变频器对电机影响及解决办法
变频器对电机影响及解决办法
变频器对电机影响及解决办法变频器是一种用来控制交流电动机转速的设备,通过改变输入电压和频率来实现对电机的精确控制。
但是,变频器使用不当或故障可能对电机造成一些不利影响。
本文将讨论变频器对电机的影响以及相应的解决办法。
首先,变频器可能对电机带来的最常见的影响是温升。
由于变频器提供的电源是脉冲宽度调制(PWM)信号,该信号具有高频率的开关特性。
这可能会导致电机内部的涡流损耗和交变磁通损耗增加,从而使电机温升升高。
高温可能会导致电机绝缘老化和损坏。
为解决这个问题,可以采取以下措施:1.安装外部冷却装置:如风扇、散热器或冷凝器,以增加散热面积,提高热量的散发速度,降低温升。
2.提高电机的绝缘等级:选择具有更高绝缘等级的电机,以提高其耐高温性能。
3.控制变频器输出电压和频率:调整变频器的输出电压和频率,避免过高的功率输出,从而减少电机的负荷,降低温升。
第二个影响是电机振动和噪声。
变频器的调频和调制特性可能会导致电机产生频率和振幅都不稳定的电磁力,进而引起电机振动和噪声。
为减少这种影响,可采取以下措施:1.使用减振装置:在电机和变频器之间添加减振材料或减振支架,以吸收和减少振动的传递。
2.提高变频器的PWM频率:增加PWM频率可以减小电机震动的幅度,但要注意电机和变频器的匹配性。
第三个影响是电机绝缘问题。
由于变频器提供的输出电压为可调节的脉冲信号,其谐波成分可能会对电机绝缘系统产生不利影响。
谐波电压可能会导致局部电场强度增大,从而降低绝缘系统的耐电压能力,引发绝缘失效。
为解决这个问题,可以采取以下措施:1.使用绝缘变频器:选择具有良好绝缘性能的变频器,减少谐波电压对电机绝缘的影响。
2.添加绝缘屏蔽层:在电机绕组和绝缘材料表面添加屏蔽层,以减少外部电场对电机绝缘的影响。
3.定期检测绝缘状态:定期进行绝缘电阻测量,及时发现绝缘问题并采取措施修复。
除了上述影响,变频器还可能对电机造成电磁干扰、电流谐波、轴承磨损等问题。
高压变频器对电动机继电保护的影响及解决措施
高压变频器对电动机继电保护的影响及解决措施摘要高压变频器是一种能够调节电动机转速和输出功率的节能设备,广泛应用于火力发电厂等领域。
然而,高压变频器的应用也给电动机的继电保护带来了新的挑战和问题,如差动保护、过流保护、过负荷保护等。
本文分析了高压变频器对电动机继电保护的影响原因,结合实际案例提出了相应的解决措施,包括保护配置、整定、测试等方面。
实践证明,这些措施能够有效地提高电动机的保护可靠性和安全性,为发电企业节能减排、安全稳定运行提供技术支持。
关键词高压变频器;电动机;继电保护;差动保护;过流保护正文1 引言随着社会经济的发展和能源需求的增长,火力发电厂作为主要的发电方式之一,面临着提高效率、降低成本、减少污染等多重压力。
为了实现这些目标,火力发电厂中的重要辅机,如锅炉引风机、送风机、汽轮机电动给水泵、凝结水泵等,需要进行流量调节以适应不同的工况需求。
传统的流量调节方法是通过调节风门或阀门的开度来改变流体阻力,但这种方法会造成大量的节流损失和耗能,影响系统的经济性和效率。
为了解决这个问题,高压变频器作为一种能够根据负载需求改变电动机转速和输出功率的节能设备,被广泛应用于火力发电厂中。
高压变频器的基本原理是将工频为50Hz的交流电源整流成直流,再逆变成可调节频率和幅值的交流电源,供给电动机驱动。
通过改变交流电源的频率,可以改变电动机的转速,从而调节流体流量,消除风门或阀门的截流损耗,提高系统效率和节能效果。
然而,高压变频器的应用也给电动机的继电保护带来了新的挑战和问题。
由于高压变频器输出的交流电源与输入的交流电源在频率、相位、波形等方面没有必然联系,导致传统的继电保护方式无法适用或失效。
例如,在差动保护中,如果将变频器纳入差动范围,则会造成差动比值不匹配或差动相位不一致而误动作;在过流保护中,如果将变频器输出端作为过流测量点,则会造成过流定值不准确。
2影响相量差动保护原理基于基尔霍夫电流定律,被保护设备两侧电流频率一致是构成相量差动的基本条件。
变频电机与普通电机的区别(个人总结)
一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。
以下为变频器对电机的影响1、电动机的效率和温升的问题不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。
高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。
除此之外,还需考虑因集肤效应所产生的附加铜耗。
这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。
2、电动机绝缘强度问题目前中小型变频器,不少是采用PWM的控制方式。
他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。
另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。
3、谐波电磁噪声与震动普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。
变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。
当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。
由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。
4、电动机对频繁启动、制动的适应能力由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。
变频电机与工频电机的区别及电机扭矩计算公式
变频电机与工频电机有什么区别一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。
以下为变频器对电机的影响1、电动机的效率和温升的问题不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
拒资料介绍,以目前普遍使用的正弦波PWM 型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。
高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。
除此之外,还需考虑因集肤效应所产生的附加铜耗。
这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。
2、电动机绝缘强度问题目前中小型变频器,不少是采用PWM 的控制方式。
他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。
另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。
3、谐波电磁噪声与震动普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。
变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。
当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。
由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。
4、电动机对频繁启动、制动的适应能力由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。
高压变频器对电动机继电保护的影响及解决措施
高压变频器对电动机继电保护的影响及解决措施摘要:变频器技术是节能降耗有效技术体系,尤其是在现代工业制造中,变频器技术的应用可以成为生产系统能效优化的基础。
目前,一些制造商使用高压电动机变频来调节电机系统的性能。
但是,结合实际情况,变频器增加后传统高压电动机装置的整体性能下降,因此无法进行全面保护。
变频技术越来越多的企业使其够革新,提高继电保护的质量,从而为公司高质量生产线的创新奠定良好的基础。
电机继电保护在高压变压器在中的应用主要采用差动法,该装置允许变压器和电机保护装置发挥作用。
这不仅使高压变压器能够保护电机继电器,而且还能显着节约成本,分析了继电保护影响及解决。
关键词:高压变频;继电保护;差动保护电力公司为了节约能源、降低能耗、提高电网的价格竞争力,通常采用变频调速。
如果变频调速安装在高压电动机中,则常规保护装置不能差动,后备保护装置只能通过变频器提供。
在电厂中,电动机高压变频调速在改变,使用程序进行电机保护配置和整定意义重要。
一、变频器的基本原理在目前的生产中,电力和化工企业大量的机电设备,这意味着泵、引、送风机消耗的能源较多。
变频调速系统基于节能环保,该系统的运行要求可以与流量控制和阀门的科学设置相结合,以便在需要时降低能耗。
例如,在火电厂发电动机当前调试中,可以将现代通信技术与电气和电子相结合,将输出频率50Hz设置为直流运行,然后斩波、还原。
降低的交流频率可与流体电流相结合,实现自动控制并控制电机转速,这提高了整个工厂的效率,节约了能源,减少了消耗。
二、变频器节能的基本原理大型电源设备,如水泵、锅炉引风机、一次二次风机等,负担很重。
这些风机与水泵系统通常需要不断调整流量以满足操作要求。
该组的输出功率和负载不得在电机频率下变化,因此必须在系统的入口挡板中进行调整,这可能会导致能量损失。
比如年负荷率低中高负荷分别是(50~60)、(80~90)%,这就需要更多的时间。
电机调节时,可以通过改变工作频率,调节电机转速来调节电流,减少电机故障,优化电机效率,使改造变频后消除了冲击电流、电机启动,电机、电缆、开关等原因。
变频器常见故障及解决方案
变频器常见故障及解决方案变频器是工业自动化中的重要设备,其主要功能是将电网的电源转换成直流电,再将其转换为可控的交流电,以实现对电动机的无级调速、启停控制等功能。
但是,变频器作为一个复杂的电子系统,在使用过程中也会出现各种各样的故障。
本文将围绕常见的变频器故障及其解决方案展开讲解。
一、变频器故障原因分析1.电网电压不稳定:由于电网电压的波动、闪变或者停电等原因,会导致变频器出现故障。
2.变频器使用寿命到期:变频器作为一个电子设备,随着使用时间的增长,其内部元器件的老化和损坏可能导致其出现故障。
3.变频器损坏:由于外部因素,如电气短路、电感损坏等原因,会导致变频器内部部件损坏。
4.程序或参数设置错误:如果变频器的操作程序或者参数设置有误,也可能导致其无法正常工作。
二、常见变频器故障及其解决方案1.过电流故障原因:由于电动机过载或短路以及变频器输出电路不正常导致电流过大,触发电流保护,从而引起过电流故障。
解决方案:检查电机负载是否过大或短路,检查变频器输出电路是否正常。
2.欠电流故障原因:由于电机转子堵转或转速过低,触发欠电流保护,从而引起欠电流故障。
解决方案:检查电机转动是否正常,清理电机风扇,检查电动机线圈是否断路。
3.过温故障原因:由于环境温度过高或者内部风扇出现故障,导致变频器内部温度过高,触发过温保护,从而引起过温故障。
解决方案:清理变频器内部,更换风扇或增加散热器。
4.电源故障原因:变频器输入电源故障,例如断电、相序错乱等。
解决方案:检查变频器输入电源是否正常,检查电源线路是否正常。
5.无法启动故障原因:变频器开机后,无法启动电动机。
解决方案:检查变频器程序和参数设置是否正确,检查变频器输出电路是否正常。
6.限频故障原因:由于程序或参数设置错误,限制电动机速度,导致限频故障。
解决方案:重新设置变频器参数,或超速运行电动机以解决故障。
三、常见问题的预防策略1.保证电力质量:通过安装电力稳定器或UPS等设备,减少电网电压波动,以确保变频器正常工作。
高压变频器对电动机继电保护的影响及解决措施
高压变频器对电动机继电保护的影响及解决措施摘要:在电动机中使用高压变频器不仅可以打造节能型生产体系,也可以有效提升整体系统运行稳定性。
而以变频工况作为主要的改造方向,打造科学的继电保护体系,能够进一步提升发电机的运行稳定性和安全性。
基于此,对高压变频器对电动机继电保护的影响及解决措施进行研究,以供参考。
关键词:高压变频器;电动机继电保护;影响;解决措施引言高压变频器用在高压交流电动机中,能够实现变频调速,从而节省设备能耗,增加设备的稳定性和安全性、可靠性。
合理使用高压变频器,定期进行维护和操作,及时处理产生的故障,保证高压变频器能够得到更好的应用。
工业生产中使用高压变频器,需要工作人员加强维护和保养高压变频器,避免发生故障。
处理高压变频器产生的问题时,技术人员要排查高压变频器外部和内部故障,探究参数缩减处理故障的时间,提升高压变频器使用率。
1高压变频器设计基础高压变频器是通过对输出频率和输出电压的改变来控制交流高压电动机转速的调速控制装置,它是由主回路、电源回路、智能功率模块驱动、保护电路和冷却电机等几部分组成。
在实际的应用中,可以将其分为两种,一种是双极型,另一种为单极型。
双极型的主要特点在于,它具有两个谐振频率的谐振,并且在工作时,两谐振之间会产生一个较大的磁场来相互抵消,从而使两谐波的振幅相等。
而单极型的特征则比较明显,其最大的优点就是能够实现无级调速,同时也不会对电网造成过大的影响。
2高压变频器和继电保护的矛盾问题2.1 继电保护配置从具体的保护装置结构角度来讲,当前大部分的电动机选择的是三相三继电器式接线,在变压器任意一侧出现故障时,都可以进行瞬间动作,若变压器高压侧无断路器,那么瞬间动作则直接服务于变电机的变压器组总出口继电器,能够在系统出现故障时快速地进行反应,实现开关的启停。
目前,电动机的保护装置为V形综合保护系统,开关柜和电动机中性点侧电流互感器,将直接提供差动保护电流。
2.2 变频器应用后的问题分析当前绝大部分的电动机变频改造,主要原理是实现工频和变频的灵活切换,在实际应用过程中,若变频器出现了故障,那么整体系统会转换成工频供电的状态,前期系统中的程序会执行自动调控。
变频器产生的干扰及解决方案
变频器产生的干扰及解决方案摘要:变频器具有很多的优越性,但它对电网的谐波干扰和电磁辐射干扰也越来越受到人们的关注,本文主要介绍谐波、电磁辐射的标准和危害及其减弱或消除的方法。
1 引言采用变频器驱动的电动机系统因其节能效果明显、调节方便、维护简单、网络化等优点而得到越来越多的应用。
但是,由于变频器特殊的工作方式带来的干扰越来越不容忽视。
变频器干扰主要有:一是变频器中普遍使用了晶闸管或者整流二极管等非线性整流器件,其产生的谐波对电网将产生传导干扰,引起电网电压畸变(电压畸变率用THDv表示,变频器产生谐波引起的THDv在10~40%左右),影响电网的供电质量;二是变频器的输出部分一般采用的是IGBT等开关器件,在输出能量的同时将在输出线上产生较强的电磁辐射干扰,影响周边电器的正常工作。
2 谐波和电磁辐射对电网及其它系统的危害(1)谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率.(2) 谐波可以通过电网传导到其它的用电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。
(3) 谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。
(4) 谐波或电磁辐射干扰会导致继电保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。
(5)电磁辐射干扰使经过变频器输出导线附近的控制信号、检测信号等弱电信号受到干扰,严重时使系统无法得到正确的检测信号,或使控制系统紊乱。
一般来讲,变频器对电网容量大的系统影响不十分明显,这也就是谐波不被大多数用户重视的原因.但对系统容量小的系统,谐波产生的干扰就不能忽视。
3 有关谐波的国际及国家标准现行的有关标准主要有:国际标准IEC61000—2—2,IEC61000-2—4,欧洲标准EN61000-3-2,EN61000-3—12,国际电工学会的建议标准IEEE519—1992,中国国家标准GB/T14549—93《电能质量共用电网谐波》。
变频器电机过载的原因及解决方法
变频器电机过载的原因及解决方法变频器电机过载是指电机在运行过程中承受的负载超过其额定负载能力,导致电流过大,温度升高,甚至发生故障的现象。
变频器电机过载的原因很多,主要包括以下几个方面:负载过大、变频器设置参数错误、环境温度过高、电源电压异常等。
首先,负载过大是变频器电机过载的主要原因之一、负载过大可能是由于机械负载的要求超过了电机的额定工作能力,也可能是由于传动系统存在故障导致负载异常增大。
其次,变频器设置参数错误也是引起电机过载的常见原因之一、变频器控制系统中的参数设置直接影响着电机的输出,当参数设置错误时,可能导致电机输出功率不足,无法满足负载需求,从而导致电机过载。
再次,环境温度过高也会对电机的工作造成不利影响。
变频器电机在高温环境下工作容易发生故障和过载,因为温度升高会导致电机散热不良,降低了电机的工作效率。
此外,电源电压异常也可能导致电机过载。
当电源电压过高或过低时,会使得电机的输出功率无法达到额定值,从而使得电机在工作过程中容易过载。
针对变频器电机过载问题,可以采取以下解决方法:1.检查负载是否过大,如果负载过大,可以考虑调整负载要求或更换适合负载的电机。
2.仔细检查变频器的参数设置是否正确,尤其是输出功率、电流和速度等参数,确保其与电机的额定工作能力匹配。
3.加强电机运行环境的散热措施,可以采用散热风扇或冷却系统等降低电机周围温度,确保电机的散热效果良好。
4.检查电源电压是否正常,如有异常应及时修复或更换电源设备,确保电压稳定。
5.定期进行电机的检修和保养工作,清洁电机内部的灰尘和杂物,确保电机的内部环境良好。
总之,通过合理调整负载要求、正确设置参数、加强散热措施、确保电源电压稳定以及定期检修保养电机,可以有效预防和解决变频器电机过载问题。
变频器电机过载的原因及解决方法
变频器电机过载的原因及解决方法概述变频器是一种将电源交流电转换为可变频率交流电的装置,广泛应用于电机控制领域。
然而,在使用变频器控制电机的过程中,有时会出现电机过载的情况。
本文将针对变频器电机过载的原因进行分析,并提出相应的解决方法。
原因分析1.过高负载过高的负载是导致变频器电机过载的主要原因之一、在一些应用场景下,电机需要承受较大的负载,在变频器控制下,如果负载超出了电机能承受的范围,就会导致电机过载。
2.过频工作在变频器运行过程中,由于运行速度过高导致电机频率超过了额定频率,进而使电机过载。
这可能是因为电机设计不合理,或者是变频器参数设置不正确所致。
3.电源电压波动电源电压波动也是导致电机过载的原因之一、当电源电压波动较大时,由于变频器的控制会出现异常,导致电机无法正常工作,从而容易发生过载。
4.脉宽调制失衡在变频器的PWM控制中,如果脉宽调制失衡,即各相电流不平衡,会导致电机转矩不平衡,从而增加了电机负载,导致过载。
5.过流保护设置不当过流保护是保护电机的重要措施之一,但如果过流保护设置不当,比如过流保护值设置过小或过大,就容易导致电机过载。
解决方法1.合理设计负载在设计电机所承受的负载时,应充分考虑其额定工作能力,避免超负荷工作。
如果负载超出了电机的额定能力,可以采取增加电机尺寸,更换更高额定功率的电机等方法进行改进。
2.检查变频器参数设置在使用变频器控制电机时,需要确保变频器的参数设置正确。
通常需要设置正确的电机额定功率、额定频率、最大频率、过载保护设置等参数,以确保电机安全运行。
3.加强电源电压稳定性要保证电机正常运行,需要提供稳定的电源电压。
如果电源电压波动较大,可以考虑使用稳压器、UPS电源等设备,以提供更为稳定的电源电压。
4.定期检查脉宽调制失衡为了避免脉宽调制失衡导致的电机过载,可以定期检查变频器的PWM控制情况,确保各相电流平衡。
5.合理设置过流保护正确设置过流保护是防止电机过载的关键之一、需要根据电机额定功率、最大承载能力等因素,合理设置过流保护值,避免过小或过大所带来的问题。
变频器的不良影响及解决办法
变频器的不良影响及解决办法:1.变频器的不良影响:变频器工作时,向电网发射谐波电流和射频噪声电流,这些会导致电压发生畸变,对同一个电网上的电子设备形成电磁干扰,对于变频器导致的电磁干扰问题,人们往往不能确定导致问题的原因,因此也就不能采取正确的对策措施,熟悉强电的人,往往会认为导致干扰的原因是谐波电流,而熟悉弱点的人,往往认为导致干扰的原因是射频电流,要知道,这两种问题的对策是不同的,这也导致人们不能顺利解决问题;当出现:PLC工作异常、仪表读数错误、控制系统误差增加等现象时,往往是射频电流导致的结果,谐波电流导致的故障现象主要包括:①无功补偿电容不能投切或者烧毁;②电缆、变压器过热、配电盘跳闸、变压器噪声增加;③同一个电网上的电动机温升增加、噪声变大;变频器不仅对电网侧产生不良的影响,对于负载侧也会有不良的影响,主要表现在对电机的损伤,变频器对电机的损伤主要有以下几个方面:①电机发热严重、噪声增加,导致电机的寿命缩短;②电机的定子绕组绝缘损坏,这种现象的发生时间不定,短则数周,长则数月;③电机的轴承损坏,这种现象的发生时间不定,短则数周,长则数月;导致这些故障现象的根本原因是变频器输出的PWM脉冲电压波形,脉冲电压的上升沿越陡、频率越高、对电机的损伤越严重;现代变频器追求体积更小、效率更高、达到这个目的的方法就是增加PWM电压波形的陡度,然而,这导致上述的一些问题也越来越严重;2.变频器不良影响的根源:变频器之所以会导致诸多电磁兼容和电能质量的问题,是由变频器的工作原理所决定的;变频器主要由两部分组成:整流器和逆变器,整流器工作时产生谐波电流,这在第一分册中已经进行了讨论,逆变器对直流电压进行控制,产生脉宽调制波,电压波形是电磁干扰和损伤电机的根本原因;变频器的谐波电流发射与变频器的品牌有关,主要是因为不同品牌的变频器中所使用的滤波电路的不同,这包括,是否内嵌了直流电抗器或者交流电抗器、滤波电容的容量大小等;变频器对电机的损伤程度与变频器的品牌和功率有关,与变频器的工作电压有关,还与电机的功率有关;3.怎样消除变频器的不良影响:输入端的处理:•在输入端安装谐波滤波器;•在输入端安装射频滤波器输出端的处理:•在输出端安装正弦波滤波器;•在输出端安装射频滤波器;•在电机侧安装尖峰电压吸收器;在变频器的输入端和输出端安装适宜的滤波器是解决变频器带来的各种问题的有效方法;航天绿电系列绿电产品为解决变频器的各中电磁兼容问题提供了可能;在变频器的输入端,安装HTHF谐波滤波器,不仅能够有效减小谐波电流的发射,还能控制射频干扰的发射,如果对射频干扰的控制又进一步要求,可以安装EMFI射频干扰滤波器;在变频器的输出端,安装SWF滤波器能够有效解决电机损伤的问题,如果要加强对电机轴承的保护,可以在安装一台EMFO滤波器,这种方案的效果最好,但是成本较高,如果仅希望对电机的定子绕组进行保护,就可以用下面的较低成本的方案;SVA变频器尖峰电压吸收器为电机保护提供低成本的方案,这种方法适用于变频器与电机之间电缆长度小于300米的场合等;4.不是任何滤波器都能与变频器配套:变频器谐波滤波器要满足:1. 滤波效果确定:要承诺变频器安装滤波器后达到的谐波电流发射程度,例如:THID < 8%;2. 不吸收上游谐波电流:传动系统会安装在电网的任何位置,不能因为上游有其它谐波源,而使滤波器过载;3. 不对系统产生不良影响:在任何电网中使用时,不能与电网系统发生谐振或者产生其他不良影响;4. 不发出过度的容性无功功率:变频器的主要问题是谐波电流,而不是cosϕ低,滤波器发出太大的容性无功,会损害电网,特别是柴油发电机的场合;控制变频器的谐波电流发射,性价比最高的方法是无源滤波器,但是需要注意,一般的无源滤波器不能用于变频器的谐波治理;一般的无源谐波滤波器采用LC陷波电路,并联在线路上,为谐波电流提供一个低阻抗通路,这种原理的滤波主要存在以下几个方面的问题:1. 滤波效果不确定:滤波器的实际效果与电网的阻抗有很大关系,因此不能保证变频器配装了滤波器满足特定谐波限制要求;2. 吸收上游谐波电流:不仅吸收变频器产生的谐波电流,还吸收来自上游的谐波电流,这就容易造成滤波器过载,甚至损坏;3. 发出过大容性无功:这对于传统的工业电网是好事,因为可以在滤波的同时,补偿无功功率,但是,变频器本身并不需要容性无功,滤波器发出过大的容性无功,会使传动系统成为一个电容性的负载,对电网造成不良的影响;4. 可能与系统发生谐振:滤波器有可能与系统的电容或者电感发生谐振,造成系统不稳定,严重时,甚至会损坏系统;。
变频器在自动控制中的应用及干扰抑制办法
变频器在自动控制中的应用及干扰抑制办法本文将详细的阐述了交流变频器的基本原理及在自动控制系统中使用时对弱电信号干扰的抑制和处理办法,还详细的介绍了一些变频器在工程应用中的技巧与检修方法。
一、概述一套变速传动系统包括一台电机和某种类型的速度控制器,早期的电气速度传动包括交流和直流电机两大类型。
直流电机调速是通过改变励磁电流来改变加到直流电机上的直流电压,以使直流电机运行到不同的速度。
最早的电子控制器用晶闸管整流器来控制电压,以控制直流电机的速度,这些直流传动装置现在仍旧被广泛应用着,并且需要周期的电刷维护。
而现在交流感应电机简单﹑成本低﹑可靠性高﹑且在整个世界上都得到了广泛的应用,为了控制交流感应电机的速度,就需要一种复杂的控制器,即能够变频且变压的控制器——变频器。
为理解一台变频器是如何工作的,首先必须懂得感应电机的工作机理,下面文字将详细的介绍一下交流感应电机的工作原理。
一台异步感应电机的工作就象变压器,当定子(固定的外部绕组)被连接到三相电源时,一个按照所设电源频率旋转的磁场便建立起来。
该电磁场穿过在定子和转子之间的气隙,在转子绕组中产生感应电流,这样,当电流和变化的磁场进行作用时,就产生了对转子的作用力(转矩)使转子进行旋转。
如果绕组的极对数增加,磁场的旋转频率就将减小。
(即两极=50/60Hz=3000/3600rpm,而四极=50/60Hz=1500/1800rpm),然而,如果转子按照旋转磁场同样的速度旋转,就不会产生感应的磁场,也就没有转矩。
由于转子电流必须被用于产生输出转矩,所以转子就总是比旋转磁场转慢一些,速度上的这种差异被称为转差率,一般为3%左右。
而电机的速度取决于所加电源频率,以及绕组的排列,在某种程度上也取决于负载。
这样,为了控制电机的速度,就必须控制电源的频率,如果频率降低,则电压必须被降低;否则电机的磁场就会饱和。
如果电机的频率增高时转速正比例增高,这时电压低电机磁场就会欠励磁造成转矩减少,因此在调速时频率和电压必须同时被控制。
变频器应用中常见问题和解决方法
变频器应用中常见问题和解决方法【摘要】文中对变频器的基本原理、应用中常见问题及解决方法进行了简要的阐述,其中重点论述了变频器应用中常见问题的解决方法,供变频器用户尤其是中小用户的使用、维修人员参考。
关键词:变频器电机应用方法中图分类号:tm46文献标识码:a文章编号:1、引言随着科技不断进步,变频器不断更新换代,新功能层出不穷,价格不断降低,应用日益广泛。
尤其是变频器优良的调速性能、软启动性能、保护性能、良好简单的控制易用性能和节能性能,备受广大用户的信赖和青眯。
全国电力的大部分被交流拖动电机消耗,在当今倡导低碳的社会背景下,利用变频器+交流电机的组合电力拖动方式实现多功能控制和达到节能的目的,已成为业界的共识。
但是,变频器毕竟是融合了计算机、电力电子等高科技技术为一体的电子产品,不同于继电器、接触器的时代的控制理念,在普及应用过程中,不可避免的出现各种各样的问题,尤其是中小企业、私营企业和农村基层,由于技术力量较弱,应用受到很大的影响。
笔者根据多年从事变频器应用的实践体会,总结了一些经验,与同仁交流,以期抛砖引玉。
2、变频器的基本原理和控制方式2.1、变频器的基本原理现代的变频器主要采用交(ac)—直(dc)—交(ac)的变换模式,即电网50hz固定频率的交流电进入变频器,经桥式整流、滤波(储能电容),把交流电转换成直流电,在计算机控制逻辑的控制下,由逆变桥模块再把直流电转换成电压、频率符合要求的交流电,以此拖动交流感应电动机旋转。
变频器输出的交流电是一种脉宽调制矩形波电压,含有谐波成分,对周围的无线电、仪表等产生干扰。
调制矩形波电压在交流感应电动机绕组中,形成近似正玄波电流。
由于非正玄量谐波的存在,对电动机的磁路、绕组绝缘等有特殊的要求。
常见的低压变频器主电路如图(1)2.2变频器的控制电路及控制方法变频器控制方式有多种,也是变频器更新换代最具有代表性的部分。
随着计算机技术的发展,控制方式已从单一的v/f控制,发展到适应各种负载特性的专用控制模式,即所谓风机水泵专用变频器、电梯专用变频器、矢量(电压矢量、电流矢量)变频器以及通用变频器等。
变频器的常见故障以及维修方法详解
变频器的常见故障以及维修方法详解变频器是一种电气设备,被广泛应用于工业生产中,用来调节电动机的转速和转矩。
然而,由于长时间的工作和外部环境影响,变频器也会出现一些常见的故障。
本文将详细介绍变频器的常见故障以及相应的维修方法。
1.过热故障:变频器内部温度过高,超出正常范围。
可能的原因包括风扇故障、散热器堵塞、环境温度过高等。
维修方法包括清理散热器、更换风扇、调整环境温度等。
2.过载故障:变频器输出电流超过了额定值,导致设备停机保护。
可能的原因包括负载过大、电网电压不稳定等。
首先检查负载是否过大,然后调整负载大小或安装稳压器进行调节。
3.电网故障:电网故障包括电源电压波动、电压不平衡等。
变频器对电网异常非常敏感,可能会导致电机无法正常工作。
检查电网电压、电源线路,调整电压或更换电源线。
4.过电压/欠电压故障:电压超出或低于变频器的额定范围。
可能的原因包括供电电压不稳定、线路老化等。
检查供电电压,调整电压范围或更换线路。
5.电机故障:包括电机起动困难、转速不稳定、转矩输出不足等。
可能的原因包括电机本身故障、转子不对称、轴承磨损等。
检查电机状态,修复或更换电机部件。
6.控制板故障:包括芯片损坏、电路板接触不良等。
可能的原因包括长时间工作、电磁干扰等。
检查控制板,更换有问题的部件。
7.缺相故障:即电机无法正常引起转动。
可能的原因包括电机接线错误、电源线路故障等。
检查电机接线,修复或更换电源线。
维修变频器时需要遵循的基本步骤包括:1.对故障进行仔细的排查和判断,确定故障原因。
2.关闭电源,并确保设备处于安全状态。
3.根据故障原因进行相应的修复和更换零部件。
4.在维修完成后,对设备进行全面检查和测试,确保故障已经解决。
5.启动设备,观察其运行情况,确保一切正常。
综上所述,变频器的常见故障包括过热、过载、电网异常、电压问题、电机故障、控制板故障和缺相等。
维修方法包括清理散热器、更换零部件、调整电压范围等。
在维修时需要注意用电安全,对故障进行仔细判断,并进行全面的检查和测试。
变频器对电机的影响与轴承电流
以下为变频器对电机的影响
1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在 非正弦电压、电流下运行。拒资料介绍,以目前普遍使用的正弦波 PWM 型变频器 为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1 (u 为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为 显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速 旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子 损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机 额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出 的非正弦电源条件下,其温升一般要增加 10%--20%。
3、谐波电磁噪声与震动 普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动
和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空 间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振 动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围 宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频 率。
变频电机可在 0。1HZ--130HZ 范围长期运行, 普通电机可在:2 极的为 20--65hz 范围长期运行.
4 极的为 25--75hz 范围长期运行. 6 极的为 30--85hz 范围长期运行. 8 极的为 35--100hz 范围长期运行.
轴承电流: 转子在高速旋转时与轴承之间由油膜绝缘。只要电磁设计 对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、 启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可 以在临界转差率接近 1 时直接启动,因此,过载能力和启动性能不在需要过多考虑, 而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下:
PWM变频器输出过电压和谐波对电动机的影响及抑制措施
PWM变频器输出过电压和谐波对电动机的影响及抑制措施随着电力电子技术和现代控制理论在交流变频器调速驱动系统的应用,特别是近年来,IGBT等高开关速率的电力电子器件及PWM 变频调速技术的进步,变频器(或逆变器)越来越广泛地应用于工业生产和日常生活中,并且有取代直流调速传动的趋势。
从目前国内看,中小容量的变频器调速系统使用的比较广泛,研制和开发技术还比较成熟,在使用的变频器中,低压变频器和100kW 以下的变频器占绝大多数,其中70%以上应用在风机泵类负载及压缩机上,如供水与供暖系统、输液系统和通风系统。
在我国拖动风机泵类负载的电动机中,虽然大功率在数量上仅占20 %,但在容量上却占80%以上。
因此,大功率电动机的变频调速是现在节能措施中极为重要的手段。
石化、化工、采矿、钢铁、发电及自来水厂等行业所拥有的大功率风机泵类负载节能改造对大功率变频器的需求很大,这对变频器行业来说是一急需开发的市场。
但是,目前在我国变频器的生产厂家中,实际能生产大功率低压变频器的还不多,大多数厂家实际上仅能生产75kW甚至是37kW以下的变频器。
研究PWM逆变器供电对异步电动机的影响,不仅可以对电机和大功率变频器的设计和应用具有现实意义,而且对电机绝缘寿命有重要意义。
PWM供电对电动机的影响PWM变频调速对异步电动机的影响有很多方面,我现在从PWM 变频器对电网和对电动机这两端来看,谈以下主要两点:1. 机端过电压PWM变频器输出的具有陡上升沿或下降沿的脉冲电压却在电动机接线端子及绕组上产生了过电压,造成电动机绕组绝缘的过早破坏,许多变频电动机寿命只有1~2年,甚至有些在试运行期间电动机绝缘就发生击穿破坏。
文献[1]中试验研究表明,很高的电压上升率( )在电动机绕组上产生不均匀的电压分布,随着变频器与电动机之间电缆长度的增加,在电动机接线端子上将产生近2倍高频振荡的过电压,而且电缆越长,过电压的峰值越大,长时间重复性的过电压应力的作用将致电动机绕组匝间绝缘的过早破坏。
二电平变频器输出对电动机的影响及应对措施
I E
T
L I
I M
F
� � PAN X , L U J � � (Z h eji a ng E l ecr i c Po erTes & R esea r c h Ins i i on,Ha ng h o 3 1 001 4 , Ch i na )
� � � � � � � A� � � :� Th e bl � i gh � ofel ecr om o or h i c hp o er s pp l i ed b o-l e el olage nier or a s i nr od c ed .And � � � � � he c h ar a cer i si c s ofp � i nna � c l � e i n he er m i na l ola g e of i n er o r -f ed m o or a s e p l ai ned ba s ed on em l a e da a s .F i � � � na l l , he � m ea s r es � ofr � ed� c i ng m o or o er h ea a nd sol i ng h e pr obl em of ola g e pi nna c l e er e br o gh f or a r d, a nd c om p l e ed h e ef f i c ac K : es i ng. ; ;
二电 平 变 频 器 输 出 对 电 动 机 的 影 响 及 应 对 措 施
潘 星, 卢嘉华 3 1 001 4 )
( 浙江省电力试验研究院, 浙江 杭州
摘
要: 介绍了二电平变频器供电对电动机产生的不良影响, 采用仿真数据说明变频供电出现电 机端尖
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器对电机影响
一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。
以下为变频器对电机的影响
1、电动机的效率和温升的问题
不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。
高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。
除此之外,还需考虑因集肤效应所产生的附加铜耗。
这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。
2、电动机绝缘强度问题
目前中小型变频器,不少是采用PWM的控制方式。
他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。
另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。
3、谐波电磁噪声与震动
普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。
变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。
当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。
由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。
4、电动机对频繁启动、制动的适应能力
由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因
而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。
5、低转速时的冷却问题
首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗较大。
其次,普通异步电动机再转速降低时,冷却风量与转速的三次方成比例减小,致使电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出。
二、变频电动机的特点
1、电磁设计对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。
而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。
方式一般如下:
1)尽可能的减小定子和转子电阻。
减小定子电阻即可降低基波铜耗,以弥补高次谐波引起的铜耗增
2)为抑制电流中的高次谐波,需适当增加电动机的电感。
但转子槽漏抗较大其集肤效应也大,高次谐波铜耗也增大。
因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。
3)变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和,二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。
2、结构设计再结构设计时,主要也是考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响,一般注意以下问题:
1)绝缘等级,一般为F级或更高,加强对地绝缘和线匝绝缘强度,特别要考虑绝缘耐冲击电压的能力。
2)对电机的振动、噪声问题,要充分考虑电动机构件及整体的刚性,尽力提高其固有频率,以避开与各次力波产生共振现象。
3)冷却方式:一般采用强迫通风冷却,即主电机散热风扇采用独立的电机驱动。
4)防止轴电流措施,对容量超过160KW电动机应采用轴承绝缘措施。
主要是易产生磁路不对称,也会产生轴电流,当其他高频分量所产生的电流结合一起作用时,轴电流将大为增加,从而导致轴承损坏,所以一般要采取绝缘措施。
5)对恒功率变频电动机,当转速超过3000/min时,应采用耐高温的特殊润滑脂,以补偿轴承的温度升高。
变频电机可在0。
1HZ--130HZ范围长期运行,
普通电机可在:2极的为20--65hz范围长期运行.
4极的为25--75hz范围长期运行.
6极的为30--85hz范围长期运行.
8极的为35--100hz范围长期运行.
普通电动机与变频电机的区别
普通电动机经过长期的发展,无论在技术上,还是工艺上都得到了迅速的发展,但是都是按恒频恒压设计的,不可能完全适应变频调速的要求。
1 变频器对电机的影响
1.1电动机的效率和温升的问题
不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。
高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。
除此之外,还需考虑因集肤效应所产生的附加铜耗。
这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。
1.2电动机绝缘强度问题
目前中小型变频器,不少是采用PWM的控制方式。
他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。
另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。
1.3谐波电磁噪声与震动
普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。
变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。
当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。
由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。
1.4电动机对频繁启动、制动的适应能力
由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。
1.5低转速时的冷却问题
首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗较大。
其次,普通异步电动机再转速降低时,冷却风量与转速的三次方成比例减小,致使电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出。
2变频电动机的特点
2.1电磁设计
对普通异步电动机来说,设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。
而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近时直接启动,因此,过载能力和启动性能不再需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。
方式一般如下:
(1)尽可能的减小了定子和转子电阻。
减小定子电阻即可降低基波铜耗,以弥补高次谐波引起的铜耗增加。
(2)电动机漏抗兼顾整个调速范围。
为抑制电流中的高次谐波,需适当增加电动机的电感。
但转子槽漏抗较大其集肤效应也大,高次谐波铜耗也增大。
因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。
(3)主磁路不饱和设计
变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和,二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。
2.2结构设计
在结构设计时,主要考虑了非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响,包括以下方面。
(1)绝缘等级高
变频电机的绝缘等级一般为F级或更高,加强了对地绝缘和线匝绝缘强度,并特别考虑了绝缘耐冲击电压的能力。
(2)对电机的振动、噪声问题考虑充分
变频电机在电机的振动、噪声方面,充分考虑电动机构件及整体的刚性,尽力提高其固有频率,以避开与各次力波产生共振现象。
(3)冷却方式
一般采用强迫通风冷却,即主电机散热风扇采用独立的电机驱动方式。
(4)防止轴电流措施
对容量超过160KW电动机采用轴承绝缘措施。
磁路不对称,将会产生轴电流,当其他高频分量所产生的电流结合一起作用时,轴电流将大为增加,从而导致轴承损坏,所以一般要采取绝缘措施。
(5)对恒功率变频电动机,当转速超过3000/min时,采用耐高温的特殊润滑脂,以补偿
轴承的温度升高。