人教版九年级数学上册《概率初步》全册教案
九年级数学上册 第25章.概率初步教学案 人教新课标版
25.1.1 随机事件(第1课时)【学习目标】知识与技能:通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。
过程与方法:历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。
情感态度与价值观:体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象。
学习重点:随机事件的特点学习难点:对生活中的随机事件作出准确判断。
【学习过程】一、学前准备1.自学课本125-126页,写下疑惑摘要:2.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边落山;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)一元二次方程x2+2x+3=0无实数解。
3.引发思考我们把上面的事件(1)、(4)、(5)、(6)称为必然事件,把事件(2)、(3)称为不可能事件,那么请问:什么是必然事件?什么又是不可能事件呢?它们的特点各是什么?二、自学、合作探究(一)自学——相信自己活动1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。
签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。
小军首先抽签,他在看不到纸签上的数字的情况从签筒中随机(任意)地取出一根纸签。
请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?(根据学生回答的具体情况,教师适当地加点拔和引导。
)活动2:小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。
请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?(二)思索、交流(1)上述两个活动中的两个事件(3)与必然事件和不可能事件的区别在哪里?(2)怎样的事件称为随机事件呢?三、应用练习,巩固新知练习:指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。
人教版九年级数学上册教案:25.1.2概率
4.数据分析:培养学生通过数据分析,理解随机现象中的规律,提高解决实际问题的能力;
5.数学抽象:通过抽象的概率概念,提升学生对数学概念的理解,培养数学抽象素养。 Nhomakorabea四、教学流程
(一)导入新课
同学们,今天我们将要学习的是《概率》这一章节。在开始之前,我想先问大家一个问题:“你们在玩抛硬币或者骰子游戏时,有没有想过为什么有时候赢,有时候输?”这个问题与我们将要学习的概率密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
2.引导与启发:在讨论过程中,我将引导学生思考如何将实际问题转化为概率问题,以及如何利用概率来做出决策。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。
(五)总结回顾
今天的学习,我们了解了概率的基本概念、意义和计算方法。通过实践活动和小组讨论,我们加深了对概率的理解。我希望大家能够掌握这些知识点,并在日常生活中遇到不确定事件时,运用概率进行合理分析。如果有任何疑问或不明白的地方,请随时向我提问。
6.实际问题中概率的计算:利用树状图、列表等方法求解。
本节内容将围绕上述知识点,结合实际例题,让学生掌握概率的基本概念和计算方法,培养他们解决实际问题的能力。
二、核心素养目标
1.理解与运用:通过学习概率的基本概念,使学生能够理解事件的不确定性和概率的含义,形成用概率语言描述现实问题的能力;
2.推理与论证:培养学生运用概率的基本性质和计算方法进行逻辑推理,解决实际问题时能进行合理论证;
另外,在小组讨论环节,我发现学生们积极参与,互相交流想法,这有助于他们巩固所学知识,提高解决问题的能力。但也有一些小组在讨论时偏离了主题,今后我需要加强对讨论过程的引导,确保讨论内容紧密围绕教学目标。
【人教版】九上数学:《概率初步》全套教案
第二十五章概率课题: 25.1 随机事件教学目标:知识技能目标了解必然发生的事件、不可能发生的事件、随机事件的特点.数学思考目标学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.解决问题目标能根据随机事件的特点,辨别哪些事件是随机事件.情感态度目标引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.教学重点:随机事件的特点.教学难点:判断现实生活中哪些事件是随机事件.教学过程<活动一>【问题情境】摸球游戏三个不透明的袋子均装有10个乒乓球.挑选多名同学来参加游戏.游戏规则每人每次从自己选择的袋子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验.每人摸球5次.按照摸出黄色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名.【师生行为】教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球.学生积极参加游戏,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点.【设计意图】通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件,不仅能够激发学生的学习兴趣,并且有利于学生理解.能够巧妙地实现从实践认识到理性认识的过渡.<活动二>【问题情境】指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件?1.通常加热到100°C时,水沸腾;2.姚明在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是6点;4.度量三角形的内角和,结果是360°;5. 经过城市中某一有交通信号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人离开水可以正常生活100天;9.正月十五雪打灯;10.宇宙飞船的速度比飞机快.【师生行为】教师利用多媒体课件演示问题,使问题情境更具生动性.学生积极思考,回答问题,进一步夯实必然发生的事件、随机事件和不可能发生的事件的特点.在比较充分的感知下,达到加深理解的目的.教师在学生完成问题后应注意引导学生发现在我们生活的周围大量地存在着随机事件.【设计意图】引领学生经历由实践认识到理性认识再重新认识实践问题的过程, 同时引入一些常识问题,使学生进一步感悟数学是认识客观世界的重要工具.<活动三>【问题情境】情境15名同学参加讲演比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机地抽取一根纸签.情境2小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.在具体情境中列举不可能发生的事件、必然发生的事件和随机事件.【师生行为】学生首先独立思考,再把自己的观点和小组其他同学交流,并提炼出小组成员列举的主要事件,在全班发布.【设计意图】开放性的问题有利于培养学生的发散性思维和创新思维,也有利于学生加深对学习内容的理解.<活动四>【问题情境】请你列举一些生活中的必然发生的事件、随机事件和不可能发生的事件.【师生行为】教师引导学生充分交流,热烈讨论.【设计意图】随机事件在现实世界中广泛存在.通过让学生自己找到大量丰富多彩的实例,使学生从不同侧面、不同视角进一步深化对随机事件的理解与认识.<活动五>【问题情境】李宁运动品牌打出的口号是“一切皆有可能”,请你谈谈对这句话的理解.【师生行为】教师注意引导学生独立思考,交流合作,提升学生对问题的理解与判断能力.【设计意图】有意识地引领学生从数学的角度重新审视现实世界,初步感悟辩证统一的思想.<活动六>【问题情境】归纳、小结布置作业设计一个摸球游戏,要求对甲乙公平.【师生行为】学生反思、讨论. 学生在设计游戏的过程中,进一步感悟随机事件的特点.作业的开放性为学生创设了更大的学习空间.【设计意图】课堂小结采取学生反思汇报形式,帮助学生形成较完整的认知结构.作业使课堂内容得以丰富和延展.教学设计说明现实生活中存在着大量的随机事件,而概率正是研究随机事件的一门学科.本课是“概率初步”一章的第一节课.教学中,教师首先以一个学生喜闻乐见的摸球游戏为背景,通过试验与分析,使学生体验有些事件的发生是必然的、有些是不确定的、有些是不可能的,引出必然发生的事件、随机事件、不可能发生的事件.然后,通过对不同事件的分析判断,让学生进一步理解必然发生的事件、随机事件、不可能发生的事件的特点.结合具体问题情境,引领学生设计提出必然发生的事件、随机事件、不可能发生的事件,具有相当的开放度,鼓励学生的逆向思维与创新思维,在一定程度上满足了不同层次学生的学习需要.做游戏是学习数学最好的方法之一,根据本节课内容的特点,教师设计了摸球游戏,力求引领学生在游戏中形成新认识,学习新概念,获得新知识,充分调动了学生学习数学的积极性,体现了学生学习的自主性.在游戏中参与数学活动,在游戏中分析、归纳、合作、思考,领悟数学道理.在快乐轻松的学习氛围中,显性目标和隐性目标自然达成,在一定程度上,开创了一个崭新的数学课堂教学模式.课题: 25.1.2 概率的意义教学目标:〈一〉知识与技能1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义〈二〉教学思考让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.〈三〉解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.〈四〉情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、动手实践,合作探究1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图.表25-2n图25.1-1想一想1(投影出示). 观察统计表与统计图,你发现“正面向上”的频率有什么规律?注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5. 这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近.其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3).表25-3通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.三、评价概括,揭示新知问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用? 学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A 发生的频率nm会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(probability ), 记作P (A )= p.注意指出:1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论)问题2.频率与概率有什么区别与联系?从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.四.练习巩固,发展提高.学生练习1.书上P143.练习.1. 巩固用频率估计概率的方法.2.书上P143.练习.2 巩固对概率意义的理解.教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.五.归纳总结,交流收获:1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.【作业设计】(1)完成P144 习题25.1 2、4(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.【教学设计说明】这节课是在学习了25.1.1节随机事件的基础上学习的,学生通过大量重复试验,体验用事件发生的频率去刻画事件发生的可能性大小,从而得到概率的定义.1.对概率意义的正确理解,是建立在学生通过大量重复试验后,发现事件发生的频率可以刻画随机事件发生可能性的基础上.结合学生认知规律与教材特点,这节课以用掷硬币方法分配球票为问题情境,引导学生亲身经历猜测试验—收集数据—分析结果的探索过程.这符合《新课标》“从学生已有生活经验出发,让学生亲身经历将实际问题抽象为数学模型并进行解释与应用的过程”的理念.贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作.在知识的主动建构过程中,促进了教学目标的有效达成.更重要的是,主动参与数学活动的经历会使他们终身受益.2.随机现象是现实世界中普遍存在的,概率的教学的一个很重要的目标就是培养学生的随机观念.为了实现这一目标,教学设计中让学生亲身经历对随机事件的探索过程,通过与他人合作探究,使学生自我主动修正错误经验,揭示频率与概率的关系,从而逐步建立正确的随机观念,也为以后进一步学习概率有关知识打下基础.3.在教学中,本课力求向学生提供从事数学活动的时间与空间,为学生的自主探索与同伴的合作交流提供保障,从而促进学生学习方式的转变,使之获得广泛的数学活动经验.教师在学习活动中是组织者、引导者与合作者,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,给学生以适时的引导与鼓励.课题: 25.2 列举法求概率教学目标:知识与技能目标学习用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策。
九年级数学上册第二十五章《概率初步(数学活动)》教学设计(新版)新人教版【精品教案】
概率初步一、内容及内容解析1.内容用试验估计“豆子落在区域C”“每个同学抽到黑桃”的概率.2.内容解析活动1中“豆子落在区域C”的概率可以用几何概型求得.几何概型是另一种等可能概型,它与古典概型的区别在于试验结果是无限个.只要把半径为6的圆内部所有点作为试验的全部结果,区域C内的所有点作为事件W的结果,则根据公式P(W)=构成事件W的区域面积/试验的全部结果所构成的区域面积,可求得相应事件的概率.因此,“豆子落在区域C的概率”等于半径为2的圆的面积与半径为6的圆的面积的比,但学生没有学过此概率模型.活动2“每个同学抽到黑桃”试验,是想通过频率估计概率的方法,去验证现实生活中常用的抓阄的方法是否公平.其实,把3个人都抽完一次签作为一次试验,通过古典概型可计算每个同学抽到黑桃的概率是相等的,但这里列基本事件对学生来说有点难度.由于这两种试验发生的概率,以学生现有的知识不容易通过计算获得,因此只能通过用频率估计概率.通过这两个数学活动,可以帮助学生进一步理解概率的意义,拓宽对概率的认识,并且进一步体会到频率估计概率方法应用的广泛性以及概率在实际生活中的作用.基于以上分析,确定本课的教学重点是:估计活动1与活动2的概率,体会频率估计概率应用的广泛性以及在实际生活中的作用.二、目标和目标解析1.目标(1)通过试验,获得“豆子落在区域C”“每个同学抽到黑桃”的概率.(2)通过试验,体会频率估计概率应用的广泛性以及在实际生活中的作用.2.目标解析达成目标(1)的标志是:学生分组多次重复试验,统计每次试验落在A,B,C三个区域中豆子数的比,并分析这个比与A,B,C三个区域面积的关系,得出概率与面积的关系,进而发现这个试验中概率的求法.学生通过分组进行多次重复试验,统计每次试验抽中的人,最终计算每个人抽中的频率,估计出“每个同学抽到黑桃”的概率.达成目标(2)的标志是:学生初步发现区域面积与概率的关系,并认识到用频率估计概率的方法的应用范围更广,更具有一般性,同时体会到用概率帮助解释如“抓阄是否公平”等生活实际中的疑问.三、教学问题诊断这两个活动都没有原始数据,需要学生自己首先从事收集数据的活动,然后对数据进行处理,最后运用统计知识进行分析数据,这样的活动都具有较强的实践性和综合性.因此,需要教师对如何试验,进行哪些操作给以帮助和指导.对于分析这个比与A,B,C三个区域面积的关系,得出概率与面积的关系,进而发现这个试验中概率的求法,学生没有相关的知识与经验,此时需要教师设计问题予以启发.基于以上分析,确定本节课的教学重点是:通过试验获得“豆子落在区域C”“每个同学抽到黑桃”的概率.四、教学过程设计1.完成活动1的试验问题1 在如图所示的图形中随机撒一把豆子,计算落在A,B,C三个区域中豆子数的比.多次重复这个试验,你能否发现上述比与A,B,C三个区域的面积有何关系?师生活动:学生观察思考,教师先指导学生记录试验结果,然后教师组织学生分组进行试验.每组试验20次,并将各组的试验结果统计在一起.然后提问:(1)对照多次试验的结果,落在A,B,C三个区域中豆子数的比是否具有一定的稳定性?(2)上述比与A,B,C三个区域的面积有何关系?(3)这表明落在A,B,C三个区域中豆子数的多少与什么有关?设计意图:让学生亲自动手试验,获得真实数据,并对数据收集、整理、分析,发现落在A,B,C三个区域中豆子数的多少与每个区域的面积大小有关.体会随机事件的随机性与稳定性特征.问题2 如果将“豆子落在区域C”记作事件W,请估计事件W的概率.师生活动:教师提出问题,学生思考.根据频率估计概率,落在区域C中的豆子数与落在A,B,C三个区域中豆子总数之比,可以作为“豆子落在区域C”的概率.设计意图:通过频率估计几何概型试验中的概率,使学生体会频率估计概率是求概率的一般方法.2.完成活动2的试验问题3 3张扑克牌中只有1张黑桃,3为同学依次抽取,他们抽到黑桃的概率跟抽取的顺序有关吗?他们抽到黑桃的概率各是多少?如何得到这个概率?师生活动:教师出示问题,然后组织学生进行讨论,最后发现用列举法求比较困难,于是选择用频率估计概率的方法.教师组织学生分组试验,每组记录好试验的次数,以及每次试验抽中黑桃的人数,每组试验20次,计算20次试验中,每个人抽中黑桃的次数,并计算频率,最后教师将全班同学试验次数,每个人抽中黑桃的次数进行汇总,并计算随着试验次数增加时,每个人抽中黑桃的频率,最后全班共同分析,随着试验次数的增加,每个人的频率稳定在13左右.因此,每个人抽到黑桃的概率跟抽取的顺序无关.设计意图:使学生经历用频率估计概率的过程,感受在大量重复试验中,随着试验次数的增加,频率趋于稳定性.问题4 抓阄是实际生活中常见的一种进行选择的方法,有人说这种方法公平,也有人说这种方法不公平,通过上述摸牌试验,你觉得这种方法公平吗?为什么?师生活动:教师出示问题,学生思考、讨论.设计意图:学生受到摸牌试验的启发,不难发现摸牌与抓阄是同类试验,因此每个人抽中的概率是相同的,因此抓阄是公平的.让学生体会到数学方法可以解释生活中很多现象的原因.3.小结教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)本节课中两个试验的概率是通过怎样的方法得到的?(2)你觉得试验在求概率中有何作用?(3)你觉得概率在生活中对你有何帮助?设计意图:通过小结,总结本节课所学内容,体会试验在求概率中的作用,以及概率在生活实际中的作用.4.布置作业就“抓阄公平吗?”采访一下自己的父母或朋友,用你所学的数学知识和他们进行交流.五、目标检测设计1.如图,在正方形ABCD 中随机选取一点,你能设计一个试验,用频率估计概率的方法,求出此点恰在△ABO 内部的概率吗?设计意图:考查学生能否设计试验利用频率估计概率.2.4张扑克牌中只有1张黑桃,4位同学依次抽取,他们抽到黑桃的概率跟抽取的顺序有关吗?他们抽到黑桃的概率各是多少?设计意图:考查学生是否了解了这种游戏的公平性.A B D C O。
新人教版初三数学上册第25章 概率初步 全单元教案
25.1 随机事件与概率25.1.1 随机事件教学目标1.通过对生活中各种事件的概率的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确的判断.2.知道事件发生的可能性是有大小的.教学过程一、情境导入在一些成语中也蕴含着事件类型,例如瓮中捉鳖、拔苗助长、守株待兔、水中捞月所描述的事件分别属于什么类型事件呢?二、合作探究探究点:事件的分类【类型一】必然事件的识别(·辽宁抚顺)下列事件是必然事件的是( )A.如果|a|=|b|,那么a=bB.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.圆的半径为3,圆外一点到圆心的距离是5,过这点引圆的切线,则切线长为4D.三角形的内角和是360°解析:由于互为相反数的两个数绝对值也相等,因此绝对值相等的两个数可能不相等,A选项错误;平分的弦若是直径,那么两条直径互相平分,很明显,它们不一定互相垂直,B选项错误;直接利用勾股定理计算可得,C选项正确;三角形内角和等于180°,D选项错误,故选择C.方法总结:一定发生的是必然事件,一定不发生的是不可能事件,可能发生也可能不发生的是随机事件.(·广西桂林)一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是( )A.摸出的4个球中至少有一个是白球B.摸出的4个球中至少有一个球是黑球C.摸出的4个球中至少有两个是黑球D.摸出的4个球中至少有两个是白球解析:∵袋子中只有3个白球,而有5个黑球,∴摸出的4个球可能都是黑球,因此选项A是不确定事件;摸出的4个球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪种情况,至少有一个球是黑球,∴选项B是必然事件;摸出的4个球可能为1黑3白,∴选项C是不确定事件;摸出的4个球可能都是黑球或1白3黑,∴选项D是不确定事件,故选B.方法总结:事件类型的判断首先要判断该事件发生与否是不是确定的.若是确定的,再判断其是必然发生的(必然事件),还是必然不发生的(不可能事件);若是不确定的,则该事件是不确定事件.【类型二】随机事件的识别(·湖北孝感)下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是________.(填序号)解析:书的页码可能是奇数,也有可能是偶数,所以事件①是随机事件;100℃的气温人不能生存,所以不可能测得这样的气温,所以事件②是不可能事件,属于确定事件;骰子六个面的数字分别是1、2、3、4、5、6,因此事件③是随机事件;四边形内角和总是360°,所以事件④是必然事件,属于确定事件.故答案是:①③.【类型三】不可能事件的识别下列事件中不可能发生的是( )A.打开电视机,中央一台正在播放新闻B.我们班的同学将来会有人当选为劳动模范C.在空气中,光的传播速度比声音的传播速度快D.天上掉馅饼解析:“天上掉馅饼”这个事件一定不会发生,所以它是一个不可能事件.故选D.【类型四】判断一个事件的类型下列事件中,哪些是不可能事件?哪些是必然事件?哪些是不确定事件?(1)从一副扑克牌中任意抽出一张牌,花色是红桃;(2)在一年出生的367名学生中,至少有两个人的生日在同一天;(3)好梦成真;(4)任意买一张电影票,座位号是偶数;(5)太阳从西边升起;(6)当室外温度低于-10℃时,将一碗清水放在室外会结冰.解析:(1)一副扑克牌中,有4种花色,也就是说“抽出一张牌,花色是红桃”可能发生,也可能不发生;(2)一年最多366天,367名学生中,每天出生一个只能出生366个,还有一名同学是哪天出生,哪天至少出生2名同学,所以“一年出生的367名学生中,至少有两个人的生日在同一天”一定发生;(3)“好梦成真”只是人的一种愿望,可能会发生,也可能不发生;(4)电影票的座位号有奇数,也有偶数,即“任意买一张电影票,座位号是偶数”可能发生,也可能不发生;(5)太阳都是从东边升起,绝不会从西边升起,即“太阳从西边升起”一定不发生;(6)水在0℃就开始结冰,低于0℃一定会结冰,即当室外温度低于-10℃时“将一碗清水放在室外会结冰”一定发生.解:(5)是不可能的事件;(2)(6)是必然事件;(1)(3)(4)是不确定事件.三、板书设计教学反思教学过程中,结合生活实际,对身边事件发生的情况作出判断,分类,巩固所学概念.25.1.2 概率教学目标1.知道随机事件发生的可能性是有大小的.2.理解、掌握概率的意义及计算.3.会进行简单的概率计算及应用.教学过程一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是否公平.二、合作探究探究点一:可能性的大小【类型一】可能性大小的意义的理解气象台预报“本市明天降雨可能性是80%”.对此信息,下列说法正确的是( )A.本市明天将有80%的地区降雨B.本市明天将有80%的时间降雨C.本市明天肯定下雨D.本市明天降水的可能性比较大解析:一个事件的发生的可能性的范围在0~1,80%应该是比较大,所以“本市明天降雨可能性是80%”是指“本市明天降雨的可能性比较大”.故选D.方法总结:某事发生的可能性大小是指其发生的概率大小.【类型二】利用面积关系判断可能性大小(·江苏南通)在如图所示(A,B,C三个区域)的图形中随机撒一把豆子,豆子落在________区域的可能性最大(填A或B或C).解析:先分别算出A,B,C三部分的面积,面积最大的就是豆子落入可能性最大的.S C=π×22=4π,S B=π(42-22)=12π,S A=π(62-42)=20π,由此可见,A的面积最大,则豆子落入可能性最大,故填A.探究点二:概率【类型一】概率的简单计算(·湖南益阳)小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是( )A.120B.15C.14D.13解析:总共有20种情况,抽中数学题有5种可能,所以是520=14,故选择C.方法总结:等可能性事件的概率的计算公式:P(A)=nm,其中m是总的结果数,n是该事件成立包含的结果数.【类型二】利用面积求概率(·四川绵阳)一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是( )A.13B.12C.34D.23解析:观察这个图可知:阴影区域(3块)的面积占总面积(9块)的13,故其概率为13.故选A.方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目;二者的比值就是其发生的概率.三、板书设计教学反思教学过程中,强调简单的概率的计算应确定事件总数及事件A包含的数目.事件A发生的概率P(A)的大小范围是0≤P(A)≤1.25.2 用列举法求概率第1课时运用直接列举或列表法求概率教学目标1.用列举法求较复杂事件的概率.2.理解“包含两步并且每一步的结果为有限多个情形”的意义.3.用列表法求概率.教学过程一、情境导入希罗多德在他的巨著《历史》中记录,早在公元前1500年,埃及人为了忘却饥饿,经常聚集在一起掷骰子,游戏发展到后来,到了公元前1200年,有了立方体的骰子.二、合作探究探究点一:用列表法求概率【类型一】摸球问题(·江苏宿迁)一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸出一个小球,则两次摸出小球的号码之积为偶数的概率是( )A.14B.13C.12D.34解析:先列表列举出所有可能的结果,再根据概率计算公式计算.列表分析如下:由列表可知,两次摸出小球的号码之积共有4种等可能的情况,号码之积为偶数共有3种:(1,2),(1,2),(2, 2),∴P=34,故选D.【类型二】学科内综合题(·四川甘孜州)从0,1,2这三个数中任取一个数作为点P的横坐标,再从剩下的两个数中任取一个数作为点P的纵坐标,则点P落在抛物线y=-x2+x+2上的概率为________.解析:用列表法列举点P坐标可能出现的所有结果数和点P落在抛物线上的结果数,然后代入概率计算公式计算.用列表法表示如下:共有6种等可能结果,其中点P落在抛物线上的有(2,0),(0,2),(1,2)三种,故点P落在抛物线上的概率是36=12,故答案为12.方法总结:用列表法求概率时,应注意利用列表法不重不漏地表示出所有等可能的结果.【类型三】学科间综合题(·广西柳州)如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是( )A .0.25B .0.5C .0.75D .0.95解析:先用列表法表示出所有可能的结果,再根据概率计算公式计算.列表表示所有可能的结果如下:根据上表可知共有4种等可能的结果,其中至少有一个灯泡发光的结果有3种,∴P (至少有一个灯泡发光)=3,故选择C.方法总结:求事件A 的概率,首先列举出所有可能的结果,并从中找出事件A 包含的可能结果,再根据概率公式计算.【类型四】判断游戏是否公平(·湖南怀化)甲、乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球然后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜.试分析这个游戏是否公平?请说明理由.解析:(1)直接利用概率定义求解;(2)先用列表法求出概率,再利用概率判断游戏的公平性. 解:(1)P (标号是1)=13.(2)这个游戏不公平,理由如下:把游戏可能出现标号的所有可能性(两次标号之 和)列表如下:∴P(和为偶数)=59,P(和为奇数)=49,二者不相等,说明游戏不公平.方法总结:用列举法解概率问题中,可以采用列表法.对于一次实验需要分两个步骤完成的,用两种方法都可以,以列表法为主.判断游戏是否公平,只需求出双方获胜的概率.三、板书设计教学反思教学过程中,强调在生活、学习中的很多方面均用到概率的知识,学习概率要从身边的现象开始.第2课时用树状图求概率教学目标1.进一步理解有限等可能事件概率的意义.2.会用树状图求出一次试验中涉及3个或更多个因素时,不重复不遗漏地求出所有可能的结果,从而正确地计算问题的概率.3.进一步提高运用分类思想解题的能力,掌握有关数学技能.教学过程一、情境导入学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则重转一次.在该游戏中乙获胜的概率是多少?二、合作探究探究点:用树状图求概率 【类型一】摸球问题(·广西玉林)一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A.12B. 14C.16D.112解析:用树状图或列表法列举出所有可能情况,然后由概率公式计算求得.画树状图(如图所示):∴两次都摸到白球的概率是212=16,故选C.【类型二】转盘问题(·湖南湘潭)有两个构造完全相同(除所标数字外)的转盘A 、B ,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?解析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果.其中A 大于B 的有5种情况,A 小于B 的有4种情况,再利用概率公式即可求得答案.解:选择A 转盘.画树状图得:∵共有9种等可能的结果,A 大于B 的有5种情况,A 小于B 的有4种情况, ∴P (A 大于B )=59,P (A 小于B )=49,∴选择A 转盘.方法总结:树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.【类型三】游戏问题(·山西中考)甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两人先打.规则如下:三人同时各用一只手随机出示手心或手背,若只有两人手势相同(都是手心或都是手背),则这两人先打;若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是________.解析:分别用A ,B 表示手心,手背.画树状图得:∵共有8种等可能的结果,通过一次“手心手背”游戏能决定甲打乒乓球的有4种情况, ∴通过一次“手心手背”游戏能决定甲打乒乓球的概率是:48=12,故答案为12.方法总结:列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件.【类型四】游戏公平性的判断(·贵州遵义)小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树状图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利?解析:(1)设红笔为A 1,A 2, A 3, 黑笔为B 1,B 2, 根据抽取过程不放回,可列表或作树状图,表示出所有可能结果;(2)根据树状图或列表得出两人所取笔颜色相同的情况,求出小明和小军获胜的概率,比较概率大小判断是否公平,概率越大对谁就有利.解:(1)根据题意,设红笔为A 1,A 2, A 3, 黑笔为B 1,B 2, 作树状图如下:一共有20种可能.(2)从树状图可以看出,两次抽取笔的颜色相同的有8种情况,则小明获胜的概率大小为820=25,小军获胜的概率大小为3,显然本游戏规则不公平,对小军有利.方法总结:用树状图法分别求出两个人获胜的概率,进行比较.若相等,则游戏对双方公平;若不相等,则谁胜的概率越大,对谁越有利.三、板书设计教学反思教学过程中,强调在面对多步完成的事件时,通常选择树状图求概率.在求概率时,注意方法的选择.25.3 用频率估计概率教学目标1.理解试验次数较大时试验频率趋于稳定这一规律.2.结合具体情境掌握如何用频率估计概率.3.通过概率计算进一步比较概率与频率之间的关系.教学过程一、情境导入养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条?二、合作探究探究点一:频率【类型一】频率的意义某批次的零件质量检查结果表:(1)计算并填写表中优等品的频率;(2)估计从该批次零件中任取一个零件是优等品的概率.解析:通过计算可知优等品的频率稳定在0.8附近,可用这个数值近似估计该批次中优等品的概率.解:(1)填表如下:(2)0.8【类型二】频率的稳定性在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是________________________.解析:随着试验的次数增多,出现数字“1”的频率愈来愈接近于一个常数,这个常数即为它的概率.故答案是:接近1 6 .探究点二:用频率估计概率【类型一】用频率估计概率(·贵州黔东南)掷一枚质地均匀的硬币10次,下列说法正确的是( )A.可能有5次正面朝上B.必有5次正面朝上C.掷2次必有1次正面朝上D.不可能10次正面朝上解析:掷一枚质地均匀的硬币1次,出现正面或反面朝上的概率都是错误!,因此,平均每两次中可能有1次正面向上或有1次反面向上.选项B、C、D不一定正确,选项A正确,故选A .方法总结:随机事件的频率,指此事件发生的次数与试验总次数的比值,当试验次数很多时,它具有一定的稳定性,即稳定在某一常数附近,而偏离的它可能性很小.【类型二】推算影响频率变化的因素(·贵州贵阳)“六·一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是________个.解析:因为大量重复摸球实验后,摸到红球的频率逐渐稳定在0.2,说明红球大约占总数的0.2,所以球的总数为1000×0.2=200,故答案为:200.方法总结:解题的关键是知道在大量重复摸球实验后,某个事件发生的频率就接近于该事件发生的概率.概率与频率的关系是:(1)试验次数很大时,频率稳定在概率附近;(2)用频率估计概率.【类型三】频率估计概率的实际应用为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.解析:设鱼塘中估计有x条鱼,则5∶200=30∶x,解得:x=1200,故答案为:1200.方法总结:求出带标记的鱼占的百分比,运用了样本估计总体的思想.三、板书设计教学过程中,强调频率与概率的联系与区别.会用频率估计概率解决实际问题.。
教案 《数学》人教版 10.2 概率初步教学设计
10.2 概率初步教学设计【教学目标】1.正确理解古典概型的两个特点,掌握古典概率计算公式.2.通过教学,发展学生类比、归纳、猜想等推理能力.3.通过古典概率解决游戏问题,培养学生的数学应用能力以及科学的价值观与世界观.【教学重点】古典概型特点,古典概率的计算公式以及简单应用.【教学难点】试验的基本事件个数n和随机事件包含基本事件的个数m.【教学方法】通过三个简单的例题让学生初步理解古典概型的特征,并由此引出样本空间和基本事件等诸多概念,教师紧扣这三个例题讲解各个概念,并由学生总结古典概率的计算公式.然后通过后面的例题巩固古典概率的求法.新课叫做随机事件,简称为事件.常用大写字母A,B,C等表示.基本事件:只含有一个元素的事件叫做基本事件.不可能事件:我们把某一试验中不可能发生的事件叫做不可能事件.必然事件:在做某一试验时,必然发生的事件叫做必然事件.古典概率:对于古典概型,如果试验的基本事件总数为n,随机事件A所包含的基本事件数为m,我们就m/n用来描述事件A出现的可能性大小,并称它为事件A的概率.记作显然 0≤P(A)≤1,而且P(Ω)=1,P()=0.练习教材P172习题5,6.例4 从含有两件正品a1,a2和一件次品b1的三件产品中每次任取1件,每次取出后不放回,连续取两次,求取出的两件中恰好有一件次品的概率.解样本空间是Ω={(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2)},Ω由6个基本事件组成.用A表示“取出的两件中,恰好有一件次品”这一事件,则A={(a1,b1),(a2,b1),(b1,a1),(b1,a2)}事件A由4个基本事件组成.因而.例5 在例4中,把“每次取出后不放回”这一条件换成“每次取出后放回”,其余不变,求取出的两件中恰好有一件次品的概率.解样本空间总结出古典概率的计算公式.重点讲清用列举法得出样本空间与随机事件中所包含的基本事件的个数,提醒学生列举时做到“不重不漏”.用简单的习题5强调P(A)=以及概率值的范围.让学生明确“不放回”与新课Ω={(a1,a1), (a1,a2), (a1,b1),(a2,a1),(a2,a2) , (a2, b1),(b1,a1),(b1,a2),(b1,b1)},Ω由9个基本事件组成.用B表示“取出的两件中,恰好有一件次品”这一事件,则B={(a1,b1),(a2,b1),(b1,a1),(b1,a2)}.事件B由4个基本事件组成.因而.小结:计算古典概率时,首先确定试验中样本空间包含的基本事件的个数n,再确定随机事件包含的基本事件的个数m.例6 某号码锁有6个拨盘,每个拨盘上有从0~9共10个数字.当6个拨盘上的数字组成某一个六位数字号码(开锁号码)时,锁才能打开.如果不知道开锁号码,试开一次就把锁打开的概率是多少?解号码锁每个拨盘上的数字有10种可能的取法.根据分步计数原理,6个拨盘上的数字组成的六位数字号码共有106个,又试开时采用每一个号码的可能性都相等,且开锁号码只有一个,所以试开一次就把锁打开的概率是例7 抛掷两颗骰子,求:(1)出现点数之和为7的概率;(2)出现两个4点的概率.解从图中容易看出基本事件全体构成的集合与点集用坐标系辅助讲解,学生更明确.“放回”的区别就在于“元素能否重复”.与例4比较异同.教师可再举一些关于号码的例子,让学生明确概率在实际生活中的应用.教师可再附加练习P172习题第7题,让学生发现用坐标法求概率的优越性.新课中的元素一一对应.因为S中点的总数是6×6=36,所以基本事件总数n=36:(1)记“出现点数之和为7”的事件为A,从图中可看到事件A包含的基本事件数共6个,即(6,1), (5,2), (4,3), (3,4), (2,5), (1,6),所以.(2)记“出现两个4点”的事件为B,从图中可看到事件B包含的基本事件数只有1个 (4,4),所以.阅读教材P171抛硬币试验.小结1.古典概型特点.2.掌握古典概率的计算公式.作业教材P172习题第2~4题.巩固公式应用。
2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.2 概 率教案
25.1随机事件与概率25.1.2概率一、教学目标【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度与价值观】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.五、课前准备课件、图片等.六、教学过程(二)导入新课篮球比赛中,裁判员一般是通过掷硬币决定哪个队先发球,这样的游戏公平吗?为什么?(出示课件2)学生思考并交流.出示课件3,4:5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:教师问:抽到的序号有几种可能的结果?学生答:每次抽签的结果不一定相同,序号1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先不能预料一次抽签会出现哪一种结果.教师问:抽到的序号小于6吗?学生答:抽到的序号一定小于6;教师问:抽到的序号会是0吗?学生答:抽到的序号不会是0.想一想:能算出抽到每个数字的可能数值吗?(板书课题)(二)探索新知探究一概率的定义出示课件6:活动1抽纸团从分别有数字1、2、3、4、5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1、2、3、4、5.师生共同分析:因为纸团看上去完全一样,又是随机抽取,所以每个数字被抽取的可能性大小相等,所以我们可以用15表示每一个数字被抽到的可能性大小.出示课件7:活动2掷骰子掷一枚骰子,向上一面的点数有6种可能,即1、2、3、4、5、6.师生共同分析:因为骰子形状规则、质地均匀,又是随机掷出,所以每种点数出现的可能性大小相等.我们用16表示每一种点数出现的可能性大小.教师归纳:(出示课件8)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).例如:“抽到1”事件的概率:P(抽到1)=1. 5探究二简单概率的计算出示课件9:试验1:抛掷一个质地均匀的骰子.教师问:它落地时向上的点数有几种可能的结果?学生答:6种.教师问:各点数出现的可能性会相等吗?学生答:相等.教师问:各点数出现的可能性大小是多少?学生答:1. 6出示课件10:试验2:掷一枚硬币,落地后:教师问:会出现几种可能的结果?学生答:两种.教师问:正面朝上与反面朝上的可能性会相等吗?学生答:相等.教师问:正面朝上的可能性有多大呢?学生答:1. 2出示课件11:上述试验都具有什么样的共同特点?师生共同解答:具有两个共同特征:⑴每一次试验中,可能出现的结果只有有限个;⑵每一次试验中,各种结果出现的可能性相等.教师强调:在这些试验中出现的事件为等可能事件.出示课件12:教师归纳:具有上述特点的试验,我们可以用事件所包含的各种可能的结果数在全部可能的结果数中所占的比,来表示事件发生的概率.出示课件13:一个袋中有5个球,分别标有1、2、3、4、5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球.教师问:会出现哪些可能的结果?学生答:1、2、3、4、5.教师问:每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?学生答:相同;1. 5出示课件14,15:教师归纳:一般地,如果一个试验有n 个可能的结果,并且它们发生的可能性都相等.事件A 包含其中的m 个结果,那么事件A 发生的概率为:().m p A n=事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0.即:0≤P(A)≤1.特别地:当A 为必然事件时,P(A)=1,当A 为不可能事件时,P(A)=0.出示课件16:例1任意掷一枚质地均匀骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?师生共同分析:任意掷一枚质地均匀的骰子,所有可能的结果有6种:掷出的点数分别是1、2、3、4、5、6,因为骰子是质地均匀的,所以每种结果出现的可能性相等.师生共同解答:(出示课件17)解:(1)掷出的点数大于4的结果只有2种:掷出的点数分别是5、6.所以P(掷出的点数大于4)=21=63(2)掷出的点数是偶数的结果有3种:掷出的点数分别是2、4、6.所以P(掷出的点数是偶数)=21=63.教师强调:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.巩固练习:(出示课件18)掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.学生自主解决,一生板演:解:(1)点数为2有1种可能,因此P(点数为2)=1 6;(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=1 2;(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)=1 3.出示课件19:例2袋中装有3个球,2红1白,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽取1个球,抽到红球的概率是多少?学生独立思考后师生共同解答.解:抽出的球共有三种等可能的结果:红1、红2、白,三个结果中有两个结果使得事件A(抽得红球)发生,故抽得红球这个事件的概率为:P(抽到红球)=23.巩固练习:(出示课件20)袋子里有1个红球,3个白球和5个黄球,每一个球除颜色外都相同,从中任意摸出一个球,则P(摸到红球)=;P(摸到白球)=;P(摸到黄球)=.学生独立思考后口答:19;1 3;59.出示课件21:例3如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向其右边的扇形)求下列事件的概率.(1)指向红色;(2)指向红色或黄色;(3)不指向红色.学生观察交流后师生共同解答.(出示课件22)解:一共有7种等可能的结果.(1)指向红色有3种等可能的结果,P(指向红色)=3 7;(2)指向红色或黄色一共有5种等可能的结果,P(指向红或黄)=5 7 ;(3)不指向红色有4种等可能的结果,P(不指向红色)=4. 7巩固练习:(出示课件23)如图是一个转盘.转盘分成8个相同的部分,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向其右边的图形).求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色.学生观察思考后独立解答:⑴14;⑵34.出示课件24,25:例4如图是计算机中“扫雷”游戏的画面.在一个有9×9的方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B 区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?教师问:可能出现哪些点数?师生共同分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.解:A区域的方格总共有8个,标号3表示在这8个方格中有3个方格各藏有1颗地雷.因此,点击A区域的任一方格,遇到地雷的概率是3 8;3B 区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B 区域的任一方格,遇到地雷的概率是772;由于38>772,即点击A 区域遇到地雷的可能性大于点击B 区域遇到地雷的可能性,因而第二步应该点击B 区域.巩固练习:(出示课件26)小红和小明在操场上做游戏,他们先在地上画了半径分别为2m 和3m 的同心圆(如下图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内(半径为3m 的圆内)不算.你认为游戏公平吗?为什么?学生独立思考交流后自主解答,一生板演.解:不公平,因为P(小红胜)=9π4π59π9-=,P(小明胜)=.49所以小红胜的可能性更大.(三)课堂练习(出示课件27-34)1.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°、90°、210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.16B.14C.13D.7122.掷一枚质地均匀的骰子,向上一面的点数为5的概率是______.3.从一副扑克牌(除去大小王)中任抽一张.P(抽到红心)=______;P(抽到黑桃)=______;P(抽到红心3)=______;P(抽到5)=______.4.将A、B、C、D、E这五个字母分别写在5张同样的纸条上,并将这些纸条放在一个盒子中.搅匀后从中任意摸出一张,会出现哪些可能的结果?它们是等可能的吗?5.一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?6.某种彩票投注的规则如下:你可以从00~99中任意选取一个整数作为投注号码,中奖号码是00~99之间的一个整数,若你选中号码与中奖号码相同,即可获奖.请问中奖号码中两个数字相同的机会是多少?7.有7张纸签,分别标有数字1、1、2、2、3、4、5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字1的纸签的概率;(3)抽出标有数字为奇数的纸签的概率.8.如图所示,转盘被等分为16个扇形.请在转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为3 8 .你还能再举出一个不确定事件,使得它发生的概率也是38吗?参考答案:1.B2.16解析:掷一枚质地均匀的骰子,向上一面的点数为5的概率是:16.3.14;14;⑶152;⑷113.4.解:出现A、B、C、D、E五种结果.它们是等可能的.5.解:拿出白色弹珠的概率是1-35%-25%=40%;红色弹珠有60×35%=21;蓝色弹珠有60×25%=15;白色弹珠有60×40%=24.6.解:P(中奖号码数字相同)=1 10 .7.解:⑴P(数字3)=1 7;⑵P(数字1)=2 7;⑶P(数字为奇数)=4 7.8.解:选择任意六块涂色;8张卡片分别写上1,2,3,…,8,任意抽一张,抽到的数比4小的概率为38.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(25.2第1课时)的相关内容.七、课后作业配套练习册内容八、板书设计:一般地,如果一个试验有n个等可能的结果,事件A包含其中的m个结果,那么事件A发生的概率为:().mP An(0≤P(A)≤1)九、教学反思:1.用学生喜欢的抽签,抽纸团和掷骰子试验,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.。
2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案
25.1随机事件与概率25.1.1随机事件一、教学目标【知识与技能】1.理解必然发生的事件,不可能发生的事件,随机事件的概念,掌握判断随机事件的方法.2.了解随机事件发生的可能性有大有小,并会对随机事件发生的可能性大小做出判断.【过程与方法】通过本节课的学习,会根据经验判断一个简单事件是属于必然事件,不可能事件还是随机事件.【情感态度与价值观】感受数学与现实生活的联系,积极参与对数学问题的探讨,利用数学的思维方式解决现实问题.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】随机事件的特点,会判断现实生活中的随机事件.【教学难点】判断现实生活中哪些事件是随机事件.五、课前准备课件、图片等.六、教学过程(一)导入新课你能确定明天是什么天气吗?(出示课件2)解决这个问题要研究随机事件.(板书课题)(二)探索新知探究一必然事件、不可能事件和随机事件出示课件4,5:活动1掷骰子掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,则骰子向上的一面:教师问:可能出现哪些点数?学生答:1点、2点、3点、4点、5点、6点.教师问:出现的点数是7,可能发生吗?学生答:不可能发生.教师问:出现的点数大于0,可能发生吗?学生答:一定会发生.教师问:出现的点数是4,可能发生吗?学生答:可能发生,也可能不发生.出示课件6-8:活动2摸球游戏教师问:小明从盒中任意摸出一球,一定能摸到红球吗?学生答:不一定.教师问:小麦从盒中摸出的球一定是白球吗?学生答:一定.教师问:小米从盒中摸出的球一定是红球吗?学生答:一定.教师问:三人每次都能摸到红球吗?学生答:小明不一定;小麦一定不能;小米一定能.出示课件9:“从如下一堆牌中任意抽一张牌,可以事先知道抽到红牌的发生情况”吗?学生交流,回答问题:第一组一定会发生;第二组一定不会发生;第三组有可能发生,也可能不发生.教师归纳:(出示课件10,11)在一定条件下,有些事件必然会发生,这样的事件称为必然事件.有些事件必然不会发生,这样的事件称为不可能事件.在一定条件下,可能发生也可能不发生的事件称为随机事件.教师强调:事件一般用大写字母A,B,C···表示.出示课件12:例判断下列事件是必然事件、不可能事件和随机事件:(1)乘公交车到十字路口,遇到红灯;(2)把铁块扔进水中,铁块浮起;(3)任选13人,至少有两人的出生月份相同;(4)从上海到北京的D314次动车明天正点到达北京.学生思考交流后,教师抽查学生口答:⑴随机事件;⑵不可能事件;⑶必然事件;⑷随机事件.巩固练习:(出示课件13)下列现象哪些是必然发生的,哪些是不可能发生的?学生独立思考后口答:必然事件;必然事件;不可能事件;不可能事件;必然事件;必然事件;不可能事件;不可能事件.探究二随机事件发生的可能性大小出示课件15-17:活动3:摸球袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.教师问:这个球是白球还是黑球?学生答:可能是白球也可能是黑球.教师问:如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?学生答:摸出黑球的可能性大.由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.教师问:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?学生答:可以.白球个数不变,拿出两个黑球或黑球个数不变,加入2个白球.出示课件18:教师归纳:随机事件的特点:一般地,⑴随机事件发生的可能性是有大小的;⑵不同的随机事件发生的可能性的大小有可能不同.出示课件19:例1有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大的事件是_____,可能性最小的事件是_____(填写序号);(2)将这些事件的序号按发生的可能性从小到大的顺序排列:____________.学生观察交流后,师生共同解答.⑴④;②;⑵②<③<①<④.巩固练习:(出示课件20,21)1.随意从一副扑克牌中抽到Q和K的可能性大小是()A.抽到Q的可能性大B.抽到K的可能性大C.抽到Q和K的可能性一样大D.无法确定2.如果一件事情不发生的可能性为99.99%,那么它()A.必然发生B.不可能发生C.很有可能发生D.不太可能发生学生思考后独立解答:1.C解析:因为在一副扑克牌中,Q和K的数量相同,所以它们的可能性相同.2.D解析:一件事情不发生的可能性为99.99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生.出示课件22:例2一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其他区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.师生共同解答.解:至少再放入4个绿球.理由:袋中有绿球4个,再至少放入4个绿球后,袋中有不少于8个绿球,即绿球的数量最多,这样摸到绿球的可能性最大.巩固练习:(出示课件23,24)甲口袋中放着22个红球和8个黑球,乙口袋中则放着200个红球、8个黑球和2个白球,这三种球除了颜色以外没有任何区别,两袋中的球都各自搅匀,蒙上眼睛从口袋中取一个球,如果你想取一个红球,你选哪个口袋成功的机会大?小红认为选甲较好,因为里面的球较少,容易摸到红球;小明认为选乙较好,因为里面的球较多,成功的机会越大;小亮认为都一样,因为只摸一次,谁也无法预测会取出什么颜色的球.你觉得他们说的有道理吗?学生交流后口答.解:他们的说法都没有道理.因为摸到一个红球的可能性的大小和袋子中球的总数量没关系,而是取决于红球占总数量的比例.在甲口袋中取一个红球的可能性为2230,在乙口袋中取一个红球的可能性为200 210,即2021,因为2021>2230,所以在乙口袋中取一个红球的可能性大.(三)课堂练习(出示课件25-30)1.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件2.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨3.下列事件是必然事件,不可能事件还是随机事件?(1)太阳从东边升起.(2)篮球明星林书豪投10次篮球,次次命中.(3)打开电视正在播中国新航母舰载机训练的新闻片.(4)一个三角形的内角和为181度.4.如果袋子中有4个黑球和x个白球,从袋子中随机摸出一个,“摸出白球”与“摸出黑球”的可能性相同,则x=______.5.已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”发生的可能性()“落在陆地上”的可能性.A.大于B.等于C.小于D.三种情况都有可能6.桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张扑克牌.(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色扑克牌的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?7.你能说出几个与必然事件、随机事件、不可能事件相联系的成语吗?数量不限.参考答案:1.C2.B3.解:⑴必然事件;⑵随机事件;⑶随机事件;⑷不可能事件.4.45.A6.解:⑴不能确定;⑵黑桃;⑶可以,去掉一张黑桃或增加一张红桃.7.解:必然事件:种瓜得瓜,种豆得豆;黑白分明.随机事件:海市蜃楼,守株待兔.不可能事件:海枯石烂,画饼充饥,拔苗助长.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材129页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.。
25概率初步教案含教学反思设计新版新人教版九年级数学上册
第二十五章概率初步25.1随机事件与概率25.随机事件1.了解必然发生的事件、不可能发生的事件、随机事件的特点.2.能根据随机事件的特点,辨别哪些事件是随机事件.3.有对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.重点:对生活中的随机事件作出准确判断,对随机事件发生的可能性大小作定性分析.难点:对生活中的随机事件作出准确判断,理解大量重复试验的必要性.一、自学指导.(10分钟)自学:阅读教材P127~129.归纳:在一定条件下必然发生的事件,叫做__必然事件__;在一定条件下不可能发生的事件,叫做__不可能事件__;在一定条件下可能发生也可能不发生的事件,叫做__随机事件__.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边落下;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)自然条件下,水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解.解:(1)(4)(6)是必然发生的;(2)(3)(5)是不可能发生的.2.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中随机摸出1个小球,请你写出这个摸球活动中的一个随机事件:__摸出红球__.3.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性__>__摸到J,Q,K的可能性.(填“>”“<”或“=”)4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是( D)A.抽出一张红桃B.抽出一张红桃KC.抽出一张梅花J D.抽出一张不是Q的牌5.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a.抽到一名住宿女生;b.抽到一名住宿男生;c.抽到一名男生.其中可能性由大到小排列正确的是( A)A.cab B.acb C.bca D.cba点拨精讲:一般的,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数.请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?点拨精讲:必然事件和不可能事件统称为确定事件.事先不能确定发生与否的事件为随机事件.2.袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B.(1)事件A和事件B是随机事件吗?哪个事件发生的可能性大?(2)20个小组进行“10次摸球”的试验中,事件A发生的可能性大约有几组?“20次摸球”的试验中呢?你认为哪种试验更能获得较正确结论呢?(3)如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性?(4)通过上述试验,你认为,要判断同一试验中哪个事件发生的可能性较大、必须怎么做?点拨精讲:(4)进行大量的、重复的试验.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.下列事件中是必然事件的是( A)A.早晨的太阳一定从东方升起B.中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目D.小红今年14岁了,她一定是初中生2.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破( B)A.可能性很小B.绝对不可能C.有可能D.不太可能3.下列说法正确的是( C)A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生4.20张卡片分别写着1,2,3,…,20,从中任意抽出一张,号码是2的倍数与号码是3的倍数的可能性哪个大?解:号码是2的倍数的可能性大.5.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)两直线平行,内错角相等;(2)刘翔再次打破110米跨栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球; (8)物体在重力的作用下自由下落; (9)抛掷一千枚硬币,全部正面朝上.解:必然事件:(1)(5);随机事件:(2)(3)(4)(6)(8)(9);不可能事件:(7).6.已知地球表面陆地面积与海洋面积的比值为3∶7.如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?解:“落在海洋里”可能性更大.学生总结本堂课的收获与困惑.(2分钟)1.必然事件、随机事件、不可能事件的特点. 2.对随机事件发生的可能性大小进行定性分析. 3.理解大量重复试验的必要性.学习至此,请使用本课时对应训练部分.(10分钟)25. 概率(1)1.了解从数量上刻画一个事件发生的可能性的大小.2.理解P(A)=mn(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的意义.重点:对概率意义的正确理解.难点:对P(A)=mn(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的正确理解.一、自学指导.(10分钟)自学:阅读教材第130至132页. 归纳:1.当A 是必然事件时,P(A)=__1__;当A 是不可能事件时,P(A)=__0__;任一事件A 的概率P(A)的范围是__0≤P(A)≤1__.2.事件发生的可能性越大,则它的概率越接近__1__;反之,事件发生的可能性越小,则它的概率越接近__0__.3.一般地,在一次试验中,如果事件A 发生的可能性大小为__m n __,那么这个常数mn 就叫做事件A 的概率,记作__P(A)__.4.在上面的定义中,m ,n 各代表什么含义?mn的范围如何?为什么?点拨精讲:(1)刻画事件A 发生的可能性大小的数值称为事件A 的概率.(2)__必然__事件的概率为1,__不可能__事件的概率为0,如果A 为__随机__事件,那么0<P(A)<1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.在抛掷一枚普通正六面体骰子的过程中,出现点数为2的概率是__16__.2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为__112__.3.袋中有5个黑球,3个白球和2个红球,它们除颜色外,其余都相同.摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球的概率为__15__.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)1.掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为2;(2)点数为奇数; (3)点数大于2小于5. 解:(1)16;(2)12;(3)13.2.一个桶里有60个弹珠,其中一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?解:红:21;蓝:15;白:24.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(12分钟) 1.袋子中装有24个和黑球2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出一个球,摸到黑球的概率大,还是摸到白球的概率大一些呢?说明理由,并说明你能得到什么结论?解:摸到黑球的概率大.摸到黑球的可能性为1213,摸到白球的可能性为113,1213>113,故摸到黑球的概率大.(结论略)点拨精讲:要判断哪一个概率大,只要看哪一个可能性大.学生总结本堂课的收获与困惑.(2分钟)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P(A)=__mn__且 __0__≤P(A)≤__1__.学习至此,请使用本课时对应训练部分.(10分钟)25. 概率(2)1. 进一步在具体情境中了解概率的意义;能够运用列举法计算简单事件发生的概率,并阐明理由.2.运用P(A)=mn解决一些实际问题.重点:运用P(A)=mn解决实际问题.难点:运用列举法计算简单事件发生的概率.一、自学指导.(10分钟) 自学:阅读教材P 133.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?抽到1的概率为多少?解:5种;15.2.掷一个骰子,向上一面的点数有多少种可能?向上一面的点数是1的概率是多少? 解:6种;16.3.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止.指针恰好指向其中的某个扇形(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率.(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.解:(1)14;(2)34;(3)12.点拨精讲:转一次转盘,它的可能结果有4种——有限个,并且各种结果发生的可能性相等.因此,它可以运用“P(A)=mn”,即“列举法”求概率.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.如图是计算机中“扫雷”游戏的画面,在一个有9×9个小方格的正方形雷区中,随机埋藏着3颗地雷,每个小方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A 区域(划线部分),A 区域外的部分记为B 区域,数字3表示在A 区域中有3颗地雷,每个小方格中最多只能藏一颗.那么,第二步应该踩在A 区域还是B 区域?思考:如果小王在游戏开始时踩中的第一个方格上出现了标号1,则下一步踩在哪个区域比较安全?2.(1)掷一枚质地均匀的硬币的试验有几种可能的结果?它们的可能性相等吗?由此怎样确定“正面朝上”的概率?(2)掷两枚硬币,求下列事件的概率: A .两枚硬币全部正面朝上;B .两枚硬币全部反面朝上;C .一枚硬币正面朝上,一枚硬币反面朝上.思考:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?点拨精讲:“同时掷两枚硬币”与“先后两次掷一枚硬币”,两种试验的所有可能结果一样.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是( D )A .116B .516C .38D .582.冰柜中装有4瓶饮料、5瓶特种可乐、12瓶普通可乐、9瓶桔子水、6瓶啤酒,其中可乐是含有咖啡因的饮料,那么从冰柜中随机取一瓶饮料,该饮料含有咖啡因的概率是( D )A .536B .38C .1536D .17363.从8,12,18,32中随机抽取一个,与2是同类二次根式的概率为__34__.4.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率:(1)牌上的数字为3;(2)牌上的数字为奇数;(3)牌上的数字大于3且小于6.解:(1)16;(2)12;(3)13.学生总结本堂课的收获与困惑.(2分钟)当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列举法.学习至此,请使用本课时对应训练部分.(10分钟)25.2 用列举法求概率1. 会用列表法求出简单事件的概率.2. 会用树状图法求出一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率.重点:运用列表法或树状图法计算简单事件的概率. 难点:用树状图法求出所有可能的结果.一、自学指导.(10分钟) 自学:阅读教材P 136~139.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出1个球,共有几种可能的结果?解:两种结果:白球、黄球.2.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出2个球,这样共有几种可能的结果?解:三种结果:两白球、一白一黄两球、两黄球.3.一个盒子里有4个除颜色外其余都相同的玻璃球,一个红色,一个绿色,两个白色,现随机从盒子里一次取出两个球,则这两个球都是白球的概率是__16__.4.同时抛掷两枚正方体骰子,所得点数之和为7的概率是__16__.点拨精讲:这里2,3,4题均为两次试验(或一次两项),可直接采用树状图法或列表法.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.同时掷两个质地均匀的骰子,计算下列事件的概率: (1)两个骰子的点数相同; (2)两个骰子点数的和是9; (3)至少有一个骰子的点数为2.讨论:(1)上述问题中一次试验涉及到几个因素?你是用什么方法不重不漏地列出了所有可能的结果,从而解决了上述问题?(2)能找到一种将所有可能的结果不重不漏地列举出来的方法吗?(介绍列表法求概率,让学生重新利用此法做上题).(3)如果把上例中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得到的结果有变化吗?点拨精讲:当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列表法. 列表法是将两个步骤分别列在表头中,所有可能性写在表格中,再把组合情况填在表内各空格中.2.甲口袋中装有2个相同的小球,他们分别写有A 和B ;乙口袋中装有3个相同的小球,分别写有C ,D 和E ;丙口袋中装有2个相同的小球,他们分别写有H 和I .从3个口袋中各随机取出1个小球.(1)取出的3个小球上恰好有1个、2个、3个元音字母的概率分别是多少? (2)取出3个小球上全是辅音字母的概率是多少?点拨:A ,E ,I 是元音字母;B ,C ,D ,H 是辅音字母.分析:弄清题意后,先让学生思考从3个口袋中每次各随机地取出一个球,共3个球,这就是说每一次试验涉及到3个因素,这样的取法共有多少种呢?打算用什么方法求得?点拨精讲:第一步可能产生的结果会是什么?——(A 和B ),两者出现的可能性相同吗?分不分先后?写在第一行.第二步可能产生的结果是什么?——(C ,D 和E ),三者出现的可能性相同吗?分不分先后?从A 和B 分别画出三个分支,在分支下的第二行分别写上C ,D 和E .第三步可能产生的结果有几个?——是什么?——(H 和I ),两者出现的可能性相同吗?分不分先后?从C ,D 和E 分别画出两个分支,在分支下的第三行分别写上H 和I .(如果有更多的步骤可依上继续)第四步按竖向把各种可能的结果竖着写在下面,就得到了所有可能的结果的总数.再找出符合要求的种数,就可计算概率了.合作完成树状图.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.将一个转盘分成6等份,分别是红、黄、蓝、绿、白、黑,转动转盘两次,两次能配成“紫色”(提示:只有红色和蓝色可配成紫色)的概率是__118__.2.抛掷两枚普通的骰子,出现数字之积为奇数的概率是__14__,出现数字之积为偶数的概率是__34__.3.第一盒乒乓球中有4个白球2个黄球,第二盒乒乓球中有3个白球3个黄球,分别从每个盒中随机的取出一个球,求下列事件的概率:(1)取出的两个球都是黄球;(2)取出的两个球中有一个白球一个黄球.解:16;12.4.在六张卡片上分别写有1~6的整数,随机地抽取一张后放回,再随机的抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?解:718.点拨精讲:这里第4题中如果抽取一张后不放回,则第二次的结果不再是6,而是5. 5.小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?解:P(积为奇数)=13,P(积为偶数)=23.1 2 3 1 1 2 3 224613×2=1×23.∴这个游戏对双方公平. 学生总结本堂课的收获与困惑.(2分钟)1. 一次试验中可能出现的结果是有限多个,各种结果发生的可能性是相等的.通常可用列表法和树状图法求得各种可能的结果.2.注意第二次放回与不放回的区别.3.一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,通常采用树状图法.学习至此,请使用本课时对应训练部分.(10分钟)25.3用频率估计概率1. 理解当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2. 了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.重点:了解用频率估计概率的必要性和合理性.难点:大量重复试验得到频率稳定值的分析,对频率与概率之间关系的理解.一、自学指导.(20分钟)自学:阅读教材P142~146.归纳:对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.当重复试验的次数大量增加时,事件发生的频率就稳定在相应的概率附近,因此,可以通过大量重复试验,用一个事件发生的频率来估计这一事件发生的概率.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(2分钟)1.小强连续投篮75次,共投进45个球,则小强进球的频率是____.2.抛掷两枚硬币,当抛掷次数很多以后,出现“一正一反”这个不确定事件的频率值将稳定在__左右.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)红星养猪场400其中数据不在分点上.组别频数频率46 ~ 50 4051 ~ 55 8056 ~ 60 16061 ~ 65 8066 ~ 70 3071~ 75 10从中任选一头猪,质量在65 以上的概率是__ .二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:转动转盘的次数n 100 150 200 500 800 1000 落在“铅笔”的次数m 68 111 136 345 546 701落在“铅笔”的频率错误!(2)请估计,当次数很大时,频率将会接近多少?(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)【答案】:(2)0.69;(3)0.69;(4)0.69×360°≈248°.学生总结本堂课的收获与困惑.(2分钟)尽管随机事件在每次试验中发生与否具有不确定性,但只要保持试验条件不变,那么这一事件出现的频率就会随着试验次数的增大而趋于稳定,这个稳定值就可以作为该事件发生概率的估计值.学习至此,请使用本课时对应训练部分.(10分钟)。
人教版九年级数学RJ上册精品教案 第25章 概率初步 25.3 用频率估计概率
25.3 用频率估计概率教师备课素材示例●归纳导入(1)我们知道,任意抛一枚质地均匀的硬币,“正面朝上”的概率是0.5,许多科学家曾做过成千上万次的试验,其中部分结果如下(2)两个同学一组多次抛硬币,计算出“正面向上”的频率;(3)归纳:试验次数越多,频率越接近概率.【教学与建议】教学:通过抛硬币试验的引入,体会频率与概率的关系.建议:让学生两个人合作抛硬币,记录并计算出频率.●复习导入通过前面知识的学习,请同学们回答下列问题:(1)用列举法求概率的条件和方法是什么?(2)列表法、画树状图法是不是列举法,它们在什么时候应用?(3)当列举法不能求出某事件的概率时,还有没有其他的方法?【教学与建议】教学:通过复习,使学生加深对列举法求概率的理解,同时产生探索其他方法求概率的兴趣.建议:问题3,教师可以直接点题.在做大量重复试验时,某事件发生的频率会稳定在概率值附近.【例1】(1)在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算硬币正面朝上的概率,其试验次数分别为10,20,50,100次,其中试验相对科学的是(D)A.甲组B.乙组C.丙组D.丁组(2)做重复试验:抛掷一枚啤酒瓶盖1000次,经过统计得“凸面向上”的次数为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为(B)A.0.22B.0.42C.0.50D.0.58理解和巩固利用频率估计概率的方法,灵活解决问题.【例2】(1)为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做了记号的,那么可以估计这个鱼塘鱼的数量为(A) A.1250条B.1750条C.2500条D.5000条(2)含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再抽,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有__9__张.(3)为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m的正方形,使不规则区域落在正方形内.现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积约是__4__m2.让学生用数学知识和数学的思维方法去看待、分析、解决实际生活问题,加强应用统计与概率的意识.【例3】某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种,为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分(1)(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1∶3,估计参与度在0.4以下的共有多少人?解:(1)“直播”教学方式学生的参与度更高.理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,所以“直播”教学方式学生的参与度更高;(2)12÷40×100%=30%.答:估计该学生的参与度在0.8及以上的概率是30%;(3)“录播”总学生人数为800×11+3=200(人),“直播”总学生人数为800×31+3=600(人),所以“录播”参与度在0.4以下的学生数为200×440=20(人),“直播”参与度在0.4以下的学生数为600×240=30(人),所以参与度在0.4以下的学生共有20+30=50(人).高效课堂 教学设计1.学会根据问题的特点,用统计频率来估计事件发生的概率.2.理解用频率估计概率的方法,渗透转化和估算的数学方法.▲重点对利用频率估计概率的理解和应用.▲难点比较用列举法求概率与用频率求概率的条件与方法.◆活动1 新课导入1.举例说明什么是确定事件,什么是不确定事件.答:确定事件:太阳从东方升起.不确定事件:打开电视正在直播足球比赛.2.什么是概率?答:在一定条件下,重复做n 次试验,m 为n 次试验中事件A 发生的次数,如果随着n 逐渐增大,频率m n逐渐稳定在某一数值p 附近,那么数值p 称为事件A 在该条件下发生的概率,记作P(A)=p.3.抛掷一枚硬币,落定后,正面朝上的概率是多少?你是怎样求出来的?答:概率是0.5.4.当试验的所有结果不是有限个,或各种可能结果发生的可能性不相等时,该如何求事件发生的概率呢?答:在相同的条件下,通过大量的重复试验,可以用这个事件发生的稳定的频率值作为这个事件发生的概率的估计值.◆活动2 探究新知1.教材P 142~145.提出问题:(1)试验:把全班同学分成8组,每名同学掷一枚硬币10次,每组统__0.5__左右摆动;(3)随着抛掷次数的增加,一般地,频率呈现出一定的稳定性,在0.5左右摆动的幅度会越来越__小__.这时,我们称“正面向上”的频率稳定于__0.5__.学生完成并交流展示.◆活动3 知识归纳一般地,在大量重复试验中,如果事件A 发生的__频率m n__稳定于某个常数p ,那么事件A 发生的概率P(A)=__p__.(注意:用频率估计概率的条件是大量重复试验)◆活动4 例题与练习例1 一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下__0.6__(2)假如你去摸一次,你摸到白球的概率是__0.6__,摸到黑球的概率是__0.4__;(3)试估算口袋中黑、白两种颜色的球各有多少个?解:白球:20×0.6=12(个),黑球:20×0.4=8(个).练习1.教材P147习题25.3第1,2题.2.小华练习射击,共射击600次,其中380次击中靶子,由此估计小华射击一次击中靶子的概率是( C )A.38%B.60%C.63%D.无法确定3.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则布袋中红色球可能有( B )A.4个B.6个C.34个D.36个◆活动5 课堂小结频率与概率的关系:区别:①频率反映事件发生的频繁程度;概率反映事件发生的可能性大小;②频率是不能脱离具体的n次试验的结果,具有随机性;概率是具有确定性的不依赖于试验次数的理论值.联系:频率是概率的近似值,概率是频率的稳定值.1.作业布置(1)教材P147~148习题25.3第3,4,5题;(2)对应课时练习.2.教学反思[第(1)题图][第(2)题图]。
人教版九年级上册数学《概率初步》全章教案
课题:25.1.1随机事件(第1课时)一、教学目标1.知道什么是必然事件、不可能事件和随机事件,会根据各自的特点分辨它们.2.经历试验过程,知道随机事件发生的可能性有大小,会判断某些随机事件发生可能性的大小.二、教学重点和难点1.重点:随机事件的意义及发生可能性的大小.2.难点:随机事件的意义.三、教学过程(一)创设情境,导入新课师:从今天开始我们要学习新的一章——第二十五章概率初步(板书:第二十五章概率初步).什么是概率?要弄清概率的意思,还得从随机事件说起,这节课我们就来学习随机事件(板书课题:25.1.1随机事件).(二)尝试指导,讲授新课师:什么是随机事件?(稍停)我们每天都能看到听到很多事情,这些事情也可以叫做事件(板书:事件).师:譬如,我们每天都能看到太阳从东方升起,太阳从东方升起就是一个事件(板书:太阳从东方升起).师:又譬如,有人希望从天上掉馅饼,天上掉馅饼也是一个事件(板书:天上掉馅饼).师:又譬如,扎西买体育彩票中了奖,买彩票中奖也是一个事件(板书:买彩票中奖).师:(指准板书)太阳从东方升起,天上掉馅饼,买彩票中奖,这三个事件是不太一样的,大家想一想,不一样在哪儿?(稍停)师:太阳从东方升起,是什么样的事件?(稍停)它是必然会发生的事件,称为必然事件(板书:必然事件).师:天上掉馅饼,是什么样的事件?(稍停)它是不可能发生的事件,称为不可能事件(板书:不可能事件).师:太阳从东方升起,天上不会掉馅饼,这些都是确定的,所以我们把必然事件和不可能事件统称为确定事件(连线并板书:确定事件).师:和确定事件相对的是不确定事件(板书:不确定事件).师:什么样的事件是不确定事件?(稍停)买彩票中奖就是一个不确定事件.为什么这么说?(稍停)扎西买了一张体育彩票,在开奖之前,扎西能确定自己买的彩票中了奖吗?不能确定.在开奖之前,扎西所买的彩票可能中奖,也可能不中奖,中奖不中奖在开奖前不能确定,所以彩票中奖是不确定事件.师:不确定事件在现实生活中很多,譬如,(师出示一枚硬币)这是一枚硬币,硬币这一面是国徽,这一面不是国徽,现在我要抛硬币,你能确定抛下去以后硬币向上的一面一定是国徽吗?生:(齐答)不能确定.师:抛下去以后,硬币向上的一面可能是国徽,也可能不是国徽,所以国徽向上是不确定事件.师:又譬如,(师出示手机)现在我要给一位朋友打电话,我一定能打通他的电话吗?(稍停)可能能打通,也可能因为关机或者别的原因打不通,所以打通电话也是不确定事件.师:生活中不确定事件还有能很多,哪位同学能举出一个不确定事件?生:……(多让几名同学说,学生的表述可能不准确,只要有点意思就行了,师要从学生的表述中提炼出不确定事件)师:大家举了很多不确定事件,不确定事件就是可能发生也可能不发生的事件,不确定事件还有一个更好的名字,叫什么?(稍停)叫随机事件(连线并板书:随机事件).师:(指准板书)从上面的讨论我们可以看到,所有事件可以分成这么三种,必然事件、不可能事件、随机事件,下面请同学们来区别这三种事件.(三)试探练习,回授调节1.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)在平原水加热到100℃时,水沸腾;(2)篮球队员在罚球线上投篮一次,未投中;(3)掷一次色(shǎi)子,向上的一面是6点;(4)度量一个三角形的内角和,结果是360°;(5)经过城市中某一有交通信号灯的路口,遇到红灯;(6)某射击运动员射击一次,命中靶心.(四)尝试指导,讲授新课师:刚才我们学习了什么是随机事件,随机事件就是不确定事件,它可能发生也可能不发生,事先不能确定.下面我们再来看两个随机事件.师:(出示一个袋子)这是一个空袋子,(出示4个黑球2个白球,这6个球的形状、大小、质地要完全相同,这样的球不好找可用别的东西替代)这是4个黑球,这是2个白球,我把这6个球放进袋子里(边讲边放).现在我们打算从袋子里摸出一个球,(只做摸的动作,但不摸出),摸出的这个球一定是黑球吗?生:(齐答)不一定.师:摸出的这个球一定是白球吗?生:(齐答)不一定.师:摸出的这个球可能是黑球,也可能是白球,那么我们可以进一步想,摸出黑球的可能性和摸出白球的可能性一样大吗?生:(齐答)不一样大.师:摸出黑球的可能性大还是摸出白球的可能性大?生:(齐答)摸出黑球的可能性大.师:大家都认为是摸出黑球的可能性大,是不是呢?还是让我们实际来试一试.回袋子中,总共摸10次)师:我们从袋子里总共摸了10次,摸出黑球有几次?摸出白球有几次?生:摸出黑球有□次,摸出白球有□次.师:摸出黑球的次数比摸出白球的次数多,这就说明从袋子里摸出一个球,摸出黑球的可能性比摸出白球的可能性大,这也验证了同学们原先的判断是正确的. 师:同学们原先的判断是正确的,不过老师心里还有一个疑问,什么疑问?(稍停)当初大家都没有摸球,你怎么知道摸出黑球的可能性大?生:……(让一两名学生说)师:(出示4个黑球2个白球)因为黑球有4个,而白球只有2个,所以摸出黑球的可能性自然较大.师:好了,现在我们已经讨论完了这个例子,从这个例子,你能对随机事件得出点什么?(让生思考一会儿)师:这个问题可能有点难了,还是让老师来归纳吧.师:从袋子里摸出一个球,“摸出黑球”是一个随机事件,“摸出白球”也是一个随机事件,这两个随机事件会不会发生,事先不能确定,但是从这个例子我们发现,这两个随机事件发生的可能性有大有小,“摸出黑球”的可能性大,“摸出白球”的可能性小,于是我们归纳出这样一个结论.(师出示下面的板书)随机事件发出的可能性有大有小,有的随机事件发生的可能性大,有的随机事件发生的可能性小.师:(指板书)请大家一起把这个结论读两遍.(生读)(五)归纳小结,布置作业师:(指准板书)本节课我们学习了随机事件的概念,还从摸球这个例子中得出了一个关于随机事件的结论,请大家仔细地看一看板书的内容.(作业:P 128练习1.P 131习题1.2.)课题:25.1.2概率(第1课时)一、教学目标1.通过实例经历概念的形成过程,知道什么是概率,初步理解概率的意义.2.会根据概率的意义计算一步试验的概率问题.二、教学重点和难点1.重点:概率的意义.2.难点:概率的意义.三、教学过程(一)创设情境,导入新课(师出示下面的板书)随机事件发生的可能性有大有小,有的随机事件发生的可能性大,有的随机事件发生的可能性小.师:(指准板书)上节课我们学习了随机事件的概念,学习随机事件我们是从事件开始说起的.我们所生活的世界每时每刻都在发生各种各样的事件,这些事件可以分成两类,一类是确定事件,一类是不确定事件.确定事件又可以分成两种,一种叫必然事件,譬如,太阳从东方升起,就是一个必然事件;一种叫不可能不确定事件:随机事件确定事件:不可能事件必然事件、事件事件,譬如,天上掉馅饼,就是一个不可能事件.必然事件、不可能事件都是确定事件.确定事件有一个特点,什么特点?(稍停)确定事件的发生还是不发生,事先可以确定.譬如说,在太阳升起前我们就可以确定,太阳从东方升起.而不确定事件就不同了,它可能发生也可能不发生,事先不能确定.譬如,扎西买了一张体育彩票,在开奖前扎西不能确定彩票能不能中奖,所以彩票中奖是一个不确定事件.不确定事件就是随机事件.师:上节课我们不仅学习了随机事件的概念,而且还通过摸球得出了关于随机事件的一个结论,结论是这样的,(指准板书)随机事件发生的可能性有大有小,有的随机事件发生的可能性大,有的随机事件发生的可能性小.师:(出示袋子及4个黑球2个白球)譬如,把4个黑球2个白球放进袋子里(边讲边放),随机从袋子里摸出一个球,“摸出黑球”是一个随机事件,“摸出白球”也是一个随机事件,摸出黑球还是摸出白球事先不能确定,但是因为黑球有4个,而白球只有2个,所以“摸出黑球”这个随机事件发生的可能性大,“摸出白球”这个随机事件发生的可能性小.师:(指板书)这些就是我们上节课所学的内容,那么这节课我们要学习什么呢?这节我们要更深入地来讨论随机事件.(二)尝试指导,讲授新课师:(指准板书)上节课我们说到,随机事件发生的可能性有大有小,这个说法虽然正确,但我们还可以进一步问:一个随机事件发生的可能性到底有多大?可能性的大小能不能用具体的数值来表示?师:(出示装有4个黑球2个白球的袋子)譬如,从4个黑球2个白球中摸出一个球,摸出黑球的可能性到底有多大?可能性的大小能用数值来表示吗?摸出白球的可能性到底有多大?可能性的大小也能用数值来表示吗?师:我们先考虑摸出黑球可能性的大小.(出示4个黑球2个白球)这6个球除了颜色有不同,球的形状、大小、质地都完全一样,所以这6个球在袋子里被摸到的可能性是相同的.6个球摸出一个球,每个球被摸出的可能性是多少?(稍停)是16.师:每个球被摸出的可能性是16,总共有4个黑球,那么摸出黑球的可能性有多大?(稍停)应该是46,也就是23(板书:摸出黑球的可能性=46=23).师:摸出黑球的可能性=23,那么摸出白球的可能性又有多大?大家算一算.(板书:摸出白球的可能性=)师:哪位同学算出来了?生:13.(多让几名同学回答)师:(出示4个黑球2个白球)6个球中摸出一个球,每个球被摸出的可能性是16,总共有2个白球,所以摸出白球的可能性是26(板书:26),也就是13(板书:=13).师:下面请同学们做一个计算可能性的练习.(三)试探练习,回授调节1.填空:袋子里装有1个红球2个黄球3个蓝球,这些球的形状、大小、质地完全相同.随机从袋子里摸出一个球,则(1)摸出红球的可能性= ;(2)摸出黄球的可能性= ;(3)摸出蓝球的可能性= .(四)尝试指导,讲授新课师:从装有4个黑球2个白球的袋子里摸出一个球,(指准板书)刚才我们通过计算得出,摸出黑球的可能性是23,摸出白球的可能性是13.这个23有一个名字,叫什么?(稍停)叫摸出黑球的概率(板书:摸出黑球的概率=);这个13也有有一个名字,叫什么?(稍停)叫摸出白球的概率(板书:摸出白球的概率=). 师:(指准板书)为了书写方便,我们把摸出黑球的概率写成P(摸出黑球)(板书:P(摸出黑球)=),把摸出白球的概率写成P(摸出白球)(板书:P(摸出白球)=),这里的P表示概率.师:从这个例子,大家对概率的含义应该有了一定的认识,现在我们需要给概率下一个定义.什么是概率?(稍停)概率就是反映一个随机事件发生可能性大小的数值.(师出示下面的板书)我们把反映一个随机事件A发生可能性大小的数值,叫做随机事件A的概率,记作P(A).师:(指板书)概率的定义有点抽象,请大家把概率的定义好好读几遍,再结合这个例子理解理解.(生默读理解)师:下面我们来做一道求概率的例题.(师出示例题)例掷一个色(shǎi)子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(2)点数大于2且小于5.师:(出示一个色子)这是什么?(稍停)这是一个色子.掷色子大家都玩过(掷几次色子,并报出点数).师:掷一个色子,向上一面的点可能有哪几种?生:1点、2点、3点、4点、5点、6点.师:掷一个色子向上一面的点数共有6种,因为色子做得很均匀,所以这6种点数出现的可能性相同.师:(指准例题)这道题目要求大家求的是,掷一个色子,向上一面点数为2的可能性有多大,或者说概率有多大?向上一面点数为奇数的概率有多大?点数大于2且小于5的的概率是多少?大家先自己算一算.(生尝试,师巡视,然后师边讲解边板书,解题过程如课本第130页所示). (五)试探练习,回授调节2.填空:掷一个色子,观察向上一面的点数.则,(1)向上一面点数为6的可能性= ,P(点数为6)= ;(2)向上一面点数为偶数的可能性= ,P(点数为偶数)= ;(3)向上一面点数小于5的可能性= ,P(点数小于5)= .(六)归纳小结,布置作业师:(指准板书)本节课我们学习了什么?我们学习了概率的概念(板书课题:25.1.2概率).什么是概率?我们把反映一个随机事件A发生可能性大小的数值,叫做随机事件A的概率,记作P(A).这里的P代表什么?(稍停)代表概率;这里的A代表什么?(稍停)代表一个随机事件.(作业:P131练习2.P132习题4.)课题:25.1.2概率(第2课时)一、教学目标1.会较熟练地计算一步试验的概率问题,加深对概率意义的理解.2.知道事件的可能性越大,它的概率越接近1,反之越接近0.二、教学重点和难点1.重点:加深理解概率的意义.2.难点:事件发生的可能性越大,它的概率越接近1,反之越接近0.三、教学过程(一)基本训练,巩固旧知1.填空:(1)在一定条件下,可能可能的事件,称为随机事件.(2)我们把反映一个随机事件A发生可能性大小的数值,叫做随机事件A发生的概率,记作 .2.填空:袋子中装有2个红球3个黄球4个蓝球,这些球除了颜色都相同.从袋子中随机摸出一个球,则(1)摸出红球的概率为,即P(摸出红球)= ;(2)摸出黄球的概率为,即P(摸出黄球)= ;(3)摸出蓝球的概率为,即P(摸出蓝球)= .(二)创设情境,导入新课师:上节课我们学习了概率的概念,什么是概率?(稍停)概率就是反映一个随机事件发生可能性大小的数值.利用这个概念,本节课我们再来做一个题目,请看例题.(三)尝试指导,讲授新课(师出示例题)例从分别标有1,2,3,4,5的5根纸签中随机抽取一根,求下列事件的概率:(1)签号为1;(2)签号小于4;(3)签号小于6;(4)签号等于6.师:抽签大家都抽过吧?(出示5根纸签,5根签分别写着1,2,3,4,5五个数字),(打开一个签)这是□号签,(又打开一个签)这是□号签.现在从这5根签中随机抽一根,(指准例)抽出签号为1的签的概率是多少?抽出签号小4的签的概率是多少?抽出签号小于6的签的概率是多少?抽出签号等于6的签的概率是多少?利用概率的概念,大家先自己算一算.(生尝试,师巡视,然后师边讲解边板书,解题过程如下)解:抽出签的签号可能为1,2,3,4,5,共5种.(1)P(签号为1)=15;(2)P(签号小于4)=35;(3)P(签号小于6)=1;(4)P(签号等于6)=0.师:从这个例题,我们可以发现概率的一个规律,什么规律?大家自己看一看.(让生思考一会儿)师:哪位同学发现了规律?生:……(让两名好生说,如果没有学生回答,可继续教学)师:(指准例题)5根签的签号分别是1,2,3,4,5,抽出签号小于6的签,这是什么事件?(稍停)这是必然事件,必然事件的概率等于1;抽出签号等于6的签,这是什么事件?(稍停)这是不可能事件,不可能事件的概率等于0.师:(指准例题)抽出签号小于4的签是随机事件,它的概率是35;抽出签号为1的签也是是随机事件,它概率是15,看到没有?随机事件的概率都在0和1之间,3 5更接近1,事件发生的可能性较大;15更接近0,事件发生的可能性较小.师:从这些事实,可以发现这样一个规律.(师出示下面的板书)任何一个事件A,0≤P(A)≤1,(1)当A为必然事件时,P(A)=1;(2)当A为不可能事件时,P(A)=0;(3)当A为随机事件时,0<P(A)<1.师:(指准板书)任何一个事件A,A发生的概率都大于等于0并且小于等于1,当A为必然事件时,A性的概率为1;当A为不可能事件时,A发生的概率为0;当A为随机事件时,A发生的概率在0和1之间.概率越接近1,A发生的可能性越大;概率越接近0,A发生的可能性越小.师:这个结论可以用一个图形象地表示出来.(师出示下图)师:(指图)大家结合这个结论把这个图好好看一看.(生看图)师:好了,下面我们来做两个练习.(四)试探练习,回授调节3.填空:掷一个色子,观察向上一面的点数,则(1)P(点数为4)= ;(2)P(点数为7)= ;(3)P(点数小于7)= ;(4)P(点数大于1且小于6)= .4.判断正误:对的画“√”,错的画“×”.(1)不可能事件的概率为1; ( )(2)必然事件的概率为1; ( )(3)任何事件发生的概率不大于1; ( )(4)概率越接近1,说明事件发生的可能性越小; ( )(5)概率越接近0,说明事件发生的可能性越小; ( )(6)随机事件就是概率不确定的事件. ( )(五)归纳小结,布置作业师:本节课我们做了一个求概率的例题,通过做这个例题,我们得出了关于概率的一个结论.(指准图)任何事件的概率都大于等于0并且小于等于1,当概率的值为0,这个事件为不可能事件;随着概率值越来越大,事件发生的可能性也越来越大;当概率的值为1,这个事件为必然事件.(作业:P 132习题3.)课外补充作业:5.填空:下图是一个转盘,转盘分成7个相同的扇形,分为红、绿、黄三种颜色.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,则(1)指针指向黄色的概率为 ; (2)指针指向黄色或绿色的概率为 ;(3)指针不指向黄色的概率为 ; (4)指针指向黄色或绿色或红色的概率为 ; (5)指针指向蓝色的概率为 .概率的值必然事件不可能事件事件发生的可能性越来越大事件发生的可能性越来越小10课题:25.2用列举法求概率(第1课时)一、教学目标1.会用列举法计算简单的两步试验的概率问题,加深对概率意义的理解.2.培养分析问题解决问题的能力.二、教学重点和难点1.重点:用列举法计算简单的两步试验的概率问题.2.难点:两步试验结果的列举.三、教学过程(一)基本训练,巩固旧知1.填空:任何一个事件A , ≤P (A )≤ ,(1)当A 为必然事件时,P (A )= ;当A 为不可能事件时,P (A )= ;当A 为随机事件时, <P (A )< .(2)一个事件的概率越接近1,这个事件发生的可能性越 ;反之,一个事件的概率越接近0,这个事件发生的可能性越 .2.填空:抛一枚质地均匀的硬币,则P(正面朝上)= ,P(反面朝上)= .(二)创设情境,导入新课师:(出示一枚硬币)这是一枚硬币,现在我抛这枚硬币(边讲边抛),硬币朝上的一面可能会有几种结果?生:2种结果.(多让几名同学回答)师:对,可能会有两种结果,一种正面朝上,一种反面朝上.那么正面朝上的概率是多少?生:(齐答)是21. 师:反面朝上的概率是多少?生:(齐答)是21. 师:抛一枚硬币,正面朝上的概率是21,反面朝上的概率也是21.这是我们已经会的,下面我们把这个问题换一下,换成抛两枚硬币,请看例题.(三)尝试指导,讲授新课(师出示例题)例 抛两枚硬币,求下列事件的概率:(1)两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上;(3)一枚硬币正面朝上,一枚硬币反面朝上.师:(出示两枚硬币)这是两枚硬币,现在我抛这两枚硬币(边讲边抛),硬币朝上的一面可能会有几种结果?(让生思考一会儿再叫学生)生:……(让几名学生回答)师:抛两枚硬币,硬币朝上的一面可能会有4种结果,哪4种结果?(边讲边出示硬币)一枚硬币为正面,一枚硬币也为正面,简称正正;一枚硬币为正面,一枚硬币为反面,简称正反;还有反正,反反,共4种结果.师:(指准例题)现在要我们求两枚硬币全部正面朝上的概率,两枚硬币全部反面朝上的概率,一枚硬币正面朝上一枚硬币反面朝上的概率,怎么求?大家先自己求一求.(生尝试,师巡视,然后师边讲解边板书解题过程,解题过程如下)解:抛两枚硬币,硬币朝上的一面可能会有4种结果,即正正,正反,反正,反反.(1)所有的结果中,符合两枚硬币全部正面朝上的结果有1种,所以P(两枚硬币全部正面朝上)=41; (2)所有的结果中,符合两枚硬币全部反面朝上的结果有1种,所以P(两枚硬币全部反面朝上)=41; (3)所有的结果中,符合一枚硬币正面朝上,一枚硬币反面朝上的的结果有2种,所以P(一枚硬币正面朝上,一枚硬币反面朝上)=42=21. (四)试探练习,回授调节3.完成下面的解题过程:袋子中装有红、绿各一个小球,除颜色外无其他差别,随机摸出1个小球放回,再随机摸出一个.求下列事件的概率:(1)第一次摸到红球,第二次摸到绿球;(2)两次摸到相同颜色的小球;(3)两次摸到的球中有一个绿球和一个红球.解:摸两次球,摸出的球可能会有 种结果,即 .(1)所有的结果中,符合第一次摸到红球,第二次摸到绿球的结果有 种,所以P(第一次摸到红球,第二次摸到绿球)= ;(2)所有的结果中,符合两次摸到相同颜色的小球的结果有 种,所以 P(两次摸到相同颜色的小球)= ;(3)所有的结果中,符合两次摸到的球中有一个绿球和一个红球的结果有 种,所以P(两次摸到的球中有一个绿球和一个红球)= .4.选做题:完成下面的解题过程:抛三枚硬币,求下列事件的概率:(1)三枚硬币全部正面朝上;(2)两枚硬币正面朝上,一枚硬币反面朝上;(3)一枚硬币正面朝上,两枚硬币反面朝上;(4)三枚硬币全部反面朝上.解:抛三枚硬币,硬币朝上的一面可能会有 种结果,即 .(1)所有的结果中,符合三枚硬币全部正面朝上的结果有 种,所以 P(三枚硬币全部正面朝上)= ;(2)所有的结果中,符合两枚硬币正面朝上,一枚硬币反面朝上的结果有种,所以P(两枚硬币正面朝上,一枚硬币反面朝上)= ;(3)所有的结果中,符合一枚硬币正面朝上,两枚硬币反面朝上的结果有 种,所以P(一枚硬币正面朝上,两枚硬币反面朝上)= ;(4)所有的结果中,符合三枚硬币全部反面朝上的结果有 种,所以 P(三枚硬币全部反面朝上)= .(五)归纳小结,布置作业师:这节课我们学习了抛两枚硬币求概率的问题,抛两枚硬币求概率和抛一枚币求概率是不一样的,不一样在什么地方?(稍停)抛一枚硬币,硬币朝上一面的可能结果只有2种,而抛两枚硬币,硬币朝上一面的可能结果有4种.因为可能结果比较多,(指准板书)所以我们要把所有可能的结果——正正,正反,反正,反反都列举出来,然后再求概率.先列举所有的可能结果,再求概率,这种求概率的方法,叫做列举法.今天我们所学的就是用列举法求概率(板书课题:25.2用列举法求概率).师:用列举法求概率首先要列举所有的可能结果,而列举所有的可能结果,关键是要做到既不重复,又不遗漏.(作业:P 137习题1.4.)课外补充作业:5.扎西和卓玛玩抛硬币游戏,扎西提出了这样的游戏规则:抛两枚硬币,两枚硬币全部正面朝上算卓玛赢,两枚硬币一枚正面朝上一枚反面朝上算扎西赢.你认为卓玛应该接受这个游戏规则吗?为什么?四、板书设计(略)课题:25.2用列举法求概率(第2课时)一、教学目标1.会用列举法计算两步试验的概率问题,加深对概率意义的理解.2.培养分析问题解决问题的能力.二、教学重点和难点1.重点:用列举法计算两步试验的概率问题.2.难点:两步试验结果的列举.三、教学过程(一)创设情境,导入新课师:(出示一个色子)这是一个色子,现在我掷色子(边讲边掷),色子朝上的一面可能会有几种结果?生:6种结果.(多让几名同学回答)师:色子朝上的一面可能是1点,可能是2点,可能是3点,4点,5点,6点,共6种结果.明确了掷色子可能有6种结果,下面请大家来算几个掷色子的概率. 师:掷色子掷出1点的概率是多少?(等有一部分同学举手再叫学生) 生:是61. 师:掷出偶数点的概率是多少?(等有一部分同学举手再叫学生)。
九年级数学上人教版《概率初步》教案
《概率初步》教案一、教学目标1.知识与技能:1.了解概率的定义和意义,理解概率的取值范围。
2.掌握等可能事件和不可能事件的概念。
3.学会计算简单事件的概率。
2.过程与方法:1.通过实例分析,理解概率的概念和计算方法。
2.通过小组讨论和合作,培养解决问题的能力。
3.情感态度与价值观:1.体会概率在生活中的广泛应用,激发学习兴趣。
2.培养理性思考和科学决策的能力。
二、教学内容分析1.教学重点:概率的定义和意义,等可能事件和不可能事件的概念,简单事件的概率计算。
2.教学难点:理解概率的取值范围,运用概率知识解决实际问题。
三、教学方法与手段1.教学方法:讲授法、讨论法、演示法。
2.教学手段:多媒体课件、实物模型、小黑板等。
四、教学过程设计1.导入新课:通过生活中的实例,如抛硬币、掷骰子等,引出概率的概念,激发学生的学习兴趣。
2.新课讲授:(1)讲解概率的定义和意义,强调概率的取值范围。
(2)介绍等可能事件和不可能事件的概念,举例说明。
(3)演示计算简单事件的概率的方法,强调注意事项。
3.巩固练习:通过例题和练习题,让学生运用所学知识解决实际问题,加深对概率的理解和应用。
4.归纳小结:回顾本节课的重点和难点,总结概率的基本概念和计算方法。
5.布置作业:布置相关练习题,让学生在家中复习本节课所学内容,加深对概率的理解和应用。
6.拓展延伸:鼓励学生通过互联网或查阅相关书籍资料的方式,了解概率在生活和其他领域的应用,拓宽知识面。
五、教学评价与反馈1.设计评价策略:通过课堂小测验、作业和小组讨论等方式,检测学生对概率的理解和应用能力。
同时,通过观察学生的表现和交流情况,及时发现学生在学习中存在的问题和困难,并给予相应的指导和帮助。
2.为学生提供反馈:在评价过程中,及时向学生提供反馈意见和建议,帮助学生了解自己的学习状况和不足之处,并指导其改进和提高学习效果。
同时,鼓励学生互相评价和学习,增强其自主学习和合作学习的能力。
人教版数学九年级上册第25章-概率初步(教案)
1.理解概率的基本性质,如非负性、规范性、可加性等。
2.掌握互斥事件和独立事件的概率计算方法。
25.4概率的应用
1.能运用概率知识解决实际问题。
2.了解概率在生活中的应用,提高解决问题的能力。
二、核心素养目标
1.培养学生运用数学语言描述随机现象,提高抽象概括能力。
2.培养学生运用概率知识进行问题分析,提升逻辑推理和数学思维能力。
此外,在教学过程中,我尝试采用小组讨论和实验操作的方式,让学生在实践中学习概率。从学生的反馈来看,这种教学方式取得了较好的效果,大家积极性很高,课堂氛围活跃。但同时,我也注意到,在小组讨论过程中,部分学生依赖性强,不够主动。因此,我需要在组织小组活动时,更加注重激发学生的主观能动性,引导他们积极参与讨论,提高合作能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《概率初步》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过不确定的情况?”(如抛硬币、抽奖等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
在讲解概率的性质和应用时,我发现学生对于理论知识的应用还不够熟练。为了帮助学生更好地将所学知识运用到实际问题中,我计划在后续的教学中,增加一些与生活密切相关的综合题,让学生在解决问题的过程中,深化对概率性质的理解。
最后,我觉得在课堂教学过程中,要关注学生的个体差异。对于学习困难的学生,要给予更多的关心和指导,帮助他们克服难点,提高学习兴趣。同时,对于学有余力的学生,可以适当增加拓展性内容,激发他们的学习潜能。
2.教学难点
-理解随机事件的抽象概念:学生对随机事件的理解可能存在困难,需要通过具体实例和生活情境帮助学生理解。
2022年人教版九年级数学上册第二十五章概率初步教案 用列举法求概率(第2课时)
25.2 用列举法求概率(第2课时)一、教学目标【知识与技能】理解并掌握列表法和树状图法求随机事件的概率.并利用它们解决问题,正确认识在什么条件下使用列表法,什么条件下使用树状图法.【过程与方法】经历用列表法或树状图法求概率的学习,使学生明白在不同情境中分析事件发生的多种可能性,计算其发生的概率,解决实际问题,培养学生分析问题和解决问题的能力.【情感态度与价值观】通过求概率的数学活动,体验不同的数学问题采用不同的数学方法,但各种方法之间存在一定的内在联系,体会数学在现实生活中应用价值,培养缜密的思维习惯和良好的学习习惯.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】1.会用列表法和树状图法求随机事件的概率.2.区分什么时候用列表法,什么时候用树状图法求概率.【教学难点】1.列表法是如何列表,树状图的画法.2.列表法和树状图的选取方法.五、课前准备课件等.六、教学过程(一)导入新课出示课件2:现有A、B、C三盘包子,已知A盘中有两个酸菜包和一个糖包,B 盘中有一个酸菜包和一个糖包和一个韭菜包,C盘中有一个酸菜包和一个糖包以及一个馒头.老师就爱吃酸菜包.如果老师从每个盘中各选一个包子(馒头除外),那么老师选的包子全部是酸菜包的概率是多少?你能用列表法列举所有可能出现的结果吗?出示课件3:通过播放视频,体会用“列表法”的不方便,从而导入新课.(板书课题)(二)探索新知探究利用画树状图法求概率教师问:抛掷一枚均匀的硬币,出现正面向上的概率是多少?(出示课件5)学生答:P(正面向上)=1.2教师问:同时抛掷两枚均匀的硬币,出现正面向上的概率是多少?学生答:可能出现的结果有:(正,正)(正,反)(反,正)(反,反).P(正面向上)=14教师问:还有别的方法求上面问题的概率吗?学生思考交流后,师生共同解答.(出示课件6).P(正面向上)=14出示课件7:如一个试验中涉及2个因素,第一个因素中有2种可能情况;第二个因素中有3种可能的情况.则其树形图如下图:教师归纳:树状图法:按事件发生的次序,列出事件可能出现的结果.出示课件8:同学们:你们玩过“石头、剪刀、布”的游戏吗,小明和小华正在兴致勃勃的玩这个游戏,你想一想,这个游戏能用概率分析解答吗?尝试用树状图法列出小明和小华所玩游戏中所有可能出现的结果,并求出事件A、B、C的概率.A:“小明胜”B:“小华胜”C:“平局”学生尝试用树状图分析,师生共同解答.(出示课件9,10)一次游戏共有9个可能结果,而且它们出现的可能性相等.事件A 发生的所有可能结果:(石头,剪刀)(剪刀,布)(布,石头); 事件B 发生的所有可能结果:(剪刀,石头)(布,剪刀)(石头,布); 事件C 发生的所有可能结果:(石头,石头)(剪刀,剪刀)(布,布). 所以,P(A)=3193=;P(B)=3193=;P(C)=3193=.出示课件11,12:教师归纳:1.画树状图求概率的定义用树状图的形式反映事件发生的各种情况出现的次数和方法、以及某一事件发生的可能性次数和方式,并求出概率的方法.适用条件:当一次试验涉及两个及其以上(通常3个)因素时,采用树状图法.2.画树状图求概率的基本步骤(1)将第一步可能出现的A 种等可能结果写在第一层;(2)若第二步有B 种等可能的结果,则在第一层每个结果下面画B 个分支,将这B 种结果写在第二层,以此类推;(3)根据树状图求出所有的等可能结果数及所求事件包含的结果数,利用概率公式求解.出示课件13,14:例1 某班有1名男生、2名女生在校文艺演出中获演唱奖,另有2名男生、2名女生获演奏奖.从获演唱奖和演奏奖的学生中各任选一人去领奖,求两人都是女生的概率.学生独立思考后师生共同解答.解:设两名领奖学生都是女生的事件为A,两种奖项各任选1人的结果用“树状图”来表示.共有12种结果,且每种结果出现的可能性相等,其中2名都是女生的结果有4种,所以事件A发生的概率为P(A)=41.123出示课件15:教师强调:计算等可能情形下概念的关键是确定所有可能性相等的结果总数n和求出事件A发生的结果总数m,“树状图”能帮助我们有序的思考,不重复、不遗漏地得出n和m.巩固练习:(出示课件16,17)经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求三辆汽车经过这个十字路口时,下列事件的概率(1)三辆车全部继续直行;(2)两车向右,一车向左;(3)至少两车向左.学生自主思考后,独立解决,一生板演.解:画树状图,得(1)P (全部继续直行)=127; (2)P (两车向右,一车向左)=19; (3)P (至少两车向左)=727. 出示课件18:例2 甲、乙、丙三人做传球的游戏,开始时,球在甲手中,每次传球,持球的人将球任意传给其余两人中的一人,如此传球三次.(1)写出三次传球的所有可能结果(即传球的方式);(2)指定事件A :“传球三次后,球又回到甲的手中”,写出A 发生的所有可能结果;(3)P(A).学生思考交流后师生共同解答.(出示课件19)解:画树状图,得“传球三次后,球又回到甲的手中”的结果有甲-乙-丙-甲、甲-丙-乙-甲2种. .4182)(==A P教师强调:(出示课件20)当试验包含两步时,列表法比较方便;当然,此时也可以用树状图法;当事件要经过多个(三个或三个以上)步骤完成时,应选用树状图法求事件的概率.巩固练习:(出示课件21,22)现在学校决定由甲同学代表学校参加全县的诗歌朗诵比赛,甲同学有3件上衣,分别为红色(R)、黄色(Y)、蓝色(B),有2条裤子,分别为蓝色(B)和棕色(b).甲同学想要穿蓝色上衣和蓝色裤子参加比赛,你知道甲同学任意拿出1件上衣和1条裤子,恰好是蓝色上衣和蓝色裤子的概率是多少吗?学生自主思考后独立解决.解:用“树状图”列出所有可能出现的结果:每种结果的出现是等可能的.“取出1件蓝色上衣和1条蓝色裤子”记为事.件A,那么事件A发生的概率是P(A)=16.所以,甲同学恰好穿上蓝色上衣和蓝色裤子的概率是16(三)课堂练习(出示课件23-32)1.甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A.12B.13C.14D.162.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.49B.13C.29D.193.a、b、c、d四本不同的书放入一个书包,至少放一本,最多放2本,共有种不同的放法.4.三女一男四人同行,从中任意选出两人,其性别不同的概率为()A.14B.13C.12D.345.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色外,其余均相同,若从中随机摸出一个球,摸到黄球的概率为45,则n= .6.在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同.先从盒子里随机取出一个小球,记下数字后放回盒子里,摇匀后再随机取出一个小球,记下数字.请你用列表或画树状图的方法求下列事件的概率.(1)两次取出的小球上的数字相同;(2)两次取出的小球上的数字之和大于10.7.甲、乙、丙三个盒中分别装有大小、形状、质地相同的小球若干,甲盒中装有2个小球,分别写有字母A和B;乙盒中装有3个小球,分别写有字母C、D和E;丙盒中装有2个小球,分别写有字母H和I;现要从3个盒中各随机取出1个小球.(1)取出的3个小球中恰好有1个,2个,3个写有元音字母的概率各是多少?(2)取出的3个小球上全是辅音字母的概率是多少?参考答案:1.C解析:如图所示,一共有4种可能,取出的两个小球上都写有数字2的有1种情况,故取出的两.个小球上都写有数字2的概率是:142.A解析:画树状图如图:由树状图可知,共有9种等可能结果,其中两次都摸.到黄球的有4种结果,所以两次都摸到黄球的概率为493.104.C5.86.解:根据题意,画出树状图如下:(1)两次取出的小球上的数字相同的可能性只有3种,所以P(数字相同)= 31.93(2)两次取出的小球上的数字之和大于10的可能性只有4种,所以P(数字之和.大于10)=497.解:由树状图得,所有可能出现的结果有12个,它们出现的可能性相等..⑴满足只有一个元音字母的结果有5个,则P(一个元音)=512满足只有两个元音字母的结果有4个,则P(两个元音)=41=.123.满足三个全部为元音字母的结果有1个,则P(三个元音)=112⑵满足全是辅音字母的结果有2个,则P(三个辅音)=21=.126(四)课堂小结1.为了正确地求出所求的概率,我们要求出各种可能的结果,通常有哪些方法求出各种可能的结果?2.列表法和画树状图法分别适用于什么样的问题?如何灵活选择方法求事件的概率?(五)课前预习预习下节课(25.3)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:由于前面已学过一般的列举法,学生在小学或其他学科中接触过“列表法”,因此本节课除了继续探究更为复杂的列举法外,还引入了树状图这种新的列举方法,以学生的生活实际为背景提出问题,在自主探究解决问题的过程中,自然地学习使用这种新的列举方法.在列举过程中培养学生思维的条理性,并把思考过程有条理、直观、简捷地呈现出来,使得列举结果不重不漏.。
人教版九年级数学上册第25章《概率初步》教案
第二十五章概率初步1、了解必然事件、不可能事件和随机事件的概念、2、在具体情境中了解概率的意义,体会概率是描述不确定现象发生可能性大小的数学概念,理解概率的取值范围的意义、3、能够运用列举法(包括列表、画树状图)计算简单随机试验中事件发生的概率、4、能够通过随机试验,获得事件发生的频率;知道通过大量重复试验,可以用频率估计概率,了解频率与概率的区别与联系、5、通过实例进一步丰富对概率的认识,并能解决一些简单的实际问题、经历试验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率、渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力、在合作探究学习过程中,激发学生学习的好奇心与求知欲,体验数学的价值与学习的乐趣、通过概率意义和计算教学,渗透辩证思想教育、“概率初步”是“统计与概率”领域的重要内容,在日常生活和生产中有广泛的应用,它与“统计”有关知识联系紧密,同时也是以后学习更深的“概率与统计”知识的基础,对概率的意义、求法及应用的学习与探究可以发展思维能力,有效改善学习方式,掌握认识事物的一般规律,对社会生活中的一些现象作出预测、概率是初中数学的重要内容,从数量上刻画了某个事件发生的可能性的大小,在我们日常生活中有着重要的意义、本章的主要内容包括事件的类型,概率的意义、计算方法、应用以及用频率或通过模拟试验来估计概率的大小、具体内容有概率的意义、用列举法求概率、利用频率估计概率、统计与概率的实际应用、概率问题是近年中考的热点之一,由单一的选择题、填空题延伸到分值较高的解答和应用题,甚至可以设计成开放探索题、本章内容不论在基础知识和数学思想方法上,还是在对能力培养上都非常重要、【重点】运用列表法或树状图法计算事件的概率、【难点】能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题、1、通过实例让学生感受事件发生的可能性的大小及概率的意义、2、用列举法求概率时,首先要让学生准确判断在事件中每一种情况发生的可能性是相同的,较简单的可以直接利用公式P(A)=来求,需要两步或两步以上试验操作时,可以借助“树状图”来计算、3、要注意利用试验与估测的方法来理解概率和频率,尽管随机事件在每次试验中发生与否具有不稳定性,但只要试验的条件不变,这一事件出现的频率会随着试验次数的增加而趋于稳定,这个稳定的值就可以作为该事件发生的概率、4、通过对具体问题的模拟试验,感受通过统计数据推测的合理性,进一步体会统计与概率的关系、25、1随机事件与概率1、了解必然事件、不可能事件和随机事件的概念,知道随机事件发生有可能性大小之分、2、了解概率的意义、学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力、在合作探究学习过程中,激发学生的好奇心与求知欲,体验数学的价值与学习的乐趣、通过概率意义教学,渗透辩证思想教育、【重点】会判断现实生活中哪些事件是随机事件、【难点】随机事件的特点、概率的意义、25、1、1随机事件了解必然发生的事件、不可能发生的事件、随机事件的特点,会判断哪些事件是必然事件、不可能事件、随机事件,知道随机事件发生有可能性大小之分、经历试验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念、体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象、【重点】随机事件的特点,会判断现实生活中哪些事件是随机事件、【难点】随机事件的概念、【教师准备】多媒体课件1~4,装有乒乓球的不透明袋子、【学生准备】复习小学学过的分数和初中学过的整式、导入一:播放一段天气预报,引出一句古语:“天有不测风云”、【课件1】请说明下列事件是否一定发生、(1)太阳从西边下山;(2)某人的体温是100 ℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)一元二次方程x2+2x+3=0有实数解、教师给出上述问题并问“上述结果是确定的吗”、学生阅读、观察、思考、回答问题、[设计意图]首先,这几个事件都是学生能熟知的生活常识和学科知识,通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,提出这些问题符合由浅入深的理念,容易激发学生学习的积极性、导入二:同学们,今天我们先来玩一个摸球游戏、三个不透明的袋子中均装有10个乒乓球,挑选多名同学来参加游戏、游戏规则:每人每次从自己选择的袋子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验,每人摸球5次、按照摸出黄色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名、教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球、学生积极参加游戏,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的、教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点、[设计意图]通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件,不仅能够激发学生的学习兴趣,并且有利于学生理解,能够巧妙地实现从实践认识到理性认识的过渡、一、认识必然事件、不可能事件、随机事件思路一在学生讨论、归纳的基础上,教师板书必然事件、不可能事件的定义:在一定条件下必然会发生的事件称为必然事件;必然不会发生的事件称为不可能事件,必然事件和不可能事件统称为确定性事件、【课件2】5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序、签筒中有5根形状、大小均相同的纸签,上面分别标有出场的序号1,2,3,4,5、小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签、请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举出与事件(3)相似的事件吗?提出问题,探索概念:(1)上述活动中的必然事件和不可能事件的区别在哪里?(2)怎样的事件称为随机事件呢?结合问题,师生总结随机事件的特点:可能发生也可能不发生、思路二请同学们把下面的事件根据发生的可能性进行分类、【课件3】(1)通常加热到100 ℃时,水沸腾;(2)姚明在罚球线上投篮一次,命中;(3)掷一次骰子,向上的一面是6点;(4)度量三角形的内角和,结果是360°;(5) 经过城市中某一有交通信号灯的路口,遇到红灯;(6)某射击运动员射击一次,命中靶心;(7)太阳东升西落;(8)人离开水可以正常生活100天;(9)正月十五雪打灯;(10)宇宙飞船的速度比飞机快、学生根据自己的观察,说出上述事件分三类:(1)(7)(10)、(4)(8)、(2)(3)(5)(6)(9)、教师追问:各类事件各有什么特点?请同学们自己总结一下、学生思考后说:(1)(7)(10)是必然发生的事件;(4)(8)是不可能发生的事件;(2)(3)(5)(6)(9)是可能发生也可能不发生的事件、引导学生归纳必然事件、不可能事件、随机事件的定义、[设计意图]学生积极思考,回答问题,进一步夯实必然发生的事件、随机事件和不可能发生的事件的特点、在充分比较后,达到加深理解的目的、二、随机事件发生的可能性大小组织学生进行摸球试验:袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球、教师提出问题:我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B,(1)事件A和事件B是随机事件吗?(2)哪个事件发生的可能性大?教师提出要求:学生通过试验观察结果,思考并阐述自己得出的结论及理解、教师进一步引导学生试验,归纳得出结论:一般地,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同、[设计意图]“摸球”试验操作方便、简单且可重复,又为学生所熟知,学生做起来感觉亲切、有趣,并且容易依据生活经验猜到正确结论,这样易于激发学生的学习热情、三、例题讲解【课件4】在200件产品中,有192件一级品,8件二级品,则下列事件:①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是一级品;④在这200件产品中任意选出9件,至少一件是一级品、其中,是必然事件;是不可能事件;是随机事件、在这200件产品中任意选出1件,级品的可能性大、(如果没有请填“无”)教师引导学生理解题意,尝试答题、学生完成解答过程:其中,④是必然事件;②是不可能事件;①③是随机事件、在这200件产品中任意选出1件,一级品的可能性大、[设计意图]学生利用所学内容进行解答,在巩固知识的同时,把随机事件和随机事件的可能性大小结合在一起、[知识拓展]必然事件是指一定能发生的事件,其发生的可能性是100%;不可能事件是指一定不能发生的事件,其发生的可能性是0;随机事件发生的可能性在0~1之间、1、在一定条件下,必然会发生的事件称为必然事件;必然不会发生的事件称为不可能事件,必然事件和不可能事件统称为确定性事件;可能发生也可能不发生的事件称为随机事件、2、一般地,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同、1、下列事件中,是必然事件的为()A、抛掷一枚质地均匀的硬币,落地后正面朝上B、江汉平原7月份某一天的最低气温是-2 ℃C、通常加热到100 ℃时,水沸腾D、打开电视,正在播放节目《男生女生向前冲》解析:选项A和D是随机事件;选项B是不可能事件;选项C是必然事件、故选C、2、下列说法正确的是 ()A、如果一件事情发生的机会只有十万分之一,那么它就不可能发生B、如果一件事情发生的可能性是100%,那么它就一定会发生C、买彩票的中奖率是1%,那么买100张彩票,就有一张中奖D、一个口袋中有10个质地均匀的小球,其中9个白球,只有一个红球,那么从中任取一个球,一定是白球解析:选项A中事件发生的可能性虽然很小,但也有可能发生;选项B中的事件是必然事件,所以它一定会发生;选项C中买彩票的中奖率是1%,说明中奖的可能性小,有时买100张彩票也可能不中奖;选项D中的事件是随机事件、故选B、3、下列事件:①在足球赛中,弱队战胜强队;②任意取两个有理数,这两个数的和为正数;③任取两个正整数,其和大于1;④长分别为3,5,9厘米的三条线段能围成一个三角形、其中确定性事件的个数是()A、1个B、2个C、3个D、4个解析:①在足球赛中,弱队战胜强队,此事件为随机事件、②两个有理数的和有可能是正数、负数或零,此事件为随机事件、③任取两个正整数,其和大于1,此事件为确定性事件中的必然事件、④长分别为3,5,9厘米的三条线段能围成一个三角形,此事件为确定性事件中的不可能事件、故确定性事件为③和④,一共有2个确定性事件、故选B、4、一个小球在如图所示的地面上随意滚动,小球“停在黑色方块上”与“停在白色方块上”的可能性哪个大?(方块的大小、质地均相同)解:图中有9块黑色方块,15块白色方块,所以停在白色方块上的可能性大、25、1、1 随机事件一、认识必然事件、不可能事件、随机事件二、随机事件发生的可能性大小三、例题讲解一、教材作业【必做题】教材第128页的练习,教材第129页练习的1~3题、【选做题】教材第135页习题25、1的7题、二、课后作业【基础巩固】1、在一个质地均匀的正方体的六个面上,分别标有1,2,3,4,5,6,“抛出正方体,落地后朝上的一面标有6”这一事件是()A、必然事件B、随机事件C、不可能事件D、以上都不对2、下列事件是不可能事件的是()A、某个数的绝对值小于0B、0的相反数为0C、某两个数的和为0D、某两个负数的积为正数3、某次国际乒乓球比赛中,只有甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是()A、冠军属于甲B、冠军属于乙C、冠军属于中国人D、冠军属于外国人【能力提升】4、袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球、下列事件是必然事件的是()A、摸出的三个球中至少有一个球是黑球B、摸出的三个球中至少有一个球是白球C、摸出的三个球中至少有两个球是黑球D、摸出的三个球中至少有两个球是白球5、下列是随机事件的是()A、角平分线上的点到角两边的距离相等B、三角形任意两边之和大于第三边C、面积相等的两个三角形全等D、三角形内心到三边距离相等6、随意从一副扑克牌中抽到Q和K的可能性大小是()A、抽到Q的可能性大B、抽到K的可能性大C、抽到Q和K的可能性一样大D、无法确定7、如果一件事情不发生的可能性为99、99%,那么它()A、必然发生B、不可能发生C、很有可能发生D、不太可能发生8、在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是()A、李东夺冠的可能性比较小B、李东和他的对手比赛10局,他一定赢8局C、李东夺冠的可能性比较大D、李东肯定赢9、一个袋子中装有除颜色外都相同的6个红球和4个黄球,从袋子中任意摸出一个球,则:(1)“摸出的球是白球”是什么事件?(2)“摸出的球是红球”是什么事件?(3)“摸出的球不是绿球”是什么事件?(4)摸出哪种颜色球的可能性大?【拓展探究】10、如图所示,第一列表示各盒中球的颜色、个数情况,第二列表示摸到红球的可能性大小,请你用线把它们连接起来、【答案与解析】1、B(解析:抛掷一个质地均匀的正方体,落地后朝上的那一面有可能标有1,也有可能标有2,3,4,5,6,所以“抛出正方体,落地后朝上的一面标有6”是随机事件、)2、A(解析:任何实数的绝对值都不小于0,所以选项A是不可能事件;选项B 是必然事件;选项C是随机事件;选项D是必然事件、)3、C(解析:因为进入决赛的都是中国人,所以冠军一定属于中国人,即“冠军属于中国人”是必然事件、)4、A(解析:由于袋子中装有4个黑球和2个白球,摸出的三个球的情况有如下三种:两个白球和一个黑球,一个白球和两个黑球,三个黑球,因此摸出的三个球中至少有一个球是黑球,所以“摸出的三个球中至少有一个球是黑球”是必然事件、)5、C(解析:“角平分线上的点到角两边的距离相等”是必然事件;“三角形任意两边之和大于第三边”是必然事件;“三角形内心到三边距离相等”是必然事件;面积相等的两个三角形不一定全等,所以选项C是随机事件、)6、C(解析:因为在一副扑克牌中,Q和K的数量相同,所以抽到它们的可能性相同、)7、D(解析:一件事情不发生的可能性为99、99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生、)8、C(解析:李东夺冠的可能性是80%,只能说明李东夺冠的可能性较大,不能说明比赛10局,李东一定赢8局,也不能说明李东一定赢、)9、解:(1)“摸出的球是白球”是不可能事件、(2)“摸出的球是红球”是随机事件、(3)“摸出的球不是绿球”是必然事件、(4)摸出红球的可能性大、10、解:由题意知各盒中总球数都是10,所以摸到红球的可能性大小与每个盒中红球的个数有关、①中不可能摸到红球;②中不太可能摸到红球;③中可能摸到红球;④中很可能摸到红球;⑤中一定能摸到红球、连线如下图所示、本节课的设计旨在遵循从具体到抽象、从感性到理性的渐进认识规律,以学生感兴趣的摸球游戏、抽签、掷骰子游戏引导学生分清什么是必然事件,什么是不可能事件,什么是随机事件,增加学生的学习兴趣、学生分组讨论的质量不佳、活动的时间把握不够好,以致后面学生的练习量不足,对学生的易错点发现得不够,关注学生的学习过程不够全面、指导学生联系生活实际,思考事件发生的可能性、练习(教材第128页)解:(1)是必然事件;(4)是不可能事件;(2)(3)(5)(6)是随机事件、练习(教材第129页)1、解:“落在海洋里”的可能性更大、2、解:(1)不能、(2)抽到黑桃的可能性大、(3)增加一张红桃或减少一张黑桃,使黑桃与红桃张数相同,可使可能性大小相同、3、解:例如:明天会下雪;经过一个十字路口碰到红灯;买一张彩票中大奖等都是随机事件、在写有0,1,2,…,9的这十张卡片上,任取一张,得到一个大于10的数是不可能事件,得到一个小于10的数是必然事件、(答案不唯一)实施新课标以来,在数学教学中应该注意数学来源于生活又服务于生活的原则,为学生创设情境,使学生置身于这些情境中不知不觉地学习数学知识,并在学习过程中始终关注学生情感态度的变化和发展,以教师为引导,学生为主体来开展教学,在这样的背景下,教师组织教学就有更高的要求、当然,如果教师能时刻关注学生,运用人性化、充满灵性、悟性的教学,那么学生就更能感受到数学无处不在的魅力、在小学阶段,学生已经了解了随机现象发生的可能性,本节课主要是在此基础上对随机事件进行进一步的研究、本节课的重点为随机事件的特点,难点为判断现实生活中哪些事件是随机事件、为了能突破这一重难点,本节课设计了多个游戏,让学生真正地参与到活动中去,在参与中消化知识、(2014·南平中考)一个袋中只装有3个红球,从中随机摸出一个是红球、下列说法中正确的是 ()A、可能性为3B、属于不可能事件C、属于随机事件D、属于必然事件〔解析〕本题考查了事件可能性的判断,解题的关键是紧扣定义、因为袋子中只装有红球,所以摸出一个球是红球属于必然事件,并且必然事件的概率,即可能性大小为1、故选D、25、1、2概率1、在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系、2、理解概率的定义及计算公式P(A)=、经历试验操作、观察、思考和总结,理解随机事件的概率的定义,掌握概率的求法、理解概率的意义,渗透辩证思想,感受数学与现实生活的联系,体会数学在现实生活中的应用价值、【重点】随机事件的概率的定义;“事件A发生的概率是P(A)=(在一次试验中有n种等可能的结果,其中事件A包含m种)”的求概率的方法及运用、【难点】了解概率的定义,理解概率计算的两个前提条件、【教师准备】多媒体课件1~8、【学生准备】1枚质地均匀的硬币、导入一:老师有一个小麻烦,请大家一起来想想办法、【课件1】周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去、我很为难,真不知该把球票给谁、请大家帮我想个办法来决定把球票给谁、学生制订方案:抓阄、抽签、猜拳、投硬币……教师对学生的较好想法予以肯定、追问:为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平,能保证小强与小明得到球票的可能性一样大、在学生讨论发言后,教师给予评价并归纳总结、[设计意图]提供的问题情境贴近学生生活,不仅能提高学生参与的积极性,而且让学生在潜意识中开始接触概率、导入二:同学们,我们一起玩一个游戏好不好?【课件2】抛出你手中的硬币,记录抛出结果、抛掷硬币向上一面的结果有几种可能?正面和背面朝上的可能性大小是多少?学生抛掷硬币、回答,教师引导学生注意到因为硬币质地均匀,所以每个面朝上的可能性大小相等、[设计意图]以学生熟悉的抛掷硬币为例,让学生初步体会用数值刻画随机事件发生的可能性大小,以及用数值刻画的合理性,从定性分析到定量刻画、一、概率的意义思路一在学生观察、归纳的基础上,教师板书概率定义:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A)、思路二进行试验:抛掷一枚质地均匀的骰子,向上一面的点数有几种可能?每种点数出现的可能性大小是多少?学生思考、回答,教师引导学生注意到因为骰子形状规则、质地均匀,又是随机掷出,所以点数出现的可能性大小相等,我们用表示每一种点数6出现的可能性大小、刻画了试验中随机事件发生的可能性大小、一般地,对于一教师指出:6个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A)、[设计意图]给出概率的定义,让学生通过抽签、掷骰子的实例初步了解概率的意义、二、求概率的方法【课件3】掷骰子、抛硬币等试验有哪些共同特点?学生思考、交流,教师适当引导,启发学生注意到,以上试验有两个共同特点:①每一次试验中,可能出现的结果只有有限种;②每一次试验中,各种结果出现的可能性相等、【课件4】从分别写有数字1,2,3,4,5的五个纸团中随机抽取一个,你能求出“抽到偶数”“抽到奇数”这两个事件的概率吗?学生思考、交流,教师适当引导,启发学生注意到对于具有上述特点的试验,用事件所包含的各种可能的结果数在全部可能的结果总数中所占的比,表示事件发生的概率、学生回答问题,教师进行纠正点拨、“抽到偶数”这个事件包含抽到2,4这两种可能的结果,在全部5种可能的结果中所占的比为、于是“抽到偶数”的概率P(抽到偶数)=;同理,“抽到奇数”的概率P(抽到奇数)=3、教师追问:对于具有上述特点的试验,如何求某事件的概率?师生归纳结论:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中m种结果,那么事件A发生的概率P(A)=、【课件5】根据上述求概率的方法,事件A发生的概率P(A)的取值范围是怎样的?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十五章概率初步(本章第1课时)25.1 概率(共2课时)25.1.1 随机事件(第1课时)教学内容:必然会发生、都不会发生事件和随机事件的概念;一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
教学目标:了解必然会发生、都不会发生事件和随机事件的概念;理解一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
设置问题情景,由问题抽象,归纳概念,利用概念归纳总结结论。
教学重点:一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
教学难点与关键:难点:理解一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
关键:设置问题情景,概括概念。
教具、学具准备:小黑板、黑白小球若干个和骰子。
教学过程:一、回顾知识(复习引入,学生活动):请同学们完成下面各题:1.2006年8月,某书店各学科点拨书销售情况如下图:(1)这个月语文点拨与数学点拨销售量的比是多少?(2)这个月总共销售了多少本书?(3)语文书占总销售量的百分之多少?(4)四种类型的书籍中哪一种所占的百分比最大?哪一种最小呢?2.(1)你能说,进店又买点拨书,买哪一种点拨书可能性最大?买哪一种可能性最小?(2)进书店有买点拨书,有可能买数学点拨书吗?(3)进书店有可能买猪肉吗?(4)进书店又有买点拨书,就是买四种书籍(假如书店只有这四种书籍)的其中一种。
教师点评:(1)买语文点拨最大,买思品点拨最小;(2)有可能;(3)书店中没有买猪肉,因此在书店中是买不到猪肉的。
(4)进店又有买点拨书,肯定是四种中任意一种。
二、新课(探索新知):1.从回顾知识后导出今节学习的内容:(1)师生共同分析第136页“问题1”。
(2)师生共同分析第136页“问题2”。
2.引出结论:必然会发生、都不会发生事件和随机事件等概念。
三、训练(巩固练习):课本第138页练习题(抄于小黑板备用)。
四、新课(探索新知):1.师生共同分析第138页“问题3”。
2.引出结论:一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
五、训练(巩固练习):课本第139页练习题(抄于小黑板备用)。
六、归纳总结(学生归纳,教师点评)本节要掌握:必然会发生、都不会发生事件和随机事件的概念;一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
七、布置作业:课本第144页复习巩固题第1、2题。
八、板书设计:必然会发生、都不会发生事件和随机事件的概念;一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
九、教学后记:第二十五章概率初步(本章第2课时)25.1 概率(共2课时)25.1.2 概率的意义(第2课时)教学内容:1.一般地,在大量重复试验中,如果事件A发生的频率m /n会稳定在某个常数P附近,那么这个常数P就叫做事件A的频率,记P(A)= P ;2.0 ≤P(A)≤1;3.如果A是必然发生的事件,那么P(A)= 0;4.如果A是不可能发生的事件时,那么P(A)= 0;5.事件发生的可能性越大,则它的概率越接近1;反之,事件发生的可能性越小,则它的概率越接近0。
也可以说,概率是反映可能性大小的一般规律。
教学目标:了解概率的定义,理解概率的意义。
教学重点:概率的意义。
教学难点与关键:难点:概率的意义的理解及其应用。
关键:频率到概率的转变过程。
教学过程:一、回顾知识(复习引入,学生活动):请同学们完成下面各题:1.什么叫必然发生事件?2.什么叫都不会发生事件?3,什么叫随机事件?4.随机事件发生的可能性又是如何?教师点评:1.必然发生事件:在一定条件下重复试验时,有的事件在每次试验中必然会发生。
2.都不会发生事件:在一定条件下重复试验时,有的事件在每次试验中不会发生。
3,随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件。
4.随机事件发生的可能性:一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
二、新课(探索新知):1.从回顾知识中题目导出今节学习的内容:刚才已经复习了,随机事件发生的可能是有大小的,不同的随机事件发生的可能性的大小或可能不同,那么在一个具体问题中,它发生的可能性究竟有多大?就是我们今天要研究的问题。
2.让学生阅读第140页至141页内容,并做第140页的试验,然后小结出:(1)什么叫做概率?一般地,在大量重复试验中,如果事件A发生的频率m /n会稳定在某个常数P附近,那么这个常数P就叫做事件A的频率,记P(A)= P 。
(2)因为在次试验中,发生的频数满足0 ≤m≤n,所以0 ≤m /n≤1,进而可知频率m /n所稳定到常数P满足0≤P≤1,因此0≤P(A)≤1。
3.让学生阅读第140页至141页内容。
三、训练(巩固练习):课本第143页练习题(抄于小黑板备用)。
四、归纳总结(学生归纳,教师点评)本节要掌握:小结今节教学内容。
五、布置作业:课本第114页复习巩固第3题;综合运用第4、5题。
六、教学后记:第二十五章概率初步(本章第3课时)25.2 用列举法求概率(共3课时)25.2 用列举法求概率(第1课时)教学内容:1.一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率为P (A) = m / n。
2.利用上面的知识解决实际问题。
教学目标:1.理解P (A) = m / n(在一次试验中有n 种可能的结果,其中A包含种m种)的意义。
2.应用P (A)解决一些实际问题。
教学重点:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率为P (A) = m / n。
及运用该知识解决实际问题。
教学难点与关键:通过实验理解P (A) = m / n并应用它解决一些具体题目。
教具、学具准备:小黑板。
教学过程:一、回顾知识(复习引入,学生活动):请同学们完成下面各题:1.什么叫概率?2.P(A)的取值范围是怎么样?3.在大量重复试验中,什么值稳定在一个常数上?我们又把这个常数叫做什么?4.A = 必然事件,B是不可能发生的事件,C是随机事件,请你画出数轴把这三个量表示出来。
教师点评:1(口述)一般地,在大量重复试验中,如果事件A发生的频率m /n会稳定在某个常数P附近,那么这个常数P就叫做事件A的频率,记P(A)= P ;2(板书)0≤P(A)≤1;3(口述)频率、概率;4(板书)如图所示:二、新课(探索新知):1.从回顾知识中题目导出今节学习的内容:不管求什么事件的概率,我们都可以做大量的试验,求频率得概率,这是上一节课也是刚才复习的内容,它具有普遍性,但求起来确实很麻烦,是否有比较简单的方法,这种方法就是我们今天介绍的方法——列举法。
把学生分为四人一小组,按要求做试验并回答问题。
(1).从分别标有1,2,3,4,5号的5个小球中随机地抽取一个,抽出的号码有多少种?其抽到1的概率为多少?(2).掷一个骰子,向上的一面的点数的多少种可能?向上一面的点数是1 的概率是多少?教师点评:(1)、可能结果有1,2,3,4,5等5种;由于形状、大小相同,又是随机抽取的,我们可以认为:每个号被抽到的可能性相等,都是1/5,所以其概率=1/5。
(2)、有1,2,3,4,5,6等6种可能。
由于骰子的构造相同质地均匀,又是随机掷出的,我们可以断言:每个结果的可能性相等,都是1/6,所求概率是1/6。
上两个试验有两个共同的特点:(1).一次试验中,可能出现的结果有限多个;(2).一次试验中,各种结果发生的可能性相等。
2.从上得出下结论(即课本第147页的归纳):一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率为P (A) = m / n。
3.让学生思考第147页的“思考”后教师点评。
4.师生共同阅读:第147页例1;第148页例2;第149页例3。
三、训练(巩固练习):课本第150页练习第1、2题(抄于小黑板备用)。
四、归纳总结(学生归纳,教师点评)本节要掌握:1.用“列举法”求概率的两个条件即:(1).一次试验中,可能出现的结果有限多个;(2).一次试验中,各种结果发生的可能性相等。
2.用“列举法”求概率的方法:P(A)= m/n(其中n结果总数,m是事件A的结果数)。
五、布置作业:课本第154页复习巩固题第2、3题;综合运用第4题;拓广探索题第7题。
六、教学后记:第二十五章概率初步(本章第4课时)25.2 用列举法求概率(共3课时)25.2 用列举法求概率(第2课时)教学内容:利用“列举法”求概率。
教学目标:进一步理解“列举法”的条件和解题方法,并灵活应用它解决一些实际问题。
教学重点:应用“列举法”解决一些问题。
教学难点与关键:应用“列举法”解决一些问题。
教具、学具准备:小黑板、三角尺。
教学过程:一、回顾知识(复习引入,学生活动):请同学们完成下面各题:1.列举法的条件怎么样?2.用列举法求概率的方法怎样?教师点评:1、列举法条件:(1).一次试验中,可能出现的结果有限多个;(2).一次试验中,各种结果发生的可能性相等。
2、用列举法求概率的方法:第一步判定是否符合列举法的条件;第二步求总结果;第三步求事件A 的可能结果;第四步:P(A)= m/n。
二、新课(探索新知):从回顾知识中题目导入今节学习的内容:课本第150页例4的解题方法(先让学生阅读然后教师点评)。
三、训练(巩固练习):课本第151页练习题(抄于小黑板备用)。
四、新课(探索新知):课本第151页例5的解题方法(先让学生阅读,教师在一节课再点评)。
五、归纳总结(学生归纳,教师点评)本节要掌握:进一步应用列举法求概率。
六、板书设计:1、列举法条件:(1).一次试验中,可能出现的结果有限多个;(2).一次试验中,各种结果发生的可能性相等。
2、用列举法求概率的方法:第一步判定是否符合列举法的条件;第二步求总结果;第三步求事件A的可能结果;第四步:P(A)= m/n。
七、布置作业:课本第155页复习巩固题第5题;拓广探索第8题。
第二十五章概率初步(本章第5课时)25.2 用列举法求概率(共3课时)25.2 用列举法求概率(第3课时)教学内容:1.当一试验要涉及两个因素并且可能出现的结果数目较多时采用列表法求概率的方法。
2.当一试验要涉及三个或更多的时列方形表不方便时,采用树形图求概率的方法。
教学目标:理解并掌握采用列表法、树形图法求概率的方法并利用它们解决问题。