绝对值相反数经典习题

合集下载

七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)

七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)

2.4.2绝对值与相反数——绝对值分层练习考察题型一求一个数的绝对值1.下列各对数中,互为相反数的是()A .(5)-+与(5)+-B .12-与(0.5)-+C .|0.01|--与1(100--D .13-与0.3【详解】解:A .(5)5-+=-,(5)5+-=-,不合题意;B .(0.5)0.5-+=-,与12-相等,不合题意;C .|0.01|0.01--=-,11()0.01100100--==,0.01-与0.01互为相反数,符合题意;D .13-与0.3不是相反数,不合题意.故本题选:C .2.若m 、n 互为相反数,则|5|m n -+=.【详解】解:m 、n 互为相反数,|5||5|5m n -+=-=.故本题答案为:5.3.比较大小:3(15--)| 1.35|--.(填“<”、“>”或“=”)【详解】解:3(1) 1.65--=,| 1.35| 1.35--=-,因为1.6 1.35>-,所以3(15--)| 1.35|>--.故本题答案为:>.考察题型二绝对值的代数意义1.最大的负整数是,绝对值最小的数是.【详解】解:最大的负整数是1-,绝对值最小的数是0.故本题答案为:1-,0.2.如果|2|2a a -=-,则a 的取值范围是()A .0a >B .0aC .0aD .0a <【详解】解:|2|2a a -=- ,20a ∴-,解得:0a .故本题选:C .3.如果一个数的绝对值是它的相反数,则这个数是()A .正数B .负数C .正数或零D .负数或零【详解】解: 一个数的绝对值是它的相反数,设这个绝对值是a ,则||0a a =-,0a ∴.故本题选:D .4.已知实数满足|3|3x x -=-,则x 不可能是()A .1-B .0C .4D .3【详解】解:|3|3x x -=- ,30x ∴-,即3x .故本题选:C .5.下列判断正确的是()A .若||||a b =,则a b=B .若||||a b =,则a b =-C .若a b =,则||||a b =D .若a b =-,则||||a b =-【详解】解:若||||a b =,则a b =-或a b =,所以A ,B 选项错误;若a b =,则||||a b =,所以C 选项正确;若a b =-,则||||a b =,所以D 选项错误.故本题选:C .6.在数轴上有A 、B 两点,点A 在原点左侧,点B 在原点右侧,点A 对应整数a ,点B 对应整数b ,若||2022a b -=,当a 取最大值时,b 值是()A .2023B .2021C .1011D .1【详解】解: 点A 在点B 左侧,0a b ∴-<,||2022a b b a ∴-=-=,a 为负整数,则最大值为1-,此时(1)2022b --=,则2021b =.故本题选:B .7.若x 为有理数,||x x -表示的数是()A .正数B .非正数C .负数D .非负数【详解】解:(1)若0x 时,||0x x x x -=-=;(2)若0x <时,||20x x x x x -=+=<;由(1)(2)可得:||x x -表示的数是非正数.故本题选:B .8.如果||||||m n m n +=+,则()A .m 、n 同号B .m 、n 异号C .m 、n 为任意有理数D .m 、n 同号或m 、n 中至少一个为零【详解】解:当m 、n 同号时,有两种情况:①0m >,0n >,此时||m n m n +=+,||||m n m n +=+,故||||||m n m n +=+成立;②0m <,0n <,此时||m n m n +=--,||||m n m n +=--,故||||||m n m n +=+成立;∴当m 、n 同号时,||||||m n m n +=+成立;当m 、n 异号时,则:||||||m n m n +<+,故||||||m n m n +=+不成立;当m 、n 中至少一个为零时,||||||m n m n +=+成立;综上,如果||||||m n m n +=+,则m 、n 同号或m 、n 中至少一个为零.故本题选:D .考察题型三解方程:()0x a a =>,x a =±;0x =,0x =1.若|| 3.2a -=-,则a 是()A .3.2B . 3.2-C . 3.2±D .以上都不对【详解】解:|| 3.2a -=- ,|| 3.2a ∴=,3.2a ∴=±.故本题选:C .2.若0a <,且||4a =,则1a +=.【详解】解:若0a <,且||4a =,所以4a =-,13a +=-.故本题答案为:3-.3.已知||4x =,||5y =且x y >,则2x y -的值为()A .13-B .13+C .3-或13+D .3+或13-【详解】解:||4x = ,||5y =且x y >,y ∴必小于0,5y =-,当4x =或4-时,均大于y ,①当4x =时,5y =-,代入224513x y -=⨯+=;②当4x =-时,5y =-,代入22(4)53x y -=⨯-+=-;综上,23x y -=-或2x y -=13+.故本题选:C .4.已知||4m =,||6n =,且||m n m n +=+,则m n -的值是()A .10-B .2-C .2-或10-D .2【详解】解:||m n m n +=+ ,||4m =,||6n =,4m ∴=,6n =或4m =-,6n =,462m n ∴-=-=-或4610m n -=--=-.故本题选:C .5.若|2|1x -=,则x 等于.【详解】解:根据题意可得:21x -=±,当21x -=时,解得:3x =;当21x -=-时,解得:1x =;综上,3x =或1x =.故本题答案为:1或3.6.小明做这样一道题“计算|2-★|”,其中★表示被墨水染黑看不清的一个数,他翻开后面的答案得知该题的结果为6,那么★表示的数是.【详解】解:设这个数为x ,则|2|6x -=,所以26x -=或26x -=-,①26x -=,62x -=-,4x -=,4x =-;②26x -=-,62x -=--,8x -=-,8x =;综上,4x =-或8.故本题答案为:4-或8.考察题型四绝对值的化简1.若1a <,|1||3|a a -+-=.【详解】解:1a < ,10a ∴->,30a ->,∴原式1342a a a =-+-=-.故本题答案为:42a -.2.若|||4|8x x +-=,则x 的值为.【详解】解:|||4|8x x +-= ,∴当4x >时,48x x +-=,解得:6x =;当0x <时,48x x -+-=,解得:2x =-.故本题选:2-或6.3.已知20212022x =,则|2||1||||1||2|x x x x x ---+++-+的值是.【详解】解:20212022x = ,即01x <<,20x ∴-<,10x -<,10x +>,20x +>,|2||1||||1||2|x x x x x ∴---+++-+2(1)12x x x x x =---+++--2112x x x x x =--++++--x =20212022=.故本题答案为:20212022.4.若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为()A .1B .2C .3D .4【详解】解:a ,b ,c 均为整数,且||||1a b c a -+-=,||1a b ∴-=,||0c a -=或||0a b -=,||1c a -=,①当||1a b -=,||0c a -=时,c a =,1a b =±,所以||||||||||||0112a c c b b a a c a b b a -+-+-=-+-+-=++=;②当||0a b -=,||1c a -=时,a b =,所以||||||||||||1102a c c b b a a c c a b a -+-+-=-+-+-=++=;综上,||||||a c c b b a -+-+-的值为2.故本题选:B .5.用abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,当||||||a b b c c a -+-+-取得最大值时,这个三位数的最小值是.【详解】解:abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,a b c ∴,||||||a b b c c a ∴-+-+-a b b c a c =-+-+-22a c =-2()a c =-,当||||||a b b c c a -+-+-取得最大值时,即a c -取得最大值,而a 、b 、c 是自然数,9a ∴=,0c =,∴这个三位数的最小值为900.故本题答案为:900.【根据数轴上的点的位置化简绝对值】6.已知a 、b 、c 的大致位置如图所示:化简||||a c a b +-+的结果是()A .2a b c ++B .b c -C .c b -D .2a b c--【详解】解:由题意得:0b a c <<<,且||||c a >.0a c ∴+>,0a b +<,∴原式()a c a b =+---a c a b =+++2a b c =++.故本题选:A .7.已知a ,b ,c 的位置如图所示,则||||||a a b c b ++--=.【详解】解:由数轴可知:0b a c <<<,且||||||b c a >>,0a b ∴+<,0c b ->,||||||a abc b ∴++--()()a abc b =--+--a a b c b=----+2a c =--.故本题答案为:2a c --.8.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:||||||b c a b c a -++--.【详解】解:(1)由图可知:0a <,0b >,0c >且||||||b a c <<,所以0b c -<,0a b +<,0c a ->,故本题答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a=----+2b =-.【当0a >,1||aa =,当0a <时,1||aa =-】9.已知0ab ≠,则||||a b a b +的值不可能的是()A .0B .1C .2D .2-【详解】解:①当a 、b 同为正数时,原式112=+=;②当a 、b 同为负数时,原式112=--=-;③当a 、b 异号时,原式110=-+=.故本题选:B .10.已知a ,b 为有理数,0ab ≠,且2||3||a bM a b =+.当a ,b 取不同的值时,M 的值等于()A .5±B .0或1±C .0或5±D .1±或5±【详解】解:由于a ,b 为有理数,0ab ≠,当0a >、0b >时,且2||3235||a b M a b =+=+=;当0a >、0b <时,且2||3231||a b M a b =+=-=-;当0a <、0b >时,且2||3231||a b M a b =+=-+=;当0a <、0b <时,且2||3235||a b M a b =+=--=-.故本题选:D .11.已知a ,b ,c 为非零有理数,则||||||a b c a b c ++的值不可能为()A .0B .3-C .1-D .3【详解】解:当a 、b 、c 没有负数时,原式1113=++=;当a 、b 、c 有一个负数时,原式1111=-++=;当a 、b 、c 有两个负数时,原式1111=--+=-;当a 、b 、c 有三个负数时,原式1113=---=-;原式的值不可能为0.故本题选:A .12.若||||||a b ab x a b ab =++,则x 的最大值与最小值的和为()A .0B .1C .2D .3【详解】解:当a 、b 都是正数时,1113x =++=;当a 、b 都是负数时,1111x =--+=-;当a 、b 异号时,1111x =--=-;则x 的最大值与最小值的和为:3(1)2+-=.故本题选:C .13.已知:||2||3||a b b c c a m c a b+++=++,且0abc >,0a b c ++=.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则(x y +=)A .4B .3C .2D .1【详解】解:0abc > ,0a b c ++=,a ∴、b 、c 为两个负数,一个正数,a b c +=-,b c a +=-,c a b +=-,∴||2||3||c a b m c a b---=++,∴分三种情况说明:当0a <,0b <,0c >时,1234m =--=-,当0a <,0c <,0b >时,1230m =--+=,当0a >,0b <,0c <时,1232m =-+-=-,m ∴共有3个不同的值,4-,0,2-,最大的值为0,3x ∴=,0y =,3x y ∴+=.故本题选:B .14.已知||1abc abc =,那么||||||a b c a b c++=.【详解】解:1abcabc =,0abc ∴>,a ∴、b 、c 均为正数或一个正数两个负数,①当a 、b 、c 均为正数时,1113ab c ab c ++=++=;②a 、b 、c 中有一个正数两个负数时,不妨设a 为正数,b 、c 为负数,1111ab c a b c++=--=-;综上,3ab c++=或1-.故本题答案为:3或1-.考察题型五绝对值的非负性1.任何一个有理数的绝对值一定()A .大于0B .小于0C .不大于0D .不小于0【详解】解:由绝对值的定义可知:任何一个有理数的绝对值一定大于等于0.故本题选:D .2.对于任意有理数a ,下列结论正确的是()A .||a 是正数B .a -是负数C .||a -是负数D .||a -不是正数【详解】解:A 、0a =时||0a =,既不是正数也不是负数,故本选项错误;B 、a 是负数时,a -是正数,故本选项错误;C 、0a =时,||0a -=,既不是正数也不是负数,故本选项错误;D 、||a -不是正数,故本选项正确.故本题选:D .3.式子|1|3x --取最小值时,x 等于()A .1B .2C .3D .4【详解】解:|1|0x - ,∴当10x -=,即1x =时,|1|3x --取最小值.故本题选:A .4.当a =时,|1|2a -+会有最小值,且最小值是.【详解】解:|1|0a - ,|1|22a ∴-+,∴当10a -=,即1a =,此时|1|2a -+取得最小值2.故本题答案为:1,2.5.已知|2022||2023|0x y -++=,则x y +=.【详解】解:|2022|x - ,|2023|0y +,20220x ∴-=,20230y +=,2022x ∴=,2023y =-,202220231x y ∴+=-=-.故本题答案为:1-.6.如果|3||24|y x +=--,那么(x y -=)A .1-B .5C .5-D .1【详解】解:|3||24|y x +=-- ,|3||24|0y x ∴++-=,30y ∴+=,240x -=,解得:2x =,3y =-,235x y ∴-=+=.故本题选:B .7.若|2|2|3|3|5|0x y z -+++-=.计算:(1)x ,y ,z 的值.(2)求||||||x y z +-的值.【详解】解:(1)由题意得:203050x y z -=⎧⎪+=⎨⎪-=⎩,解得:235x y z =⎧⎪=-⎨⎪=⎩,即2x =,3y =-,5z =;(2)当2x =,3y =-,5z =时,|||||||2||3||5|2350x y z +-=+--=+-=.8.若a 、b 都是有理数,且|2||1|0ab a -+-=,求1111(1)(1)(2)(2)(2022)(2022)ab a b a b a b +++⋯⋯+++++++的值.【详解】解:由题意可得:20ab -=,10a -=,1a ∴=,2b =,原式1111 (12233420232024)=+++⨯⨯⨯⨯111111112233420232024=-+-+-++-112024=-20232024=.考察题型六绝对值的几何意义1.绝对值相等的两个数在数轴上对应的两点距离为6,则这两个数是()A .6,6-B .0,6C .0,6-D .3,3-【详解】解: 绝对值相等的两个数在数轴上对应的两个点间的距离是6,∴这两个数到原点的距离都等于3,∴这两个数分别为3和3-.故本题选:D .2.绝对值不大于π的所有整数为.【详解】绝对值不大于π的所有整数为0,1±,2±,3±.故本题答案为:0,1±,2±,3±.3.绝对值小于4的所有负整数之和是.【详解】解: 绝对值小于4的所有整数是3-,2-,1-,0,1,2,3,∴符合条件的负整数是3-,2-,1-,∴其和为:3216---=-.故本题答案为:6-.4.大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离,又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离,类似地,式子|5|a +在数轴上的意义是.【详解】解:|5|a +在数轴上的意义是表示数a 的点与表示5-的点之间的距离.故本题答案为:表示数a 的点与表示5-的点之间的距离.5.计算|1||2|x x -++的最小值为()A .0B .1C .2D .3【详解】解:|1||2||1||(2)|x x x x -++=-+-- ,|1||2|x x ∴-++表示在数轴上点x 与1和2-之间的距离的和,∴当21x -时|1||2|x x -++有最小值3.故本题选:D .6.当a =时,|1||5||4|a a a -+++-的值最小,最小值是.【详解】解:当4a 时,原式5143a a a a =++-+-=,这时的最小值为3412⨯=,当14a <时,原式5148a a a a =++--+=+,这时的最小值为189+=,当51a -<时,原式51410a a a a =+-+-+=-+,这时的最小值接近为189+=,当5a -时,原式5143a a a a =---+-+=-,这时的最小值为3(5)15-⨯-=,综上,当1a =时,式子的最小值为9.故本题答案为:1,9.7.已知式子|1||2||3||4|10x x y y ++-+++-=,则x y +的最小值是.【详解】解:令12x x a ++-=,34y y b ++-=,根据绝对值几何意义:a 表示x 到1-与2两点之间的距离之和,b 表示y 到3-与4两点之间的距离之和, 当12x -,34y -时,正好有10a b +=,∴当1x =-,3y =-时,x y +的最小值为:1(3)4-+-=-.故本题答案为:4-.8.若不等式|2||3||1||1|x x x x a -+++-++对一切数x 都成立,则a 的取值范围是.【详解】解:数形结合:绝对值的几何意义:||x y -表示数轴上两点x ,y 之间的距离.画数轴易知:|2||3||1||1|x x x x -+++-++表示x 到3-,1-,1,2这四个点的距离之和.令|2||3||1||1|y x x x x =-+++-++,3x =-时,11y =,1x =-时,7y =,1x =时,7y =,2x =时,9y =,可以观察知:当11x -时,由于四点分列在x 两边,恒有7y =,当31x -<-时,711y <,当3x <-时,11y >,当12x <时,79y <,当2x 时,9y ,综上,7y ,即|2||3||1||1|7x x x x -+++-++对一切实数x 恒成立.∴a 的取值范围为7a .9.设|1|a x =+,|1|b x =-,|3|c x =+,则2a b c ++的最小值为.【详解】解:|1|2|1||3|x x x ++-++表示x 到1-、3-的距离以及到1的距离的2倍之和,当x 在1-和1之间时,它们的距离之和最小,此时26a b c ++=.故本题答案为:6.10.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.(2)如果|1|3x +=,那么x =;(3)若|3|2a -=,|2|1b +=,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是,最小距离是.(4)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-=.【详解】解:(1)数轴上表示4和1的两点之间的距离是:413-=,表示3--=,-和2两点之间的距离是:2(3)5故本题答案为:3,5;(2)|1|3x+=,x+=-,x+=或1313x=或4x=-,2故本题答案为:2或4-;(3)|3|2b+=,,|2|1a-=b=-或3b=-,∴=或1,1a5当5b=-时,则A、B两点间的最大距离是8,a=,3当1b=-时,则A、B两点间的最小距离是2,a=,1则A、B两点间的最大距离是8,最小距离是2,故本题答案为:8,2;(4)若数轴上表示数a的点位于4-与2之间,++-=++-=.a a a a|4||2|(4)(2)6故本题答案为:6.11.同学们都知道,|5(2)|--表示5与2-之差的绝对值,实际上也可理解为5与2-两数在数轴上所对的两点之间的距离.试探索(1)求|5(2)|--=;(2)同样道理|1008||1005|x x+=-表示数轴上有理数x所对点到1008-和1005所对的两点距离相等,则x=;(3)类似的|5||2|++-表示数轴上有理数x所对点到5x x-和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|5||2|7x x++-=,这样的整数是.(4)由以上探索猜想对于任何有理数x,|3||6|-+-是否有最小值?如果有,写出最小值;如果没有,x x说明理由.【详解】解:(1)|5(2)|7--=,故本题答案为:7;(2)(10081005)2 1.5-+÷=-,故本题答案为: 1.5-;(3)式子|5||2|7++-=理解为:在数轴上,某点到5x x-所对应的点的距离和到2所对应的点的距离之和为7,所以满足条件的整数x 可为5-,4-,3-,2-,1-,0,1,2,故本题答案为:5-,4-,3-,2-,1-,0,1,2;(4)有,最小值为3(6)3---=.12.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.如果表示数a 和1-的两点之间的距离是3,那么a =.(2)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-的值为;(3)利用数轴找出所有符合条件的整数点x ,使得|2||5|7x x ++-=,这些点表示的数的和是.(4)当a =时,|3||1||4|a a a ++-+-的值最小,最小值是.【详解】解:(1)|14|3-=,|32|5--=,|(1)|3a --=,13a +=或13a +=-,解得:4a =-或2a =,故本题答案为:3,5,4-或2;(2) 表示数a 的点位于4-与2之间,40a ∴+>,20a -<,|4||2|(4)[(2)]426a a a a a a ∴++-=++--=+-+=,故本题答案为:6;(3)使得|2||5|7x x ++-=的整数点有2-,1-,0,1,2,3,4,5,2101234512--++++++=,故本题答案为:12;(4)1a =有最小值,最小值|13||11||14|4037=++-+-=++=,故本题答案为:7.1.将2,4,6,8,⋯,200这100个偶数,任意分为50组,每组两个数,现将每组的两个数中任意数值记作a ,另一个记作b ,代入代数式1(||)2a b a b -++中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是.【详解】解:当a b >时,11(||)()22a b a b a b a b a -++=-++=,当a b <时,11(||)()22a b a b b a a b b -++=-++=,1021041062007550∴+++⋯⋯+=,∴这50个值的和的最大值是7550.故本题答案为:7550.2.39121239||||||||a a a aa a a a +++⋯+的不同的值共有()个.A .10B .7C .4D .3【详解】解:当0a >,1||a a =,当0a <时,1||aa =-,按此分类讨论:当1a 、2a 、3a 、⋯、9a 均为正数时,391212399||||||||a a a aa a a a +++⋯+=;当1a 、2a 、3a 、⋯、9a 有八个为正数,一个为负数时,39121239817||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有七个为正数,两个为负数时39121239725||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有六个为正数,三个为负数时,39121239633||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有五个为正数,四个为负数时,39121239541||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有四个为正数,五个为负数时,39121239451||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有三个为正数,六个为负数时,39121239363||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有两个为正数,七个为负数时,39121239275||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有一个为正数,八个为负数时,39121239187||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 均为负数时,391212399||||||||a a a aa a a a +++⋯+=-;所以共有10个值.故本题选:A .3.若x 是有理数,则|2||4||6||8||2022|x x x x x -+-+-+-+⋯+-的最小值是.【详解】解:当1012x =时,算式|2||4||6||2022|x x x x -+-+-+⋯+-的值最小,最小值=2|2|2|4|2|6|2|1012|x x x x -+-+-+⋯+-2020201620120=+++⋯+(20200)5062=+⨯÷20205062=⨯÷511060=.故本题答案为:511060.4.对于有理数x ,y ,a ,t ,若||||x a y a t -+-=,则称x 和y 关于a 的“美好关联数”为t ,例如,|21||31|3-+-=,则2和3关于1的“美好关联数”为3.(1)3-和5关于2的“美好关联数”为;(2)若x 和2关于3的“美好关联数”为4,求x 的值;(3)若0x 和1x 关于1的“美好关联数”为1,1x 和2x 关于2的“美好关联数”为1,2x 和3x 关于3的“美好关联数”为1,⋯,40x 和41x 关于41的“美好关联数”为1,⋯.①01x x +的最小值为;②12340x x x x +++⋯⋯+的最小值为.【详解】解:(1)|32||52|8--+-=,故本题答案为:8;(2)x 和2关于3的“美好关联数”为4,|3||23|4x ∴-+-=,|3|3x ∴-=,解得:6x =或0x =;(3)①0x 和1x 关于1的“美好关联数”为1,01|1||1|1x x ∴-+-=,∴在数轴上可以看作数0x 到1的距离与数1x 到1的距离和为1,∴只有当00x =,11x =时,01x x +有最小值1,故本题答案为:1;②由题意可知:12|2||2|1x x -+-=,12x x +的最小值123+=,34|4||4|1x x -+-=,34x x +的最小值347+=,56|6||6|1x x -+-=,56x x +的最小值5611+=,78|8||8|1x x -+-=,78x x +的最小值7815+=,......,3940|40||40|1x x -+-=,3940x x +的最小值394079+=,12340x x x x ∴+++⋯⋯+的最小值:371115...79+++++(379)202+⨯=820=,故本题答案为:820.。

小学数学相反数与绝对值练习题

小学数学相反数与绝对值练习题

小学数学相反数与绝对值练习题
一、选择题
1. 下列各组数中,哪一组数中的两个数互为相反数?
A. 2,-5
B. -3,6
C. -7,-9
D. 4,4
2. 两个数互为相反数,它们的和是多少?
A. 0
B. 1
C. -1
D. 2
3. -8的相反数是多少?
A. -7
B. 8
C. -8
D. 7
4. 下列各数中哪一个的绝对值最小?
A. -5
B. 0
C. -3
D. 5
5. -12与8的绝对值之和是多少?
A. 4
B. -4
C. 20
D. -20
二、填空题
1. 一个数与它的相反数的和是 ______。

2. -15的相反数是 ______。

3. 一个数的绝对值是它与 ______ 之间的距离。

4. -9与9的绝对值之和是 ______。

三、解答题
1. 请列举两对相反数。

2. 如果一个数的相反数是-7,这个数是多少?
3. 请解释什么是绝对值,并给出一个例子。

四、应用题
小明和小华一起做数学作业。

他们发现小明选的数为-5,小华选的数是5。

他们想知道这两个数的和是多少?请你帮他们计算一下。

五、综合题
小明有5只苹果,他将其中一些苹果送给了小华。

小明送给小华的苹果是-3个,这意味着小明亲手给小华拿走了3个苹果。

请你计算小明现在还剩下几个苹果?
以上是关于小学数学相反数与绝对值的练习题。

绝对值相反数经典习题

绝对值相反数经典习题

相反数与绝对值练习一、选择题:(1)a的相反数是( )(A)-a (B)1a(C)-1a(D)a-1(2)一个数的相反数小于原数,这个数是( )(A)正数 (B)负数 (C)零 (D)正分数(3)一个数在数轴上所对应的点向右移到5个单位长度后,得到它的相反数的对应点,则这个数是( )(A)-2 (B)2 (C)52(D)-52(4)一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为12单位长,则这个数是( )(A)12或-12(B)14或-14(C)12或-14(D)-12或141.已知a≠b,a=-5,|a|=|b|,则b等于( )(A)+5 (B)-5 (C)0 (D)+5或-52.一个数在数轴上对应的点到原点的距离为m,则这个数的绝对值为( )(A)-m (B)m (C)±m (D)2m3.绝地值相等的两个数在数轴上对应的两点距离为8,则这两个数为( )(A)+8或- 8 (B)+4或-4 (C)-4或+8 (D)-8或+44.给出下面说法: <1>互为相反数的两数的绝对值相等; <2>一个数的绝对值等于本身,这个数不是负数; <3>若|m|>m,则m<0; <4>若|a|>|b|,则a>b,其中正确的有( ) (A)<1><2><3>; (B)<1><2<4>; (C)<1><3><4>; (D)<2><3><4>5.一个数等于它的相反数的绝对值,则这个数是( )(A)正数和零; (B)负数或零; (C)一切正数; (D)所有负数6.已知|a|>a,|b|>b,且|a|>|b|,则( )(A)a>b (B)a<b (C)不能确定 D.a=b7.-103,π,-3.3的绝对值的大小关系是( )(A)103->|π|>|-3.3|;(B)103->|-3.3|>|π|;(C)|π|>103->|-3.3|;(D)103->|π|>|-3.3|8.若|a|>-a,则( )(A)a>0 (B)a<0 (C)a<-1 (D)1<a二、填空题(1)一个数的相反数是它本身,这个数是__________;(2)-5的相反数是______,-3的倒数的相反数是____________ 。

绝对值与相反数练习题

绝对值与相反数练习题

绝对值与相反数练习题绝对值与相反数练习题数学是一门让人既爱又恨的学科。

有时候,我们可以轻松地解决问题,但有时候也会被一些概念和计算困扰。

其中,绝对值和相反数是我们在数学中经常遇到的概念之一。

本文将通过一些练习题来帮助我们更好地理解和应用绝对值和相反数。

练习题一:计算绝对值1. |-5| = ?2. |8| = ?3. |-3| = ?4. |0| = ?5. |-10| = ?解答:1. |-5| = 52. |8| = 83. |-3| = 34. |0| = 05. |-10| = 10练习题二:判断绝对值大小1. 比较 |-7| 和 |5| 的大小。

2. 比较 |-2| 和 |-9| 的大小。

3. 比较 |-4| 和 |-4| 的大小。

5. 比较 |-6| 和 |6| 的大小。

解答:1. |-7| = 7,|5| = 5,7 > 5。

2. |-2| = 2,|-9| = 9,2 < 9。

3. |-4| = 4,|-4| = 4,4 = 4。

4. |1| = 1,|-1| = 1,1 = 1。

5. |-6| = 6,|6| = 6,6 = 6。

练习题三:计算相反数1. 相反数是什么意思?2. 5的相反数是多少?3. -8的相反数是多少?4. 0的相反数是多少?5. -15的相反数是多少?解答:1. 相反数指的是一个数与它的相反数相加等于0。

2. 5的相反数是-5。

3. -8的相反数是8。

4. 0的相反数是0。

5. -15的相反数是15。

练习题四:综合运用绝对值和相反数1. 计算 |-6| + |4| 的值。

3. 计算 |-2| + |-7| 的值。

4. 计算 |-5| - |2| 的值。

5. 计算 |-10| + |-10| 的值。

解答:1. |-6| = 6,|4| = 4,6 + 4 = 10。

2. |-9| = 9,|-3| = 3,9 - 3 = 6。

3. |-2| = 2,|-7| = 7,2 + 7 = 9。

相反数和绝对值试题

相反数和绝对值试题

相反数和绝对值试题相反数和绝对值是数学中常见的概念,对于初学者来说,理解和掌握这两个概念是非常重要的。

本文将通过一系列试题来帮助读者加深对相反数和绝对值的理解,并且提供详细的解答过程。

一、相反数试题1. 某数的相反数是-25,求这个数。

解答:设这个数为x,根据相反数的定义,有x的相反数为-x。

题干已经给出了-x的值为-25,所以可以得到方程-x=-25。

将方程两边同时乘以-1,得到x=25。

所以这个数为25。

2. 两个数的相反数之和是10,这两个数分别是多少?解答:设这两个数分别为x和y,根据相反数之和的定义,有x的相反数与y的相反数之和为10,即-x-y=10。

将方程两边同时乘以-1,得到x+y=-10。

所以这两个数分别为-5和-5。

3. 一个数的相反数是其本身的一半,求这个数。

解答:设这个数为x,根据相反数的定义,有x的相反数为-x。

题干已经给出了-x的值为原数的一半,即-x=0.5x。

将方程两边同时乘以-2,得到2x=-x,即3x=0。

解这个一元一次方程可以得到x=0。

所以这个数为0。

二、绝对值试题1. 某个数的绝对值为15,求这个数。

解答:设这个数为x,根据绝对值的定义,有当x>0时,|x|=x;当x<0时,|x|=-x。

题干已经给出了|x|的值为15,根据正负号的不同,可以得到方程组:当x>0时,x=15;当x<0时,-x=15。

解这个方程组可以得到x=15或x=-15。

所以这个数为15或-15。

2. 一个数的绝对值是其相反数的两倍,求这个数。

解答:设这个数为x,根据绝对值和相反数的定义,有|x|=2|-x|。

题干已经给出了|x|的值为-2x,根据正负号的不同,可以得到方程组:当x>0时,-2x=2x;当x<0时,-2x=-2x。

解这个方程组可以得到x=0。

所以这个数为0。

3. 一个数的绝对值是其相反数与6之差的两倍,求这个数。

解答:设这个数为x,根据绝对值和相反数的定义,有|x|=2|-x-6|。

七年级数学上册相反数与绝对值练习题(进阶篇)

七年级数学上册相反数与绝对值练习题(进阶篇)

七年级数学上册相反数与绝对值练习题
(进阶篇)
1. 相反数练题
1. 求下列数的相反数:
a) -3
b) 5
c) -7
d) 12
2. 如果一个数的相反数是15,这个数是多少?
3. 如果两个数的和为0,它们互为相反数。

找出与下列数互为相反数的数:
a) 9
b) -2
c) 0
4. 如果一个数的相反数是它自身的2倍,这个数是多少?
2. 绝对值练题
1. 求下列数的绝对值:
a) 4
b) -9
c) 0
d) -2.5
2. 如果一个数的绝对值是25,这个数可能是多少?
3. 绝对值是正数,求下列数的绝对值所代表的数的符号:
a) -6
b) 0
c) 3
4. 如果两个数的绝对值相等,它们有可能是相反数吗?
3. 相反数与绝对值综合练题
1. 求下列数的相反数,并计算其绝对值:
a) 10
b) -15
c) 7
d) -3.5
2. 如果一个数的相反数的绝对值是20,这个数可能是多少?
3. 互为相反数且绝对值相等的两个数是什么?
4. 如果一个数的相反数的绝对值是它自身的2倍,这个数是多少?
以上是七年级数学上册相反数与绝对值的进阶练习题。

希望能
够帮助你巩固理解和运用相反数与绝对值的概念。

如果有任何问题,请随时向我提问。

祝你学习顺利!。

绝对值与相反数练习题

绝对值与相反数练习题

绝对值与相反数练习题一、选择题1. 绝对值的定义是:A. 一个数的平方B. 一个数的立方C. 一个数距离0的距离D. 一个数的倒数2. 相反数的定义是:A. 一个数的平方B. 一个数的立方C. 一个数的绝对值D. 一个数的符号相反的数3. 计算|-5|的结果是:A. 5B. -5C. 0D. 14. 如果a=-3,那么-a的值是:A. 3B. -3C. 0D. 15. 绝对值的性质不包括:A. 非负性B. 唯一性C. 可加性D. 可乘性二、填空题6. 绝对值|-8|等于______。

7. 相反数-(-4)等于______。

8. 如果一个数的绝对值是5,那么这个数可以是______或______。

9. 绝对值最小的数是______。

10. 如果x=-2,那么|x|=______。

三、判断题11. 绝对值总是正数或0。

()12. 任何数的相反数都是唯一的。

()13. 0的绝对值是0。

()14. 两个相反数的绝对值相等。

()15. 绝对值不改变一个数的符号。

()四、计算题16. 计算下列各数的绝对值:- 3.5- 0- -717. 计算下列各数的相反数:- 4.5- -2- 018. 已知a=-7,b=-3,求|a-b|的值。

19. 如果|x-3|=4,求x的值。

20. 已知|a|=5,|b|=3,且a>b,求a和b的可能值。

五、解答题21. 解释绝对值的几何意义,并给出一个例子。

22. 解释相反数的几何意义,并给出一个例子。

23. 讨论绝对值和相反数在数学中的重要性。

24. 给出一个实际生活中使用绝对值或相反数的例子。

25. 讨论绝对值和相反数在解决实际问题中的应用。

六、拓展题26. 如果一个数的绝对值是它自己的相反数,这个数是什么?27. 讨论绝对值在不等式中的应用。

28. 讨论绝对值和相反数在复数系统中的表现。

29. 给出一个证明,证明绝对值函数是连续的。

30. 讨论绝对值和相反数在向量运算中的应用。

(完整版)相反数和绝对值经典练习题

(完整版)相反数和绝对值经典练习题

(完整版)相反数和绝对值经典练习题1. 计算以下数的相反数:-12 ______________25 _______________-3 ________________0 ________________2. 计算以下数的绝对值:-10 ______________15 _______________-2 _______________0 ________________3. 求以下数的相反数和绝对值:-8 _______________-18 ______________23 _______________0 _______________4. 现给定一个数x,如x = -6,请计算x的相反数和绝对值。

相反数:______________绝对值:______________5. 如果一个数的相反数比它本身的绝对值大6,求这个数是多少。

这个数是:____________6. 如果一个数的绝对值比它本身的相反数大3,求这个数是多少。

这个数是:____________7. 如果一个数的相反数比它本身的绝对值小4,求这个数是多少。

这个数是:____________8. 如果一个数的绝对值比它本身的相反数小2,求这个数是多少。

这个数是:____________9. 小明的体重是x公斤,小红的体重是x的绝对值的两倍加1公斤。

如果x = -5,请计算小明和小红的体重。

小明的体重:____________小红的体重:____________10. 已知一个数的相反数比它本身大9,求这个数。

这个数是:____________参考答案如下:(完整版)相反数和绝对值经典练题1. 计算以下数的相反数:-12 1225 -25-3 30 02. 计算以下数的绝对值:-10 1015 15-2 20 03. 求以下数的相反数和绝对值:-8 8-18 1823 -230 04. 现给定一个数x,如x = -6,请计算x的相反数和绝对值。

七年级绝对值与相反数典型例题

七年级绝对值与相反数典型例题

七年级数学:绝对值与相反数典型例题绝对值和相反数是数学中两个重要的概念。

1. 绝对值绝对值是一个数与零的距离,即一个数去掉符号后的大小。

对于任何实数x,它的绝对值定义为:|x| = x,当x >= 0;|x| = -x,当x < 0。

例如,|3| = 3,因为 3 是正数;|-3| = 3,因为-3 也是负数,而 3 与-3 之间的距离是相等的。

2. 相反数相反数是指两个数的和为零,即它们的和等于它们的差。

例如,5 和-3 就是一对相反数,因为它们的和为2,它们的差为8。

对于任何实数x,它的相反数定义为:x 的相反数= -x。

例如,5 的相反数为-5,-3 的相反数为3,-2 的相反数为2。

绝对值和相反数在数学中有广泛的应用,例如在代数、几何、统计等领域中都有重要的作用。

以下是几个典型的七年级绝对值与相反数的例题:1. 若a = 3,b = -4,则a 与b 的差的绝对值是多少?解:a 与 b 的差为 3 - (-4) = 3 + 4 = 7,所以它们的差的绝对值为|7| = 7。

2. 若a = 5,b = -6,则a 与b 的和的绝对值是多少?解:a 与 b 的和为 5 - (-6) = 5 + 6 = 11,所以它们的和的绝对值为|11| = 11。

3. 若a = -8,b = 9,则a 与b 的差的绝对值是多少?解:a 与 b 的差为-8 - 9 = -17,所以它们的差的绝对值为|-17| = 17。

4. 若a = 2,b = -3,则a 与b 的相反数的和是多少?解:a 与 b 的相反数分别为-2 和3,所以它们的相反数的和为-2 + 3 = 1。

5. 若a = -5,b = 7,则a 与b 的相反数的差是多少?解:a 与 b 的相反数分别为 5 和-7,所以它们的相反数的差为 5 - (-7) = 5 + 7 = 12。

以上是几个典型的绝对值与相反数的例题,希望对您有所帮助。

数的相反数与绝对值练习题

数的相反数与绝对值练习题

数的相反数与绝对值练习题1. 将以下数的相反数写出来:a) 12b) -7c) 0d) -3.52. 将以下数的绝对值写出来:a) -9b) 5c) -2.3d) 03. 计算下列数的相反数:a) 相反数为-15的数是多少?b) 相反数为8的数是多少?c) 相反数为0的数是多少?4. 计算下列数的绝对值:a) 绝对值为-10的数是多少?b) 绝对值为19的数是多少?c) 绝对值为0的数是多少?5. 求下列数的相反数和绝对值:a) 数的相反数为-6,求这个数的绝对值。

b) 数的绝对值为13,求这个数的相反数。

c) 数的相反数和绝对值均为7,求这个数。

6. 给定a和b为任意实数,证明以下结论:a) 一个数与它的相反数相加等于0。

b) 一个数与它的相反数相乘等于-1。

c) 一个数与它的绝对值相加等于两倍的绝对值。

7. 解方程:a) 找出一个数,使得它与它的相反数的和等于5。

b) 找出一个数,使得它与它的相反数的积等于-12。

8. 应用题:a) 一辆汽车在向东行驶了100公里后,又向西行驶了40公里,求汽车相对出发点的最终位置与距离。

b) 一个温度计在上午记录了18摄氏度的温度,下午记录了-5摄氏度的温度,请问一天中温度的变化幅度是多少摄氏度?9. 思考题:a) 相反数与绝对值之间有什么关系?b) 相反数和绝对值在数学中有哪些应用?通过以上的练习题,我们可以更好地理解数的相反数与绝对值的概念,并学会运用它们进行计算和解决实际问题。

希望通过这些练习,你能够对这两个概念有更深入的理解,提升自己的数学能力。

绝对值相反数练习题

绝对值相反数练习题

绝对值相反数练习题一、选择题1. 若|a| = 5,那么a的值可能是:A. -5B. 5C. -5 或 5D. 02. 绝对值的相反数等于其本身的数是:A. 0B. 1C. -1D. 任意数3. 若|-x| = x,则x的取值范围是:A. x > 0B. x < 0C. x ≥ 0D. x ≤ 04. 下列哪个表达式的值等于其相反数的绝对值?A. |-3|B. |3|C. |-3| - 3D. |3| - 35. 如果|a| = 3,那么|-a|的值是:A. -3B. 3C. 0D. 无法确定二、填空题6. 若|a| = 4,且a > 0,则a的值为______。

7. 一个数的绝对值是其相反数的绝对值的2倍,这个数是______。

8. 若|-x| = |x|,则x的值可以是______。

9. 一个数的绝对值是其相反数的绝对值的一半,这个数是______。

10. 若|a| = |b|,且a ≠ b,则a和b的关系是______。

三、判断题11. 绝对值的相反数总是等于其本身。

()12. 一个数的绝对值和其相反数的绝对值相等。

()13. 如果|a| = |b|,那么a和b一定相等。

()14. 一个数的绝对值不可能是负数。

()15. 如果|a| = 0,那么a的值只能是0。

()四、解答题16. 计算下列表达式的值:a) |-10|b) |5 + (-3)|c) |-2| - |-3|17. 已知|a| = 7,求a的可能值。

18. 如果|-x| = 2,求x的值。

19. 解释为什么一个数的绝对值不可能是负数。

20. 如果|a| = |b|,且a和b的符号相反,求a和b的值。

答案:一、选择题1. C2. A3. C4. A5. B二、填空题6. 47. 08. 0或任意实数9. 010. 相反数三、判断题11. ×12. √13. ×14. √15. √四、解答题16. a) 10b) 2c) 117. ±718. ±219. 绝对值表示一个数的大小,没有负数的大小,因此绝对值不可能是负数。

(完整word版)相反数和绝对值经典练习题(word文档良心出品)

(完整word版)相反数和绝对值经典练习题(word文档良心出品)

相反数和绝对值练习题一、填空题1. 如a = +2.5,那么,-a = 如果-a= -4,则a= 2. 如果 a,b 互为相反数,那么2a+2b = 61a+61b= )(b a +π=3. ―(―2)= ; 与―[―(―8)]互为相反数. 4. 如果a 的相反数是最大的负整数,b 的相反数是最小的正整数,a+b= .5. a - b 的相反数是 .6. 如果 a 和 b 是符号相反的两个数,在数轴上a 所对应的数和 b 所对应的点相距6个单位长度,如果a=-2,则b 的值为 .7. 在数轴上与表示3的点的距离等于4的点表示的数是_______.8. 若一个数的绝对值是它的相反数,则这个数是_______.9. 若a ,b 互为相反数,则|a|-|b|=______.10.若,3=x 则_____=x ;若,3=x 且0<x ;则_____=x ;若,3=x 且0>x ,则_____=x ;11. 若,0>a 则____=a ;若,0<a 则____=a ;若,0=a 则____=a ;12. 若a 为整数,|a|<1.999,则a 可能的取值为_______.13. 若,5-=x 则_____=x ;若,5--=x 则_____=x ;若0>x ,则______=x x;若0<x ,则______=x x。

14. ,11a a -=-则a 的取值范围是 15. 210--x 的最小值为16. 若04312=-+-y x ,则=+y x17. 如果a=b,那么a与b的关系是18. 绝对值等于它本身的有理数是,绝对值等于它的相反数的数是19. │x│=│-3│,则x= ,若│a│=5,则a=20. 12的相反数与-7的绝对值的和是21. 下列说法错误的是()A、一个正数的绝对值一定是正数B、一个负数的绝对值一定是正数C、任何数的绝对值都不是负数D、任何数的绝对值一定是正数22. 下列说法正确的是()A、两个有理数不相等,那么这两个数的绝对值也一定不相等B、任何一个数的相反数与这个数一定不相等C、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。

有理数相反数与绝对值精选习题

有理数相反数与绝对值精选习题

有理数相反数与绝对值精选习题七年级(上)相反数与绝对值精选题姓名:________ 成绩:________一、判断题(每小题1分,共8分)1.一个数的相反数一定比原数小。

(×)2.如果两个有理数不相等,那么这两个有理数的绝对值也不相等。

(×)3.|-2.7|。

|-2.6|。

(√)4.若a+b=0,则a,b互为相反数。

(√)5.符号不同的两个数互为相反数。

(√)6.没有相反数。

(×)7.数轴上原点两旁的两个点表示的数互为相反数。

(√)8.+3和-3都是相反数。

(√)二.选择题(每小题1分,共18分)1.相反数是它本身的数是(D)。

2.下列语句中,正确的是(B)。

3.两个数的和是正数,那么这两个数(A)。

4.下列各式中,等号成立的是(B)。

5.在数轴上表示的数8与-2这两个点之间的距离是(A)。

6.一个有理数的绝对值等于其本身,这个数是(A)。

7.如图所示的图形为四位同学画的数轴,其中正确的是(D)。

8.下列说法正确的是(A)。

9.下列判断正确的是(C)。

10.甲、乙两位同学在学完绝对值与相反数以后,总结了这样几个结论:①相反数等于它本身的数是;②绝对值最小的有理数是0;③只有0的绝对值是它本身;对于非0数,它的绝对值总比它的相反数大。

你认为正确的有(B)。

11.若m=n,则m与n(A)。

12.若x=-x,则x一定是(A)。

13.下列说法正确的是(D)。

A。

两个数相加,和一定大于其中任何一个数。

B。

0加上任何一个数都等于这个数。

C。

如果两个数互为相反数,那么它们的和等于0.D。

两个数相加,取较大一个数的符号。

14.下列说法错误的是(B):a-b<0说明b小于a。

15.两个负数的和为a,它们的差为b,则a与b的大小关系是(C):a<b。

16.数m和n满足m为正数,n为负数,则m>m-n>m+n。

17.如果a/c+1/2b=d-c,则d的值是(A):4/3.18.在1,-1,-2这三个数中任意两数之和的最大值是(A):1.填空题:1.-2的相反数是2的数是4;绝对值等于2的数是2和-2.2.|-4| - |-2.5| + |-10| = 11.5;|-24| ÷ |-3| × |-2| = 4.3.最大的负整数是-1;最小的正整数是1.4.绝对值小于5的整数有9个;绝对值小于6的负整数有5个。

绝对值相反数基础练习题

绝对值相反数基础练习题

相反数、绝对值一、选择题1、相反数不大于它本身的数是()A、正数B、负数C、非正数D、非负数2、如果a+b=0,那么a,b两个数一定是()A、都等于0B、一正一负C、互为相反数D、互为倒数3、一个数的相反数是最大的负整数,则这个数是()A、-1B、1C、0D、±14、下面各组中,互为相反数的是()A、|-2|与|2|B、-|+2|与|-2|C、-(+2)与+(-2)D、-(-2)与+(+2)5、2的相反数和绝对值分别是()A、2,2B、-2,2C、-2,-2D、2,-26、当a=1时,|a-3|的值为()A、4B、-4C、2D、-27、若x的相反数是3,|y|=5,则x+y的值为()A、-8B、2C、8或-2D、-8或28、已知a是有理数,且|a|=-a,则有理数a在数轴上的对应点在()A、原点的左边B、原点的右边C、原点或原点的左边D、原点或原点的右边9、绝对值相等的两个数在数轴上对应的两个点的距离为6,则这两个数为()A、+6和-6B、+3和 -3C、+6和-3D、+3和 +610、如果x与2互为相反数,那么|x-1|等于()A、1B、-2C、3D、-3二、填空题11、-(-2)的相反数是-------------12、若|a|=3,则a的值是 ---------------13、 -|-2|的绝对值是-------------14、已知数轴上A、B表示的数互为相反数,并且两点间的距离是6,点A在点B的左边,则点A、B表示的数分别是 -----------------15、一个数在数轴上表示的点距原点2个单位长度,且在原点的左边,则这个数的相反数是----------------16、a是最大的负整数,b是绝对值最小的数,则a+b= ------------------17、若a<0,且|a-2|=3,则a= -----------------18、若|x-3|与|y+2|互为相反数,求x+y+3的值-----------.三、解答题19、已知|2-b|与|a-b+4|互为相反数,求ab-2007的值.20、已知|a|=3,|b|=5,且a<b,求a-b的值.。

完整版绝对值与相反数的练习题.doc

完整版绝对值与相反数的练习题.doc

绝对值与相反数的练习题一、选择题1.绝对值等于其相反数的数一定是( )A.负数B.正数C.负数或零D.正数或零2.若│x│+x=0,则x一定是()A.负数B.0 C.非正数D.非负数3、绝对值最小的有理数的倒数是()A. 1 B、-1 C、0 D、不存在4、在有理数中,绝对值等于它本身的数有()A、1个B、2个C、3个D、无数多个5、下列说法错误的是()A、一个正数的绝对值一定是正数B、一个负数的绝对值一定是正数C、任何数的绝对值都不是负数D、任何数的绝对值一定是正数6、│a│= -a, a一定是()A、正数B、负数C、非正数D、非负数7、下列说法正确的是()A、两个有理数不相等,那么这两个数的绝对值也一定不相等B、任何一个数的相反数与这个数一定不相等C、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数8、-│a│= -3.2,则a是()A、3.2B、-3.2 C 3.2或-3.2 D、以上都不对9、|x-1|+|x-2|+|x-3|的最小值为( )A、1B、2C、3D、410、若a、b互为相反数,c、d互为倒数,且m的绝对值为2,求为()A、1B、-1C、2D、-2二,填空题1.绝对值最小的数是_____.2.若b<0且a=|b|,则a与b的关系是______.3.一个数大于另一个数的绝对值,则这两个数的和一定_____0(填“>”或“<”).4.如果|a|>a,那么a是_____.5.如果-|a|=|a|,那么a=_____.6.已知|a|+|b|+|c|=0,则a=_____,b=_____,c=_____.7.一个正数增大时,它的绝对值_____,一个负数增大时,它的绝对值_____.(填增大或减小)8、绝对值等于它本身的有理数是_____,绝对值等于它的相反数的数是_____.9、│x│=│-8│,则x=_____,若│a│=9,则a=_____三.解答题1.如果|a|=4,|b|=3,且a>b,求a,b的值.2、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;3、若︳2x-1︳与︳3y-4︳互为相反数,求y-x的值4、│a-2│+│b-3│+│c-4│=0,则a+2b+3c的值四、去掉下列各数的绝对值符号:(1)若x<0,则|x|=________________;(2)若a<1,则|a-1|=_______________; (3)已知x>y>0,则|x+y|=________________; (4)若a>b>0,则|-a-b|=__________________.五、比较-(-a)和-|a|的大小关系。

相反数和绝对值含答案

相反数和绝对值含答案

相反数和绝对值1.对于有理数a,下面的3个说法中:①﹣a表示负有理数;②|a|表示正有理数;③a与﹣a 中,必有一个是负有理数.正确说法的个数有()A.0个B.1个C.2个D.3个2.π﹣3.14的相反数是()A.0B.﹣π﹣3.14C.π+3.14D.3.14﹣π3.若m,n互为相反数,则下列各组数中不是互为相反数的是()A.﹣m和﹣n B.5m和5n C.m+1和n﹣1D.m+1和n+14.相反数是最大负整数的数是()A.1B.﹣1C.0D.25.已知a是有理数,则下列判断:①a是正数;②﹣a是负数;③a与﹣a必然有一个负数;④a与﹣a互为相反数.其中正确的个数是()A.1个B.2个C.3个D.4个6.与a﹣b互为相反数的是()A.b﹣a B.a﹣b C.﹣a﹣b D.a+b7.如果a与1互为相反数,则a+2等于()A.2B.﹣2C.1D.﹣18.下列各对数中互为相反数的是()A.﹣(+8)和+(﹣8)B.+(﹣8)和﹣8C.﹣(+8)和﹣8D.﹣(﹣8)和+(﹣8)9.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是5个单位长度,那么这个数是()A.5或﹣5B.5或−52C.52或−52D.﹣5或5210.a表示非负有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等11.式子﹣2a+b﹣c的相反数是()A.2a+b﹣c B.﹣2a﹣b+c C.2a﹣b﹣c D.2a﹣b+c12.下列各代数式:①a﹣b与﹣a﹣b;②a+b与﹣a﹣b;③a+1与1﹣a;④﹣a+b与a﹣b.其中互为相反数的有()A.①②B.②④C.②③④D.①②③④13.如果a与6互为相反数,那么﹣(﹣a)的值为()A.6B.﹣6C.16D.−1614.若|ab|=ab,则下一定正确的是()A.ab>0B.ab<0C.ab≥0D.ab≤015.a、b是有理数,且|a|=﹣a,|b|=b,|a|>|b|,用数轴上的点来表示a、b,正确的是()A.B.C.D.16.已知|a|=5,|b|=4,且a+b<0,则a﹣b的值是()A.9或1B.﹣1或﹣9C.9或﹣1D.﹣9或117.若|a|=5,|b|=6,且a>b,则a+b的值为()A.﹣1或11B.1或﹣11C.﹣1或﹣11D.1118.若|﹣7|=﹣a,则a的值是()A.7B.﹣7C.17D.−1719.对于任意有理数a,下列式子中取值不可能为0的是()A.|a+1|B.|﹣1|+a C.|a|+1D.1﹣|a| 20.若a与2互为相反数,则|a+3|是()A.5B.1C.﹣1D.﹣5 21.下列说法正确的是()A.若|a|=|b|,则a=b B.若|a|=|b|,则a=b或a=﹣b C.若a<b,则|a|<|b|D.若|a|=|b|,则a>b22.当3<a<4时,化简|a﹣3|+|a﹣4|=()A.1B.2a﹣7C.﹣1D.1﹣2a23.a、b为非零有理数式子|a|a+|b|b的值不可能的是()A.2B.﹣2C.1D.0 24.适合|a+5|+|a﹣3|=8的整数a的值有()A.4个B.5个C.7个D.9个25.绝对值小于3.2的整数有( )个.A .3B .4C .5D .726.化简|x−2|x−2−|2−x|2−x 的结果是( )A .0B .2C .﹣2D .2或﹣227.已知x <﹣2,则|x +2|﹣|1﹣x |等于( )A .1B .﹣3C .2x +1D .﹣2x ﹣128.若|m ﹣2|+|n ﹣7|=0,则|m +n |=( )A .2B .7C .8D .929.如果m 是有理数,代数式|5m ﹣6|+1的最小值是( )A .0B .1C .﹣1D .没有最小值30.当a ,b 满足 _______的时候,﹣|a ﹣b |+7有最 _______(填大或小)值为 _______.()A .a =b ,大,7B .a =b ,小,7C .a =﹣b ,大,7D .a =﹣b ,小,7相反数和绝对值参考答案1.A; 2.D; 3.D; 4.A; 5.A; 6.A; 7.C; 8.D; 9.C; 10.D;11.D;12.B;13.B;14.C;15.A;16.B;17.C;18.B;19.C;20.B;21.B;22.A;23.C;24.D;25.D;26.D;27.B;28.D;29.B;30.A;。

相反数和绝对值练习题

相反数和绝对值练习题

相反数和绝对值练习题基础检测:第一节 化简下列各数: (1)()--82()-+373.--⎛⎝ ⎫⎭⎪27-+⎛⎝ ⎫⎭⎪1913 (2)______7.3=-;______0=;______3.3=--;______75.0=+-. (3).______31=+;______45=--;______32=-+. 3.-8的绝对值是 ,记做 。

4.绝对值等于5的数有 。

5.若 ︱a ︱= a , 则 a 。

6. 的绝对值是2004,0的绝对值是 。

7.一个数的绝对值是指在 上表示这个数的点到 的距离。

8.已知a=-2,b=1,则b a -+得值为 。

9.如果3-=a ,则______=-a ,______=a 10. 如果 x < y < 0, 那么︱x ︱ ︱y ︱。

11.︱x - 1 ︱ =3 ,则 x = 。

12.若 ︱x+3︱+︱y -4︱= 0,则 x + y = 。

13.有理数a ,b 在数轴上的位置如图所示,则a b, ︱a ︱ ︱b ︱。

14.︱x ︱<л,则整数x = 。

15.已知︱x ︱-︱y ︱=2,且y =-4,则 x = 。

16.已知︱x ︱=2 ,︱y ︱=3,则x +y = 。

17.已知 ︱x +1 ︱与 ︱y -2︱互为相反数,则︱x ︱+︱y ︱= 。

18. 式子︱x +1 ︱的最小值是 ,这时,x 值为 。

19. 下列说法错误的是 ( ) A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数20.下列说法错误的个数是 ( ) 第二节 绝对值是它本身的数有两个,是0和1 第三节 任何有理数的绝对值都不是负数 第四节 一个有理数的绝对值必为正数 第五节 绝对值等于相反数的数一定是非负数 A 3 B 2 C 1 D 021.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则 a + b + c 等于 ( )A -1B 0C 1D 2 拓展提高:22.______510=-+-;.23.如果a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子 a ba b c+++ + m -cd 的值。

(完整版)相反数和绝对值经典练习题

(完整版)相反数和绝对值经典练习题

相反数和绝对值练习题一、填空题1. 如a = +2.5,那么,-a = 如果-a= -4,则a= 2. 如果 a,b 互为相反数,那么2a+2b = 61a+61b= )(b a +π=3. ―(―2)= ; 与―[―(―8)]互为相反数. 4. 如果a 的相反数是最大的负整数,b 的相反数是最小的正整数,a+b= .5. a - b 的相反数是 .6. 如果 a 和 b 是符号相反的两个数,在数轴上a 所对应的数和 b 所对应的点相距6个单位长度,如果a=-2,则b 的值为 .7. 在数轴上与表示3的点的距离等于4的点表示的数是_______.8. 若一个数的绝对值是它的相反数,则这个数是_______.9. 若a ,b 互为相反数,则|a|-|b|=______.10.若,3=x 则_____=x ;若,3=x 且0<x ;则_____=x ;若,3=x 且0>x ,则_____=x ;11. 若,0>a 则____=a ;若,0<a 则____=a ;若,0=a 则____=a ;12. 若a 为整数,|a|<1.999,则a 可能的取值为_______.13. 若,5-=x 则_____=x ;若,5--=x 则_____=x ;若0>x ,则______=x x;若0<x ,则______=x x。

14. ,11a a -=-则a 的取值范围是 15. 210--x 的最小值为16. 若04312=-+-y x ,则=+y x17. 如果a=b,那么a与b的关系是18. 绝对值等于它本身的有理数是,绝对值等于它的相反数的数是19. │x│=│-3│,则x= ,若│a│=5,则a=20. 12的相反数与-7的绝对值的和是21. 下列说法错误的是()A、一个正数的绝对值一定是正数B、一个负数的绝对值一定是正数C、任何数的绝对值都不是负数D、任何数的绝对值一定是正数22. 下列说法正确的是()A、两个有理数不相等,那么这两个数的绝对值也一定不相等B、任何一个数的相反数与这个数一定不相等C、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。

绝对值与相反数练习题

绝对值与相反数练习题

绝对值与相反数练习题1. 求下列数的绝对值:a) -5b) 0c) 72. 求下列数的相反数:a) 9b) -3c) 03. 计算下列各式:a) |-10| + 5b) |6 - 9|c) |-8| - |-5|4. 解下列方程:a) |x + 2| = 4b) |3x - 5| = 7c) |2x - 1| = |3x + 2|5. 解下列不等式:a) |2x + 3| ≤ 5b) |x - 1| > 2c) |4 - x| ≥ 36. 判断下列各式的真假:a) |x| = -x,其中 x 是实数b) |a + b| = |a| + |b|,其中 a, b 是实数c) |ab| = |a| · |b|,其中 a, b 是实数7. 求下列各组数的中位数(用绝对值表示):a) {-3, 4, -1, 2, -5}b) {7, 1, -8, 6, -4, 3}解答:1.a) |-5| = 5b) |0| = 0c) |7| = 72.a) 相反数为 -9b) 相反数为 3c) 相反数为 03.a) |-10| + 5 = 10 + 5 = 15b) |6 - 9| = |-3| = 3c) |-8| - |-5| = 8 - 5 = 34.a) |x + 2| = 4x + 2 = 4 或 -(x + 2) = 4x = 2 或 -x - 2 = 4x = 2 或 x = -6b) |3x - 5| = 73x - 5 = 7 或 -(3x - 5) = 73x = 12 或 -3x + 5 = 7x = 4 或 -3x = 2或 x = -2/3c) |2x - 1| = |3x + 2|2x - 1 = 3x + 2 或 2x - 1 = -(3x + 2) -x = 3 或 2x - 1 = -3x - 2x = -3 或 2x + 3x = 1 - 25x = -1x = -1/55.a) |2x + 3| ≤ 5-5 ≤ 2x + 3 ≤ 5-8 ≤ 2x ≤ 2-4 ≤ x ≤ 1b) |x - 1| > 2x - 1 > 2 或 x - 1 < -2x > 3 或 x < -1c) |4 - x| ≥ 34 - x ≥ 3 或 4 - x ≤ -3-x ≥ -1 或 -x ≤ -7x ≤ 1 或x ≥ 76.a) 错误,绝对值永远是非负数,不可能与负数相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值相反数经典习题相反数与绝对值练习一、选择题:(1)a的相反数是( )(A)-a (B)1a (C)-1a(D)a-1(2)一个数的相反数小于原数,这个数是( )(A)正数 (B)负数 (C)零(D)正分数(3)一个数在数轴上所对应的点向右移到5个单位长度后,得到它的相反数的对应点,则这个数是( )(A)-2 (B)2 (C)52(D)-52(4)一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为12单位长,则这个数是( )(A)12或-12(B)14或-14(C)12或-14(D)-12或141.已知a≠b,a=-5,|a|=|b|,则b等于( )(A)a>b (B)a<b (C)不能确定D.a=b7.-103,π,-3.3的绝对值的大小关系是( )(A)103->|π|>|-3.3|; (B)103->|-3.3|>|π|;(C)|π|>103->|-3.3|; (D)103->|π|>|-3.3|8.若|a|>-a,则( )(A)a>0 (B)a<0 (C)a<-1(D)1<a二、填空题(1)一个数的相反数是它本身,这个数是__________;(2)-5的相反数是______,-3的倒数的相反数是____________ 。

(3)103的相反数是________,1132⎛⎫-⎪⎝⎭的相反数是_______,(a-2)的相反数是______;二、填空题:(1)在数轴上表示一个数的点,它离开原点的距离就是这个数的____________;(2)绝对值为同一个正数的有理数有_______________个;(3)一个数比它的绝对值小10,这个数是________________;(4)一个数的相反数的绝对值与这个数的绝对值的相反数的关系是______________;(5)一个数的绝对值与这个数的倒数互为相反数,则这个数是________________;(6)若a<0,b<0,且|a|>|b|,则a与b的大小关系是______________;(7)绝对值不大一3的整数是____________________,其和为_____________;(8)在有理数中,绝对值最小的数是_____;在负整数中,绝对值最小的数是_____;,若x为整数,则(9)设|x|<3,且x>1xx=_________________;,则(10)若|x|=-x,且x=1xx=_________________。

三、判断题(1)任何一个有理数的绝对值是正数;()(2)若两个数不相等,则这两个数的绝对值也不相等;()(3)如果一个数的绝对值等于它们的相反数,这个数一定是数;()(4)绝对值不相等的两个数一定不相等;()(5)若|a|>|b|时,则a>b; ()(6)当a为有理数时,|a|≥a;()三、判断题:(1)符号相反的数叫相反数;() (2)数轴上原点两旁的数是相反数;()(3)-(-3)的相反数是3;() (4)-a一定是负数;()(5)若两个数之和为0,则这两个数互为相反数;()(6)若两个数互为相数,则这两个数一定是一个正数一个负数。

()2.化简下列各数的符号:(1)-(-173); (2)-(+233);(3)+(+3); (4)-[-(+9)] 。

3.数轴上A点表示+7,B、C两点所表示的数是相反数,且C点与A点的距离为 2,求B点和C点各对应什么数?4.若a>0>b,且数轴上表示a的点A与原点距离大于表示b的点B 与原点的距离,试把a,-a,b,-b这四个数从小到大排列起来。

6.如果a,b表示有理数,在什么条件下,a+b 和a-b互为相反数?a+b与a-b的积为2?一、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;二、若-m>0,|m|=7,求m.三、若|a+b|+|b+z|=0,求a,b的值。

四、去掉下列各数的绝对值符号:(1)若x<0,则|x|=________________;(2)若a<1,则|a-1|=_______________;(3)已知x>y>0,则|x+y|=________________;(4)若a>b>0,则|-a-b|=__________________.五、比较-(-a)和-|a|的大小关系。

六、若a<0,b<0且|a|<|b|,试确定下列各式所表示的数是正数还是负数:(1)a+b(2)a-b (3)-a-b (4) b-a七、若22x x --=-1,求x 的取值范围。

八、一个有理数在数轴上对应的点为A ,将A 点向左移动3个单位长度,再向左 移动2个单位长度,得到点B ,点B 所对应的数和点A 对应的数的绝对值相等,求点 A 的对应的数是什么?九、化简|1-a|+|2a+1|+|a|,其中a<-2.一、选择题:1.已知a≠b,a=-5,|a|=|b|,则b等于( ) (A)+5 (B)-5 (C)0 (D)+5或-52.一个数在数轴上对应的点到原点的距离为m,则这个数的绝对值为( )(A)-m (B)m (C)±m (D)2m3.绝地值相等的两个数在数轴上对应的两点距离为8,则这两个数为( )(A)+8或- 8 (B)+4或-4 (C)-4或+8 (D)-8或+44.给出下面说法:<1>互为相反数的两数的绝对值相等;<2>一个数的绝对值等于本身,这个数不是负数;<3>若|m|>m,则m<0;<4>若|a|>|b|,则a>b,其中正确的有( ) (A)<1><2><3>;(B)<1><2<4>;(C)<1><3><4>;(D)<2><3><4>5.一个数等于它的相反数的绝对值,则这个数是( )(A)正数和零;(B)负数或零;(C)一切正数;(D)所有负数6.已知|a|>a,|b|>b,且|a|>|b|,则( )(A)a>b (B)a<b (C)不能确定D.a=b7.-103,π,-3.3的绝对值的大小关系是( )(A)103->|π|>|-3.3|; (B) 103->|-3.3|>|π|; (C)|π|>103->|-3.3|; (D) 103->|π|>|-3.3|8.若|a|>-a,则( )(A)a>0 (B)a<0 (C)a<-1(D)1<a二、填空题:(9)设|x|<3,且x>1x ,若x 为整数,则x=_________________; (10)若|x|=-x ,且x=1x ,则x=_________________。

三、判断题(1)任何一个有理数的绝对值是正数; ( )(2)若两个数不相等,则这两个数的绝对值也不相等; ( )(3)如果一个数的绝对值等于它们的相反数,这个数一定是数; ( )(4)绝对值不相等的两个数一定不相等; ( )(5)若|a|>|b|时,则a>b; ( )(6)当a为有理数时,|a|≥a;()四、解答题:一、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;二、若-m>0,|m|=7,求m.三、若|a+b|+|b+z|=0,求a,b的值。

六、若a<0,b<0且|a|<|b|,试确定下列各式所表示的数是正数还是负数:(1)a+b (2)a-b (3)-a-b (4) b-a七、若22xx--=-1,求x的取值范围。

八、一个有理数在数轴上对应的点为A,将A 点向左移动3个单位长度,再向左移动2个单位长度,得到点B,点B所对应的数和点A对应的数的绝对值相等,求点A的对应的数是什么?九、化简|1-a|+|2a+1|+|a|,其中a<-2.十、1、(教材变型题)若4x -=,则x =__________;若30x -=,则x =__________;若31x -=,则x =__________.2、(易错题)化简(4)--+的结果为___________3、(教材变型题)如果22a a -=-,则a 的取值范围是 ( )A 、0a >B 、0a ≥C 、0a ≤D 、0a <4、(创新题)代数式23x -+的最小值是 ( )A 、0B 、2C 、3D 、55、(章节内知识点综合题)已知a b 、为有理数,且0a <,0b >,a b >,则 ( )A 、a b b a <-<<-B 、b a b a -<<<-C 、a b b a -<<-<D 、b b a a -<<-< 十一、若3+-y x 与1999-+y x 互为相反数,求y x y x -+的值。

十二、当b 为何值时,5-12-b 有最大值,最大值是多少?十三、若|x |=3,|y |=2,且|x-y |=y-x ,求x+y 的值.十四、02b 1=++-a ,求()2001b a ++()2000b a ++…()2b a ++=+b a .。

相关文档
最新文档