流速测量(毕托管)实验
毕托管测速实验Word版
(四)毕托管测速实验一、实验目的和要求1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用毕托管测量点流速的技能;2.了解普朗特型毕托管的构造和适用性,并检验其量测精度,进一步明确传统流体力学量测仪器的现实作用。
二、实验装置本实验的装置如图4.1所示。
图4.1毕托管实验装置图1.自循环供水器;2.实验台;3.可控硅无级调速器;4.水位调节阀;5.恒压水箱;6.管嘴7.毕托管;8.尾水箱与导轨;9.测压管;10.测压计;11.滑动测量尺(滑尺);12.上回水管。
说明:经淹没管嘴6,将高低水箱水位差的位能转换成动能,并用毕托管测出其点流速值。
测压计10的测压管1、2用以测量低水箱位置水头,测压管3、4用以测量毕托管的全压水头和静压水头,水位调节阀4用以改变测点的流速大小。
图 4.2 毕托管结构示意图三、实验原理图4.3 毕托管测速原理图h k h g c u ∆=∆=2g c k 2= (4.1)式中:u ——毕托管测点处的点流速;c ——毕托管的校正系数;h ∆——毕托管全压水头与静水压头差。
H g u ∆'=2ϕ (4.2)联解上两式可得 H h c ∆∆='/ϕ (4.3) 式中:u ——测点处流速,由毕托管测定;ϕ'——测点流速系数;H ∆——管嘴的作用水头。
四、实验方法与步骤1、准备 )(a 熟悉实验装置各部分名称、作用性能,搞清构造特征、实验原理。
)(b 用医塑管将上、下游水箱的测点分别与测压计中的测管1、2相连通。
)(c 将毕托管对准管嘴,距离管嘴出口处约2~3cm ,上紧固定螺丝。
2、开启水泵顺时针打开调速器开关3,将流量调节到最大。
3、排气待上、下游溢流后,用吸气球(如医用洗耳球)放在测压管口部抽吸,排除毕托管及各连通管中的气体,用静水匣罩住毕托管,可检查测压计液面是否齐平,液面不齐平可能是空气没有排尽,必须重新排气。
4、测记各有关常数和实验参数,填入实验表格。
毕托管测量流速实验
毕托管测量流速实验一.实验目的要求1. 了解毕托管的工作原理。
2. 验证毕托管流量计算公式;3. 通过对毕托管测量流速的实验,进一步掌握毕托管的特性和适用环境; 二.实验装置本实验的装置如图所示。
图3毕托管测量流速实验装置图A 、电动机B 、风门C 、风机D 、U 形管微压计E 、毕托管F 、工作台三.实验原理毕托管由总压探头和静压探头组成。
利用流体总压和静压之差来测量流速的。
根据不可压缩流体的伯努利方程,流体参数在同一流线上有如下关系:2012p v p ρ+= (1)式中,0p 、p 分别为流体的总压和静压(单位a p ),ρ为流体密度(单位3/kg m )空气的密度在标准状态下,为1.29,v 为流体流速(单位/m s )。
由公式(1)可得 :v =(2)可见通过测量流体的总压0p 和静压p ,或者它们的差压0p p -,就可以根据公式(2)计算出流体的流速,这就是毕托管测速的基本原理。
为了修正总压和静压的测量误差,引入毕托管的校准系数ζ(生产厂家标定给出0.85),从而:v ζ=(3)当被测流体为气体时,且流动的马赫数(速度与声速之比)>0.3时,应考虑压宿性效应,这时计算公式为:v ζ=(4)公式(4)中,ε为气体的压缩性修正系数,可由下表查取。
表 压缩性修正系数与Ma 的关系四.实验方法与步骤1,熟悉实验装置各部分名称.结构特征.作用性能,记录有关常数。
2,启动风机,整风门位置至全开。
3,观察U 形管微压计,记录差压0p p-,同时记录热球风速仪数据4,整风门位置,U 形管微压计差压数据每减少4毫米,重复步骤3直到风门全闭。
五.实验成果及要求1.记录有关数据。
六.实验分析与讨论比较热球风速仪测量的v 和用毕托管测量的差压0p p -计算的v 误差大小,分析原因。
毕托管实验报告
福州大学土木工程学院本科实验教学示范中心学生实验报告工程流体力学实验题目:实验项目1:毕托管测速实验姓名:卞明勇学号:051001501 组别:1 实验指导教师姓名:艾翠玲同组成员:陈承杰陈思颖陈彦任戴晓斯2012年1月8日实验一毕托管测速实验一、实验目的要求:1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用测压管测量点流速的技术和使用方法。
2.通过对毕托管的构造和适用性的了解及其测量精度的检验,进一步明确水力学量测仪器的现实作用。
3.通过对管口的流速测量,从而分析管口淹没出流,流线的分布规律。
二、实验成果及要求三、实验分析与讨论1.利用测压管测量点压强时,为什么要排气?怎样检验排净与否?答:若测压管内存有气体,在测量压强时,水柱因含气泡而虚高,使压强测得不准确。
排气后的测压管一端通静止的小水箱中(此小水箱可用有透明的机玻璃制作,以便看到箱内的水面),装有玻璃管的另一端抬高到与水箱水面略高些,静止后看液面是否与水箱中的水面齐平,齐平则表示排气已干净。
2.毕托管的压头差δh和管嘴上、下游水位差δh之间的大小关系怎样?为什么?答:由于且即一般毕托管校正系数c=11‰(与仪器制作精度有关)。
喇叭型进口的管嘴出流,其中心点的点流速系数=0.9961‰。
所以。
3.所测的流速系数??说明了什么?答:若管嘴出流的作用水头为速v,则有,流量为q,管嘴的过水断面积为a,相对管嘴平均流称作管嘴流速系数。
若相对点流速而言,由管嘴出流的某流线的能量方程,可得式中:为流管在某一流段上的损失系数;为点流速系数。
本实验在管嘴淹没出流的轴心处测得=0.995,表明管嘴轴心处的水流由势能转换为动能的过程中有能量损失,但甚微。
实验结论:表格中我们可以得出:1,。
测点流速系数在轴线上时最大,为0.99,在轴线两边时流速系数较小为0.30,且几乎呈对称分布,通过对比毕托管在管轴线上不同位置得出的。
2. 测点流速在阀门半开,全开,全闭时流速不同,(全开时最大,半开次之,全闭最小),但流速系数几乎不变,说明流速系数不由流量大小决定。
毕托管测流速实验
毕托管测流速实验一、 实验目的1、 了解毕托管的构造和毕托管测流速的基本原理,掌握用毕托管测流速的方法。
2、 测定明渠过水断面上的流速分布,并绘制流速与水深的关系曲线。
二、 实验设备三、 实验原理毕托管前端和侧面都有小孔,它们分别由两根部相通的细管接入两根测压管。
即动压管与静压管,动压管通头部定端小孔,当小孔正对水流流向时,动压管所测得的是水流的全部机械能g v g p Z 22++ρ,而静压管所测的是同一点处水流的势能g pZ ρ+,所以两测压管的水面差)()2(2gp Z g v g p Z h ρρ+-++=∆,即为测点的流速水头,因此h g v ∆=2为提高测量的精度,用倾斜式比压计测定h∆,如倾角为α,两测压管水面间的读数差为时h∆,有α=h,考虑到毕托管对水流流场的扰动影响∆lsin⋅∆和动、静压孔的位置不同,引入点流速的修正系数C,C值由率定得到。
所以四、实验步骤1、排出毕托管和比压计中空气,调平比压计,使比压计两测压管水面齐平。
2、打开水槽进水阀门,水深控制20cm左右,待水流稳定后,记录水深和比压计读数。
3、逐步将毕托管上提(每次2-3cm),记录水深和比压计读数。
4、测读水槽首部量水堰测针读数,计算流量Q。
5、实验完毕将小铁盒套住毕托管头部。
五、注意事项1、排气后毕托管头部勿露出水面。
2、毕托管头部需正对水流流向。
3、比压计中水位稳定后再读数。
六、数据记录及问题讨论1、观测数据量水堰测针水面读数=比压计倾角读数α=毕托管修正系数C=2、问题讨论1)使用毕托管前为什么要排气?2)实验过程中为什么毕托管头部不能露出水面?3)为什么必须将毕托管正对水流方向3、数据纪律表格及计算。
毕托管测速实验
毕托管测速实验公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-(四)毕托管测速实验一、实验目的和要求1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用毕托管测量点流速的技能;2.了解普朗特型毕托管的构造和适用性,并检验其量测精度,进一步明确传统流体力学量测仪器的现实作用。
二、实验装置本实验的装置如图4.1所示。
图4.1毕托管实验装置图1.自循环供水器;2.实验台;3.可控硅无级调速器;4.水位调节阀;5.恒压水箱;6.管嘴7.毕托管;8.尾水箱与导轨;9.测压管;10.测压计;11.滑动测量尺(滑尺);12.上回水管。
说明:经淹没管嘴6,将高低水箱水位差的位能转换成动能,并用毕托管测出其点流速值。
测压计10的测压管1、2用以测量低水箱位置水头,测压管3、4用以测量毕托管的全压水头和静压水头,水位调节阀4用以改变测点的流速大小。
图 4.2 毕托管结构示意图三、实验原理图4.3 毕托管测速原理图(4.1)k2cg式中:u——毕托管测点处的点流速;c ——毕托管的校正系数;h ∆——毕托管全压水头与静水压头差。
H g u ∆'=2ϕ (4.2)联解上两式可得 H h c ∆∆='/ϕ (4.3) 式中:u ——测点处流速,由毕托管测定;ϕ'——测点流速系数;H ∆——管嘴的作用水头。
四、实验方法与步骤1、准备 )(a 熟悉实验装置各部分名称、作用性能,搞清构造特征、实验原理。
)(b 用医塑管将上、下游水箱的测点分别与测压计中的测管1、2相连通。
)(c 将毕托管对准管嘴,距离管嘴出口处约2~3cm ,上紧固定螺丝。
2、开启水泵 顺时针打开调速器开关3,将流量调节到最大。
3、排气 待上、下游溢流后,用吸气球(如医用洗耳球)放在测压管口部抽吸,排除毕托管及各连通管中的气体,用静水匣罩住毕托管,可检查测压计液面是否齐平,液面不齐平可能是空气没有排尽,必须重新排气。
毕托管测明槽流速分布实验报告
实验一毕托管测明槽流速分布实验报告一.实验目的和要求:二.计算公式:90。
三角堰过水流量:θ实= 14.7H2.48 (cm3/s)△h = △L sinθ三.观测值和计算值1.有关常数斜比压计倾斜角度水槽宽度: b = cm比托管校正系数:c =施测断面水深:h = cm900三角堰顶高程:△0 = cm900三角堰堰顶水面读数△1 = cmQ实= (cm3/s)2.观测值和计算值(见表)四.绘制过水断面中心垂线上的流速分布图(Z~U曲线)。
五.实验成果分析学生指导教师实验报告完成日期年月日实验二 文丘里管流量系数测定实验报告一.实验目的和要求: 二.计算公式K= 224a π (cm 5/2/s)60。
三角堰过水流量:Q 实 = 9.3362H 2.4596 (cm 3/s)θ计=文丘里管流量系数:μ=θ实/θ计三.实测值和计算值(见表)1.有关常数管径 d 1 = (cm ) 喉管直径d 2 = (cm )60.三角堰堰顶高程 ▽0 = (cm ) 2.观测值及计算值(见表)四.绘制文丘里流量计的H ~Q 关系曲线:五.实验成果分析学生指导教师实验报告完成日期年月日实验三 孔口流量系数测定一.实验目的和要求:二.计算公式ε = (d D)2μ =2gHθ实 = θθ实计三.实测值和计算值(见表)1.孔口有关常数内径 D = (cm ) 截面积 A = (cm 2) 量水体初重 W 2 = (kg ) 2.孔口流量系数观测及计算值(见表)四.绘制孔口流量系数随水头变化曲线(μ~H 曲线)。
五.实验成果分析学生指导教师实验报告完成日期年月日实验四 管咀流量系数测定一.实验目的和要求: 二.计算公式μ =2gHθ实 =θθ实计三.实测值和计算值(见表)1.管咀有关常数内径 D = (cm ) 截面积 A = (cm 2) 量水体初重 W 2 = (kg ) 2.管咀流量系数观测及计算值(见表)四.绘制管咀流量系数随水头变化曲线(μ~H 曲线):五.实验成果分析学生指导教师实验报告完成日期年月日实验五雷诺实验报告一.实验目的和要求:二.描述层流紊流:1 层流2 紊流三.计算公式四.实测及计算1 有关常数内径 d = cm ;截面积A = cm2 ;水温t = c ;比压计倾角 =水运动粘滞系数r = cm2/s2 观测及计算值(见表)五.绘制水头损失与流速关系曲线(I g h f~ I g V 曲线)和水头损失与雷诺数关系曲线(I g h f~ I g R e 曲线)。
毕托管测速实验完整版
毕托管测速实验Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】(四)毕托管测速实验一、实验目的和要求1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用毕托管测量点流速的技能;2.了解普朗特型毕托管的构造和适用性,并检验其量测精度,进一步明确传统流体力学量测仪器的现实作用。
二、实验装置本实验的装置如图所示。
图毕托管实验装置图1.自循环供水器;2.实验台;3.可控硅无级调速器;4.水位调节阀;5.恒压水箱;6.管嘴7.毕托管;8.尾水箱与导轨;9.测压管;10.测压计;11.滑动测量尺(滑尺);12.上回水管。
说 明:经淹没管嘴6,将高低水箱水位差的位能转换成动能,并用毕托管测出其点流速值。
测压计10的测压管1、2用以测量低水箱位置水头,测压管3、4用以测量毕托管的全压水头和静压水头,水位调节阀4用以改变测点的流速大小。
图 毕托管结构示意图三、实验原理图 毕托管测速原理图g c k 2= ()式中:u ——毕托管测点处的点流速;c ——毕托管的校正系数;h ∆——毕托管全压水头与静水压头差。
H g u ∆'=2ϕ ()联解上两式可得 H h c ∆∆='/ϕ () 式中:u ——测点处流速,由毕托管测定;ϕ'——测点流速系数; H ∆——管嘴的作用水头。
四、实验方法与步骤1、准备)(a熟悉实验装置各部分名称、作用性能,搞清构造特征、实验原理。
)(b用医塑管将上、下游水箱的测点分别与测压计中的测管1、2相连通。
)(c将毕托管对准管嘴,距离管嘴出口处约2~3cm,上紧固定螺丝。
2、开启水泵顺时针打开调速器开关3,将流量调节到最大。
3、排气待上、下游溢流后,用吸气球(如医用洗耳球)放在测压管口部抽吸,排除毕托管及各连通管中的气体,用静水匣罩住毕托管,可检查测压计液面是否齐平,液面不齐平可能是空气没有排尽,必须重新排气。
毕托管测速实验
基本实验一(物理概念类):毕托管测速实验
通过本实验理解基本的测速方法,掌握毕托管测速原理
1.自循环供水器;
2.实验台;
3.可控硅无级调速器;
4.水位调节阀;
5.恒压水箱;
6.管嘴;
7.毕托管;
8.尾水箱与导轨; 9.测压计; 10.测压计; 11.上回水管
毕托管测速原理实验装置如上图所示。
5为水箱,水经淹没管嘴6以一定的速度流出;7为毕托管,测量流出的流速值。
毕托管的总压水头和静压水头分别连到测压计10和9。
调节阀4用以改变水箱中的水位,从而改变测点的流速大小。
淹没管嘴的出流速度为
u=
u为-毕托管测点的流速;
式中
∆为毕托管总压水头和静压水头差(即速度水头);
h
c为毕托管的校正系数;
思考题
毕托管的速度水头和淹没管嘴的上下游之间水位差有无关系?为什么?
毕托管的轴线若与淹没管嘴出流速度方向不平行对测速有何影响?。
毕托管测速实验报告
毕托管测速实验报告毕托管测速实验报告引言:毕托管测速实验是一种常用的方法,用于测量流体在管道中的流速。
本实验旨在通过毕托管测速实验,探究流体在管道中的流速与管道直径、流量、管道材料等因素之间的关系,并通过实验数据的分析,得出相应的结论。
实验装置与原理:本实验采用毕托管作为测速装置,其原理是利用流体在管道中流动时产生的压力差来测量流速。
实验装置由一根直径较小、长度较长的管道组成,管道两端分别连接压力计和流量计。
当流体通过管道时,由于管道直径的变化,流速也会发生变化,从而产生不同的压力差。
通过测量这些压力差,可以推算出流体在管道中的流速。
实验步骤与数据记录:1. 准备工作:将实验装置清洗干净,并确保连接处无泄漏。
2. 调整流量:通过调节流量控制阀,使流量计显示所需的流量。
3. 测量压力差:打开压力计的阀门,记录两端压力差的读数。
4. 测量流速:根据流量计的读数,计算出流体在管道中的流速。
5. 重复实验:分别改变管道直径、流量和管道材料等条件,重复上述步骤,并记录实验数据。
实验结果与数据分析:通过多次实验,我们得到了一系列实验数据,并进行了相关的数据分析。
以下是部分实验结果的总结:1. 管道直径与流速的关系:实验结果表明,管道直径的增加会导致流速的减小。
这是因为管道直径增大,流体在管道中的流动面积增加,从而减小了流速。
2. 流量与流速的关系:实验结果显示,流量的增加会导致流速的增加。
这是因为流量的增加意味着单位时间内通过管道的流体量增加,从而使流速增大。
3. 管道材料与流速的关系:实验结果表明,不同材料的管道对流速的影响并不显著。
无论是金属管道还是塑料管道,其对流体流速的影响都较小。
结论:通过毕托管测速实验,我们得出以下结论:1. 管道直径与流速呈反比关系,即管道直径越大,流速越小。
2. 流量与流速呈正比关系,即流量越大,流速越大。
3. 管道材料对流速的影响较小,不同材料的管道对流体流速的影响并不显著。
实验三毕托管测速实验
实验三毕托管测速实验一、实验目的和要求1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用毕托管测量点流速的技能;2.了解普朗特型毕托管的构造和适用性,并检验其量测精度,进一步明确传统流体力学量测仪器的现实作用。
二、实验装置本实验的装置如图3.1所示。
图3.1毕托管实验装置图1.自循环供水器;2.实验台;3.可控硅无级调速器;4.水位调节阀;5.恒定水箱;6.管嘴;7.毕托管;8.尾水箱与导轨;9.测压管;10.测压计;11.滑动测量尺(滑尺);12.上回水管。
说明经淹没管嘴6,将高低水箱水位差的位能转换成动能,并用毕托管测出其点流速值。
测压计10的测压管1、2用以测量高、低水箱位置水头,测压管3、4用以测量毕托管的全压水头和静压水头,水位调节阀4用以改变测点的流速大小。
三、实验原理u∆∆=2c=kghh=(3.1)k2cg式中u——毕托管测点处的点流速;c——毕托管的校正系数;△h——毕托管全压水头与静水压头差。
ϕ(3.2)=2gHu∆ϕ(3.3)∆=/c∆hH式中u——测点处流速,由毕托管测定;ϕ——则点流速系数;△H——管嘴的作用水头。
四、实验方法与步骤1.准备(a)熟悉实验装置各部分名称、作用性能,搞清构造特征、实验原理。
(b)用医塑管将上、下游水箱的测点分别与测压计中的测管1、2相连通。
(c)将毕托管对准管嘴,距离管嘴出口处约2~3cm,上紧固定螺丝。
2.开启水泵顺时针打开调速器开关3,将流量调节到最大。
3.排气待上、下游溢流后,用吸气球(如医用洗耳球)放在测压管口部抽吸,排除毕托管及各连通管中的气体,用静水匣罩住毕托管,可检查测压计液面是否齐平,液面不齐平可能是空气没有排尽,必须重新排气。
4.测记各有关常数和实验参数,填入实验表格。
5.改变流速操作调节阀4并相应调节调速器3,使溢流量适中,共可获得三个不同恒定水位与相应的不同流速。
改变流速后,按上述方法重复测量。
6.完成下述实验项目:(1)分别沿垂向和沿流向改变测点的位置,观察管嘴淹没射流的流速分布;(2)在有压管道测量中,管道直径相对毕托管的直径在6~10倍以内时,误差在2~5%以上,不宜使用。
流速量测(毕托管)实验报告
流速量测(毕托管)实验一.目的要求⑴ 通过本次实验,掌握基本的测速工具(毕托管)的性能和使用方法。
⑵ 绘制各垂线上的流速分布图,点绘断面上的等流分布曲线,以加深对明槽水流流速分布的认识。
⑶ 根据实测的流速分布图,计算断面上的平均流速v 和流量Q 测 ,并与实验流量Q 实相比较。
二.仪器设备毕托管、比压计以及水槽三.实验原理毕托管是由两根同心圆的小管所组成。
A 管通头部顶端小孔,B 管与离头部顶端为3d 的断面上的环形孔相通。
环形孔与毕托管的圆柱表面垂直,因此它所测得的是水流的势能γρ+z 。
而A 管却正对流向,它所测得的是包括水流动能在内的全部机械能g v z 22++γρ,在测压牌上所反映的水面差:g v z g v z 22h 22=⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛++=∆γργρ即测点的流速水头。
为了提高量测的精度,将比压计斜放成α角,若两测压管水面之间的读数差为L ∆,则有h ∆=L ∆sin α,从而可以求得测点的流速表达式:αsin 22l g C h g C v ∆=∆=式中:C 为流速修正系数,对不同结构的毕托管,其值由率定得之。
本实验使用的毕托管,经率定C=1。
1.垂线流速分布图的画法,垂线平均流速的计算将所得的同一垂线各点流速,按选定的比例尺画在坐标纸上。
槽底的流速为零,水面的流速矢端为水面以下各点流速矢端向上顺延与水面相交的那一点。
由水深线及各点流速矢端所围成的矢量图,即垂线流速分布图。
显然,流速分布图的面积ω除以水深h ,就是垂线的平均流速v 。
垂线平均流速 hwv =式中: v 为垂线平均流速,cm/s :ω为垂线流速分布图的面积,㎝2:h 为水深,㎝ 。
2.断面平均流速的计算断面平均流速 ∑==ni i v 1n 1v式中:v 为断面平均流速,㎝3∕s ;i v 为第i 根垂线上的平均流速,㎝∕s ;n 为垂线个数。
3.流量的计算实测的流量Q 测vA =式中:Q 测为实测流量,㎝3∕s ; v 为断面平均流速,㎝∕s ;A 为过水断面面积,㎝2。
流速量测毕托管实验完成
武汉大学教学实验报告学院:水利水电学院 专业:水利类 2011年12月20日实验名称 流速量测(毕托管)实验 指导老师杨小亭姓名赵亮年级 10级 学号2010301580103成绩一:预习部分1:实验目的 2:实验基本原理3:主要仪器设备(含必要的元器件,工具)一、实验目的要求1、通过本次实验,掌握基本的测速工具(毕托管)的性能和使用方法。
2、绘制各垂线上的流速分布图,点绘断面上的等流速分布曲线,以加深对明槽水流流速分布的认识。
3、根据实测的流速分布图,计算断面上的平均流速v 和流量Q 测,并与实验流量Q 实相比较。
二、主要仪器设备毕托管、比压计及水槽。
简图如下:毕托管测速示意图三、实验原理毕托管是由两根同心圆的小管所组成。
A 管通头部顶端小孔,B 管与离头部顶端为3d 的断面上的环形孔相通。
环形孔与毕托管的圆柱表面垂直,因此它所测得的是水流的势能γpz +,在测压牌上所反映的水面差gu p z g u pz h 2)()2(22=+-++=∆γγ即为测点的流速水头。
二:实验操作部分1:实验数据,表格及数据处理 2:实验操作过程(可用图表示) 3结论为了提高量测的精度,将比压计斜放成α角,若两测压管水面之间的读数差为L ∆,则有αsin L h ∆=∆,从而可以求得测点的流速表达式: 式中 C —流速修正系数,对不同结构的毕托管,其值由率定得之。
本实验使用的毕托管,经率定C =1。
1、垂线流速分布图的画法,垂线平均流速的计算将所测得的同一垂线各点流速,按选定的比例尺画在坐标纸上。
槽底的底流为零,水面的流速矢端为水面以下各点流速矢端向上顺延与水面相交的那一点。
由水深线及各点流速矢端所围成的矢量图,即为垂线流速分布图。
显然,流速分布图的面积除以水深h ,就是垂线的平均流速u 。
垂线平均流速:hw u =式中 u —垂线平均流速(cm/s );w —垂线流速分布图的面积(cm 2); h —水深(cm )。
毕托管测速实验
毕托管测速实验一、目的和要求1.通过对管嘴淹没出流的点流速和点流速系数的测量,掌握用Pitot 管测量点流速的技能;2.了解Prandtl 型Pitot 管的构造和实用性,并检验其量测精度,进一步明确传统流体力学量测仪器的现实作用。
二、实验原理根据Bernoulli 方程,Pitot 管所测点的速度表达式为:h k h g c u ∆=∆=2其中,u ——Pitot 管测点的流速;c ——Pitot 管的校正系数,取c=1.0(一般c=1±1‰);g c k 2=; △h ——Pitot 管的总水头与静压水头差。
又根据Bernoulli 方程,从孔口出流计算测点的速度表达式为:H g u ∆'=2ϕ其中,u ——测点的速度,由Pitot 管测定;△H ——管嘴的作用水头,由测压管1和2号管的水位差确定;ϕ'——测点流速系数,上两式相比可得:H h c ∆∆='ϕ (一般ϕ'=0.996±1‰)三、实验装置1.实验装置如图1所示图1 毕托管实验装置图1自循环供水器;2实验台;3可控硅无级调速器;4水位调节阀;5恒压水箱;6管嘴;7毕托管;8尾水箱与导轨;9测压管;10测压计;11滑动测量尺;12上回水管2.装置使用说明a .Pitot管7在导轨8上可以上下、左右移动,调整测点的位置;b.测压管9,其中1和2号管用以测量高、低水箱水位差,3和4号管用以测量Pitot 管的总水头和静水头;c..水位调节阀用以改变测点流速的大小;四、实验步骤1.准备a.熟悉实验装置各部分名称和作用,分解Pitot管,搞清其构造和原理;b.用医塑管将高、低水箱的测压点分别与测压管9中的1和2号管相连通;c.将Pitot管对准管嘴,距离管嘴出口处约2~3cm(轴向偏差小于10度),上紧固定螺丝;d.记录有关常数;2.开启水泵顺时针打开调速器开关3,将供水流量调节到最大;3.排气待上、下游水箱溢流后,用吸气球(如医用洗耳球)放在测压管口部抽吸,排除Pitot管及各连通管中的气体。
毕托管测量流速实验
毕托管测量流速实验
毕托管测量流速实验是使用毕托管测量流体流量的一种方法。
在实验中,流体从一端进入毕托管,流经一段距离后到达另一端。
通过测量毕托管两端的压力差和毕托管的几何尺寸,可以计算出流体的平均流速。
实验步骤:
1. 准备毕托管、水箱、水流调节器、压力计等实验器材。
2. 将水箱中的水调至一定高度,使水流进入毕托管。
调节水流量,使其稳定且流速不超过毕托管的极限流速。
3. 用压力计分别测量毕托管两端的压力,并记录数据。
4. 根据毕托管的几何尺寸和压力差计算水流速度。
5. 重复实验多次,取平均值作为最后的实验结果。
实验注意事项:
1. 水流量必须稳定且不超过毕托管的极限流速。
2. 毕托管两端的压力差不能过大,否则会影响实验结果。
3. 实验过程中要小心操作,防止水流的波动和机械伤害。
4. 实验结束后要及时清洗实验器材。
实验结果分析:
1. 测量值的精度取决于毕托管的尺寸精度和压力测量器的精度。
2. 测量结果还受到流体本身流动状态的影响,如是否属于层流状态等。
3. 测量结果会受到管道摩擦、阻力等因素的影响,因此并不完全准确。
毕托管测量流速实验是流体力学中常用的实验方法之一。
通过实验研究流体的流动状态,不仅可以加深对流体力学理论的理解,还可以应用于各种实际工程中。
毕托管测明槽流速分布实验报告
实验一毕托管测明槽流速分布实验报告一.实验目的和要求:二.计算公式:90。
三角堰过水流量:θ实= 14.7H2.48 (cm3/s)△h = △L sinθ三.观测值和计算值1.有关常数斜比压计倾斜角度水槽宽度: b = cm比托管校正系数:c =施测断面水深:h = cm900三角堰顶高程:△0 = cm900三角堰堰顶水面读数△1 = cmQ实= (cm3/s)2.观测值和计算值(见表)四.绘制过水断面中心垂线上的流速分布图(Z~U曲线)。
五.实验成果分析学生指导教师实验报告完成日期年月日实验二 文丘里管流量系数测定实验报告一.实验目的和要求: 二.计算公式K= 24aπ (cm 5/2/s)60。
三角堰过水流量:Q 实 = 9.3362H 2.4596 (cm 3/s) θ计=文丘里管流量系数:μ=θ实/θ计三.实测值和计算值(见表)1.有关常数管径 d 1 = (cm ) 喉管直径d 2 = (cm )60.三角堰堰顶高程 ▽0 = (cm ) 2.观测值及计算值(见表)四.绘制文丘里流量计的H ~Q 关系曲线:五.实验成果分析学生指导教师实验报告完成日期年月日实验三 孔口流量系数测定一.实验目的和要求:二.计算公式ε = (d D )2 μ =2gHθ实=θθ实计三.实测值和计算值(见表)1.孔口有关常数内径 D = (cm ) 截面积 A = (cm 2) 量水体初重 W 2 = (kg ) 2.孔口流量系数观测及计算值(见表)四.绘制孔口流量系数随水头变化曲线(μ~H 曲线)。
五.实验成果分析学生指导教师实验报告完成日期年月日实验四 管咀流量系数测定一.实验目的和要求: 二.计算公式μ =2gHθ实=θθ实计三.实测值和计算值(见表)1.管咀有关常数内径 D = (cm ) 截面积 A = (cm 2) 量水体初重 W 2 = (kg ) 2.管咀流量系数观测及计算值(见表)四.绘制管咀流量系数随水头变化曲线(μ~H 曲线):五.实验成果分析学生指导教师实验报告完成日期年月日实验五雷诺实验报告一.实验目的和要求:二.描述层流紊流:1 层流2 紊流三.计算公式四.实测及计算1 有关常数内径 d = cm ;截面积A = cm2 ;水温t = c ;比压计倾角 =水运动粘滞系数r = cm2/s2 观测及计算值(见表)五.绘制水头损失与流速关系曲线(I g h f~ I g V 曲线)和水头损失与雷诺数关系曲线(I g h f~ I g R e 曲线)。
毕托管实验报告
一、实验目的1. 熟悉毕托管原理及其应用;2. 掌握毕托管仪器的使用方法;3. 了解流体力学在工程中的应用。
二、实验原理毕托管是一种测量流体流速的仪器,其原理是利用流体在流速不同时,压力不同的特性。
当流体通过毕托管时,流速大的地方压力低,流速小的地方压力高。
通过测量压力差,可以计算出流体的流速。
毕托管仪器的原理如下:1. 流体通过毕托管时,流速大的地方压力低,流速小的地方压力高;2. 利用压力差传感器测量压力差;3. 根据压力差和已知流量系数,计算出流体的流速。
三、实验仪器与设备1. 毕托管仪器一套;2. 压力差传感器;3. 水泵;4. 流量计;5. 计时器;6. 温度计;7. 管道;8. 砂轮;9. 数据采集器。
四、实验步骤1. 将毕托管仪器安装在管道上,确保仪器与管道紧密连接;2. 打开水泵,调整流量,使流体通过毕托管;3. 使用压力差传感器测量压力差;4. 记录流量、压力差、温度等数据;5. 关闭水泵,关闭毕托管仪器;6. 将实验数据输入数据采集器,进行数据处理和分析。
五、实验数据及结果1. 实验数据:流量:Q = 0.1 m³/s;压力差:ΔP = 0.5 kPa;温度:T = 20℃。
2. 实验结果:根据实验数据,利用毕托管原理,计算出流体流速为:v = √(2ΔP/ρ) = √(2×0.5/1000) ≈ 0.07 m/s。
六、实验分析1. 通过本次实验,掌握了毕托管原理及其应用;2. 熟悉了毕托管仪器的使用方法;3. 了解流体力学在工程中的应用;4. 实验结果与理论计算值基本一致,说明毕托管仪器具有较好的测量精度。
七、实验总结1. 毕托管是一种测量流体流速的有效仪器,具有操作简便、精度高等优点;2. 在工程实践中,毕托管广泛应用于流体流速的测量,如管道流量测量、风洞试验等;3. 本实验成功完成了毕托管原理的验证,为今后相关实验和研究奠定了基础。
八、注意事项1. 实验过程中,确保毕托管仪器与管道连接紧密,避免泄漏;2. 实验数据应准确记录,以便后续数据处理和分析;3. 实验过程中,注意安全操作,避免意外事故发生。
毕托管测速实验
(四)毕托管测速实验之马矢奏春创作一、实验目的和要求1.通过对管嘴淹没出流点流速及点流速系数的丈量,掌握用毕托管丈量点流速的技能;2.了解普朗特型毕托管的构造和适用性,并检验其量测精度,进一步明确传统流体力学量测仪器的现实作用.二、实验装置本实验的装置如图4.1所示.7.毕托管;8.尾水箱与导轨;9.测压管;10.测压计;11.滑动丈量尺(滑尺);12.上回水管.说明:经淹没管嘴6,将高低水箱水位差的位能转换成动能,并用毕托管测出其点流速值.测压计10的测压管1、2用以丈量低水箱位置水头,测压管3、4用以丈量毕托管的全压水头和静压水头,水位调节阀4用以改变测点的流速年夜小.图 4.2 毕托管结构示意图三、实验原理图4.3 毕托管测速原理图(4.1)k2cg式中:u ——毕托管测点处的点流速;c ——毕托管的校正系数;h ∆——毕托管全压水头与静水压头差.H g u ∆'=2ϕ(4.2)联解上两式可得H h c ∆∆='/ϕ(4.3) 式中:u ——测点处流速,由毕托管测定;ϕ'——测点流速系数;H∆——管嘴的作用水头.四、实验方法与步伐1、准备)(a 熟悉实验装置各部份名称、作用性能,搞清构造特征、实验原理.)(b 用医塑管将上、下游水箱的测点分别与测压计中的测管1、2相连通.)(c 将毕托管瞄准管嘴,距离管嘴出口处约2~3cm,上紧固定螺丝.2、开启水泵顺时针翻开调速器开关3,将流量调节到最年夜.3、排气待上、下游溢流后,用吸气球(如医用洗耳球)放在测压管口部抽吸,排除毕托管及各连通管中的气体,用静水匣罩住毕托管,可检查测压计液面是否齐平,液面不齐平可能是空气没有排尽,必需重新排气.4、测记各有关常数和实验参数,填入实验表格.5、改变流速把持调节阀4并相应调节调速器3,使溢流量适中,共可获得三个分歧恒定水位与相应的分歧流速.改变流速后,按上述方法重复丈量.6、完成下述实验项目:(1)分别沿垂向和沿流向改变测点的位置,观察管嘴淹没射流的流速分布;(2)在有压管道丈量中,管道直径相对毕托管的直径在6~10倍以内时,误差在2~5%以上,不宜使用.试将毕托管头部伸入到管嘴中,予以验证.7、实验结束时,按上述3的方法检查毕托管比压计是否齐平.五、实验结果及要求实验装置台号NO.校正系数c=1.0, k=44.27 c实验记录表格cm)h cm)画出管嘴淹没射流速度分布如图:有图可看出,成抛物线分布,结果准确.六、实验分析与讨论1. 利用测压管丈量点压强时,为什么要排气?怎样检验排净与否?毕托管、测压管及其连通管只有布满被测液体,即满足连续条件,才有可能测得真值, 否则如果其中夹有气柱, 就会使测压失真, 从而造成误差. 误差值与气柱高度和其位置有关.对非梗塞性气泡,虽不发生误差,但如果不排除,实验过程中很可能酿成梗塞性气柱而影响量测精度. 检验的方法是毕托管置于静水中, 检查分别与毕托管全压孔及静压孔相连通的两根测压管液面是否齐平.如果气体已排净,不论怎样颤动塑料连通管,两测管液面恒齐平.2. 毕托管的压头差Δh和管嘴上下游水位差ΔH 之间的年夜小关系怎样?为什么?Δh年夜于ΔH,本实验在管嘴淹没出流的轴心处测得过程中有能量损失,但甚微.3. 所测的流速系数ϕ′说明了什么?实验存在一定的误差,但误差很小.4. 据激光测速仪检测,距孔口2-3 cm轴心处,其点流速系数ϕ′为0.996,试问本实验的毕托管精度如何?如何确定毕托管的矫正系数c ?若以激光测速仪测得的流速为真值 u,则有ϕ′为 0.996, 而毕托管测得的该点流速为 208.6cm/s,精度还行,则欲率定毕托管的修正系数,则可令C=0.996/1.023=0.97.-2m/ s,流速过小过年夜都不宜采纳,为什么?另测速时要求探头对正水流方向(轴向装置偏差不年夜于10 度),试说明其原因(低流速可用倾斜压差计).1)施测流速过年夜过小城市引起较年夜的实测误差,当流速年夜于2m/s 时,由于水流流经毕托管头部时会呈现局部份离现象,从而使静压孔测得的压强偏低而造成误差. (2)同样,若毕托管装置偏差角(流速 u 是实际流速 u 在其轴向的分速)过年夜,亦会引起较年夜的误差.6. 为什么在光、声、电技术高度发展的今天,仍然经常使用毕托管这一传统的流体测速仪器?毕托管测速原理是能量守恒定律,容易理解.而毕托管经长期应用,不竭改进,已十分完善 .具有结构简单,使用方便,丈量精度高,稳定性好等优点.因而被广泛应用于液、气流的丈量(其丈量气体的流速可达 60m/s) . 光、声、电的测速技术及其相关仪器,虽具有瞬时性,灵敏、精度高以及自动化记录等诸多优点,有些优点毕托管是无法到达的.但往往因其机构复杂,使用约束条件多及价格昂贵等因素,从而在应用上受到限制.尤其是传感器与电器在信号接收与放年夜处置过程中,有否失真,或者随使用时间的长短,环境温度的改变是否飘移等,难以直观判断.致使可靠度难以掌控, 因而所有光、电测速仪器, 声、包括激光测速仪都不能不用专门装置按期率定(有时是利用毕托管作率定) . 可以认为至今毕托管测速仍然是最可信,最经济可靠而简便的测速方法.。
毕托管测速实验
毕托管测速实验一、实验目的和要求1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用毕托管测量点流速的技能。
2.了解普朗特型毕托管的构造和适用性,并检验其量测精度,进一步明确传统流体力学量测仪器的现实作用。
二、实验装置本实验的装置如图3.1所示。
图3.1 毕托管实验装置图1.自循环供水器;2.实验台;3.可控硅无级调速器;4.水位调节阀;5.恒压水箱;6.管嘴;7.毕托管;9.测压管;10.测压计;11.滑动测量尺(滑尺);12.上回水管。
说明:经淹没管嘴6,将高低水箱水位差的位能转换成动能,并用毕托管测出其点流速值。
测压计10的测压管1、2用以测量高、低水箱位置水头,测压管3、4用以测量毕托管的全压水头和静压水头,水位调节阀4用以改变测点的流速大小。
本书所说毕托管均指普兰特毕托管。
图3.2 实验室用测流体点速度的毕托管三、实验原理这样一根直角弯管就是最初的毕托管,见图3.3 ,图3.3 毕托管测速原理示意图22A v v =0v 0v A B A B A B g A B ρρρρρ++=++====∆BBAAB A B A A B B A B A B P P Z Z ggggZ Z Z Z P P V V h 其中驻点流速简化后:,分别为、两点的位置水头,分别为、两点的压能,分别为、两点流线方向速度,分别为水的密度和加速度是、两点的压能水头差V =k = (3.1) 式中 V ——毕托管测点处的点流速; c ——毕托管的校正系数;h ∆——毕托管动压水压头与静水压头差。
V ϕ= (3..2) 联解上两式可得ϕ'= (3.3) 式中 V ——测点处流速,由毕托管测定;'ϕ——测点流速系数; H ∆——管嘴的作用水头。
四、实验方法与步骤1.准备(a )熟悉实验装置各部分名称、作用性能,搞清构造特征、实验原理。
(b )用医塑管将上、下游水箱的测点分别与测压计中的测管1、2相连通。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉大学教学实验报告
一、实验目的
1、通过本次实验,掌握基本的测速工具(毕托管)的性能和使用方法。
2、绘制垂线上的流速分布图,以加深对明槽水流流速分布的认识。
二、实验原理
毕托管是由两根同心圆的小管所组成。
A 管通头部顶端小孔,B 管与离头部顶端为3d 的断面上的环形孔相通。
环形孔与毕托管的圆柱表面垂直,因此它所测得的是水流的势能γ
p
z +
,在测压
牌上所反映的水面差g
u p z g u p
z h 2)()2(2
2=+-++=∆γγ即为测点的流速水头。
三、实验仪器
毕托管、比压计及水槽。
简图如下:
图1 毕托管测速示意图
为了提高量测的精度,将比压计斜放成α角,若两测压管水面之间的读数差为
L ∆,则有αsin L h ∆=∆,从而可以求得测点的流速表达式:。