数字电路第八章 8 脉冲波形的变换讲义与产生
数字电路脉冲波形的产生与变化课件
单稳态触发器的分类
门电路组成的单稳态触发器
按电路形式不同 MSI集成单稳态触发器
用555定时器组成的单稳态触发器
按工作特点分类
不可重复触发单稳态触发器 可重复触发单稳态触发器
4
8.2.1 门电路组成的微分型单稳态触发器
1.电路结构
CMOS或非门和非门构成的微分型单稳态触发器
vO1
vO
G1 1 vI
74121 (2)
vO
A1
A2 B vI
A2
Q
B
Q
VCC
0
vO1
t1
tw1
0 vO
tw2
0
t tw1
t
tw2 t
18
3.组成噪声消除电路
如用I作为计数器触发脉冲, 干扰信号会造成计数错误。
噪声
C
R
VCC
vI
Cext Rext/Cext
Q
7412
A1 1
Q
A2
Q
1D
vO
C1
vO
vI
B
R
单稳触发器的输出脉宽应大于噪声宽度而小于信号脉宽, 才可消除噪声。
34
8.4 555定时器及其应用
8.4.1 555定时器 8.4.2 用555定时器组成施密特触发器 8.4.3 用555定时器组成单稳态触发器
8.4.4 用555定时器组成多谐振荡器
35
8.4 555定时器及其应用
8.4.1 555定时器
1.电路结构
VCC (8)
RD(4)
5 k
vIC (5)
×
2 3 VCC
2 3 VCC
2 3 VCC
×
脉冲波形的产生与变换z资料PPT课件
➢正确理解多谐振荡器、单稳态触发器、施密特触发 器的电路组成及工作原理。 ➢掌握多谐、单稳、施密特MSI器件的逻辑功能及主 要参数计算。 ➢掌握555定时器的工作原理。 ➢了解由555定时器组成的多谐、单稳、施密特电路 工作原理。
第1页/共50页
§8-1 多谐振荡器
多谐振荡器是一种自激震荡电路,接通电源后 无需外接触发信号即能产生方波和矩形波,其不存 在稳定状态,又称无稳态电路。
vO1
v1(0 ) V 0V VDD
vI () VDD
RC
0
V vI
VDD
DD
V
Vth
0
根据RC电路瞬态 相应分析,
vO2
V
VDD
0
T1 T2
vO1 VDD
t
0
t
t1
t2
t
v(t) v() v(0 ) v() et
t ln v(0 ) v()
v(t) v()
T1
RC
C
1
0.01F
第31页/共50页 tPL tPH
出 T
导通
截截止止 导导通通 不变
一、555定时器组成多谐振荡器
——占空比可调
tpH = RAC1n2≈0.7RAC
R1
RA R2
84
RB
D1
RB
7
3
6
2 555 5
D2
vC +
1
C –
VCC R3
vO
0.01F
tPL=RBC1n2≈0.7RBC f 1 1.43
2 3 VCC
vIC (5) vI1 (6)
+
R
脉冲波形的产生与变换教学课件
脉冲信号的产生方式
总结词
可以通过多种方式产生脉冲信号,如逻辑门电路、晶体管开关电路、数字IC等。
详细描述
产生脉冲信号的方式有多种,可以根据具体的应用需求选择合适的方式。常见的产生脉冲信号的方式包括使用逻 辑门电路、晶体管开关电路和数字IC等。这些电路可以通过组合和配置,产生不同形状和特性的脉冲信号,以满 足不同的应用需求。
根据观察和测量结果,调整电 路参数,实现脉冲波形的变换 。
实验结果与分析
实验结果记录
详细记录示波器显示的脉冲波形图像以及相关测量数据。
结果分析
根据记录的数据,分析脉冲波形的变化规律以及电路参数对波形的 影响。
结论总结
总结实验结果,得出脉冲波形变换的原理以及实现方法。
05
总结与展望
脉冲波形产生与变换的重要意义
。
电源:为电路提供稳定的直流 电压或交流电压。
实验步骤与操作方法
构建电路
根据实验要求,使用电子元件 构建脉冲波形变换电路。
观察与测量
使用示波器观察脉冲波形,并 记录相关数据。
准备实验器材
根据实验需求选择合适的电子 元件和测量仪器。
信号源设置
设置信号发生器,使其输出所 需的脉冲波形信号。
变换电路调整
脉冲波形产生与变换是电子工程、通信和控制工程等领域中 的重要技术,广泛应用于信号处理、雷达、无线通信、电力 电子和电机控制等领域。
脉冲波形产生与变换技术的不断发展和创新,对于推动相关 领域的技术进步和产业升级具有重要意义,能够促进社会经 济的发展和提高人们的生活水平。
当前研究现状与发展趋势
未来,脉冲波形产生与变换技术将继续向着高精度、 高稳定性和高效率的方向发展,同时将更加注重与其 他技术的融合和创新,如物联网、云计算和边缘计算 等。
数字电路基础ch08脉冲波形的变换与产生PPT课件
D3 v O1
R D4
G2 TP
vO TN
+VDD
VC C
多谐振荡器
3. 振荡周期T1的计R算ClnVDVDDVDTH
T2
RC1nVDD VTH
TT1T2R1 C n(VD D V V D T 2 H D )V TH
vI
VDD+ V+
VTH O
vO2 VDD
O
- V-
T1
T2
t1 第 一 t2 第 二
V D DV T
V T -
V D DV T V T -
8.3.3 石英晶体振荡器
1、石英晶体电路符号和选频特性
电路符号
当 f = f0 时, 电抗 X = 0
阻特性 X
f0
电 感 性
f
电
电
容
容
性
性
2、石英晶体振荡器
G1
1
C1
G2 1
vO
R
C2
R
R: 使G1工作在线性区 C2 : 抑制高次谐波
vI
没有被重复触发
vO
后沿触发的可
重复触发单稳
vI
vO
tw
tw
(a)
被重复触发
tw
tw
(b)
单稳态触发器的应用
1. 定时
vI
vO
O
t
vB
与门
tW
O
t
tW
vA
vA vB
单稳态
O
t
触发器
vO
vI
O
t
该电路可用于频率计
单稳态电路还可做延时和噪声消除电路(略)。
8.2 施密特触发器
数字电子技术基础 第八章 脉冲波形的变换与产生
Ui
单 稳 1
U01 =1 Uo
U01
t
U02
单 稳 2 U02
t
21
2.多谐振荡器
多谐振荡器是一种常用的脉冲信号产生电路. 工作特性: ① 无稳态,具有两个暂稳态; ② 自激振荡器--在接通电源后,不需外加触发信 号,便能自动产生矩形脉冲; ③ 矩形波中除基波外,还含有丰富的高次谐波--故 称为多谐振荡器.
自动触发
暂稳态0
暂稳态1
自动返回
暂稳态0
22
555定时器构成的多谐振荡器
多谐振荡器的电路与工作原理
UCC R1 7 R2
8
4
Uc
C
6 555 3 2 1 5
Uo
(1)充电过程
刚加电时,Uc=U6=U2=0<1/3Ucc RS=10 Q=1 Uo=1 7端与地不导通,电容充电.
23
0.01μ
(1)充电过程 充电回路: Ucc→R1→R2→C→地 充电时常数: τ = ( R1 + R2)C
0
& Q &
Q G2 G3
t
U6 (TH) U2 (TR)
&
1
G4
3
Uo
t = τ ln
U (∞ ) U (0 + ) U ( ∞ ) U (t )
当5端外加电压Uco时: U(0+)=1/2Uco U(0+)=Uco U(∞)=Ucc U(∞)=0 U(T1)=Uco U(T2)=1/2Uco
U0 U01 C1 C2
TW 多谐
单稳 TW
工作原理:在触发脉冲的作用下,单稳态触发器输出时 间宽度为Tw的高电平,只有在Tw期间多谐振荡器产生振 荡,喇叭发出声响.
数电8脉冲波形的变换与产生
通过改变振荡器的频率,可以获得不 同频率的8脉冲波形。
利用数字电路中的定时器,可以产生 具有特定频率的8脉冲波形。
倍频器和分频器
利用数字电路中的倍频器和分频器, 可以将输入的8脉冲波形进行倍频或 分频,从而得到不同频率的输出。
8脉冲波形的相位变换
相位延迟
通过在数字电路中添加相位延迟器,可以改 变8脉冲波形的相位。
01
03
程序设计
编写程序以控制单片机产生8脉冲波形, 包括定时器配置、I/O端口控制等。
波形输出
通过单片机的I/O端口输出8脉冲波形。
05
04
编译与下载
将程序编译成可在单片机上运行的二 进制文件,并通过适当的下载工具将 程序下载到单片机中。
04 数电8脉冲波形的变换
8脉冲波形的频率变换
频率变换
定时器
波形输出
将设计的数字电路连接至 适当的输出设备,如LED 灯、数码管等,以显示8 脉冲波形。
基于FPGA的8脉冲波形产生
FPGA芯片选择
选择具有足够逻辑资源、I/O端口和时 钟资源的FPGA芯片。
编译与配置
将设计好的程序编译成可在FPGA上 运行的配置文件,并通过适当的配置 接口将配置文件下载到FPGA芯片中。
移相器
利用数字电路中的移相器,可以将输入的8脉冲波 形进行移相,从而得到不同相位的输出。
触发器
利用数字电路中的触发器,可以产生具有特 定相位的8脉冲波形。
8脉冲波形的幅度变换
幅度调节器
通过在数字电路中添加幅度调 节器,可以改变8脉冲波形的
幅度。
电压比较器
利用数字电路中的电压比较器, 可以将输入的8脉冲波形进行 幅度比较,从而得到不同幅度
第8章 脉冲波形的产生与变换(5)
5 6 2 7
VC C 8 R
+ -
RD 4 A1 A2 T R Q S Q 3
管脚图
电 放 阈 电控 源 电 值 压制
VCC
8
R
R 1
+
v’O vI1
7
6
vIC
5
4
电源电压范围: 4.5V ~ 18V
555
1
2 3
GND vI2
Uo
RD
地 触 输 复 发 出 位
7
第八章 脉冲波形的产生与变换
二、 555定时器的应用 555定时器应用广泛,可以做
多谐振荡器: 简易电子琴电路 首先说明如何用555 定时器构成多谐振荡器:
u
VCC R1 R2
C
v’O 4 8 7 vI1 555 3 uo vI2 6
2 1 5 C
2VCC /3 VCC /3
0
t
uo
0
u
C
t
输出波形
12
第八章 脉冲波形的产生与变换
u
VCC
C
R1 R2
v’O 4 8 7 uo vI1 555 3 vI2 6
u
VCC
C
R1 R2
v’O 4 8 7 uo vI1 555 3 vI2 6
2 1 5 C
2VCC /3 VCC /3
0
t
u
o
u
C
如何改变方波的占空比?
0
t T1 T2
改变充放电回路的时间常数即可。 充电时间常数:(R1+R2)C 放电时间常数:R2C
14
第八章 脉冲波形的产生与变换
简易电子琴就是通过改变R2 的阻值来改变 输出方波的周期 , 使外接的喇叭发出不同的音 调。 VCC
脉冲波形的产生与变换PPT资料(正式版)
v v v
I2
O2
O 1
TW估算公式如下:
TWRR0
Cln VDD VCCVTH
典型 R R 0 C
2. 积分型单稳态电路
(1) 电路组成 门1、门2是COMS或非门,R、C构成积分型延时环节。
(2) 工作原理 稳态时门1、门2输出低电平。vi=1、vO1=0、vi2=0、vO=0。
高(H) 高(H)
低(L) 高(H)
接通 原状态
关断
6.3 单稳态电路
6.3.1 由CC7555构成的电路
单稳态触发器只有一个稳定状态和一个暂稳态,在外界触发脉冲的 作用下,电路从稳态翻转到暂态,然后在暂稳态停留一段时间TW后又自 动返回到稳态,并在输出端产生一个宽度为TW的矩形脉冲。TW只与电路 本身的参数有关,而与触发脉冲无关。我们通常把TW称为脉冲宽度。
图(b)组成积分电路,当RC<<TS时。在电容上可得 矩形波;而当RC>>TS时,在电容上又可得线性扫描的 波形。
(a)
(b)
脉冲形成电路的组成应有两大部分:惰性电路和开 关。
开关是用来破坏稳态,使惰性电路产生暂态的。开 关可用不同的电子器件来完成,如可用运算放大器,分 立器件晶体三极管或场效应管,也可以用逻辑门。目前 用得较多的是555定时电路。
稳态时,门1输出高电平,门2输出 低电平,vi1 =vi=0,v01=VDD、vi2=VDD、 vO2=0。当vi 由0上升到VTH (CMOS或 非门的开启电压)时,将引起下列正反馈 过程
v v v v
I
O 1 I2 O 2
使电路快速翻转到门1输出低电平时,门 2输出高电平的暂稳状态。随之VDD通过R 及门1的输出电阻(驱动管导通电阻)对电 容C充电,vi2逐渐升高,当vi2上升到VTH 时,又会产生下列反馈过程(假设此时vi已 回到低电平)
数字电路第8章脉冲波形的产生与整形概要
T T 1 T 2 0 .7 (R 1 R 2 )C
占空比为
DT1 R1 T R1 R2
第8章 脉冲波形的产生与整形
4)
用两个多谐振荡器可以组成如图8-7(a)所示的模拟声 响电路。适当选择定时元件,使振荡器A的振荡频率 fA=1Hz , 振荡器B的振荡频率 fB= 1kHz。由于低频振荡 器A的输出接至高频振荡器B的复位端(4脚),当Uo1输出高 电平时,B振荡器才能振荡,Uo1输出低电平时, B振荡器 被复位,停止振荡,因此使扬声器发出 1kHz的间歇声响。 其工作波形如图 8-7(b)所示。
到,电路就一直处于Uo=0 的稳定状态。
第8章 脉冲波形的产生与整形
② 暂稳态:外加触发信号Ui的下降沿到达时,由于
U21 3UC、 C U6(UC)0,RS触发器Q端置 1,因此Uo=1, V1截止,UCC开始通过电阻R向电容C充电。随着电容C充 电的进行,UC不断上升,趋向值UC(∞)=UCC。
电路处于某一暂稳态,电容C上电压UC略低于
,Uo
输出高电平,V1截止,电源UCC通过R1、R2 给电容C充电。 随输着出充电电压的Uo进就行一U直C逐保渐持增高高电,平但不只变要,13这U就CC是U第C 一23个U暂CC稳,
态。
第8章 脉冲波形的产生与整形
于
2 3
当电容C上的电压UC略微超过
2 3
U6 U23i的U触CC 发期负间脉,冲R消S失触后发,器U状2回态到保高持电不平变,,在因U此2 ,13UUoCC、 一直保持高电平不变,电路维持在暂稳态。但当电容C上
的电压上升到
U6
2 3
UCC
时,RS触发器置 0,电路输出Uo
=0,V1导通,此时暂稳态便结束,电路将返回到初始的
脉冲波形的变换与产生 数字电路知识点汇总
第八章 脉冲波形的变换与产生555定时器及其应用 1.电路结构及工作原理 555定时器内部由分压器、 电压比较器、RS 锁存器(触发器)和 集电极开路的三极管T 等三部分组成, 其内部结构及示意图如图22a)、22b)所示。
在图22b )中,555定时器是 8引脚芯卡,放电三极管为外接电 路提供放电通路,在使用定时 器时,该三极管集电极 (第7脚)一般要接上拉电阻,1C 为反相比较器,2C 为同相比较器,比较器的基准电压由 电源电压CC V 及内部电阻分压 比决定,在控制CO V (第5脚)3V cc触发输入VI2阀值输入VI1控制电压VCO 12345678GND 触发输出复位控制电压阀值放电V cc 555图22b) 引脚图悬空时,CC R V V 321=、CC R V V 312=;如果第5脚外接控制电压, 则=1R V CO V 、212=R V CO V ,d R 端(第4脚)是复位端,只要d R 端加上低电平,输出端(第3脚)立即被置成低电平,不受其它输入状态的影响,因此正常工作时必须使d R 端接高电平。
由图22a),1G 和2G 组成的RS 触发器具有复位控制功能,可控制三极管T 的导通和截止。
由图22a)可知,当1i V >1R V (即1i V >CC V 32)时,比较器1C 输出0=R V当2i V >2R V (即>2i V CC V 31)时,比较器2C 输出1=S VRS 触发器Q =03G 输出为高电平,三极管T 导通,输出为低电平(0=o V )当1i V <1R V (即1i V <CC V 32),2i V CC V 31<时,比较器1C 输出高电平,1=R V ,2C 输出为低电平0=S V基本RS 触发器Q =1,3G 输出为低电平,三极管T 截止,同时4G 输出为高电平。
当1i V >1R V (即1i V >CC V 32)时,比较器1C 输出0=R V当2i V <2R V (即2i V CC V 31<)时,比较器2C 输出0=S V⇒1G 、2G 输出Q =1,1=Q 同进T 截止,4G 输出为高电平 这样,就得到了表2所示555功能表。
8__脉冲波形的变换与产生解析
开 关 电 路
24
8.4 555定时器及其应用
8.4.1 555定时器 8.4.2 用555定时器组成施密特触发器
8.4.3 8.4.4
用555定时器组成单稳态触发器 用555定时器组成多谐振荡器
25
8.4.1
555定时器
555定时器是美国Signetics公司1972年研制的用于取代机 械式定时器的中规模集成电路,因输入端设计有三个5kΩ的电 阻而得名。此电路后来竟风靡世界。 555定时器可以说是模拟电路与数字电路结合的典范。 它成本低,性能可靠,只需外接少量的阻容元件,就可以实现 多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换 电路。它也常作为定时器广泛应用于仪器仪表、家用电器、电 子测量及自动控制等方面。广泛用于信号的产生、变换、控制 与检测。 555的具体应用: (1)构成施密特触发器,用于TTL系统的接口,整形电路或脉 冲鉴幅等; (2)构成单稳态触发器,用于定时、延时、整形及一些定时 开关中; (3)构成多谐振荡器,组成信号产生电路。
6
2.单稳态触发器的分类:
不可重复触发单稳态触发器
工作特点划分
可重复触发单稳态触发器
7
• 不可重复触发单稳态触发器:电路一旦被触发进 入暂稳态后,再加入触发脉冲则无效,必须在暂 稳态结束后才接受下一个触发脉冲,重新进入暂 稳态。电路的输出脉宽不受其影响。 • 可重复触发单稳态触发器:电路在被触发进入暂 稳态后,若再次加入触发脉冲则这些触发脉冲有 效,电路将重新被触发,使输出脉冲再继续维持 tw宽度 ,如后面的图所示,故输出脉冲宽度将为
t + t W。电路的输出脉宽可根据触发脉冲的输
入情况的不同而改变。
8
没有被重复触发
第8篇-脉冲波形的产生与变换 ppt课件
vO
2/3Vcc
vI ⑥
+
- C1
R
2/3Vcc
1/3Vcc - C2
vI②
+
S
1/3Vcc
vO
t
0
0
t
VCC
2VCC
(1)当vI<1/3Vcc时, R=1,S=0,Q=1,vO=31; 3
VCC vI
(2)当1/3Vcc< vI<2/3Vcc时, R=1,S=1,Q=1(保持),vO=1;
(3)当 vI>2/3Vcc时, R=0,S=1,Q=0,vO=0;
vI2 2 vO, 7
555 3 vO
1
锁存器,决定输出状态。
(3) 3脚—输出端
(4) 4脚( RD )----复位输入端,当RD=0,RS锁存 器被复位,输出vo为低电平。正常工作时,应将 其接高电平。
PPT课件
6
(5) 5脚(VIC)——电压控制端,当其悬空时,比 较器C1和C2的比较电压分别为2/3VCC 和1/3VCC 。
(6) 6脚—阈值输入端 (7) 7脚—放电端 (8) 8脚—电源端
VCC RD
vIC
8 5
4
vI1 6
vI2 2 vO, 7
555 3 vO
1
PPT课件
7
工作原理
1.当RD=0时,Vo=0,T导通
2.当RD=1时
(1)
VI1
2 3
VCC
,VI 2
1 3
VCC
,R
1, S
0
Q=1,T截止,Vo=1
2、振荡频率的估算
(1)电容充电时间T1:(用三要素法计算)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
vI
Cd vd
Rd
C 1 G2 D vI2
vC R
正脉冲触发
CMOS或非门构成的微分型 单稳态触发器
稳态为0
vO1
vO
G1 1 vI Cd
vd Rd
1 G2
CD
v
C
v I2 R
VDD
负脉冲触发
工作原理:
设定CMOS反相器的阈值电压
VTH
VD D 2
a)没有触发信号时,I=0
电路处于一种稳态:
o =0 c =0
v
0
I
2
t
= RCln2
V DD V TH
tw≈0.7RC
0
vO
t
(2) 恢复时间tre
t re
(3) 最高工作频率 fmax
tW
3d
0
1
t1 1 t2
fmaxTmi
n twtre
t
4. 讨论
a)在暂稳态结束(t= t2)瞬间,门G2的输入电压I2达 b)用T到TVLD门D+电V阻THR,的可取能值损可坏以G是2门任,意怎的么办?
单稳态触发器的分类
按电路形式不同 工作特点划分
门电路组成的单稳态触发器 MSI集成单稳态触发 用555定时器器组成的单稳态触
发器
不可重复触发单稳态触发器
可重复触发单稳态触发器
8.1.1 用CMOS门电路组成的微分型单稳态触发器
1. 电路
CMOS与非门构成的微分型 单稳态触发器
稳态为1
vO
vO
1
G1 &
8.1.3 单稳态触发器的应用
1. 定时
vI
vO
O
t
vB
与门
tW
O
t
tW
vA
vA vB 单稳
O vO
t
态
触发
器 vI
O
该电路可用于频率计
t
2. 延时
C1
R1 VCC
C2
R2 VCC
C ext R ext/ C ext
74121
vO1
A1 ( 1)
C ext R ext/ C ext
74121 ( 2)
vO 1
G1 1
1 G2
t
vI
Cd vd
CD vC
vI2 R
Rd
t
VDD
c)电容充电,
vI
vR
vo2
0
vd
0
vO
1
v
0
I2
VDD VTH
0 vO
0
tw
t1
t2
I2
vO1
t
t
I2 =VTH产生如下正反馈过程:
vI2 vO vO1
迅速使 o1 = 1 o =0 电容放电 c =0
电路由暂稳态自动返回到稳态
vI
0
1
vO1
G1 1 Cd 0
vd
Rd
0
vO
1 G2
CD
v
C
v I2 1 R
VDD
b)外加触发信号
d
d =VTH
vI
0 vd
v
0
O
1
v
0
I2
VDD
V TH
0 vO
0
t1
t2
产生如下正反馈过程:
vI vO 1 vI2 vO
t
迅速使 o1 = 0 o =1
t
电路进入暂稳态 电容充电 I2
t
0 vO1
Cext
Rext
Rext/Cext Rint
B
G1
A1
&
A2
G4 &
a G2 &
G5
G6
& ≥1 &
Rint G7 1
G8
1
Q
G9
G3 &
1
Q
触发信号控制电路
触发信号控制电路
微分型单稳态触发器
输出缓冲电路
(a) 逻辑图
微分型单稳触发器
电路的连接:C:外接电阻容 R:外接电阻或采用内部电阻
(1)工作原理 电路的不可重复触发特性
vO
A1
A2 B vI
A2
Q
B
Q
VCC
vI
0 vO1
t1 tw1
0 vO
tw2
0
t tw1
t
tw2 t
4. 组成噪声消除电路
如用I作为下降沿触发的计数器触发脉冲,干扰加入,就会造成 计数错误.
C
R
VCC
Cext Rext/Cext
噪声
7412
A1 1
Q
A2
Q
1D C1
vI
vO
Q
vI
B
R
vO
单稳触发器的输出脉宽应大于噪声宽度而小于信号脉宽,才可 消除噪声。
暂稳态: Q=1 Q=0
Cext
Rext
Rext/Cext Rint
B
G1
A1
&
A2
0
G4
&
a
G2 &
G5
G6
& ≥1 &
Rint G7 1
G8
1
Q1
G3
0
&
G9
1
Q0
触发信号控制电路
微分型单稳态触发器
(a) 逻辑图
输出缓冲电路
在暂稳态期间即使有触发信号输入,但由于G4门在此期间关闭, 不会被再次触发,电路属于不可重复触发单稳态触发器
输出脉冲宽度: tw≈0.7RC
逻辑功能表
74121功能表
A1 A2 B Q Q
L HLH L HLH
L LH
HH LH
H
H
HH
H
L
L
不可触发,保持稳态不变
B 和A1、A2、 中有一个或两个为 高电平,输入端有一个或两个下 降沿时电路被触发
A1、A2中有一个或两个为低电平, 在B端输入上升沿时电路被触发
数字电路第八章 8 脉冲波形的变换与
精品jin
教学基本要求
1、正确理解多谐振荡器、单稳态触发器、施密特触 发器的电路组成及工作原理。
2、掌握多谐、单稳、施密特触发器MSI器件的逻辑 功能及主要指标计算。 3、掌握555定时器的工作原理。
4、掌握由555定时器组成的多谐、单稳、施密特触 发器的电路、工作原理及外接参数及电路指标的计 算。
8.2 施密特触发 器
8.2.1 用门电路组成的施密特触发器
8.2.2 集成施密特触发器
8.2.3 施密特触发器的应用
8.2 施密特触发 器
1、施密特触发器电压传输特性及工作特点:
① 施密特触发器属于电平触发器件,当输入信号达到某一定电压
值时,输出电压会发生突变。
② 电路有两个阈值电压。 输入信号增加和减少时,电路的阈值电
8.1单稳态触发器
8.1.1 用门电路组成的微分型单稳态触发器 8.1.2 集成单稳态触发器 8.1.3 单稳态触发器的应用
8.1单稳态触发器
单稳态触发器的工作特点: ① 电路在没有触发信号作用时处于一种稳定状态。 ② 在外来触发信号作用下,电路由稳态翻转到暂稳态;
③ 由于电路中RC延时环节的作用,暂稳态不能长保持, 经过一段时间后,电路会自动返回到稳态。暂稳态的 持续时间仅取与RC参数值有关。
压分别是正向阈值电压(VT+)和负阈值电压(VT-) 。
vO
vo
VOH
1
vI
VOH
vO
1
vI
vO
VOL
吗?
vO
vO1
≥ 1 G3
采用TTL与非门构成单稳电 路时,电阻R要小于0.7k。
vO
G1 ≥ 1
vI
Cd
Rd
1 G2
C
VD
R
VDD
8.1.2 集成单稳态触发器
不可重复触发
vI
没有被重复触发
vO
可重复触发
vI
tw
tw
(a)
被重复触发
vO
tw
tw
(b)
1. 不可重复触发的集成单稳态触发器 74121
1
0
t
vO1
vO
G1 1
t
vI Cd
vd
Rd
t
1 G2
CD
v
C
v I2 R
VDD
3、 主要参数的计算
(1) 输出脉冲宽度tw
vI
tWR Cl n CC (( )) V CT (0 H )
0 vd
t
vC(0+) = 0;vC() =VDD
0
t
=RC, VTH = VDD /2
vO
1
tw
RCln VDD0 VD DVTH