数字电路第八章 8 脉冲波形的变换讲义与产生

合集下载

数字电路脉冲波形的产生与变化课件

数字电路脉冲波形的产生与变化课件
3
单稳态触发器的分类
门电路组成的单稳态触发器
按电路形式不同 MSI集成单稳态触发器
用555定时器组成的单稳态触发器
按工作特点分类
不可重复触发单稳态触发器 可重复触发单稳态触发器
4
8.2.1 门电路组成的微分型单稳态触发器
1.电路结构
CMOS或非门和非门构成的微分型单稳态触发器
vO1
vO
G1 1 vI
74121 (2)
vO
A1
A2 B vI
A2
Q
B
Q
VCC
0
vO1
t1
tw1
0 vO
tw2
0
t tw1
t
tw2 t
18
3.组成噪声消除电路
如用I作为计数器触发脉冲, 干扰信号会造成计数错误。
噪声
C
R
VCC
vI
Cext Rext/Cext
Q
7412
A1 1
Q
A2
Q
1D
vO
C1
vO
vI
B
R
单稳触发器的输出脉宽应大于噪声宽度而小于信号脉宽, 才可消除噪声。
34
8.4 555定时器及其应用
8.4.1 555定时器 8.4.2 用555定时器组成施密特触发器 8.4.3 用555定时器组成单稳态触发器
8.4.4 用555定时器组成多谐振荡器
35
8.4 555定时器及其应用
8.4.1 555定时器
1.电路结构
VCC (8)
RD(4)
5 k
vIC (5)
×
2 3 VCC
2 3 VCC
2 3 VCC
×

脉冲波形的产生与变换z资料PPT课件

脉冲波形的产生与变换z资料PPT课件
本章基本要 求
➢正确理解多谐振荡器、单稳态触发器、施密特触发 器的电路组成及工作原理。 ➢掌握多谐、单稳、施密特MSI器件的逻辑功能及主 要参数计算。 ➢掌握555定时器的工作原理。 ➢了解由555定时器组成的多谐、单稳、施密特电路 工作原理。
第1页/共50页
§8-1 多谐振荡器
多谐振荡器是一种自激震荡电路,接通电源后 无需外接触发信号即能产生方波和矩形波,其不存 在稳定状态,又称无稳态电路。
vO1
v1(0 ) V 0V VDD
vI () VDD
RC
0
V vI
VDD
DD
V
Vth
0
根据RC电路瞬态 相应分析,
vO2
V
VDD
0
T1 T2
vO1 VDD
t
0
t
t1
t2
t
v(t) v() v(0 ) v() et
t ln v(0 ) v()
v(t) v()
T1
RC
C
1
0.01F
第31页/共50页 tPL tPH
出 T
导通
截截止止 导导通通 不变
一、555定时器组成多谐振荡器
——占空比可调
tpH = RAC1n2≈0.7RAC
R1
RA R2
84
RB
D1
RB
7
3
6
2 555 5
D2
vC +
1
C –
VCC R3
vO
0.01F
tPL=RBC1n2≈0.7RBC f 1 1.43
2 3 VCC
vIC (5) vI1 (6)
+
R

脉冲波形的产生与变换教学课件

脉冲波形的产生与变换教学课件

脉冲信号的产生方式
总结词
可以通过多种方式产生脉冲信号,如逻辑门电路、晶体管开关电路、数字IC等。
详细描述
产生脉冲信号的方式有多种,可以根据具体的应用需求选择合适的方式。常见的产生脉冲信号的方式包括使用逻 辑门电路、晶体管开关电路和数字IC等。这些电路可以通过组合和配置,产生不同形状和特性的脉冲信号,以满 足不同的应用需求。
根据观察和测量结果,调整电 路参数,实现脉冲波形的变换 。
实验结果与分析
实验结果记录
详细记录示波器显示的脉冲波形图像以及相关测量数据。
结果分析
根据记录的数据,分析脉冲波形的变化规律以及电路参数对波形的 影响。
结论总结
总结实验结果,得出脉冲波形变换的原理以及实现方法。
05
总结与展望
脉冲波形产生与变换的重要意义

电源:为电路提供稳定的直流 电压或交流电压。
实验步骤与操作方法
构建电路
根据实验要求,使用电子元件 构建脉冲波形变换电路。
观察与测量
使用示波器观察脉冲波形,并 记录相关数据。
准备实验器材
根据实验需求选择合适的电子 元件和测量仪器。
信号源设置
设置信号发生器,使其输出所 需的脉冲波形信号。
变换电路调整
脉冲波形产生与变换是电子工程、通信和控制工程等领域中 的重要技术,广泛应用于信号处理、雷达、无线通信、电力 电子和电机控制等领域。
脉冲波形产生与变换技术的不断发展和创新,对于推动相关 领域的技术进步和产业升级具有重要意义,能够促进社会经 济的发展和提高人们的生活水平。
当前研究现状与发展趋势
未来,脉冲波形产生与变换技术将继续向着高精度、 高稳定性和高效率的方向发展,同时将更加注重与其 他技术的融合和创新,如物联网、云计算和边缘计算 等。

数字电路基础ch08脉冲波形的变换与产生PPT课件

数字电路基础ch08脉冲波形的变换与产生PPT课件
TN
D3 v O1
R D4
G2 TP
vO TN
+VDD
VC C
多谐振荡器
3. 振荡周期T1的计R算ClnVDVDDVDTH
T2
RC1nVDD VTH
TT1T2R1 C n(VD D V V D T 2 H D )V TH
vI
VDD+ V+
VTH O
vO2 VDD
O
- V-
T1
T2
t1 第 一 t2 第 二
V D DV T
V T -
V D DV T V T -
8.3.3 石英晶体振荡器
1、石英晶体电路符号和选频特性
电路符号
当 f = f0 时, 电抗 X = 0
阻特性 X
f0
电 感 性
f






2、石英晶体振荡器
G1
1
C1
G2 1
vO
R
C2
R
R: 使G1工作在线性区 C2 : 抑制高次谐波
vI
没有被重复触发
vO
后沿触发的可
重复触发单稳
vI
vO
tw
tw
(a)
被重复触发
tw
tw
(b)
单稳态触发器的应用
1. 定时
vI
vO
O
t
vB
与门
tW
O
t
tW
vA
vA vB
单稳态
O
t
触发器
vO
vI
O
t
该电路可用于频率计
单稳态电路还可做延时和噪声消除电路(略)。
8.2 施密特触发器

数字电子技术基础 第八章 脉冲波形的变换与产生

数字电子技术基础 第八章 脉冲波形的变换与产生

Ui
单 稳 1
U01 =1 Uo
U01
t
U02
单 稳 2 U02
t
21
2.多谐振荡器
多谐振荡器是一种常用的脉冲信号产生电路. 工作特性: ① 无稳态,具有两个暂稳态; ② 自激振荡器--在接通电源后,不需外加触发信 号,便能自动产生矩形脉冲; ③ 矩形波中除基波外,还含有丰富的高次谐波--故 称为多谐振荡器.
自动触发
暂稳态0
暂稳态1
自动返回
暂稳态0
22
555定时器构成的多谐振荡器
多谐振荡器的电路与工作原理
UCC R1 7 R2
8
4
Uc
C
6 555 3 2 1 5
Uo
(1)充电过程
刚加电时,Uc=U6=U2=0<1/3Ucc RS=10 Q=1 Uo=1 7端与地不导通,电容充电.
23
0.01μ
(1)充电过程 充电回路: Ucc→R1→R2→C→地 充电时常数: τ = ( R1 + R2)C
0
& Q &
Q G2 G3
t
U6 (TH) U2 (TR)
&
1
G4
3
Uo
t = τ ln
U (∞ ) U (0 + ) U ( ∞ ) U (t )
当5端外加电压Uco时: U(0+)=1/2Uco U(0+)=Uco U(∞)=Ucc U(∞)=0 U(T1)=Uco U(T2)=1/2Uco
U0 U01 C1 C2
TW 多谐
单稳 TW
工作原理:在触发脉冲的作用下,单稳态触发器输出时 间宽度为Tw的高电平,只有在Tw期间多谐振荡器产生振 荡,喇叭发出声响.

数电8脉冲波形的变换与产生

数电8脉冲波形的变换与产生

通过改变振荡器的频率,可以获得不 同频率的8脉冲波形。
利用数字电路中的定时器,可以产生 具有特定频率的8脉冲波形。
倍频器和分频器
利用数字电路中的倍频器和分频器, 可以将输入的8脉冲波形进行倍频或 分频,从而得到不同频率的输出。
8脉冲波形的相位变换
相位延迟
通过在数字电路中添加相位延迟器,可以改 变8脉冲波形的相位。
01
03
程序设计
编写程序以控制单片机产生8脉冲波形, 包括定时器配置、I/O端口控制等。
波形输出
通过单片机的I/O端口输出8脉冲波形。
05
04
编译与下载
将程序编译成可在单片机上运行的二 进制文件,并通过适当的下载工具将 程序下载到单片机中。
04 数电8脉冲波形的变换
8脉冲波形的频率变换
频率变换
定时器
波形输出
将设计的数字电路连接至 适当的输出设备,如LED 灯、数码管等,以显示8 脉冲波形。
基于FPGA的8脉冲波形产生
FPGA芯片选择
选择具有足够逻辑资源、I/O端口和时 钟资源的FPGA芯片。
编译与配置
将设计好的程序编译成可在FPGA上 运行的配置文件,并通过适当的配置 接口将配置文件下载到FPGA芯片中。
移相器
利用数字电路中的移相器,可以将输入的8脉冲波 形进行移相,从而得到不同相位的输出。
触发器
利用数字电路中的触发器,可以产生具有特 定相位的8脉冲波形。
8脉冲波形的幅度变换
幅度调节器
通过在数字电路中添加幅度调 节器,可以改变8脉冲波形的
幅度。
电压比较器
利用数字电路中的电压比较器, 可以将输入的8脉冲波形进行 幅度比较,从而得到不同幅度

第8章 脉冲波形的产生与变换(5)

第8章 脉冲波形的产生与变换(5)

5 6 2 7
VC C 8 R
+ -
RD 4 A1 A2 T R Q S Q 3
管脚图
电 放 阈 电控 源 电 值 压制
VCC
8
R
R 1
+
v’O vI1
7
6
vIC
5
4
电源电压范围: 4.5V ~ 18V
555
1
2 3
GND vI2
Uo
RD
地 触 输 复 发 出 位
7
第八章 脉冲波形的产生与变换
二、 555定时器的应用 555定时器应用广泛,可以做
多谐振荡器: 简易电子琴电路 首先说明如何用555 定时器构成多谐振荡器:
u
VCC R1 R2
C
v’O 4 8 7 vI1 555 3 uo vI2 6
2 1 5 C
2VCC /3 VCC /3
0
t
uo
0
u
C
t
输出波形
12
第八章 脉冲波形的产生与变换
u
VCC
C
R1 R2
v’O 4 8 7 uo vI1 555 3 vI2 6
u
VCC
C
R1 R2
v’O 4 8 7 uo vI1 555 3 vI2 6
2 1 5 C
2VCC /3 VCC /3
0
t
u
o
u
C
如何改变方波的占空比?
0
t T1 T2
改变充放电回路的时间常数即可。 充电时间常数:(R1+R2)C 放电时间常数:R2C
14
第八章 脉冲波形的产生与变换
简易电子琴就是通过改变R2 的阻值来改变 输出方波的周期 , 使外接的喇叭发出不同的音 调。 VCC

脉冲波形的产生与变换PPT资料(正式版)

脉冲波形的产生与变换PPT资料(正式版)

v v v
I2
O2
O 1
TW估算公式如下:
TWRR0
Cln VDD VCCVTH
典型 R R 0 C
2. 积分型单稳态电路
(1) 电路组成 门1、门2是COMS或非门,R、C构成积分型延时环节。
(2) 工作原理 稳态时门1、门2输出低电平。vi=1、vO1=0、vi2=0、vO=0。
高(H) 高(H)
低(L) 高(H)
接通 原状态
关断
6.3 单稳态电路
6.3.1 由CC7555构成的电路
单稳态触发器只有一个稳定状态和一个暂稳态,在外界触发脉冲的 作用下,电路从稳态翻转到暂态,然后在暂稳态停留一段时间TW后又自 动返回到稳态,并在输出端产生一个宽度为TW的矩形脉冲。TW只与电路 本身的参数有关,而与触发脉冲无关。我们通常把TW称为脉冲宽度。
图(b)组成积分电路,当RC<<TS时。在电容上可得 矩形波;而当RC>>TS时,在电容上又可得线性扫描的 波形。
(a)
(b)
脉冲形成电路的组成应有两大部分:惰性电路和开 关。
开关是用来破坏稳态,使惰性电路产生暂态的。开 关可用不同的电子器件来完成,如可用运算放大器,分 立器件晶体三极管或场效应管,也可以用逻辑门。目前 用得较多的是555定时电路。
稳态时,门1输出高电平,门2输出 低电平,vi1 =vi=0,v01=VDD、vi2=VDD、 vO2=0。当vi 由0上升到VTH (CMOS或 非门的开启电压)时,将引起下列正反馈 过程
v v v v
I
O 1 I2 O 2
使电路快速翻转到门1输出低电平时,门 2输出高电平的暂稳状态。随之VDD通过R 及门1的输出电阻(驱动管导通电阻)对电 容C充电,vi2逐渐升高,当vi2上升到VTH 时,又会产生下列反馈过程(假设此时vi已 回到低电平)

数字电路第8章脉冲波形的产生与整形概要

数字电路第8章脉冲波形的产生与整形概要
振荡周期为
T T 1 T 2 0 .7 (R 1 R 2 )C
占空比为
DT1 R1 T R1 R2
第8章 脉冲波形的产生与整形
4)
用两个多谐振荡器可以组成如图8-7(a)所示的模拟声 响电路。适当选择定时元件,使振荡器A的振荡频率 fA=1Hz , 振荡器B的振荡频率 fB= 1kHz。由于低频振荡 器A的输出接至高频振荡器B的复位端(4脚),当Uo1输出高 电平时,B振荡器才能振荡,Uo1输出低电平时, B振荡器 被复位,停止振荡,因此使扬声器发出 1kHz的间歇声响。 其工作波形如图 8-7(b)所示。
到,电路就一直处于Uo=0 的稳定状态。
第8章 脉冲波形的产生与整形
② 暂稳态:外加触发信号Ui的下降沿到达时,由于
U21 3UC、 C U6(UC)0,RS触发器Q端置 1,因此Uo=1, V1截止,UCC开始通过电阻R向电容C充电。随着电容C充 电的进行,UC不断上升,趋向值UC(∞)=UCC。
电路处于某一暂稳态,电容C上电压UC略低于
,Uo
输出高电平,V1截止,电源UCC通过R1、R2 给电容C充电。 随输着出充电电压的Uo进就行一U直C逐保渐持增高高电,平但不只变要,13这U就CC是U第C 一23个U暂CC稳,
态。
第8章 脉冲波形的产生与整形

2 3
当电容C上的电压UC略微超过
2 3
U6 U23i的U触CC 发期负间脉,冲R消S失触后发,器U状2回态到保高持电不平变,,在因U此2 ,13UUoCC、 一直保持高电平不变,电路维持在暂稳态。但当电容C上
的电压上升到
U6
2 3
UCC
时,RS触发器置 0,电路输出Uo
=0,V1导通,此时暂稳态便结束,电路将返回到初始的

脉冲波形的变换与产生 数字电路知识点汇总

脉冲波形的变换与产生 数字电路知识点汇总

第八章 脉冲波形的变换与产生555定时器及其应用 1.电路结构及工作原理 555定时器内部由分压器、 电压比较器、RS 锁存器(触发器)和 集电极开路的三极管T 等三部分组成, 其内部结构及示意图如图22a)、22b)所示。

在图22b )中,555定时器是 8引脚芯卡,放电三极管为外接电 路提供放电通路,在使用定时 器时,该三极管集电极 (第7脚)一般要接上拉电阻,1C 为反相比较器,2C 为同相比较器,比较器的基准电压由 电源电压CC V 及内部电阻分压 比决定,在控制CO V (第5脚)3V cc触发输入VI2阀值输入VI1控制电压VCO 12345678GND 触发输出复位控制电压阀值放电V cc 555图22b) 引脚图悬空时,CC R V V 321=、CC R V V 312=;如果第5脚外接控制电压, 则=1R V CO V 、212=R V CO V ,d R 端(第4脚)是复位端,只要d R 端加上低电平,输出端(第3脚)立即被置成低电平,不受其它输入状态的影响,因此正常工作时必须使d R 端接高电平。

由图22a),1G 和2G 组成的RS 触发器具有复位控制功能,可控制三极管T 的导通和截止。

由图22a)可知,当1i V >1R V (即1i V >CC V 32)时,比较器1C 输出0=R V当2i V >2R V (即>2i V CC V 31)时,比较器2C 输出1=S VRS 触发器Q =03G 输出为高电平,三极管T 导通,输出为低电平(0=o V )当1i V <1R V (即1i V <CC V 32),2i V CC V 31<时,比较器1C 输出高电平,1=R V ,2C 输出为低电平0=S V基本RS 触发器Q =1,3G 输出为低电平,三极管T 截止,同时4G 输出为高电平。

当1i V >1R V (即1i V >CC V 32)时,比较器1C 输出0=R V当2i V <2R V (即2i V CC V 31<)时,比较器2C 输出0=S V⇒1G 、2G 输出Q =1,1=Q 同进T 截止,4G 输出为高电平 这样,就得到了表2所示555功能表。

8__脉冲波形的变换与产生解析

8__脉冲波形的变换与产生解析
RC延时环节
开 关 电 路
24
8.4 555定时器及其应用
8.4.1 555定时器 8.4.2 用555定时器组成施密特触发器
8.4.3 8.4.4
用555定时器组成单稳态触发器 用555定时器组成多谐振荡器
25
8.4.1
555定时器
555定时器是美国Signetics公司1972年研制的用于取代机 械式定时器的中规模集成电路,因输入端设计有三个5kΩ的电 阻而得名。此电路后来竟风靡世界。 555定时器可以说是模拟电路与数字电路结合的典范。 它成本低,性能可靠,只需外接少量的阻容元件,就可以实现 多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换 电路。它也常作为定时器广泛应用于仪器仪表、家用电器、电 子测量及自动控制等方面。广泛用于信号的产生、变换、控制 与检测。 555的具体应用: (1)构成施密特触发器,用于TTL系统的接口,整形电路或脉 冲鉴幅等; (2)构成单稳态触发器,用于定时、延时、整形及一些定时 开关中; (3)构成多谐振荡器,组成信号产生电路。
6
2.单稳态触发器的分类:
不可重复触发单稳态触发器
工作特点划分
可重复触发单稳态触发器
7
• 不可重复触发单稳态触发器:电路一旦被触发进 入暂稳态后,再加入触发脉冲则无效,必须在暂 稳态结束后才接受下一个触发脉冲,重新进入暂 稳态。电路的输出脉宽不受其影响。 • 可重复触发单稳态触发器:电路在被触发进入暂 稳态后,若再次加入触发脉冲则这些触发脉冲有 效,电路将重新被触发,使输出脉冲再继续维持 tw宽度 ,如后面的图所示,故输出脉冲宽度将为
t + t W。电路的输出脉宽可根据触发脉冲的输
入情况的不同而改变。
8
没有被重复触发

第8篇-脉冲波形的产生与变换 ppt课件

第8篇-脉冲波形的产生与变换  ppt课件
0
vO
2/3Vcc
vI ⑥
+
- C1
R
2/3Vcc
1/3Vcc - C2
vI②
+
S
1/3Vcc
vO
t
0
0
t
VCC
2VCC
(1)当vI<1/3Vcc时, R=1,S=0,Q=1,vO=31; 3
VCC vI
(2)当1/3Vcc< vI<2/3Vcc时, R=1,S=1,Q=1(保持),vO=1;
(3)当 vI>2/3Vcc时, R=0,S=1,Q=0,vO=0;
vI2 2 vO, 7
555 3 vO
1
锁存器,决定输出状态。
(3) 3脚—输出端
(4) 4脚( RD )----复位输入端,当RD=0,RS锁存 器被复位,输出vo为低电平。正常工作时,应将 其接高电平。
PPT课件
6
(5) 5脚(VIC)——电压控制端,当其悬空时,比 较器C1和C2的比较电压分别为2/3VCC 和1/3VCC 。
(6) 6脚—阈值输入端 (7) 7脚—放电端 (8) 8脚—电源端
VCC RD
vIC
8 5
4
vI1 6
vI2 2 vO, 7
555 3 vO
1
PPT课件
7
工作原理
1.当RD=0时,Vo=0,T导通
2.当RD=1时
(1)
VI1

2 3
VCC
,VI 2

1 3
VCC
,R
1, S

0
Q=1,T截止,Vo=1
2、振荡频率的估算
(1)电容充电时间T1:(用三要素法计算)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

vI
Cd vd
Rd
C 1 G2 D vI2
vC R
正脉冲触发
CMOS或非门构成的微分型 单稳态触发器
稳态为0
vO1
vO
G1 1 vI Cd
vd Rd
1 G2
CD
v
C
v I2 R
VDD
负脉冲触发
工作原理:
设定CMOS反相器的阈值电压
VTH
VD D 2
a)没有触发信号时,I=0
电路处于一种稳态:
o =0 c =0
v
0
I
2
t
= RCln2
V DD V TH
tw≈0.7RC
0
vO
t
(2) 恢复时间tre
t re
(3) 最高工作频率 fmax
tW
3d
0
1
t1 1 t2
fmaxTmi
n twtre
t
4. 讨论
a)在暂稳态结束(t= t2)瞬间,门G2的输入电压I2达 b)用T到TVLD门D+电V阻THR,的可取能值损可坏以G是2门任,意怎的么办?
单稳态触发器的分类
按电路形式不同 工作特点划分
门电路组成的单稳态触发器 MSI集成单稳态触发 用555定时器器组成的单稳态触
发器
不可重复触发单稳态触发器
可重复触发单稳态触发器
8.1.1 用CMOS门电路组成的微分型单稳态触发器
1. 电路
CMOS与非门构成的微分型 单稳态触发器
稳态为1
vO
vO
1
G1 &
8.1.3 单稳态触发器的应用
1. 定时
vI
vO
O
t
vB
与门
tW
O
t
tW
vA
vA vB 单稳
O vO
t

触发
器 vI
O
该电路可用于频率计
t
2. 延时
C1
R1 VCC
C2
R2 VCC
C ext R ext/ C ext
74121
vO1
A1 ( 1)
C ext R ext/ C ext
74121 ( 2)
vO 1
G1 1
1 G2
t
vI
Cd vd
CD vC
vI2 R
Rd
t
VDD
c)电容充电,
vI
vR
vo2
0
vd
0
vO
1
v
0
I2
VDD VTH
0 vO
0
tw
t1
t2
I2
vO1
t
t
I2 =VTH产生如下正反馈过程:
vI2 vO vO1
迅速使 o1 = 1 o =0 电容放电 c =0
电路由暂稳态自动返回到稳态
vI
0
1
vO1
G1 1 Cd 0
vd
Rd
0
vO
1 G2
CD
v
C
v I2 1 R
VDD
b)外加触发信号
d
d =VTH
vI
0 vd
v
0
O
1
v
0
I2
VDD
V TH
0 vO
0
t1
t2
产生如下正反馈过程:
vI vO 1 vI2 vO
t
迅速使 o1 = 0 o =1
t
电路进入暂稳态 电容充电 I2
t
0 vO1
Cext
Rext
Rext/Cext Rint
B
G1
A1
&
A2
G4 &
a G2 &
G5
G6
& ≥1 &
Rint G7 1
G8
1
Q
G9
G3 &
1
Q
触发信号控制电路
触发信号控制电路
微分型单稳态触发器
输出缓冲电路
(a) 逻辑图
微分型单稳触发器
电路的连接:C:外接电阻容 R:外接电阻或采用内部电阻
(1)工作原理 电路的不可重复触发特性
vO
A1
A2 B vI
A2
Q
B
Q
VCC
vI
0 vO1
t1 tw1
0 vO
tw2
0
t tw1
t
tw2 t
4. 组成噪声消除电路
如用I作为下降沿触发的计数器触发脉冲,干扰加入,就会造成 计数错误.
C
R
VCC
Cext Rext/Cext
噪声
7412
A1 1
Q
A2
Q
1D C1
vI
vO
Q
vI
B
R
vO
单稳触发器的输出脉宽应大于噪声宽度而小于信号脉宽,才可 消除噪声。
暂稳态: Q=1 Q=0
Cext
Rext
Rext/Cext Rint
B
G1
A1
&
A2
0
G4
&
a
G2 &
G5
G6
& ≥1 &
Rint G7 1
G8
1
Q1
G3
0
&
G9
1
Q0
触发信号控制电路
微分型单稳态触发器
(a) 逻辑图
输出缓冲电路
在暂稳态期间即使有触发信号输入,但由于G4门在此期间关闭, 不会被再次触发,电路属于不可重复触发单稳态触发器
输出脉冲宽度: tw≈0.7RC
逻辑功能表
74121功能表
A1 A2 B Q Q
L HLH L HLH
L LH
HH LH
H
H
HH
H
L
L
不可触发,保持稳态不变
B 和A1、A2、 中有一个或两个为 高电平,输入端有一个或两个下 降沿时电路被触发
A1、A2中有一个或两个为低电平, 在B端输入上升沿时电路被触发
数字电路第八章 8 脉冲波形的变换与
精品jin
教学基本要求
1、正确理解多谐振荡器、单稳态触发器、施密特触 发器的电路组成及工作原理。
2、掌握多谐、单稳、施密特触发器MSI器件的逻辑 功能及主要指标计算。 3、掌握555定时器的工作原理。
4、掌握由555定时器组成的多谐、单稳、施密特触 发器的电路、工作原理及外接参数及电路指标的计 算。
8.2 施密特触发 器
8.2.1 用门电路组成的施密特触发器
8.2.2 集成施密特触发器
8.2.3 施密特触发器的应用
8.2 施密特触发 器
1、施密特触发器电压传输特性及工作特点:
① 施密特触发器属于电平触发器件,当输入信号达到某一定电压
值时,输出电压会发生突变。
② 电路有两个阈值电压。 输入信号增加和减少时,电路的阈值电
8.1单稳态触发器
8.1.1 用门电路组成的微分型单稳态触发器 8.1.2 集成单稳态触发器 8.1.3 单稳态触发器的应用
8.1单稳态触发器
单稳态触发器的工作特点: ① 电路在没有触发信号作用时处于一种稳定状态。 ② 在外来触发信号作用下,电路由稳态翻转到暂稳态;
③ 由于电路中RC延时环节的作用,暂稳态不能长保持, 经过一段时间后,电路会自动返回到稳态。暂稳态的 持续时间仅取与RC参数值有关。
压分别是正向阈值电压(VT+)和负阈值电压(VT-) 。
vO
vo
VOH
1
vI
VOH
vO
1
vI
vO
VOL
吗?
vO
vO1
≥ 1 G3
采用TTL与非门构成单稳电 路时,电阻R要小于0.7k。
vO
G1 ≥ 1
vI
Cd
Rd
1 G2
C
VD
R
VDD
8.1.2 集成单稳态触发器
不可重复触发
vI
没有被重复触发
vO
可重复触发
vI
tw
tw
(a)
被重复触发
vO
tw
tw
(b)
1. 不可重复触发的集成单稳态触发器 74121
1
0
t
vO1
vO
G1 1
t
vI Cd
vd
Rd
t
1 G2
CD
v
C
v I2 R
VDD
3、 主要参数的计算
(1) 输出脉冲宽度tw
vI
tWR Cl n CC (( )) V CT (0 H )
0 vd
t
vC(0+) = 0;vC() =VDD
0
t
=RC, VTH = VDD /2
vO
1
tw
RCln VDD0 VD DVTH
相关文档
最新文档