公务员考试行测备考“多次相遇”解题技巧
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公务员考试行测备考:“多次相遇”解题技巧
“多次相遇”问题有直线型和环型两种类型。相对来讲,直线型更加复杂。环型只是单纯的周期问题。现在我们分开一一进行讲解。首先,来看直线型多次相遇问题。
一、直线型
直线型多次相遇问题宏观上分“两岸型”和“单岸型”两种。“两岸型”是指甲、乙两人从路的两端同时出发相向而行;“单岸型”是指甲、乙两人从路的一端同时出发同向而行。现在分开向大家一一介绍:
(一)两岸型
两岸型甲、乙两人相遇分两种情况,可以是迎面碰头相遇,也可以是背面追及相遇。题干如果没有明确说明是哪种相遇,考生对两种情况均应做出思考。
1、迎面相遇:
如下图,甲、乙两人从A、B两地同时相向而行,第一次迎面相遇在a处,(为清楚表示两人走的路程,将两人的路线分开画出)则共走了1个全程,到达对岸b后两人转向第二次迎面相遇在c处,共走了3个全程(把甲的bc挪到下边乙处),则从第一次相遇到第二次相遇走过的路程是第一次相遇的2倍。之后的每次相遇都多走了2个全程。所以第三次相遇共走了5个全程,依次类推得出:第n次相遇两人走的路程和为(2n-1)s(s为全程,下同)。
※注:第二次相遇多走的路程是第一次相遇的2倍,分开看每个人都是2倍关系,经常可以用这个“2倍关系”解题。即对于甲和乙而言从a到c走过的路程是从起点到a的2倍。
2、背面相遇
与迎面相遇类似,背面相遇同样是甲、乙两人从A、B两地同时出发,如下图,此时可假设全程为4份,甲1分钟走1份,乙1分钟走5份。则第一次背面相遇在a处。第3
分钟,甲走3份,乙走15份,两人在c处第二次背面相遇。我们可以观察,第一次背面相遇时,两人的路程差是1个全程,第二次背面相遇时,两人的路程差为3个全程。同样第二次相遇多走的路程是第一次相遇的2倍,单看每个人多走的路程也是第一次的2倍。依次类推,得:第n次背面追及相遇两人的路程差为(2n-1)s。
(二)单岸型
单岸型是两人同时从一端出发,与两岸型相似,单岸型也有迎面碰头相遇和背面追及相遇两种情况。
1、迎面相遇:
如下图,甲、乙两人同时从A端出发,假设全程为3份,甲每分钟走2份,乙每分钟走4份,则甲乙第一次迎面相遇在a处,此时甲走了2份,乙走了4份,共走2个全程。再过1分钟,甲共走了4份,乙共走了8份,在b处迎面第二次相遇,共走4个全程,则从a处相遇到b处两人共走了两个全程,与第一次相遇时的路程和相同,依次类推,每次迎面相遇多走2个全程,可得出:当第n次迎面相遇时,两人的路程和为2ns,每次相遇用的时间相同。
2、背面相遇
与迎面相遇相似,假设全程为3份,甲每分钟走1份,乙每分钟走7份,则第一次背面相遇在a处,2分钟后甲走了2份,乙走了14份,两人在b处背面相遇。由图,第一次相遇两人走的路程差为2S,第二次相遇两人走的路程差为4S,依次类推,每次相遇,两人多走的路程差均为2s,可以得出:当第n次背面相遇时,两人的路程差为2ns,每次相遇用的时间相同。
“直线型”总结(熟记)
①两岸型:
第n次迎面相遇,两人的路程和是(2n-1)S。
第n次背面相遇,两人的路程差是(2n-1)S。
②单岸型:
第n次迎面相遇,两人的路程和为2ns,每次相遇用的时间相同。
第n次背面相遇,两人的路程差为2ns,每次相遇用的时间相同。
下面列出几种今后可能会考到的直线型多次相遇问题常见的类型:
{类型一}:根据“2倍关系”求AB两地的距离。
【例1】甲、乙两人在A、B两地间往返散步,甲从A,乙从B同时出发,第一次相遇点距B
60米,当乙从A处返回时走了10米第二次与甲相遇。A、B相距多少米?
A、150
B、170
C、180
D、200
【答案及解析】B。如下图,第一次相遇在a处,第二次相遇在b处,aB的距离为60,Ab的距离为10。以乙为研究对象,根据2倍关系,乙从a到A,再到b共走了第一次相遇的2倍,即为60×2=120米,Ab为10,则Aa的距离为120-10=110米,则AB距离为110+60=170米。
{类型二}:告诉两人的速度和给定时间,求相遇次数。
【例2】甲、乙两人在长30米的泳池内游泳,甲每分钟游37.5米,乙每分钟游52.5米。
两人同时分别从泳池的两端出发,触壁后原路返回,如是往返。如果不计转向的时间,则
从出发开始计算的1分50秒内两人共相遇多少次?
A、2
B、3
C、4
D、5
【答案及解析】B。题目没说是迎面还是背面,所以两种相遇的次数都应该计算。
法一:根据相遇全程数。如果是迎面相遇,则走的全程的个数为
个,根据迎面相遇n次,走的全程为2n-1=5,求得n=3;如果是背面相遇,则走的全程数为
,故在1分50秒内,不能背面相遇。所以共相遇3次。
法二:根据相遇时间。第一次迎面相遇时间为
秒走一个全程。共110秒,共110÷20=5.5个,走的全程数为2n-1=5个,求得n=3;如果是背面相遇,则第一次相遇的时间为
秒>110秒,故不能背面相遇。
{类型三}:告诉两人的速度和任意两次迎面相遇的距离,求AB两地的距离。
【例3】甲、乙两车分别从A、B两地同时出发,在A、B间不断往返行驶。甲车每小时行
45千米,乙车每小时行36千米,已知两车第2次与第3次迎面相遇的地点相距40千米,
则A、B相距多少千米?
A、90
B、180
C、270
D、110
【答案及解析】A。法一:相同时间,甲、乙路程比为45:36=5:4,则将全程分成9份。则一个全程时甲走5份,乙走4份。以甲为研究对象,第2次相遇,走的全程数为2×2-1=3个,则甲走的份数为3×5=15份,一个全程为9份,则第2次相遇甲走的份数转化为全程的个数为15÷9=1…6份,1个全程后在乙端,则从乙端数6份。第3次相遇走的份数为(2×3-1)×5=25份,转化为全程的个数为25÷9=2…7,2个全程后在甲端,则从甲端数7份。如下图:
由图第2次和第3次相遇之间共有4份为40千米,则AB相距
=90千米。
法二:除了上述基础公式的利用,我们也可以引入“沙漏模型”。利用沙漏模型解题的前提是题干中已知两人的速度。将速度转化为相同路程的条件下两人的时间比,则以时间为刻度,画出两人到达对岸的路线图,两人走的路线图相交的点即为两人相遇的地点。s-t图中的路线因像古代记时间的沙漏故称为“沙漏模型”。本题中,甲、乙走到端点用的时间比为36:45=4:5。如下图: