粒状活性炭能够吸附消毒副产物,饮用水处理上一般将混凝沉淀作为颗粒状活性炭的前处理单元,该方式通过混凝沉淀将大部分颗粒性有机物和部分溶解性有机物去除,减少了颗粒状活性炭床的悬浮固体量及其床水头损失,加大去除量;粉末状活性炭大多应用在控制由于水质恶化或者季节性变化而造成的臭味问题,对于处理水体臭味,粉末状活性炭具有较强的能力。
水处理工试题及答案(3篇)
水处理工试题及答案(3篇)水处理工试题及答案(第一篇)一、选择题(每题2分,共20分)1. 水处理过程中,常用的混凝剂是:A. 氯化钠B. 硫酸铝C. 氢氧化钠D. 硝酸钾答案:B2. 活性炭在水处理中主要用于:A. 混凝B. 过滤C. 吸附D. 消毒答案:C3. 水的硬度主要由下列哪种离子引起?A. 钠离子B. 钙、镁离子C. 钾离子D. 氯离子答案:B4. 在水处理过程中,臭氧主要用于:A. 混凝B. 消毒C. 过滤D. 软化答案:B5. 水处理中的“曝气”过程主要是为了:A. 增加溶解氧B. 降低水温C. 去除悬浮物D. 调节pH值答案:A6. 水处理过程中,常用的消毒剂是:A. 氯气B. 硫酸铜C. 氢氧化钠D. 硝酸钾答案:A7. 水处理中的“砂滤”过程主要用于:A. 混凝B. 消毒C. 过滤D. 软化答案:C8. 水处理过程中,常用的软化方法是:A. 混凝B. 消毒C. 离子交换D. 曝气答案:C9. 水处理中的“沉淀”过程主要用于:A. 去除悬浮物B. 增加溶解氧C. 调节pH值D. 消毒答案:A10. 水处理过程中,常用的絮凝剂是:A. 氯化钠B. 硫酸铝C. 氢氧化钠D. 聚丙烯酰胺答案:D二、填空题(每题2分,共20分)1. 水处理过程中,常用的混凝剂有_________和_________。
答案:硫酸铝、聚合氯化铝2. 活性炭在水处理中主要用于_________。
答案:吸附3. 水的硬度主要由_________和_________离子引起。
答案:钙、镁4. 在水处理过程中,臭氧主要用于_________。
答案:消毒5. 水处理中的“曝气”过程主要是为了增加_________。
答案:溶解氧6. 水处理过程中,常用的消毒剂有_________和_________。
答案:氯气、臭氧7. 水处理中的“砂滤”过程主要用于_________。
答案:过滤8. 水处理过程中,常用的软化方法是_________。
活性炭纤维及其在水处理中的应用
活性炭纤维及其在水处理中的应用活性炭纤维(ACF) 是继粉状活性炭( PAC) 和颗粒活性炭( GAC) 之后的第三代活性炭产品,是20世纪70 年代后期发展起来的一种高效活性吸附材料和环保工程材料。
ACF 的前驱体是炭纤维,是由有机纤维原料经炭化、活化而成。
根据生产中前驱体的不同,目前实现工业化生产的活性炭纤维产品主要分为粘胶基ACF、酚醛基ACF、聚丙烯腈基ACF、沥青基ACF等。
由于前驱体的差异,不同的ACF 产品具有不同的功能。
实际工作中应根据需要选取相应的ACF。
1、ACF的特点及性能ACF有丰富的微孔结构和巨大的比表面积,它有多种形式的制成品, 与粉末状和颗粒状吸附材料相比,吸附和脱附速率更快,而且使用更灵活方便。
另外, ACF在震动下不产生装填松动和过分密实的现象,克服了在操作过程中形成沟槽和沉降的问题。
与AC相比, ACF的优势极其明显。
首先, ACF的细孔结构不同于AC, ACF的微孔结构丰富且孔径分布集中(1-2nm), 微孔体积占总孔体积的90%左右, 没有过渡10 %左右; ACF的比表面积较大, 一般都在1000m2/g以上, 甚至可达3000m2 / g , 从而具有更大的吸附容量;ACF的微孔直接分布于纤维的表面,因而吸附质扩散的路径短、时间短,其吸附和再生的速率快,可在较温和条件下再; AC的细孔由大孔(控制扩散速率)、中孔和微孔组成,吸附质扩散要相继经过大孔、中孔和微孔,其扩散路径长、时间长,吸附和再生的速率慢, 因而ACF具有比AC大的吸附动力系数,吸附速率较AC高2 -3个数量级, 再生容易且再生率高, 可重复使用上千次, 使用寿命达数年之久。
其次, ACF的化学组成与AC有差别。
不同原料或相同原料但不同方法制得的ACF, 其表面有不同的官能团,如胺基、亚胺基及磺酸基等,它们对某些吸附质具有特殊的吸附能力和氧化还原及催化特性。
因为ACF具有电性能, 可利用ACF的导电性,将其作为电极,通过电杀菌作用解决细菌繁殖问题。
污水深度处理常见技术
膜分离技术包括微滤、超滤、纳滤和反渗透等,通过不同孔径的膜对废水进行过滤和分离,去除悬浮物、胶体、细菌和病毒等弱小颗粒,从而实现深度处理。膜分离技术具有高效、节能、无化学药剂投加等特点,广泛应用于废水处理领域。
3.化学沉淀
化学沉淀是利用化学反应使废水中的污染物转化成不溶性物质而沉淀下来的技术。常用的化学沉淀剂包括氢氧化铁、氧化铝、聚合氯化铝等。这些沉淀剂能与废水中的重金属离子、磷酸盐等形成沉淀物,从而达到去除污染物的目的。
污水深度处理常见技术
污水处理是指将含有污染物的废水经过一系列的物理、化学和生物过程处理,以使其达到排放标准或者再利用要求的过程。污水深度处理是指在普通的污水处理过程之后,对废水进行进一步处理,以去除更高浓度的污染物,提高水质的处理过程。以下是污水深度处理常见的技术。
1.活性炭吸附
活性炭吸附是一种常见的深度处理技术,通过将废水通过活性炭床,利用活性炭的吸附性能去除有机物、重金属离子等污染物。活性炭具有较大的比表面积和孔隙结构,能够有效吸附废水中的有机物和溶解性物质,从而提高水质。
6.离子交换
离子交换是利用离子交换树脂对废水中的离子进行吸附和交换的技术。通过选择合适的离子交换树脂,可以去除废水中的硬度离子、重金属离子等。离子交换技术具有高效、可再生等特点,广泛应用于废水处理中。
以上是污水深度处理常见的技术,每种技术都有其适合的场景和优缺点。在实际应用中,可以根据废水的性质和目标要求选择合适的深度处理技术,以达到最佳的处理效果。同时,还需要考虑技术的成本、操作难易度和运行维护等因素,以确保污水处理系统的稳定运行和水质达标。
4.生物膜法
生物膜法是一种利用生物膜附着在固体载体上进行废水处理的技术。常见的生物膜法包括生物滤池、生物接触氧化法和生物膜反应器等。通过生物膜的附着和代谢作用,将废水中的有机物பைடு நூலகம்氨氮等污染物转化为无害物质,从而实现深度处理。
活性炭在水处理中的应用及数据
活性炭在水处理中的应用1前言据统计,我国每年排出的工业废水约为8×108 m3 ,其中不仅含有氰化物等剧毒成分,而且含有铬、锌、镍等金属离子。
废水的处理方法很多,主要有化学沉淀法、电解法和膜处理法等[1],本文介绍的是活性炭吸附法。
活性炭的表面积巨大,有很高的物理吸附和化学吸附功能。
因此活性炭吸附法被广泛应用在废水处理中。
而且具有效率高,效果好等特点。
2活性炭活性炭是一种经特殊处理的炭,具有无数细小孔隙,表面积巨大,每克活性炭的表面积为500-1500平方米。
活性炭有很强的物理吸附和化学吸附功能,而且还具有解毒作用。
解毒作用就是利用了其巨大的面积,将毒物吸附在活性炭的微孔中,从而阻止毒物的吸收。
同时,活性炭能与多种化学物质结合,从而阻止这些物质的吸收。
2.1 活性炭的分类在生产中应用的活性炭种类有很多。
一般制成粉末状或颗粒状。
粉末状的活性炭吸附能力强,制备容易,价格较低,但再生困难,一般不能重复使用。
颗粒状的活性炭价格较贵,但可再生后重复使用,并且使用时的劳动条件较好,操作管理方便。
因此在水处理中较多采用颗粒状活性炭[1]。
2.2 活性炭吸附活性炭吸附是指利用活性炭的固体表面对水中的一种或多种物质的吸附作用,以达到净化水质的目的。
2.3 影响活性炭吸附的因素吸附能力和吸附速度是衡量吸附过程的主要指标[2]。
吸附能力的大小是用吸附量来衡量的。
而吸附速度是指单位重量吸附剂在单位时间内所吸附的物质量。
在水处理中,吸附速度决定了污水需要和吸附剂接触时间。
活性炭的吸附能力与活性炭的孔隙大小和结构有关。
一般来说,颗粒越小,孔隙扩散速度越快,活性炭的吸附能力就越强。
污水的pH值和温度对活性炭的吸附也有影响。
活性炭一般在酸性条件下比在碱性条件下有较高的吸附量[2]。
吸附反应通常是放热反应,因此温度低对吸附反应有利。
当然,活性炭的吸附能力与污水浓度有关。
在一定的温度下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高。
活性炭吸附技术在水处理方面的应用
活性炭吸附技术在水处理方面的应用摘要:现代工业的迅猛发展给环境带来的污染日益严重,尤为严重的是水体污染,已经引起了全世界的普遍关注。
同时,随着人们生活水平的不断提高和环保意识的不断增强,使得人们对引用水水质的要求愈来愈严格。
活性炭是最常用的优良的吸附剂,深刻了解活性炭的特性,正确选择活性炭,充分发挥其在水处理的作用,达到深度处理的效果。
成为近来研究的重点。
关键词:活性炭吸附水处理1 活性炭性质及特点活性炭是一种由煤、沥青、石油焦、果壳等含碳原料制成的外观呈黑色的粉末状或颗粒状的无定形碳。
活性炭内部孔隙结构发达、比表面积大、吸附能力强。
普通活性炭的比表面积为500~1500m2/g,超级活性炭比表面积则高达3500~5000m2/g。
活性炭所含主要元素是碳,含量为90%~95%。
氧和氢大部分是以化学键的形式与碳原子相结合形成有机官能团,氧含量4%~5%左右,氢含量一般是1%~2%。
活性炭中最常见的官能团有:羧基、酚羟基和醌型羧基,此外还有醚、酯等。
活性炭性质与很多因素有关,比如制备原料,活化剂种类,活化剂用量,活化温度,活化时间,加热方式等。
不同的制备方式所制备的活性炭的物理结构和化学性质有很大的差别,因此对于同一种吸附质来说,其吸附性能也有很大的差异性。
一般认为,磷酸法制备的活性炭具有较多的介孔和较强的离子交换能力,碱法制备的活性炭微孔比较发达。
因此可根据不同吸附质的特点选择所需要的活性炭种类。
另外,根据不同吸附质的特点选用不同性质的活性炭种类是非常重要的。
活性炭吸附作用有包括物理吸附和化学吸附。
物理吸附主要发生在活性炭丰富的微孔中,比如通过范德华力进行吸附,物理吸附吸附热很小,且是可逆的。
另一方面由于活性炭表面存在不均匀力场,表面上的原子往往还有剩余的成键能力,当吸附质碰撞到活性炭表面上时便与表面原子间发生电子的交换、转移或共有,形成吸附化学键的吸附作用发生电子的转移、交换或共有,形成吸附化学键的吸附,此过程为化学吸附。
简述活性炭吸附技术在水处理中的应用
简述活性炭吸附技术在水处理中的应用活性炭作为一种比较特殊的碳质材料,以其发达的孔隙结构、巨大的比表面积、良好的稳定性质、很强的吸附能力以及优异的再生能力,被广泛应用于环保等各个领域。
活性炭吸附技术在水处理中的应用:1.活性炭的物理化学特性1.1活性炭(AC)活性炭是常用的一种非极性吸附剂,性能稳定,抗腐蚀,故应用广泛。
它是一种具有吸附性能的炭基物质的总称。
把含碳的有机物质加热炭化,去除全部挥发物,在经药品(如ZnCl2等)或水蒸汽活化,制成多孔性炭素结构吸附剂。
活性炭有粉状和粒状两种,工业上多采用粒状活性炭。
由于原料和制法的不同,其孔径分布不同,一般分为:碳分子筛,孔径在10×10-10m以下;活性焦炭,孔径20×10-10以下;活性炭,孔径在50×10-10m以下。
1.2活性炭纤维(ACF)活性炭纤维是一种新型吸附功能材料,它以木质素、纤维素、酚醛纤维、聚丙烯纤维、沥青纤维等为原料,经炭化和活化制的。
与活性炭相比较特有的微孔结构,更高的外表面和比表面积以及多种官能团,平均细孔直径也更小,通过物理吸附以及物理化学吸附等方式在废水、废气处理、水净化领域得到了广泛应用。
纤维状活性炭微孔体积占总孔体积90%左右,其微孔孔径大部分在1nm左右,没有过度孔和大孔。
比表面积一般为600~1200m2/g,甚至可达3000m2/g。
活性炭纤维脱附再生速率快,时间短,且其性能不变,这一点优于活性炭。
与活性炭一样,活性炭纤维吸附时无选择性,主要用于吸附有机污染物,一般用于炼油厂综合废水处理。
2.活性炭的吸附作用与吸附形式2.1活性炭处理指利用活性炭作为吸附剂和催化剂载体的有关过程。
主要应用于生活饮用水深度净化,城市污水处理,工业废水的处理。
2.2吸附作用与吸附形式将溶质聚集在固体表面的作用称为吸附作用。
活性炭表面具有吸附作用。
吸附可以看成是一种表面现象,所以吸附与活性炭的表面特性有密切关系。
粉末活性炭工艺在污水深度处理中的应用
中 图分 类号 : X 7 0 3 . 5 文献标志码 : B 文章编号 : 1 0 0 9 — 7 7 6 7( 2 0 1 3 ) 0 2 — 0 0 9 7 — 0 3
Ap pl i c a t i o n o f Po wd e r e d Ac t i v a t e d Car bo n Te c hno l o g y i n Ad v a nc e d W a s t e wa t e r Tr e a t me nt
污水 处理 厂设 计 处理规 模 为 1 0万 m 3 / d . 目前 基 本 高值 ( 见表 1 ) 。 表 1 设 计 进 水 水 质
哲劳 曩 薯 , 钞
数 值 8 0
25 2 5 25 l 2
弼
l
|
6~ 9 5 O
再 生 水厂 出水 水质 按 G B / T I 9 9 2 3 — 2 0 0 5 ( 城 市 污水 2 . 2 处 理 工 艺 再 生利 用 工业用 水水 质》 标 准执行 。 由于污水 厂进水 中
环 境 保 护 工 程 器
E . n vi r onm en t a[ Pr o t ec t i on En gi ne er i n g
粉末活性炭工 艺在 污水深度 处理 中的应 用
易
( 1 . 武 汉 都 市 环 保 工程 技 术 股 份 有 限 公 司 , 湖北 武 汉
钏 , 杨 文 涛
污水 深度 处理 工艺 的选 择 主要依 据用 户 对 出水 水
丁业 废水 量 占有 的 比例 超 出原 设 计值 , 从 而导 致 再 生 质 的不 同要求 而 定 。根 据进 水水 质特 点及 出水 水质 要
粉末活性炭净水技术在给水处理中的应用
粉末活性炭净水技术在给水处理中的应用摘要:给水处理对处理后的水质要求非常高,因此必须使用具有极高效率的处理技术。
粉末活性炭能吸附水中的有机物,以及其他重金属物质,具有非常好的处理效果,应用在给水处理环节效果较好。
本文就对给水处理环节如何使用活性炭净水技术进行分析,研究粉末活性炭净水技术的特点和原理,分析目前使用该技术的思路,研究在实际工作中的具体做法,最后结合现状总结目前还需要解决的问题。
希望通过研究,能帮助技术人员提升对粉末活性炭净水技术的认识,合理使用该技术,提升给水处理的效果。
关键词:粉末活性炭;净水技术;给水处理引言:给水处理工作中,需要去除水中各种不同类型的污染物,并保证水的无色、无味,满足使用需求和质量要求。
使用粉末活性炭净水具有较好的处理效果,利用活性炭的多孔结构,以及粉末状活性炭表面积,可以快速完成对水中污染物的吸附,对污水具有比较好的去色和去异味效果。
随着工业化水平的提升,继续使用传统的净水方式已经很难适应日渐复杂的净化需求,通过使用粉末活性炭可以去除大量工业污染物,减少水中的有害成分,满足净水工作的需求。
1粉末活性炭概述1.1粉末活性炭性质粉末活性炭具有非常强的吸附能力,其具有十分发达的微孔结构,能够吸附很多有机物和无机物。
在本质上,活性炭属于许多石墨型层状结构的不规则晶体,在一定程度内,活性炭的颗粒越小,表面积就越大,微孔结构就越多,活性炭也会拥有比较大的比表面积,让活性炭在吸附化学上具有比较独特的优势。
由于活性炭具有发达的孔隙结构,所以各种微生物细菌也能在活性炭表面生存、繁殖,因此活性炭作为一种无机材料,通过和生物技术组合也能发挥生物质的功能,丰富了活性炭的使用场景。
粉末活性炭使用后,可以吸收水中溶解性有机物,减少有机物对水体的污染,还能吸收水中具有异味的物质,能在短时间内快速完成净水的目的,极大程度提升整体用水质量,也能提升净水工作的经济效益。
1.2粉末活性炭的净水原理粉末活性炭吸附水中的溶质最终实现对水的净化会通过一个比较复杂的过程,是综合多种不同力作用的结果,离子之间电磁力、范德华力、化学杂合力都会产生作用。
污水深度处理三级工艺活性炭处理
污水深度处理三级工艺活性炭处理
活性炭在污水深度处理一级、二级、三级工序中均会被用到。
活性炭在工艺最后深度处理中使用。
在污水的一级物化处理工序中,活性炭主要用作絮凝吸附分离剂,用于吸附或协助絮凝一些难生化降解或对微生物有毒害的有机污染物。
最典型的应用技术是粉末活性炭工艺,在石化、印染、焦化工业污水中投加适量粉状活性炭,可除去污水中不可生物降解的色度、臭味,避免曝气池发泡现象,同时可以使混凝絮体或生物絮体迅速增长而沉淀,还能除去污水中的重金属离子及其络合物.
工业污水的深度处理和回用是解决我国缺水问题的一
种主要途径。
一般情况下.工业污水经过一级物化和二级生
化处理即可达标排放,但若需要对处理后的污水进行回用,则需进行三级深度处理。
在三级处理工序中,活性炭主要用来吸附脱除水中的残留的难降解有机污染物(POPS,包括杂环、多环化合物及~些长链脂肪烃,使出水质达到生产回用
的要求,此时活性炭主要起两种作用:一是普通吸附剂,二
是生物膜载体,形成生物活性炭。
可用于水处理的煤质顺粒炭和粉状炭作用相同,但顺位炭不易流失,容易再生重复使用,适合用于污染较轻、裕连续运行的水处理工艺,而粉状炭目前不易回收,一般为一次性使用,一般用于间歇的污染较重的水处理工艺。
活性炭在污水深度处理中主要祈祷吸附和去除异味的作用,作为每道工序的收尾处理,起到了重要作用。
臭氧活性炭深度处理工艺简介
2020年8月2日6时50分
深度处理技术简介—活性炭
14
5. 在给水处理中的应用
➢ 原水突发性或季节性出现污染物质增高、异味、异臭和THM前驱 物质浓度很高时,作为应急措施投加粉末活性炭。
2020年8月2日6时50分
深度处理技术简介—工艺
19
5. 影响工艺处理效果的主要因素
a. 水中有机物的性质 b. 活性炭的特性 c. 操作条件 (臭氧投加量控制、反冲洗方式、负荷等) d. 温度
2020年8月2日6时50分
深度处理技术简介—工艺
20
6. 运行时注意事项
a. 臭氧制备及投加系统的正常运行和维护 b. 活性炭滤池运行前准备 c. 运行中生物膜的形成 d. 防止炭粒滤料流失 e. 及时更新和再生活性炭 f. 控制出水水质(浊度、耗氧量、氨氮、色度、pH) e. 各项操作必须按照操作规程进行
工艺流程 17
3. 主要工艺参数
a. 前加臭氧量0.5 ~1mg/L。
b. 臭氧-活性炭系统设计规模20万吨/天,进水浊度<3NTU。
c. 臭氧接触池分3次曝气接触,三阶段反应,后臭氧投加量为2.5 ~ 3mg/L,接触时间13min。
d. 活性炭滤池采用序批式反冲洗池型,单格尺寸10×8m,面积80m2, 空床滤速10.94m/h。填料层由上而下为:活性炭粒径8~30目,厚 度2.2m,空床停留时间12.1min;下设砂层,平均粒径0.6mm,不 均匀系数1.3,厚度0.5m;支承层D=2.0~16.0mm,厚0.45m。冲洗 周期5~10d,冲洗历经气冲、气水混充、水冲三个阶段,冲洗强度 视冲洗频率和 方式而定。
污水处理工艺流程深度处理与活性炭吸附
污水处理工艺流程深度处理与活性炭吸附污水处理是对废水中的有害物质进行去除和净化的过程,以确保水体环境的健康与安全。
深度处理和活性炭吸附是常用的污水处理工艺,本文将探讨这两种工艺的原理、应用和效果。
一、深度处理工艺原理深度处理工艺是指对经过常规处理后的污水再进行进一步的处理,以彻底去除残留的有机物、重金属等有害物质。
其核心原理是通过各种物理、化学和生物方法对污水进行处理,以达到更严格的排放标准。
在深度处理工艺中,常用的方法包括氧化、高级凝聚、膜分离等。
例如,氧化技术通过添加强氧化剂如臭氧或过氧化氢来降解有机物。
高级凝聚则利用混凝剂对残留悬浮物和胶体进行聚集和沉淀。
膜分离工艺则通过微孔过滤膜或渗透膜对污水进行过滤和分离。
二、深度处理工艺应用深度处理工艺广泛应用于工业废水、生活污水和农业污水处理领域。
在工业废水处理中,深度处理可以对含有有机物、重金属等的废水进行高效净化,以满足环境排放标准;在生活污水处理中,深度处理可以有效去除污水中的细菌、病毒和其他有机污染物;在农业污水处理中,深度处理可以对农田排水和养殖废水进行综合处理,以保护农业土壤和水源安全。
三、活性炭吸附原理活性炭吸附是指利用活性炭对污水中的有机污染物进行吸附和分离的过程。
活性炭是一种多孔吸附材料,具有较大的比表面积和高吸附能力,可以有效去除污水中的溶解性有机物、颜料、农药等有害物质。
活性炭吸附的原理是通过物质在固体表面上的附着、吸附和浓缩,实现污染物与活性炭的分离。
活性炭的孔隙结构和化学性质会影响吸附性能,因此选择适当的活性炭材料和调节工艺条件对吸附效果至关重要。
四、活性炭吸附工艺应用活性炭吸附广泛应用于水处理、空气净化和环境修复等领域。
在水处理中,活性炭通常用于去除水中的有机物、余氯和重金属等污染物,提高水质的净化效果。
在空气净化中,活性炭能够去除空气中的有机气体、异味等有害物质,提高空气质量。
在环境修复中,活性炭被广泛用于处理土壤和地下水中的有机污染物,以恢复环境的自净能力。
污水处理工艺流程之深度处理膜分离与活性炭吸附
污水处理工艺流程之深度处理膜分离与活性炭吸附污水处理是对废水进行净化处理的过程,其目的是达到环境排放标准或再利用要求。
在污水处理中,深度处理工艺主要包括膜分离和活性炭吸附。
本文将就深度处理膜分离与活性炭吸附两种工艺进行详细介绍。
一、深度处理膜分离膜分离是一种通过半透膜将物质分离的技术。
在污水处理中,通过使用特定的膜材料,将水中的悬浮固体、胶体以及溶解性有机物分离出来,从而实现对水质的提高。
膜分离技术具有结构简单、处理效果稳定、操作维护方便等优点。
在深度处理中,膜分离一般采用微滤、超滤和纳滤三种膜材料进行处理。
微滤膜可以有效去除水中的悬浮固体和大颗粒胶体,超滤膜对胶体和高分子物质具有较好的分离效果,而纳滤膜则可以去除水中的溶解性有机物和重金属离子。
膜分离工艺一般分为预处理和主处理两个阶段。
预处理主要包括均质、除气、调节pH值等步骤,旨在保护膜材料避免因颗粒物及气体的堵塞和腐蚀。
主处理则是通过膜分离装置将污水进行连续分离,以达到深度处理的效果。
在主处理中,膜分离设备的运行参数对分离效果有着重要的影响。
二、活性炭吸附活性炭吸附是利用活性炭的吸附特性来去除水中的有机物质和重金属的工艺。
活性炭是一种具有孔隙结构的吸附剂,能够将有机物质吸附到其表面,并通过物化作用将其固定。
活性炭吸附工艺具有吸附能力强、处理效果稳定、操作简便等特点。
在深度处理中,活性炭吸附一般应用于膜分离之后的流程中,主要用于去除残留的有机物和重金属。
通过将污水与活性炭接触,并通过气体吸附或水相吸附的方式将目标污染物吸附到活性炭表面上,从而达到净化水质的目的。
活性炭吸附工艺的关键是选择合适的活性炭材料和确定合适的操作条件。
在实际应用中,常见的活性炭吸附工艺有间歇吸附和连续吸附两种。
间歇吸附是指将活性炭装入吸附柱中,通过循环吸附和脱附的方式进行处理;而连续吸附则是采用流动床或活性炭滤池的形式进行处理。
三、深度处理膜分离与活性炭吸附的结合应用深度处理膜分离与活性炭吸附通常结合应用,以更好地达到对污水的净化处理效果。
刘丽君-臭氧-活性炭深度处理应用中常见问题与对策-第九届城镇水务大会
2 常见水质问题与对策
A
臭氧化副产物问题
溴酸盐风险问题
140
[O3]0 2.83 mg/L [O3]0 3.38 mg/L [O3]0 4.62 mg/L
BrO3-/(μg/L)
溴酸盐问题主要出现在沿海地区 的咸潮期,或者氯离子高的盐碱 地区(Cl-50mg/L以上) 研究表明,当原水中Br-的浓度低 于45µg/L时,在正常的臭氧投加 量下,没有溴酸盐超标风险 深圳原水溴离子浓度一般在 30µg/L以下,水厂出厂水中BrO3的浓度一般在检出限2.0µg/L以下, 没有超标风险
完美美丽猛水蚤
温中剑水蚤
摇 蚊 幼 虫
仙 女 虫 轮虫
2 常见水质问题
C
微型动物穿透问题
50
炭池中微型动物来源
无节幼体
炭池微型动物来源: (1)原水中密度太高,穿 透前端净水构筑物 (2)能够适应净水系统的
25
0
主臭氧后 14#滤前 20#滤前 14#滤后 20#滤后 炭总管
环境,幼虫、卵和成体在
向水厂提供原水
水源水质总体达到GB3838 -2002Ⅱ类水体要求,但
存在季节性突变风险,包
括氮、磷、藻类、嗅味、 pH、锰、铝等,存在深度 处理的技术需求
1 臭氧-活性炭工艺在深圳的应用
深圳目前有3个水厂采用了深度处理工艺:梅林水厂、笔架山水厂和沙头角水 厂。其中梅林水厂采用臭氧-活性炭工艺;沙头角水厂属于改造工程,采用将砂 滤池改为炭砂滤池,后接超滤膜工艺
4
2 常见水质问题与对策
A
pH调控问题
pH变化的原因
问 题
7.8 生物活性炭工艺运行中的 pH值问题来自两个方面: 7.6 A. 活性炭池运行初期,出水的 pH大幅升高问题:
试论活性炭技术在城市自来水厂给水深度处理中的应用
试论活性炭技术在城市自来水厂给水深度处理中的应用摘要:随着水源日益受到有机物的污染,对城市给水处理厂进行技术更新与改造势在必行,其中增加活性炭工艺成为最重要的选择。
在各种改善水质处理效果的深度处理技术中,活性炭吸附是完善常规处理工艺以去除水中有机污染物最成熟有效的方法之一。
关键词:自来水厂;活性炭;水质处理;有机物;深度处理0 前言目前在生活饮用水的深度处理和工业污水回收利用项目中, 经常会碰到如何简单、有效、经济地去除原水中的重金属离子、有机和无机污染物, 降低原水中的COD 及异味等问题。
活性炭是水处理吸附法中广泛应用的吸附剂之一, 有粒状和粉状两种。
其中粉末活性炭应用于水处理在国内外已有较长的历史。
制备活性炭的原料有很多, 绝大部分含碳物质可制备活性炭, 如木材、煤类、果壳、果核、废旧塑料、造纸废料、城市垃圾等废弃物。
目前普遍认为果壳是制备活性炭的最佳原料,但由于果壳资源有限, 不易集中、贮存, 价格昂贵。
因此近年来一直在积极寻找有效利用废弃物为原料生产活性炭的方法。
国内已研究了采用竹类、烟杆、棉杆、核桃壳等废弃物制备活性炭的方法。
国内外相继开发了化学活化法、物理活化法、化学物理法、催化活化法、微波加热等方法制备活性炭。
微波加热是最近几年发展很快的一种方法。
制备活性炭常用的方法是物化法。
1 城市自来水厂常规净水处理工艺自来水厂水处理的任务是通过必要的处理方法去除水中杂质,使之符合生活饮用水的水质要求,故处理方法应根据水源水质的具体情况来确定。
此处仅列出自来水厂净水常规处理工艺。
净水常规处理工艺主要处理对象为水源水中的悬浮物、胶体物质和病原微生物等。
它主要是由混凝、沉淀或澄清、过滤和消毒等工序组成,该工艺仍为中国与世界上大多数给水厂所采用。
“混凝-沉淀-过滤-消毒”是以地表水为水源的生活饮用水常规处理工艺,去除对象是引起水浑浊的悬浮物及胶体物质。
混凝、沉淀和过滤在去除浊度的同时,对色度、细菌和病毒等也有一定去除作用。
城市污水深度处理中活性炭的利用技巧探究
城市污水深度处理 中活性炭的利用技巧探究
高晰 保1 0 0 0
【 摘要】 城市污水处理 问题作为我国城市水务事 业建设的重点, 在城 市规划 与 建设 中 始终占 有很大的比重。 随着我 国 城市污水处理深度的逐渐 加深 , 污水处理技 术 日 渐朝向空间占用少 , 系 统运行 稳定和 高处理 效率方向 发展 , 活 性炭技 术也 日渐成 为城市污水 深度 处理的核心技 术。本文结合 了
碱 度和P H值 , 所以在污 水深度处 理过程 中还 要对污 水中的氨氮含量 进 行实时 监控 , 并及 时加 以补充 。 为实现 对污水 中氦氮含量 的有效 控制 , 当气水比例小于2 . 8 6 时, 便要及 时 随 着我 国城市 污水处 理技 术 的进步与发 展, 污 水处 理技 术的层 次 应做 好对氨 氮气体和 水的 比例 控制 , 划分 也更 为 明显 。 现阶 段我 国污水 深度处 理 技术 通常分为三个 处理 阶 向水 中添加 氨氮气体 , 避 免污 水处理 系统 因氨氮处 理效 率降 低而增加 为保证污 水处理 系统 的稳定 运行, 通常将污 水中的气水比控制 在 段, 第一 阶段的污 水处理 主要是对 污水 中的杂物 进行过 滤 , 而 仅仅依 靠 耗能 , . 3 左 右。 由于氨氮气体 能够 扩散 到活性 炭 的内部 , 而污 水中的溶解 氧 杂 质过滤 的污 水是无法 达到 城市污 水排 放标 准 的, 因此 在完 成第一 阶 3
当 下我 国城市建设中污 水回用的趋势, 并对 污水深度处理技 术进行探 究, 在 结合活性 炭利 用技 术的基础上对其在污水处理 中的使用技 巧进行 简要
探 究。
性 炭之 间的相 互作用利用 了生物 的氧化分解功能 , 微生物通 过对污水 中 的有机物进行分 解和能 量摄取 , 使水中污染物 的化学结 构得到改变 , 加
活性炭吸附方案
活性炭吸附方案活性炭是一种常用的吸附材料,具有高度的表面活性和孔隙结构,能有效地吸附和去除大量的有机物、无机物和气体污染物。
在环境保护、废水处理、空气净化等领域中被广泛应用。
本文将介绍活性炭的吸附原理和几种常见的活性炭吸附方案。
一、活性炭的吸附原理活性炭的吸附原理是基于物质表面的化学吸附和物理吸附。
表面的活性中心和孔道结构能够与污染物发生相互作用,通过化学键或范德华力将其吸附在活性炭表面。
活性炭具有较大的比表面积,通常在500-1500㎡/g之间,这使得活性炭具有很高的吸附能力。
二、活性炭吸附方案1. 水处理方案活性炭在水处理中广泛应用,主要用于去除水中的有机污染物、余氯和异味。
具体方案包括:(1)活性炭滤材处理:将颗粒状或颗粒状活性炭放入滤材层,通过滤材层的深度过滤和吸附作用,去除水中的有机物和异味物质。
(2)活性炭吸附柱:将活性炭装填在吸附柱中,通过水流经过活性炭的接触,吸附水中的有机物质和余氯。
2. 空气净化方案活性炭在空气净化中主要用于去除空气中的有害气体和异味。
常见的方案包括:(1)活性炭滤芯净化器:将活性炭滤芯置于空气净化器中,通过风机将室内空气引入,活性炭吸附有害气体和异味。
状或颗粒状,放置在空气净化设备中,通过气流与活性炭接触,吸附有害气体和异味。
3. 废气治理方案活性炭在废气治理中广泛应用,主要用于去除废气中的有机污染物和恶臭。
具体方案包括:(1)活性炭床吸附:将活性炭装填在床层中,废气通过床层时,活性炭吸附有机污染物。
滤网状,通过将废气经过滤网与活性炭接触,吸附有机污染物。
四、活性炭使用注意事项1. 活性炭饱和和更换:活性炭吸附饱和后,需要定期更换或再生以保持吸附效果。
2. 活性炭处理效果:活性炭的处理效果受到多种因素的影响,如污染物种类、浓度、温度和湿度等。
3. 活性炭储存和保养:活性炭应储存在干燥通风的环境中,避免受潮和受到化学物质的污染。
综上所述,活性炭是一种非常有效的吸附材料,在水处理、空气净化和废气治理等领域中具有广泛的应用。
试论活性炭技术在自来水厂给水深度处理中的应用
试论活性炭技术在自来水厂给水深度处理中的应用作者:唐群良来源:《祖国·建设版》2013年第04期摘要现代社会不断发展,水资源作为现代社会的重要资源,其需求量不断提高,人类社会整体面临着水资源紧缺的严重危机。
在现代社会水资源破坏情况如此严重的时期,做好水资源处理,提高城市给水的处理能力,为社会提供洁净符合标准的水是城市供水工作中的重要问题。
在水资源处理中,采用活性炭技术已经成为现代水处理中的主要方式。
本文对活性炭技术在自来水厂给水深度处理中的应用进行了分析与探讨。
活性炭;水处理;应用【中图分类号】TQ424.1文献标识码:B文章编号:1673-8500(2013)04-0039-011引言现代社会发展速度较快,水资源不断紧缺,对于水资源的利用成为了社会广泛关注的重点内容。
城市工业化进程不断加快,水资源的污染与破坏现象日趋严重。
在城市发展当中,保证城市供水符合标准,做好城市用水的处理,对于城市的发展以及市民的生命健康有着重要的意义。
现代社会在进行水处理时,采用活性炭的技术已经成为主要的城市给水处理方式。
活性炭技术利用其吸附性特点,对于城市用水进行处理,可以深度的清除水中杂质,并且对水源不会造成影响,是现代水处理方式中效果较高的技术之一。
2活性炭技术应用的现状现代社会,人民对于水净化处理方式的要求不断提高,水处理的效果与质量的要求也日渐增加。
活性炭技术作为优秀的水处理方式,在现代社会已经广泛的应用到深度水处理当中。
采用活性炭技术提高了水处理质量,加强了净水以及杀菌的效果,并且可以对净水成本进行良好的控制,不会对水源造成其他影响。
活性炭技术具有高效、环保的特点,在现代的水处理技术当中成为了主流技术,逐渐的将以往传统的净水方式进行取代,促进了现代水处理技术的发展。
3活性炭技术在自来水厂给水深度处理中的应用3.1饮用水的处理采用活性炭技术,对自来水厂的给水进行深度处理,可以有效的提高城市自来水的水质,保证城市居民的饮用水安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活性炭在建筑给水深度处理中的应用提要我国和国际上对生活饮用水的水质要求越来越高,有机污染对人体的影响受到给排水工作者的高度重视。
建筑给水的深度处理中。
常用活性发技术去除水中的有机物,本文对活性炭、活性炭过滤器及活性炭净水技术作了较详细的介绍。
关键词水质标准有机污染深度处理活性炭过滤器净水技术1.饮用净水与活性碳1.1生活饮用水的水质标准与有机污染的控制生活饮用水的水质标准与人们的生活水平和身体健康密切相关,是公众关注的热点.改革开放以来,我国在经济高速发展、生活水平显著提高的同时,也给水环境带来较大的污染;同时,社会对生活饮用水水质的要求在不断提高。
我国1959年颁布的第一个生活饮用水水质标准,含有19项水质指标:1976年修订的标准将水质指标增加到23项;目前执行的《生活饮用水水质标准》GB5749-85是根据我国的国增于1985年制定的,正式规定的限量参数为35项。
1999年7月建设部颁发了行业标准《饮用净水水质标准》CJ94-1999,规定的限且参数增加至39项,其中新增的高锰酸钾消耗量(CODcm)与总有机碳(TOC)均是检测有机污染物质的。
通过我国和国外的生活饮用水水质标准发展过程可以看出,原来的生活饮用水水质标准主要从感观性状、化学毒性学、细菌学等指标来制定的;工业现代化在近几十年中迅速发展,城市化和人口增长尤其是化学工业高速发展,人工合成的化学物质总数已超过4万种,且以每年上千种新物质被合成的速度递增,这些化学物质中的相当大的一部分通过人类的活动进入水体,在繁多的化学物质中,有机污染物的数量和浓度占绝大多数,不少有机化合物对人体有急性或慢性、直接或间接的三致作用(致癌、致突变、致畸)。
因此,在生活饮用水水质标准中增加对这些有机化合物含色的限制是必要的。
同时,60年代国外发现用氯消毒产生的副产物对人体有危害以后,许多学者又进行了人工合成的化学物质对人体健康危害的研究:在人们密切关注二致物质危害的同时,近年来通过对内分泌紊乱的原因分析研究,认识到人造化学物质还可能正在严重破坏人和野生动物的激素;过去曾认为低水平污染是安全的,现在则认识到低水平的污染也将危害我们的健康;在已确定的50种据认为可影响内分泌系统的化学物质中,约有一半是氯化物(如二恶英、多级联苯等)、杀虫剂、滴滴涕。
我国是一个地域辽阔的发展中阐家,虽然各地经济发展速度不一,但现在大中型城市己基本具有完备的城市集中供水系统,自来水的浊度、余氯、细菌总数与总大肠菌群等均能达标,水传播的疾病己被完平控制。
但是城市自来水厂常规的混凝、沉淀与过滤工艺对受到污染水源只能去除水中20%~30%的有机物,常规处理出不能有效地解决地面水源中普遍存在的氨氮问题,当采用折点加氯来控制水中的氨氮和获得必要的活性余氯时,由此产生了大量的有机氯化物,因此控制有机污染日益成为大家关注的热点。
近年来我国瓶装饮用水销量逐年增家,1999已达400万吨,这充分说明了人们对饮用水水质的重视。
日前的净水技术己经能将任何水质的水处理达到饮用水的水质,但是根据我国的国情如将城市自水厂均普遍增加深度处理来达到持制有机污染们个现实。
当些小区、建筑物对水质要求较高、或需设计饮用净水系统时,采用局部深度处理的方案是经济可行的,这也是建筑给排水工作者近年来普遍采用的方法。
建筑给水深度处理是指在水厂常规处理工艺以后,在小区、建筑物内采用适当的处理方法,将常规处理工艺不能有效去除的污染物或消毒副产物加以去除,保证和提高饮用水质。
目前,我国在建筑给水的深度处理中,活性炭技术被广泛应用。
1.2活性炭的历史及在净水技术中的作用最早记载炭的吸附能力是1773年谢勒用气体作的试验,1785年洛伊兹注意到炭对溶液具有脱色效果,此后木炭被用于蔗糖净化;1900年至1901年奥斯特来科取得制造活性炭的专利,使活性炭商品化得以飞速发展;第一次世界大战中活性炭用于防毒面具,研制、生产了颗粒活性炭。
活性炭最早是用于气(汽)相,世界大战后活性炭被用于液相脱色。
50年代初期,西欧一些以地面水为水源的水厂开始使用活性炭,欧洲和美国最初使用活性目的都是为了去除水中的色和嗅。
由《生活饮用水水质标准》和《饮用净水水质标准》的对比可以得知,饮用净水在有机物指标CODcr与TOC上有限量要求,而对氯仿、四级化碳、滴滴涕(DDT)和六六六等污染物的含量有了更严格的限定(见附表)。
建筑给水深度处理的主要任务之一正是降低有机物的含量。
而活性炭同其突出的吸附性能在去除有机物方面发挥了较为重要的作用。
吸附是常用的控制水中痕量有机污染物质的处理方法,吸附容量的大小是衡量一种吸附剂优劣的重要指标之一。
活性炭具有较大的比表面积,其微孔的内表面积占总面积的95%以上,是水质处理吸附法中应用最为广泛的吸附剂。
饮用水中的三卤甲烷主要是由纽和有机物反应后产生的,研究表明活性炭对三卤甲烷有一定的吸附能力;活性炭对水中其它有机物也有吸附作用,不同类型的活性炭对不同的有机物吸附作用不尽相同;人们通过研究发现活性炭对微量有机污染物有独特的吸附作用,但对水中某些有机物的吸附有一个最低浓度,低于这个最低浓度活性炭往往无法发挥作用。
2.活性炭2.1 活性炭的特性活性炭在水处理中的广泛应用主要由其理化特性决定的。
活性炭的物理特性主要是指孔隙结构及其分布,这也是决定活性炭吸附性能的主要因素。
活性炭在其活化过程中,会形成大量各种形状和大小的孔隙,因而具有巨大的表面积。
在炭水接触过程中,极大的炭水接触界面是活性炭吸附能力的基础。
优质活性炭的比表面积一股在1000m2/g以上,孔隙总容积一股可达0.6~1.8mL/g,孔径由0.001~10μm,按孔隙大小可分为大孔、过渡孔和微孔。
孔隙同其大小的不同,特件也不同。
我们将不问大小的孔隙特性列表做一比较:活性炭的吸附量不仅与表面积有关,更重要的是与孔隙的几种分布有关。
当用于建筑给水深度处理时,活性炭的吸附是液相吸附。
这时,大孔主要为吸附质的扩散提供通道,使之扩散到过渡孔与微孔中去。
大孔本身的吸附能力虽然较小,但它却是吸附质扩散速度的制约因素。
水中大分子有机物的吸附主要靠过渡孔,过渡孔又是小分子有机物到达微孔的通道。
活性炭的化学特性主要是指它的极性。
在活性炭的制造过程中,会因制作温度的不同在活性炭表面形成不同的氧化物基因,使活性炭具有一定的极性。
例如,当制作温度在300~500℃时,酸性氧化物占优势,这种酸性氧化物在水中离子化时,活性炭就带负电荷;制作温度八三800~900℃时,碱性氧化物占优势,这种碱性氧化物分水中离子化时,活性炭就带正电荷;而制作温度在500~800℃时,活性炭兼具两性性质。
由测定其电位得知,一般活性炭带负电荷,它在溶液中呈弱酸性,在pH值较低的酸性条件下,吸附较好;反之,在PH值较高的碱性条件下,则吸附较差。
2.2活性炭的技术要求及建筑给水深度处理中活性炭的选择检测活性炭产品有较多技术指标。
如碘吸附值、耐磨强度、比表面积、灰分、PH值等,现就其中主要的几个指标介绍如下。
就吸附值(简称碘值),它是炭在定量浓度的碘溶液中,及规定的条件下,每克炭吸附碘的毫克数,它可用于鉴定活性炭对直径小于2nm的吸附质分子的吸附能力,且由此数值的降低值确定活性炭的再生周期。
与之相类似的还有亚甲蓝吸附值、苯酚值等,它们用以鉴定活性炭对直径2~100nm的吸附质分子的吸附能力。
耐磨强度(简称强度),用百分数表示,强度越高,表示活性炭颗粒越不易破碎,在吸附过程中不易泄漏破碎炭。
国标GB/T 7701.4-1997《净化水用煤质颗粒活性炭》中,详细列出了煤质颗粒活性炭的技术指标,如:孔容积应大于0.65mL/g,比表面积应大于900~1049mg/g,苯酚吸附值应大于140mg/g等。
而碘吸附值、亚甲蓝吸附值、灰分和装须密度等技术指标的不同,可区分优级品、一级品或合格品。
例如,碘吸附值大于1050 mg/g的为优级品,900~1049 mg/g的为一级品,800~899 mg/g的为合格品。
在建筑给水深度处理中常用的活性炭品种有果壳堤和煤质炭,果壳炭的生产原料有杏核、椰子壳、核桃壳等;煤质炭的生产原料有无烟煤、烟煤、褐煤等。
近年来,椰壳炭由于具有最小的孔隙半径,比表面积大,碘值高,被认为是“最好的炭”,在饮用净水行业使用广泛。
但我们通过分析椰壳炭孔隙的孔径分布可以知道:椰壳炭的孔隙中微孔所占的比例较高,而作为扩散通道的大孔和吸附大分子有机物的过渡孔所占比例较低,所以它的碘值可能很高而实际应用中这些吸附容量并未充分利用。
而椰壳炭的原料来源有限,其价格几乎是所有炭种中最昂贵的。
从性能价格比来说,椰壳炭不够经济。
煤质活性炭具有较多的过渡孔和较大的平均孔径,能较有效地吸附去除水中分了量较大的有机物。
在原水水质不够稳定,水中有机物的组成情况经常变化时,能较好地发挥吸附效能。
煤质炭的机械强度较高,价格也较便宜,因此,在建筑给水深度处理中,煤质炭是较为经济适用的炭种。
还应注意的是,同样是煤质炭,用于建筑给水深度处理中,应选择以无烟煤为原料的炭。
其次是客观地看待活性炭的各项技术指标。
例如碘值并非是越高越好,碘值反映的是活性炭比衷面积的大小,但由于防分子直径仅0.532nm,可以全部进入活性炭的孔隙中,而水中有机物分子直径比队分子大得多,不能完全进入活性炭所有的孔隙中去。
所以破值虽然在一定程度上反映了活性炭的吸附能力,但在选择建筑给水深度处理用活性炭时.不能片面追求过高的碘值,因为碘值提高一个档次,发的价格会提高较多,而吸附效果却不一定提高或提高很少,这同样降低了其性能价格比。
苯酚吸附值、亚甲蓝吸附值等评价指标相对于碘值来说,较能反映活性炭吸附去除水中有机物能力的大小,但由于苯酚和亚甲蓝仍是单一的化合物,与水中的有机物分子了相比,其分子直径仍较小,故它们仍不能确切表示活性炭吸附去除水中有机物能力的大小。
日前,有学者正在研究探索一种新的技术指标,以某种大分子物质代替碘或苯酚等对活性炭的吸附能力进行测试,希望比现在常用的指标更能准确地反映活性炭吸附水中有机物的能力。
我们还应注意活性炭吸附性能的衰减曲线。
在建筑给水深度处理中,根据原水的污染使况测试活性炭的吸附件能,当衰减较慢,即衰减曲线较平缓时,该种活性炭的再生周期就长,从经济性和方便管理考虑,平缓的衰减曲线甚至比新炭的性能更值得重视。
由于活性炭产品种类繁多,性能差异较大,而且不同类型的活性炭对不同的有机物吸附作用不尽相同。
我们在选择活性炭品种时不仅应注意上述各项技术指标,还应注意分析原水中的微污染成分并掌握其随季节的变化规律。
可靠的方法是用原水对几个炭种进行吸附性能试验比较,选择吸附容量大,出水水质合格稳定,再生周期长的炭种,在满足出水水质的基础上,兼顾经济性。