初二数学《平行四边形及其性质(一)》教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学《平行四边形及其性质(一)》教案
学情分析:
由于电脑派位的原因,我校初中每个班的学生成绩都是反正态分布,也就是两头大中间小,经常是课堂准备的内容好的学生喂不饱,差的学生觉得太难了,无法做到我们常说的抓两头促中间。正对于我们任课老师来说是个很大难题,因些,我在课堂上尝试多种教学形式,主要是激发学生的学习兴趣!其中,把内容让给学生自己讲,老师做主持人,对学生的讲法进行补充是我最常用的教学形式!根据内容的深浅安排不同程度的学生出来讲,既能照顾不同层次的学生又能激发他们的学习积极性!而在做练习时,鼓励基础差的学生在不懂的情况下问身边成绩好的同学。这样既能创造一个良好的学习气氛,又能促进学生之间的沟通!我对学生提出数学课的宗旨是“能在课堂解决的问题就在课堂上解决!”经过一年的实践,我们班的数学成绩稳步上升,已经从原来的倒数一、二名跃到了全级第一名,超过了学生心目中的“重点班”3班。学生也慢慢地爱上上数学课了!
教学准备:
制作课件,设计学案,学生准备尺子、量角器等
一、教学目标:
1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.
2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.
3.培养学生发现问题、解决问题的能力及逻辑推理能力.
二、重点、难点
1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.
2.难点:运用平行四边形的性质进行有关的论证和计算.
三、课堂引入
1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?
平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?
你能总结出平行四边形的定义吗?
(1)定义:两组对边分别平行的四边形是平行四边形.
(2)表示:平行四边形用符号“”来表示.
如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.
①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);
②∵四边形ABCD是平行四边形∴AB//DC,AD//BC(性质).
注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)
2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.
让学生根据平行四边形的定义画一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行以外,还有什么性质?用你手上的尺子和量角器来试一试
(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.
(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)
(2)猜想平行四边形的对边相等、对角相等.
下面证明这个结论的正确性.(让学生出来讲自己的证明方法)
已知:如图ABCD,
求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.
分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.
(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)
证明:连接AC,
∵AB∥CD,AD∥BC,
∴∠1=∠3,∠2=∠4.
又AC=CA,
∴△ABC≌△CDA (ASA).
∴AB=CD,CB=AD,∠B=∠D.
又∠1+∠4=∠2+∠3,
∴∠BAD=∠BCD.
由此得到:
平行四边形性质1 平行四边形的对边相等.
平行四边形性质2 平行四边形的对角相等.
命题的证明往往要画图,写已知、求证,转化成数学语言来证
四、例习题分析
A B
图2 C D
D
A B C
例1(教材P84例1)小明用一根36m 长的绳子围成了一个平行四边行的场地,其中AB 边长为8m ,其它三条边的长各是多少?(较简单,让学生回
答就可以了)
五、随堂练习 1.如图1: ABCD 中∠A=50°,AB=a ,BC=b.
则:∠B= ,∠C= ,
ABCD 的周长= . 图1
2.如图2:
ABCD 中∠A+∠C=200°.
则:∠A= ,∠B= .
3.如图4.3-9,在ABCD 中,AC 为对角线,
BE ⊥AC ,DF ⊥AC ,E 、F 为垂足,求证:BE =DF .
例2(补充)如图,在平行四边形ABCD 中,AE=CF ,
求证:AF=CE .
分析:要证AF=CE ,需证△ADF ≌△CBE ,由于四边形ABCD 是平行四边形,因此有∠D=∠B ,AD=BC ,AB=CD ,又AE=CF ,根据等式质,可得
BE=DF .由“边角边”可得出所需要的结论.
温故知新题:(上学期等腰三角行的测验题)
F
E
B
C
A 如右图,从等腰三角形底边上任一点,分别作两腰的平行线,所成的平行四边形周长与它的腰长之间的关系如何?说说你的理由。
六、课后作业
1.填空:
50,则∠B= 度,∠C= 度,∠D= 度.
(1)在ABCD中,∠A=︒
(2)如果ABCD中,∠A—∠B=24度,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.
2.选择:
(1)在下列图形的性质中,平行四边形不一定具有的是().
360(2)在
(A)对角相等(B)对角互补(C)邻角互补(D)内角和是︒
ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个
3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.