一元一次不等式和一元一次不等式教材分析
初中数学_一元一次不等式(1)教学设计学情分析教材分析课后反思
2.4.一元一次不等式(一)教学设计教材分析本节课的教学内容是一元一次不等式的形成及其解集的表示,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论、交流使学生经历知识的形成和巩固过程。
在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。
本课时的学习目标:1.认识一元一次不等式.2.会解一元一次不等式,并会在数轴上表示不等式的解集.3.体会类比、数形结合的数学思想方法。
学习重点难点:一元一次不等式的解法。
教学过程一、温故知新问题一:判断下列各式是不是一元一次方程?并说明依据什么判断的。
(1) 3x-1=0 ( ) (2) 2x -2.5=15(3) 2x 2-x+1=0 ( ) (4) x+y=2 ( )(5) y=3 ( ) (6) 1.5x+12=0.5x+1 (7)32=x ( ) (8)2312x x =+( ) 活动目的:通过问题,让学生回顾一元一次方程的概念,为后面归纳一元一次不等式的概念提供条件。
同时让学生体会等式与不等式之间所蕴含的特殊与一般的关系。
问题二:如果把方程中的等号换成现在学习的不等号,就是我们学习的不等式。
这些不等式有哪些共同的特征?归纳一元一次不等式的定义:不等式的两边都是 ,只含有 未知数,且未知数的最高次数是 ,像这样的不等式,叫做一元一次不等式。
活动目的:引导学生通过对上述不等式的观察、比较,发现其异同,结合一元一次方程的概念类比,学生不难得出一元一次不等式的概念。
让学生意识到不等式也可以像方程那样去研究,培养其化归、转换的意识。
活动的注意事项:学生自行归纳总结,发言讨论,教师在总结学生发言的基础上板书一元一次不等式的定义:“左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1的不等式,叫做一元一次不等式。
并向学生强调一元一次不等式的主要特征。
学习检测1:1.下列不等式中,哪些是一元一次不等式?说说为什么。
一元一次不等式组的解法教学设计
一元一次不等式组教学设计一、教学内容具体实例说明得到一元一次不等式组,以及一元一次不等式组的解集的概念。
另外,还通过一元一次不等式的解,探讨一元一次不等式组的解法.二、教材分析及教学目标1、教材分析:(1)教材内容分析:本节通过具体实例总结一元一次不等式组以及一元一次不等式组的解集的概念,教会学生怎样解一元一次不等式组,并通过具体实例让学生经历知识的拓展过程,也重视不等式与不等式组的解集在数轴上的表示,让学生进一步感受数形结合的作用,逐步熟悉和掌握这一重要的思想方法。
本节中还通过具体实例的解决让学生体会到对题意的分析和理解是建立数学模型的基础,并认识到现实生活中的数量关系是错综复杂的。
(2)教学方法:本节知识与前一节的知识联系比较紧密,建议教师在教学中要特别注意本节内容与一元一次不等式的知识的联系,让学生经历知识的拓展过程,并能通过数轴让学生直观地认识一元一次不等式组的解集,使其了解数形结合的作用。
另外,建议教师在教学过程中加强对不等式组解集含义的讲述,让学生做到较深刻的理解,并熟练掌握用数轴表示不等式的解集,利用观察法、归纳法即可掌握求不等式解集的办法。
2、教学目标:(1)通过对不等式的复习和具体实例,总结一元一次不等式组以及一元一次不等式组的解集的概念。
通过例题教会学生解一元一次不等式组,并教会学生通过在数轴上表示不等式的解集得到不等式组的解集,让学生感受数形结合的作用。
通过对具体实例的分析让学生感受现实生活中错综复杂的数量关系,让学生认识到现在学习的不等式和方程知识是认识客观世界的基础。
通过对例题的学习掌握解一元一次不等式组的方法及其应用。
(2)通过数轴的表示不等式组的解,让学生加深对数形结合的作用的理解,使他们逐步熟悉和掌握这一重要的思想方法。
在对例题的讲解中,使学生认识一元一次不等式组的解集即每个不等式解集的公共部分,从而渗透“交集”的思想。
在解不等式组的过程中让学生体会数学解题的直观性和简洁性的数学美。
浙教版数学八年级上册《第3章 一元一次不等式》全章教案
浙教版数学八年级上册《第3章一元一次不等式》全章教案一. 教材分析《浙教版数学八年级上册》第3章《一元一次不等式》是学生在学习了有理数、整式乘法等基础知识后的进一步拓展。
本章主要通过引入一元一次不等式,让学生掌握不等式的概念、性质和运算方法,培养学生解决实际问题的能力。
本章内容在初中数学中占据重要地位,为后续学习一元二次不等式、不等式组等知识打下基础。
二. 学情分析八年级的学生已经具备了一定的数学基础,对整式、有理数等概念有一定的了解。
但部分学生在解决实际问题时,还不能很好地将数学知识运用其中。
因此,在教学过程中,要注重培养学生运用数学知识解决实际问题的能力,激发学生的学习兴趣。
三. 教学目标1.理解一元一次不等式的概念,掌握一元一次不等式的性质。
2.学会解一元一次不等式,并能运用一元一次不等式解决实际问题。
3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.一元一次不等式的概念和性质。
2.一元一次不等式的解法。
3.运用一元一次不等式解决实际问题。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、合作交流,培养学生的数学素养。
六. 教学准备1.教材、教案、PPT等教学资料。
2.练习题、测试题等。
3.教学工具(如黑板、粉笔等)。
七. 教学过程1.导入(5分钟)利用生活实例引入不等式概念,如:“小明有5个苹果,小华有3个苹果,谁的数量多?”引导学生思考,引出不等式的概念。
2.呈现(10分钟)讲解一元一次不等式的定义、性质和表示方法。
通过PPT展示一元一次不等式的图像,让学生直观理解不等式的性质。
3.操练(10分钟)让学生独立完成练习题,如解以下不等式:2x + 3 > 7。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)讲解练习题的解题思路,分析解题过程中容易出现的问题。
让学生互相讨论,加深对一元一次不等式的理解。
5.拓展(10分钟)引导学生运用一元一次不等式解决实际问题,如:“一个数的平方大于另一个数,求这个数的范围。
浙教版数学八年级上册3.3《一元一次不等式》教案(1)
浙教版数学八年级上册3.3《一元一次不等式》教案(1)一. 教材分析《一元一次不等式》是浙教版数学八年级上册第三章第三节的内容。
本节内容是在学生已经掌握了不等式的概念和性质的基础上进行教学的。
通过本节课的学习,使学生掌握一元一次不等式的定义、解法及其应用,培养学生解决实际问题的能力。
二. 学情分析学生在七年级时已经学习了不等式的基本概念和性质,对不等式有了一定的认识。
但他们对一元一次不等式的定义、解法和应用还不够了解。
因此,在教学过程中,教师需要引导学生从实际问题中抽象出一元一次不等式,并通过实例让学生掌握一元一次不等式的解法和应用。
三. 教学目标1.知识与技能:使学生掌握一元一次不等式的定义、解法及其应用。
2.过程与方法:通过实际问题引导学生从数学的角度进行分析,提高学生解决实际问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:一元一次不等式的定义、解法及其应用。
2.难点:一元一次不等式的解法。
五. 教学方法采用情境教学法、问题教学法和小组合作学习法。
通过实际问题引入一元一次不等式,引导学生主动探索、发现问题,并通过小组合作学习,共同解决问题。
六. 教学准备1.准备一些实际问题,用于导入和巩固知识点。
2.准备PPT,用于呈现知识点和示例。
3.准备练习题,用于课后巩固和拓展。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,让学生思考如何用数学的方法来解决这些问题。
例如,小明有2个苹果,小红有3个苹果,问小明和小红谁苹果多?引导学生发现这个问题可以用不等式来表示和解决。
2.呈现(10分钟)通过PPT呈现一元一次不等式的定义、解法及其应用。
讲解一元一次不等式的定义,例如:ax > b(a、b为实数,a≠0)。
讲解一元一次不等式的解法,例如:将不等式两边同除以a,得到x > b/a。
同时,展示一些实例,让学生理解一元一次不等式的应用。
初中数学_《一元一次不等式与一元一次不等式组》单元起始课教学设计学情分析教材分析课后反思
第十一章“一元一次不等式(组)”单元起始课教学设计一、教学理念:1、尊重学生的学习体验;2、注重知识的生成过程;3、突出学生的主体地位;4、让学生学习有价值的数学。
二、教学目标:1、了解不等式的意义和不等式的性质;2、理解不等式的解及解集的概念,会用数轴表示简单不等式的解集;3、经历建构研究不等式内容的框架图,体会“类比”是研究数学的重要方法,提升数学素养.二、重点:一元一次不等式的相关概念和性质的得出难点:不等式性质3三、教学过程(一)、解决问题,激发生成问题 1、幼儿园王老师给小朋友分糖果,如果每人分5块,还剩3块;如果每人分6块,则差5块. 有多少个小朋友?有多少块糖果?借助方程(组)可以解决生活中许多等量关系的问题,我们学过哪些与方程有关的知识点呢?(通过方程这个知识点建构一元一次方程的知识体系)问题2、幼儿园张老师给小朋友分糖果,如果每人分5块,还剩3块;如果每人分6块,则有一个小朋友不足6块. 有多少个小朋友?有多少块糖果?生活中还存在着不等量关系,如何表达呢?【类比等式,建构不等式的概念】1.根据你的理解,什么样的式子叫做不等式?(引导学生说出“用不等号连接表示不相等关系的式子,叫做不等式)2.如何用不等式表示生活中的不等关系?请举例说明。
3.表示不等关系的关键词有哪些?(二)类比联想,促进生成【类比等式,建构不等式的框架】刚才类比等式,我们得出了什么叫不等式,在本章,我们将系统地学习最简单的不等式-----一元一次不等式的相关内容,还有一元一次不等式组的知识。
请大家根据前面学习等式的经验,你认为我们将学习不等式的哪些内容呢?【板书课题:一元一次不等式(组)】可以从学习内容、过程、方法等多个角度谈谈你的看法。
(三)深入探究,自主生成【类比一元一次方程的相关概念,建构一元一次不等式的相关概念】活动1:观察下列不等式:该如何定义?活动2:类比一元一次方程的解的定义,什么是不等式的解呢?请举例说明。
初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图
一元一次不等式和一元一次不等式组
主题单元学习目标
知识与技能:
1、经历将一些实际问题抽象成不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型进一步发展符号感。
2、能够根据具体问题中的大小关系了解不等式的意义。
3、掌握不等式的基本性质。
4、理解不等式组的解及解集的含义,会解简单的一元一次不等式并能在数轴上表示一元一次不等式的解集,会解一元一次不等式组并会在数轴上确定其解集,初步体会数形结合的思想。
其他:纸、笔
学习活动设计
活动一、
如下图,正方形的边长和圆的直径都是acm。
1、如果要使正方形的周长不大于25cm,那么 a 应满足怎样的关系式?
2、如果要使圆的周长不小于100cm,那么a 应满足怎样的关系式?
3、当 a= 8 时,正方形和圆的周长哪个大?a = 12 呢?
4、你能得到什么猜想?改变a的取值再试一试。
观察由上述问题得到的关系式,它们有什么共同特点?
由4a 4a4a≤25, πa ≥100 ,3x+5>240得,这些关系式都是用不等号连接的式子.由此
一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式
活动二、。
《一元一次不等式》说课稿(精选5篇)
《一元一次不等式》说课稿(精选5篇)《一元一次不等式》说课稿1一、教学内容的分析1、教材的地位和作用(1)本节内容、是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上、把实际问题和一元一次不等式结合在一起、既是对已学知识的运用和深化、又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础、具有在代数学中承上启下的作用;(2)通过本节的学习、学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程、体会不等式和方程一样都是刻画现实世界数量关系的重要模型。
(3)在列不等式解决实际问题的探索过程中、引导学生注意估算意识、体会算式结果所对应的实际意义、渗透建立数学模型、分类讨论等数学思想、对提升学生应用数学意识思考和解决问题的能力起到积极的作用。
2、教学的重点和难点对于用不等式解决实际问题、学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。
根据以上的分析和《数学课程标准》对本课内容的教学要求、本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化、并根据解集和结合实际情况分类讨论得出合理结论。
二、教学目标的确定根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平、我从三个方面确定了以下教学目标:1、能进一步熟练的解一元一次不等式、能从实际问题中抽象出不等关系的数学模型、并结合解集解决简单的实际问题。
2、通过观察、实践、讨论等活动、积累利用一元一次不等式解决实际问题的经验、提高分类考虑、讨论问题的能力、感知方程与不等式的内在联系、体会不等式和方程同样都是刻画现实世界数量关系的重要模型。
3、在积极参与数学学习活动的过程中、体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时、与其他同学交流、相互启发、培养合作精神。
《一元一次不等式与一元一次不等式组》大单元教学设计
3、根据基本性质,把下列不等式化 成x>a或x<a形式:
(1) 1 x -1 3
(2) 8x 0 (3) 6x 5x -1 (4) - x 5 (5) - 4x 3
4、设a>b,用“>”或“<”号填空:
(1)- 4a_____- 4b
(2)
a 5
_____
b 5
(3)- 3a 1___- 3b 1
2y
1
m 2 的解
3x 4 y 2m
使不等式 x y 0成立?
15、 已 知x
x y 2a 的解 3y 2 5a
x ,y的 和
是负数,求a的范围。
16、已知-3<y<2,化简:
y2 y3 2y4
17、若关于x的方程5x-(4k-1)=7x+4k-3
的解是:(1)非负数(2)负数; 试确定k的取值范围。
学生在学习本章之前已经学习了一元一次方程、二元一 次方程组和一次函数,开始研究简单的不等关系。通过前面 的学习,学生已初步体会到生活中量与量之间的关系是众多 而且复杂的,面对大量的同类量,最容易想到的就是它们有 大小之分。并且学生已初步经历了建立方程模型和函数关系 解决一些实际问题的“数学化”过程,为分析量与量之间的关 系积累了一定的经验,以此为基础展开不等式的学习,顺理 成章.
本章共6节。第1节不等关系:用实例引入,使学生在归纳 的过程中认识不等式模型,体会到生活中的不等关系大量存在 ,并初步建立用不等式模型解决简单实际问题的应用意识.第2 节不等式的基本性质:类比等式的基本性质研究不等式的基本 性质,让学生经历类比猜想、尝试、归纳、得出结论的合情推 理过程,探索不等式的三条基本性质,使学生能够将不等式进 行简单转化.第3节不等式的解集:用实例引入,在建立不等式 之后研究其解集及数轴表示,让学生结合实际意义来理解不等 式的解集,并引导学生感受不等式的解与方程的解的异同.
初中数学_一元一次不等式复习教学设计学情分析教材分析课后反思
《第八章 一元一次不等式复习》教学设计【明确目标 定位自我】1、对本章所学知识进行梳理,掌握基础知识和典型例题。
2、可以进行综合应用,针对常考题型进行训练。
知识点一:不等式1.不等式:用______连接起来的式子.(一般包括__________________五种。
) 例1:用适当的符号表示下列关系:(1).x 除以2的商加上2至多为5;(2).a 与b 两数和的平方不大于2.(3).x 与y 的差为非正数;(4).a 与4的和不小于2.2.不等式的基本性质:性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向_____.用字母表示:____________________.性质2:不等式的两边都乘以(或除以)同一个_____,不等号的方向_____.用字母表示:____________________.性质 3:不等式的两边都乘以(或除以)同一个________,不等号的方向________. 用字母表示:____________________.例2:(1) .由a<b,得到am ≤bm 的条件是( )A. m>0;B.m<0;C.m ≤0;D.m ≥0.(2).下列变形中正确的是( )A.由a<b,得 b 31a 31 ;B.由m<n,得mx<nx;C.由a>b,得-2+3a>-2+3b;D.由7x>3x -2,得x<-2.注意:在不等式两边都乘以(或除以)同一个整式时,应考虑整式为正数、负数、零三种情况。
3.不等式的解:使不等式成立的未知数的值。
4.不等式的解集:一个含有未知数的不等式的____________的集合。
注意:不等式的解和解集不同!例3:对于不等式3x -5<2x ,则下列说法正确的( )个。
①5是不等式3x -5<2x 的一个解;②0是不等式3x -5<2x 的一个解;③x<4也是不等式3x -5<2x 的解集;④所有小于4的数都是不等式3x -5<2x 的解。
浙教版数学八年级上册3.3《一元一次不等式》说课稿(2)
浙教版数学八年级上册3.3《一元一次不等式》说课稿(2)一. 教材分析浙教版数学八年级上册3.3《一元一次不等式》是学生在学习了有理数、方程等知识的基础上,进一步引导学生探讨不等式的性质和运用。
这一节内容的重要性在于,它不仅巩固了学生对一元一次方程的理解,而且为学生今后学习更复杂的不等式打下基础。
教材通过具体的例子引入一元一次不等式,并引导学生通过观察、分析、归纳来理解不等式的概念和性质。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和探究能力,对一元一次方程有了初步的了解。
但在学习本节内容时,学生可能会对不等式的概念和性质产生混淆。
因此,在教学过程中,需要关注学生的认知差异,针对性地进行引导和帮助。
三. 说教学目标1.知识与技能:让学生掌握一元一次不等式的概念,理解不等式的性质,并能运用不等式解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,培养学生自主学习的能力和合作意识。
3.情感态度与价值观:激发学生对数学学科的兴趣,培养学生的耐心和毅力,使学生在解决实际问题的过程中,体验到数学的魅力。
四. 说教学重难点1.教学重点:一元一次不等式的概念、性质和运用。
2.教学难点:不等式的性质,如何引导学生从具体例子中归纳出一般性规律。
五.说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等,引导学生主动探究、合作学习。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合数学软件和网络资源,提高教学效果。
六. 说教学过程1.导入新课:通过一个实际问题,引入一元一次不等式的概念,激发学生的兴趣。
2.自主学习:让学生独立思考,尝试解这个问题,感受不等式的存在。
3.小组讨论:学生分组讨论,总结解不等式的方法和步骤。
4.师生互动:教师引导学生归纳总结不等式的性质,并通过举例验证。
5.练习巩固:布置一些练习题,让学生运用所学知识解决实际问题。
6.课堂小结:对本节课的内容进行总结,强调重点和难点。
七年级数学下册第十章一元一次不等式和一元一次不等式组10.3解一元一次不等式说课稿(新版)冀教版
解一元一次不等式今天我说课的内容是冀教版数学七年级下第10章第3节的第2课时《解一元一次不等式》,下面我就分别从教材、教法、学法、教学过程和板书设计五个方面来说明我对这节课的教学设想。
一、教材分析<一> 教材的地位和作用在前面已学习了一元一次方程的相关知识和不等式的性质,本节课主要是通过类比一元一次方程的解法总结归纳出一元一次不等式的解法,并熟练运用不等式的性质解一元一次不等式。
只有学生掌握好了一元一次不等式的解法,才能更好学习后面的不等式组及不等式(组)的应用。
同时,学习本节课时涉及的类比思想、化归思想对后继学习也是十分有益的,所以本课的教学不能仅仅停留在知识的探索上,更要注重数学方法和数学思想的渗透和传播。
日常生产生活中不等关系的情况常常发生,所以不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。
可见,本节课内容在本章乃至整个初中数学中都具有承上启下的作用,处于一个基础性、工具性的地位,不仅是对已有知识的运用和深化,还为后继学习打下基础。
<二>教学目标根据《课标》要求和上述教材分析,结合学生的实际情况,我制定了以下教学目标:知识与技能1.使学生会一元一次不等式的概念;能解一元一次不等式。
2.在依据不等式的性质探究一元一次不等式的解法过程中,加深化归思想。
过程与方法学生在参与活动过程中,通过联系一元一次方程的解法,自主探索解一元一次不等式的一般步骤,体会数学学习中类比和化归的数学思想。
在数轴上正确表示不等式的解集,加深对数形结合思想方法的理解。
情感态度和价值观在积极参与数学活动的过程中,通过小组之间的竞争,培养学生集体主义情感;通过讨论发言,培养学生勇于发言、合作交流和团结协作的意识和尊重他人的态度以及独立思考的习惯。
<三>教学重难点和教学关键根据上面的教材分析和《课标》要求,确定本节课的教学重点是:正确求一元一次不等式的解集。
沪科版数学七年级下册7.2《一元一次不等式》教学设计
沪科版数学七年级下册7.2《一元一次不等式》教学设计一. 教材分析《一元一次不等式》是沪科版数学七年级下册第七章第二节的内容。
这一节主要介绍了一元一次不等式的概念、性质和求解方法。
通过本节课的学习,学生能够理解一元一次不等式的定义,掌握一元一次不等式的解法,并能运用不等式解决实际问题。
教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解题能力。
二. 学情分析七年级的学生已经学习了代数基础知识和一元一次方程,他们对代数概念有一定的理解。
但是,对于不等式的概念和性质,他们可能还比较陌生。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握一元一次不等式的相关概念和解法。
同时,学生需要通过大量的练习,提高解题技能。
三. 教学目标1.知识与技能:使学生理解一元一次不等式的定义,掌握一元一次不等式的解法,能够运用不等式解决实际问题。
2.过程与方法:通过观察、分析和归纳,培养学生发现和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.重点:一元一次不等式的定义和求解方法。
2.难点:一元一次不等式的应用和求解过程。
五. 教学方法1.讲授法:通过讲解一元一次不等式的定义和性质,使学生掌握基本概念。
2.引导法:通过引导学生观察、分析和归纳,培养学生发现和解决问题的能力。
3.实践法:通过大量的练习题,提高学生的解题技能。
六. 教学准备1.教学PPT:制作精美的PPT,展示一元一次不等式的定义、性质和求解方法。
2.练习题:准备适量的一元一次不等式练习题,包括基础题和提高题。
3.教学素材:收集一些与一元一次不等式相关的实际问题,用于课堂拓展。
七. 教学过程1.导入(5分钟)利用PPT展示一些与不等式相关的生活实例,引导学生关注不等式在现实生活中的应用。
提出问题,让学生思考:如何用数学语言来表示这些不等关系?2.呈现(10分钟)讲解一元一次不等式的定义和性质,通过PPT展示相关知识点,引导学生理解和掌握。
一元一次不等式教学设计
一元一次不等式教学设计教学设计课题:一元一次不等式教学内容:七年级下册第九章不等式与不等式组9.2一元一次不等式第一课时一、教材分析本节内容是本章知识的联系中起着承上启下的作用,从学生熟悉的列代数式入手,既复旧知又巧妙地引入了新知。
由代数式到单项式,这是一种下位研究,有利于学生把握概念的内涵和外延的内容。
二、教学目标1.知识与技能:理解一元一次不等式的定义,掌握一元一次不等式的解法,并能够在数轴上表示不等式的解集。
2.过程与方法:通过类比一元一次方程的解法,探究一元一次不等式的解法。
3.情感态度与价值观:培养学生对数学的兴趣,提高解决问题的能力。
4.教学重点、难点:重点是解一元一次不等式的步骤,并能在数轴上表示它的解集;难点是解一元一次不等式,不等式两边同乘(或除以)同一个负数,不等号的方向要改变。
三、学情分析学生已经研究过代数式和单项式的概念,具备一定的代数基础,但对不等式的概念和解法还不熟悉。
四、教法学法与教学用具教学:探究法讲解法学法:自主探究法合作研究教学用具:数轴、黑板、白板、笔。
五、教学过程复引入】复不等式的定义和性质。
探索新知】观察不等式的共同特征,引入一元一次不等式的概念。
练】通过例题,掌握一元一次不等式的解法步骤,并在数轴上表示解集。
归纳总结】总结一元一次不等式的解法和注意事项。
拓展应用】通过实际问题,巩固一元一次不等式的应用。
课堂小结】回顾本节课的重点内容,强化学生对一元一次不等式的理解和掌握。
课后作业】完成课后作业,巩固一元一次不等式的解法和应用。
判断下列各式是否为单项式。
如果不是,请说明理由。
如果是,请指出它的系数和次数。
1) 1000 是单项式,系数为 1000,次数为 0.2) a5 是单项式,系数为 1,次数为 5.3) r2 不是单项式,因为乘法中有两个不同的变量 r 和 2.4) x+1 不是单项式,因为它包含两个不同的项 x 和 1.5) a3b 是单项式,系数为1,次数为 4.6) ba2c 是单项式,系数为1,次数为 4.7) 1122xy2 不是单项式,因为它包含两个不同的项 1122 和 xy2.8) x 不是单项式,因为它包含一个未知数 x 和一个乘法符号。
一元一次不等式第1课时教学设计
课题:2.4一元一次不等式(1)一.备课标:(一)内容标准:课标要求能解数字系数的一元一次不等式,并能在数轴上表示出解集。
(二)数学思想、方法、核心概念:学生在经历一元一次不等式概念的形成过程,求解一元一次不等式时类比一元一次方程的概念形成过程和一元一次方程的求解过程,突出类比思想,在数轴上表示解集时体现了数形结合思想。
十大核心概念在本节课中突出培养的是符号意识,运算能力,几何直观,建模思想。
二、备重点、难点:(一)教材分析:本节课是八年级下册第二章《一元一次不等式与一元一次不等式组》第四节“一元一次不等式”第1课时,属于“数与代数”领域中的“不等式”。
<一元一次不等式>是第二章中的一节重要内容,它不仅是前面不等式基本性质,不等式的解集等知识的的延续,同时也是学生以后顺利学习一元一次不等式组有关内容的基础.(二)确定重点、难点教学内容:重点:掌握简单的一元一次不等式的解法,并能将解集在数轴上表示出来。
难点:去分母与负系数化1三.备学情:(一)学习条件和起点能力分析:1.学习条件分析:(1)必要条件:学生会解一元一次方程,学生已经掌握了不等式的基本性质、了解了不等式的解集的数轴表示。
(2)支持性条件:学生具备了用类比方法学习一元一次不等式的基本能力.2.起点能力分析:学生类比一元一次方程的解法来得出一元一次不等式的解法,已经具备知识的迁移功能。
(二)学生可能达到的程度和存在的普遍性问题:本节课通过自主学习与合作交流,多数学生能够辨认一元一次不等式,掌握简单的一元一次不等式的解法,并能将解集在数轴上表示出来。
存在的普遍性问题:在去分母与系数化为1这一步上出错较多,当不等式两边同时除以一个负数时,不等号的方向忘记改变或者不等式的另一边忘记除以系数,再或者丢掉负号,针对这一问题,采取策略是让学生牢记不等式的性质,同时提醒同学们在系数化为1这一步中注意两点:1、不等号的方向2、两边同时除以未知数系数,注意符号。
第二章一元一次不等式与一元一次不等式组 回顾与思考教案2021-2022学年北师大版八年级数学下册
基于标准的教学设计北师大版八年级(下册)第二章一元一次不等式与一元一次不等式组《回顾与思考》第二章一元一次不等式与一元一次不等式组回顾与思考一、课标描述(摘要)及其解读2011版新课程标准要求:1.结合具体问题,了解不等式的意义,探索不等式的基本性质.2.能解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个元一次不等式组成的不等式组的解集.3.能根据具体问题中的数量关系,列出一元一次不等式,解决具体问题.课标对于“了解”的要求是:从具体实例中知道或举例说明对象的有关特征;根据对象的特征,从具体情境中辨认或者举例说明对象.课标对于“理解,会”的要求是:描述对象的特征和由来,阐述此对象与相关对象之间的区别和联系.课标对于“能”的要求是:在理解的基础之,把对象用于新的情境.课标对于“体会”的要求是:参与特定的数学活动,主动认识或验证对象的特征,获得一些经验.二、教材分析在小学数学教材中,已经呈现了一些关于不等关系的相关知识,学生知道生活大量存在着不等关系的量,了解“大于”、“小于”等符号的用法和意义,能比较两数的大小,并能用数学的语言表达;学生通过对本章内容的学习,掌握了不等式的性质、一元一次不等式(组)的解法,并通过解决一些简单的实际问题,体会不等式的模型思想及一元一次不等式、一次函数、一元一次方程之间的内在联系.三、学情分析学生的知识技能基础:学生通过对本章内容的学习,掌握了不等式的性质、一元一次不等式(组)的解法,并通过解决一些简单的实际问题,体会不等式的模型思想及一元一次不等式、一次函数、一元一次方程之间的内在联系.学生活动能力基础:经历探索、发现不等关系的过程学习解决一些简单的实际问题.四、学习目标学生通过整理本章学习的主要内容,建构本章知识联系图,体会知识之间的发展脉络与内在联系,增强应用数学知识研究和解决实际问题的能力. 本节课的具体学习目标是:1.通过梳理本章内容,进一步体会数形结合思想及类比的思想方法.2.通过基础过关题组的训练,进一步夯实基础,掌握不等式的基本性质,理解不等式(组)的解及解集的含义,会解简单的一元一次不等式(组),并能在数轴上表示其解集,并体会不等式函数、方程之间的联系.3.通过深度研讨环节,能够举一反三,灵活应用.4.通过实际应用,能够建立不等模型,能够用一元一次不等式解决一些简单的实际问题.五、学习重难点重点:梳理本章内容,掌握不等式的基本性质,理解不等式(组)的解及解集的含义,会解简单的一元一次不等式(组),并能在数轴上表示其解集,并体会不等式、函数、方程之间的联系.难点:进一步体会数形结合思想及类比的思想方法,能够建立不等模型,能够用一元一次不等式解决一些简单的实际问题.六、评价设计根据课标要求:评价的主要目的的为了全面了解学生数学学习的过程和结果,激励学生的学习和改进教师的教学. 所以,本节课的教学评价主要通过以下环节进行:1.通过小组讨论交流展示本章思维导图的过程,引领学生进行对话交流,在鼓励的基础上纠正偏差,并对其进行定性的评价;2.通过“基础过关”、“当堂检测”来检验教学效果,并在讲评中,肯定优点,指出不足;3.通过深度研讨环节,使学生能够在交流中,思想相互碰撞,思维得到提升;4.通过自我评价表和组长评价表,对本节课学习过程进行过程性评价;通过作业,反馈信息,再次对本节课做出评价,以便查缺补漏.七、学习过程依据“目标导引教学”的理念和“教、学、评一致性”的原则,具体流程如下:学习目标学习评价学习过程一、课前准备、交流复习目标1:通过梳理本章内容,进一步体会数形结合思想及类比的思想方法.1.通过小组分享,制作思考评价学生思路是否清楚,结构是否合理;2.通过提问,检测学生是否能快速的回答这些问题.1.学生通过课前准备,以小组为单位制作思维导图,并且分享制作思路,对本章内容进行梳理并且再一次画出本章的结构图.2.教师引导,总结本章的核心数学思想以及做题方法,并提出如下问题(1)不等式有哪些基本性质?它与等式的基本性质有什么异同?(2)接一元一次不等式与解一元一次方程有什么异同?(3)举例说明在数轴上如何表示一元一次不等式(组)的解集?(4)举例说明不等式、函数、方程之间的关系.设计意图学生通过对本章的知识进行整理,建构本章的知识体系. 通过画本章知识联系图培养学生归纳整理、对比分析的能力,学生可以互相进行比较、补充,养成交流与合作的习惯.二、基础过关、大展身手目标2:通过基础过关题组的训练,进一步夯实基础,掌握不等式的基通过独立完成、教师提问、自我评价的方式检测学生的基础过关题1.给出下面6个式子:①3>0;②x<-2;③4x+3y≠0;④x=3;⑤x-1;⑥x+2≤3. 其中不等式有()A.2个B.3个C.4个D.5个2.有下列四个命题:①若a>b,则a+1>b+1;②若a>b,则a-1>b-1;③若a>b,则-2a<-2b;本性质,理解不等式(组)的解及解集的含义,会解简单的一元次不等式(组),并能在数轴上表示其解集,并体会不等式、函数、方程之间的联系.组,进一步查漏补缺.④若a>b,则ma<mb. 其中正确的有()A.1个B.2个C.3个D.4个3.若x>y,且(a-3)x<(a-3)y,则a的值可能是()A.0B.3C.4D.5归纳总结:不等式的性质.4.下列不等式中,是一元一次不等式的有()①3x-7>0;②2x+y>3;③2x2-x>2x2-1;④x+1<7.A.1个B.2个C.3个D.4个5.解不等式113xx+-<.归纳总结:解一元一次不等式的步骤.6.解不等式组3(2)42113x xxx--≥-⎧⎪⎨+-<⎪⎩,并在数轴上表示不等式的解集.总结归纳:解一元一次不等式组的步骤以及在数轴上表示其解集.7.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>28.若关于x的不等式mx-1>0(m≠0)的解集是x>1,则直线y=mx-1与x轴的交点坐标是 .9.如图,直线y=3x和y=kx+2相交于点P(a,3),则不等式3x>kx+2的解集为 .总结归纳:一次函数与一元一次不等式的关系.设计意图要建高楼大夏必须先打好基础,通过这个环节的设计,对于不等式的基本性质、元一次不等式的解法以及用数轴表示其解集起到了很好的检测目的,然后让学生先独自完成上述各小题的解答,然后教师提问,让学生自己来作评判,找出存在的问题. 对于做得比较好的同学,教师给予鼓励,使学生对本章知识内容有进一步的理解和掌握.三、深度研讨、再度提高目标3:通过深度研讨环节,能够举反三,灵活应用.通过独立思考、小组探讨、小组分享的方式评价学生对较复杂的一元一次不等式(组)——含参的不等式的问题解决.问题四:含参数的不等式相关问题.10.已知不等式组+21x m nx m+⎧⎨-<⎩>的解集为-1<x<3,求(m+n)2018的值.11.若不等式x-2≤m的正整数解只有3个,则m的取值围为 .12.已知不等式组2xx a⎧⎨<⎩>.(1)如果此不等式组无解,则a的取值范围;(2)如果此不等式组有解,则a的取值范围.数学思想:.设计意图通过小组讨论,学生自己总结做题方法,更利于学生理解和掌握一元一次不等式(组)的与应用,同时也培养和提高了学生的总结归纳能力和抽象思维能力.也再次感受到数形结合的数学思想.四、建构模型、实际应用目标4:通过实际应用,能够建立不等模型,能够用一元次不等式解决一些简单的实际问题.通过独立思考,同学分享评价学生是否能够从实际问题中建立不等模型,模型建立后,能否找到符合实13.小丽去文具店买铅笔和橡皮,铅笔每支0.5元,橡皮每块0.4元,小丽带了2元钱,可以买几支铅笔几块橡皮?14.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超过300元时,超出部分按原价的8折付款;在乙超市累计购买商品超过250元时,超出部分按原价的85际情况的解. 折付款,设一顾客预计购物x(x>300)元. (1)分别写出该顾客在甲、乙两家超市购物所付的费用y甲(元),y乙(元)与x之间的函数关系式;(2)该顾客到哪家超市购物更优惠?设计意图本环节通过实际问题的设置,进一步体会不等式是来源于生活,又服务于生活,能够用不等式解决实际问题,并进一步渗透数学建模的思想. 让学生感受到生活当中处处有数学,激发学生对学习数学的兴趣和愿望.五、归纳总结、反馈评价培养归纳能力,养成反思习惯.并检测目标1、2、3、4的学习效果.通过学生能否完整清晰地说出本节课学习的收获和困惑,了解学生理解知识和情感态度方面的情况.通过“当堂检测”,评价学生的知识技能达标情况.总结归纳说说本节课又学习到了哪些数学知识?体会到了哪些数学思想与方法?还有什么困惑吗?当堂检测:1.下列各式是一元一次不等式的是()A.2x-4>5y+1B.3>-5C.4x+1>0D.4y+3<1y2.若a>b,则下列式子正确的是()A. 1122a b< B.-5a>-5bC. a-3>b-3D.4-a>4-b3.已知关于x的不等式组x ax⎧⎨⎩>>b,其中a、b在数轴上对应点如图所示,则这个不等式组的解集为()A.x>bB.x>aC.b<x<aD.无解4.不等式3x+12≥0的所有正整数解的和为 .5.如图,直线y=ax+b经过A(-2,-5)、B(3,0)两点,那么,不等式ax+b<0的解集是.6.小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能购买多少支钢笔?通过归纳和总结,让学生学会提炼和阐述自己的认知,养成善于反思的习惯. 并通过反馈检测样题,评价知识技能的达成度,确保课堂实效性.在学习指导书的最后附一份个人评价表,对本节课学习过程进行过程性评价.1.必做:完成课本61页复习题第2、4、7、9、12题(AB组全做)2.选做:完成课本63页复习题第13、15题(B组做)八、板书设计第二章一元一次不等式与一元一次不等式组知识结构多媒体核心思想:类比思想数形结合数学建模1.本节课的重点在让每个学生建构本章知识体系. 教师让学生充分思考、练习和交流,同时充分暴露出存在的问题,达到有效复习的目的.2.华罗庚教授说:读书要从薄到厚,又从厚到薄. 复习重在从厚到薄.每一章的复习要把全章的知识分成块,整理成知识网络,形成知识系统,并加以综合运用,其中采用思维导图、知识结构图、习题组等措施复习是有效的,本节课在这方面做了一些尝试.3.一般复习课的容量比较大,一方面要让充分学生思考和交流,积极发挥其主体作用;另方面教师作为组织者和引导者,要主次分明,把握好教学的节奏,提高课堂效率.4.复习课不仅仅是知识的小结及运用,而且更重要的是学习方法、能力和习惯的培养,关注学生的可持续发展,这一点对于学生的终身学习是有益的.。
浙教版数学八年级上册3.3《一元一次不等式》教案(3)
浙教版数学八年级上册3.3《一元一次不等式》教案(3)一. 教材分析《一元一次不等式》是初中数学八年级上册的重要内容,主要让学生掌握一元一次不等式的概念、性质和解法。
通过本节课的学习,学生能够理解一元一次不等式的定义,掌握一元一次不等式的解法,并能运用一元一次不等式解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了有理数、方程等基础知识,对数学运算和逻辑思维有一定的掌握。
但部分学生对不等式的概念和性质可能理解不深,解不等式的能力有待提高。
因此,在教学过程中,要注重引导学生理解不等式的概念,培养学生解不等式的能力。
三. 教学目标1.知识与技能目标:理解一元一次不等式的概念,掌握一元一次不等式的解法,能运用一元一次不等式解决实际问题。
2.过程与方法目标:通过自主学习、合作交流,培养学生探究问题和解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,激发学生学习数学的积极性。
四. 教学重难点1.重点:一元一次不等式的概念、性质和解法。
2.难点:一元一次不等式的应用和解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入一元一次不等式,让学生感受数学与生活的联系。
2.启发式教学法:引导学生主动探究、发现不等式的性质和解法。
3.合作学习法:鼓励学生分组讨论、交流,培养学生的团队协作能力。
六. 教学准备1.课件:制作课件,展示一元一次不等式的概念、性质和解法。
2.练习题:准备适量的一元一次不等式练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如气温、身高等,引入一元一次不等式,让学生感受数学与生活的联系。
提问:不等式与方程有什么区别和联系?2.呈现(10分钟)展示一元一次不等式的概念、性质和解法。
通过讲解和示例,让学生理解一元一次不等式的定义,掌握一元一次不等式的解法。
3.操练(10分钟)让学生分组讨论,互相练习解一元一次不等式。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一组一元一次不等式,让学生独立解答。
(完整word版)第11章一元一次不等式与一元一次不等式组教案及单元备课
4、议一议:
1. 讨论下列式子的正确与错误.
(1)如果 a<b,那么 a+c<b+c;
(2)如果 a<b,那么 a-c<b-c;
(3)如果 a<b,那么 ac<bc; 2.设 a>b,用“<”或“>”号填空.
(4)如果 a<b,且 c≠0,那么 a > b . cc
(1)a+1 b+1;
(2)a-3 b-3;
教学重点 掌握简单的一元一次不等式的解法,并能将解集在数轴上表示出来。
教学难点 一元一次不等式的解法。
教法、学法
分析
自主探究与小组合作交流相结合.
媒体使用 和选择
教学过程
二次备课
1、 创设情境,引入新课
(1) 不等式的三条基本性质是什么?
(2) 运用不等式基本性质把下列不等式化成 x>a 或 x<a 的形式。
(1)a-3 b-3; (2) a
b;
22
5b;
(5)当 a>0,b 0 时,ab>0;
(7)当 a<0,b 0 时,ab>0;
三、课堂小结:
(3)-4a -4b; (4)5a
(6)当 a>0,b (8)当 a<0,b
0 时,ab<0; 0 时,ab<0.
四、作业:
板书设计
2.不等式的基本性质
教学反思
(3)3a 3b;
(4) a
b;
4
4
(5)- a 7
- b ; (6)-a -b. 7
5、变式训练:
1.根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:
(1)x-2<3;
(2)6x<5x-1; (3) 1 x>5; 2
(4)-4x>3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通过具体事例建立不等关系,探索不等式 的性质,了解一般不等式的解与解集以及解不等 式的概念.其次具体研究一元一次不等式的解、 解集、解的数轴表示;解一元一次不等式以及一 元一次不等式的简单应用.再次通过具体事例研 究一元一次不等式、一元一次方程、一次函数之 间的内在联系.最后安排的是一元一次不等式组 的解、解集、用数轴确定解集,解一元一次不等 式组以及一元一次不等式组的简单应用.
本章教材设计主要有下列特点:
a)丰富的实际背景.为学生探索实际问题中的不 等关系提供了生动、有趣、有用的丰富的实际 景.如等周问题、测树围研究树高的问题、分 配宿舍的问题、优惠销售的问题等.这些都为 学生提供了独立思考或合作交流的较大的空间, 以进一步发展学生的符号表达及学生提出问题、 分析问题、解决问题的能力.
c)关注学生学习的发展.如在读一读中设置了线性 规划的基础——不等式表示的平面区域.为学有余 力的学生搭建深入思考的平台.
本章的知识定位与传统教材有些不同 ,在这 套教材中,前三册已经介绍了一元一次方程 、 一次函数及二元一次方程组,现在再学习一元 一次不等式和一元一次不等式组已是顺理成章 的了,但是知识体系的变化会引起对不等式整 个内容理解与把握上的不同,相应问题的难度 与函数、方程的综合程度 会有所加大,并且突 出 由一些具体的实际问题抽象为不等关系模型 的过程,让学生体会建立不等关系及学习一元 一次不等式和一元一次不等式组的意义,并且 关注学生学习习惯的养成与“数学化”能力等 方面的发展,渗透函数、方程、不等式思想。
5.根据具体问题中的数量关系,列出一元一 次不等式(组).解决简单的实际问题.并能根据 具体问题的实际意义,检验结果是否合理.
6.初步体会不Байду номын сангаас式、方程、函数之间的内在 联系与区别.
设计思路:
本章教材是在学生学习了一元一次方程、二 元一次方程组和一次函数基础上才开始研究简单 的不等式关系的.通过前面的学习,学生已初步 体会到生活中量与量之间的关系是众多而且复 的.大量的同类量之间最容易想到的就是它们有 大小之分,而且学生通过前面的学习已初步经历 了建立方程模型、建立函数关系解决一些实际问 题的"数学化"过程,为分析量与量之间的关系积 累了一定的经验,在此基础上,展开不等式的学 习,已顺理成章.另外,不等式不仅是现阶段学生 学习的重点内容,而且也是学生后续学习的重要 基础.
b)突出知识之间的内在联系.不等式与方程、函 数一样都是反映客观事物变化规律及其关系的模 型,是数学学习的重要内容之一.函数能够刻画 事物之间对应变化的过程,方程刻画的是某个变 化过程的一瞬间,而不等式则刻画变化过程中,同 类量之间的一个普遍现象. 一定条件下,它们可 以互相转化.为此教材专设一节关于一元一次不等 式、一元一次函数联系的内容,意在引导学习者 初步体会从整体中把握部分的思维方法,渗透函 数、方程、不等式思想和数形结合等重要的数学 思想,拓宽学生视野.
二、设计思路
本章的“教学目标”:
1.经历将一些实际问题抽象为不等关系的过 程,体会不等式也是刻画现实世界中量与量之 间关系的有效数学模型.进一步发展符号感.
2.能够根据具体问题中的大小关系了解不等 式的意义.
3.经历通过类比、猜测、验证发现不等式性 质的探索过程,掌握不等式的基本性质.
4.理解不等式(组)解与解集的含义,会解 简单的一元一次不等式,并能在数轴上表示一元 一次不等式的解集.会解由两个一元一次不等式 组成的不等式组,并会在数轴上确定解集.初步体 会数形结合思想.