(易错题精选)初中数学一次函数难题汇编附答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
3
单价(元)
5
6
A.购买 型瓶的个数是 为正整数时的值B.购买 型瓶最多为6个
C. 与 之间的函数关系式为 D.小张买瓶子的最少费用是28元
【答案】C
【解析】
【分析】
设购买A型瓶x个,B( )个,由题意列出算式解出个选项即可判断.
【详解】
设购买A型瓶x个,
∵买瓶子用来分装15升油,瓶子都装满,且无剩油,
先根据题意求出点A2的坐标,再根据点A2的坐标求出B2的坐标,以此类推总结规律便可求出点 的坐标.
【详解】


∵过点 作 轴的垂线,交直线 于点



∵过点 作 轴的垂线,交直线 于点

∵点 与点 关于直线 对称

以此类推便可求得点An的坐标为 ,点Bn的坐标为
故答案为:B.
【点睛】
本题考查了坐标点的规律题,掌握坐标点的规律、轴对称的性质是解题的关键.
∴不等式3x+b>ax-3的解集为:x>-2,
在数轴上表示为:
故选:A.
【点睛】
本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.
15.一次函数y=x-b的图像,沿着过点(1,0)且垂直于x轴的直线翻折后经过点(4,1),则b的值为()
5.甲、乙两人一起步行到火车站,途中发现忘带火车票了,于是甲立刻原速返回,乙继续以原速步行前往火车站,甲取完火车票后乘出租车赶往火车站,途中与乙相遇,带上乙一同前往,结果比预计早到3分钟,他们与公司的路程 (米)与时间 (分)的函数关系如图所示,则下列结论错误的是()
A.他们步行的速度为每分钟80米;B.出租车的速度为每分320米;
当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y轴于正半轴,y随着x的增大而增减小,B. D均错误,
故选:C.
【点睛】
此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.
4.下列函数中,y随x的增大而增大的函数是()
A. B. C. D.
【答案】C
【解析】
【分析】
根据一次函数的性质对各选项进行逐一分析即可.
当x=50时, ,
即第50天,该植物的高度为16厘米;
故④的说法错误.
综上所述,正确的是①②③.
故选:A.
【点睛】
本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.
9.如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是( )
即点 的坐标为
∵点A向右平移 个单位,向下平移6个单位得到点
∴ 的坐标为 .
故选:D.
【点睛】
本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.
12.一次函数ymx 的图像过点(0,2),且y随x的增大而增大,则m的值为()
A.1B.3C.1D.1或3
【答案】B
6.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的 继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是( )
【详解】
∵y=-2x中k=-2<0,∴y随x的增大而减小,故A选项错误;
∵y=-2x+1中k=-2<0,∴y随x的增大而减小,故B选项错误;
∵y=x-2中k=1>0,∴y随x的增大而增大,故C选项正确;
∵y=-x-2中k=-1<0,∴y随x的增大而减小,故D选项错误.
故选C.
【点睛】
本题考查的是一次函数的性质,一次函数y=kx+b(k≠0)中,当k>0时y随x的增大而增大;k<0时y随x的增大而减小;熟练掌握一次函数的性质是解答此题的关键.
10.已知正比例函数 , 随 的增大而减小,那么一次函数 的图象大致是如图中的()
A. B.
C. D.
【答案】D
【解析】
【分析】
由 随 的增大而减小即可得出m<0,再由m<0、−m>0即可得出一次函数 的图象经过第一、二、四象限,对照四个选项即可得出结论.
【详解】
解:∵正比例函数y=mx(m≠0)中,y随x的增大而减小,
考点:1.一次函数图象与系数的关系;2.直线上点的坐标与方程的关系;3.不等式的性质.
3.函数 与 ( )在同一平面直角坐标系中的大致图象是()
A. B. C. D.
【答案】C
【解析】
【分析】
分k>0和k<0两种情况确定正确的选项即可.
【详解】
当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交y轴于负半轴,y随着x的增大而增大,A选项错误,C选项符合;
【详解】
解:根据题意,由图可知,甲走了480米后才发现了没带票,返回公司用时12分钟,行进过程中速度不变,
即:甲步行的速度为每分钟 米,乙步行的速度也为每分钟80米,
故A正确;
又∵甲乙再次相遇时是16分钟,
∴16分乙共走了 米,
由图可知,出租车的用时为16-12=4分钟,
∴ห้องสมุดไป่ตู้租车的速度为每分 米,
故B正确;
又∵相遇后,坐出租车去火车站比预计早到3分钟,
设公司与火车站的距离为x米,
依题意得: ,解之得: ,
∴公司与火车站的距离为1600米,出租车与乙相遇时距车站1600-1280=320米.
故C正确,D不正确.
故选:D.
【点睛】
本题通过考查一次函数的应用来考查从图象上获取信息的能力.要注意题中分段函数的意义.
14.一次函数y=3x+b和y=ax-3的图象如图所示,其交点为P(-2,-5),则不等式3x+b>ax-3的解集在数轴上表示正确的是( )
A. B.
C. D.
【答案】A
【解析】
【分析】
直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.
【详解】
解:∵由函数图象可知,
当x>-2时,一次函数y=3x+b的图象在函数y=ax-3的图象的上方,
①学校到景点的路程为40km;
②小轿车的速度是1km/min;
③a=15;
④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.
A.1个B.2个C.3个D.4个
【答案】D
【解析】
【分析】
根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.
【详解】
解:由图象可知,
学校到景点的路程为40km,故①正确,
故选C.
8.某生物小组观察一植物生长,得到的植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴).下列说法正确的是().
①从开始观察时起,50天后该植物停止长高;
②直线AC的函数表达式为 ;
③第40天,该植物的高度为14厘米;
④该植物最高为15厘米.
A. B. C. D.
【答案】D
【解析】
【分析】
先根据已知条件求出点A、B的坐标,再求出直线OA的解析式,继而得出点 的纵坐标,找出点A平移至点 的规律,即可求出点 的坐标.
【详解】
解:∵三角形 是等边三角形,且边长为4

设直线OA的解析式为 ,将点A坐标代入,解得:
即直线OA的解析式为:
将点 的横坐标为 代入解析式可得:
C.公司与火车站的距离为1600米;D.出租车与乙相遇时距车站400米.
【答案】D
【解析】
【分析】
根据图中一条函数的折返点的纵坐标是480,我们可得知,甲走了480米后才发现了没带票的,然后根据返回公司用时12分钟,速度不变,可以得出他的速度是80米/分钟,甲乙再次相遇时是16分钟,则可以得出相遇时,距离公司的距离是1280米,再根据比预计早到3分钟,即可求出各项数据,然后判别即可.
13.如图,过点 作 轴的垂线,交直线 于点 ;点 与点 关于直线 对称;过点 作 轴的垂线,交直线 于点 ;点 与点 关于直线 对称;过点 作 轴的垂线,交直线 于点 ;按 此规律作下去,则点 的坐标为
A.(2n,2n-1)B.( , )C.(2n+1,2n)D.( , )
【答案】B
【解析】
【分析】
④当0≤x<3时,y=5x+6×( )=x+30,
∴k=1>0,
∴y随x的增大而增大,
∴当x=0时,y有最小值,最小值为30元;
②当x≥3时,y=5x+6×( )-5=x+25,
∵.k=1>0随x的增大而增大,
∴当x=3时,y有最小值,最小值为28元;
综合①②可得,购买盒子所需要最少费用为28元.
故C不成立,D成立
故选:C.
【点睛】
本题考查一次函数的应用,关键在于读懂题意找出关系式.
2.已知过点 的直线 不经过第一象限.设 ,则s的取值范围是()
A. B. C. D.
【答案】B
【解析】
试题分析:∵过点 的直线 不经过第一象限,
∴ .∴ .
∵ ,∴ .
由 得 ,即 .
由 得 ,即 .
∴s的取值范围是 .
故选B.
∴购买B型瓶的个数是 ,
∵瓶子的个数为自然数,
∴x=0时, =5; x=3时, =3; x=6时, =1;
∴购买B型瓶的个数是( )为正整数时的值,故A成立;
由上可知,购买A型瓶的个数为0个或3个或6个,所以购买A型瓶的个数最多为6,故B成立;
设购买A型瓶x个,所需总费用为y元,则购买B型瓶的个数是( )个,
A.①②③B.②④C.②③D.①②③④
【答案】A
【解析】
【分析】
①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;
②设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC线段的解析式,
③把x=40代入②的结论进行计算即可得解;
④把x=50代入②的结论进行计算即可得解.
【解析】
【分析】
先根据函数的增减性判断出m的符号,再把点(0,2)代入求出m的值即可.
【详解】
∵一次函数y=mx+|m-1|中y随x的增大而增大,
∴m>0.
∵一次函数y=mx+|m-1|的图象过点(0,2),
∴当x=0时,|m-1|=2,解得m1=3,m2=-1<0(舍去).
故选B.
【点睛】
本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
(易错题精选)初中数学一次函数难题汇编附答案解析
一、选择题
1.超市有 , 两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买 型瓶3个或以上,一次性返还现金5元,设购买 型瓶 (个),所需总费用为 (元),则下列说法不一定成立的是()
型号
A
B
单个盒子容量(升)
∴m<0,
∴−m>0,
∴一次函数y=mx−m的图象经过第一、二、四象限.
故选:D.
【点睛】
本题考查了一次函数的图象、正比例函数的性质以及一次函数图象与系数的关系,熟练掌握“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.
11.如图在平面直角坐标系中,等边三角形 的边长为4,点 在第二象限内,将 沿射线 平移,平移后点 的横坐标为 ,则点 的坐标为()
7.如图,函数 和 的图象相交于A(m,3),则不等式 的解集为()
A. B. C. D.
【答案】C
【解析】
【分析】
【详解】
解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),
∴3=2m,解得m= .
∴点A的坐标是( ,3).
∵当 时,y=2x的图象在y=ax+4的图象的下方,
∴不等式2x<ax+4的解集为 .
A.﹣5B. C. D.7
【答案】C
【解析】
【分析】
把(-2,0)和(0,1)代入y=kx+b,求出解析式,再将A(3,m)代入,可求得m.
【详解】
把(-2,0)和(0,1)代入y=kx+b,得

解得
所以,一次函数解析式y= x+1,
再将A(3,m)代入,得
m= ×3+1= .
故选C.
【点睛】
本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.
小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,
a=1×(35﹣20)=15,故③正确,
大客车的速度为:15÷30=0.5km/min,
当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷ ﹣(40﹣15)÷1=10分钟才能达到景点入口,故④正确,
故选D.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
【详解】
解:∵CD∥x轴,
∴从第50天开始植物的高度不变,
故①的说法正确;
设直线AC的解析式为y=kx+b(k≠0),
∵经过点A(0,6),B(30,12),
∴ ,
解得: ,
∴直线AC的解析式为 (0≤x≤50),
故②的结论正确;
当x=40时, ,
即第40天,该植物的高度为14厘米;
故③的说法正确;
相关文档
最新文档