电场力的性质
电场力的性质
第九章 电场第一讲 电场力的性质考点归纳分析一、 电荷及电荷守恒定律1、自然界中只存在两种电荷,一种是正电,即用丝绸摩擦玻璃棒,玻璃棒带正电;另一种带负电,用毛皮摩擦橡胶棒,橡胶棒带负电,毛皮带正电。
电荷间存在着相互作用的引力或斥力。
电荷在它的周围空间形成电场,电荷间的相互作用力就是通过电场发生的。
电荷的多少叫电荷量,简称电量。
元电荷e=1.6×10-19C ,所有带电体的电荷量都等于e的整数倍。
2、使物体带电叫做起电。
使物体带电的方法有三种:(1)摩擦起电;(2)接触带电;(3)感应起电。
3、电荷既不能创造,也不能消灭,它只能从一个物体转移到另一个物体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量不变。
这叫做电荷守恒定律。
二、点电荷如果带电体间的距离比它们的大小大得多,带电体便可看作点电荷。
三、库仑定律1、内容:在真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的平方成反比,作用力的方向在它们的连线上。
2、公式:221rQ Q k F ,F叫库仑力或静电力,也叫电场力,F可以是引力,也可以是斥力,K叫静电力常量,公式中各量均取国际单位制单位时,K=9.0×109N ·m 2/C 23、适用条件:(1)真空中;(2)点电荷。
四、电场强度1、电场:带电体周围存在的一种物质,由电荷激发产生,是电荷间相互作用的介质。
只要电荷存在,在其周围空间就存在电场。
电场具有力的性质和能的性质。
2、电场强度:(1)定义:放入电场中某点的试探电荷所受的电场力跟它的电荷量的比值叫做该点的电场强度。
它描述电场的力的性质。
(2)公式:q F E =,取决于电场本身,与q、F无关,适用于一切电场;2r Q K E =,仅适用于点电荷在真空中形成的电场。
(3)方向:规定电场中某点的场强方向跟正电荷在该点的受力方向相同。
(4)多个点电荷形成的电场的场强等于各个点电荷单独存在时在该点产生场强的矢量和。
电场力的性质
电场力的性质一、电场强度 1.静电场(1)电场是存在于电荷周围的一种物质,静电荷产生的电场叫静电场.(2)电荷间的相互作用是通过电场实现的.电场的基本性质是对放入其中的电荷有力的作用. 2.电场强度(1)物理意义:表示电场的强弱和方向.(2)定义:电场中某一点的电荷受到的电场力F 跟它的电荷量q 的比值叫做该点的电场强度. (3)定义式:E =Fq.(4)标矢性:电场强度是矢量,正电荷在电场中某点受力的方向为该点电场强度的方向,电场强度的叠加遵从平行四边形定则. 二、电场线 1.定义:为了直观形象地描述电场中各点电场强度的大小及方向,在电场中画出一系列的曲线,使曲线上各点的切线方向表示该点的电场强度方向,曲线的疏密表示电场强度的大小. 2.特点:(1)电场线从正电荷或无限远处出发,终止于负电荷或无限远处; (2)电场线在电场中不相交;(3)在同一电场里,电场线越密的地方场强越大; (4)电场线上某点的切线方向表示该点的场强方向; (5)沿电场线方向电势逐渐降低; (6)电场线和等势面在相交处互相垂直. 3.几种典型电场的电场线(如图所示).4.电场线与电荷运动的轨迹(1)电荷运动的轨迹与电场线一般不重合.若电荷只受电场力的作用,在以下条件均满足的情况下两者重合: ①电场线是直线.②电荷由静止释放或有初速度,且初速度方向与电场线方向平行. (2)由粒子运动轨迹判断粒子运动情况:①粒子受力方向指向曲线的内侧,且与电场线相切. ②由电场线的疏密判断加速度大小.③由电场力做功的正负判断粒子动能的变化. 基础测试1.[对电场强度概念的理解]关于电场强度的概念,下列说法正确的是( )A .由E =Fq可知,某电场的场强E 与q 成反比,与F 成正比B .正、负试探电荷在电场中同一点受到的电场力方向相反,所以某一点场强方向与放入试探电荷的正负有关C .电场中某一点的场强与放入该点的试探电荷的正负无关D .电场中某一点不放试探电荷时,该点场强等于零2.[对电场线概念的理解]以下关于电场和电场线的说法中正确的是( )A .电场、电场线都是客观存在的物质,因此电场线不仅能在空间相交,也能相切B .在电场中,凡是电场线通过的点,场强不为零,不画电场线区域内的点场强为零C .同一试探电荷在电场线密集的地方所受电场力大D .电场线是人们假想的,用以表示电场的强弱和方向,客观上并不存在3.[电场强度的矢量合成]如图所示,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 点为半圆弧的圆心,∠MOP =60°.电荷量相等、符号相反的两个点电荷分别置于M 、N 两点,这时O 点电场强度的大小为E 1;若将N 点处的点电荷移至P 点,则O 点电场强度的大小变为E 2.E 1与E 2之比为 ( )A .1∶2B .2∶1C .2∶ 3D .4∶ 34.[带电粒子在电场中的运动分析]实线为三条方向未知的电场线,从电场中的M 点以相同的速度飞出a 、b 两个带电粒子,a 、b 的运动轨迹如图中的虚线所示(a 、b 只受电场力作用),则( )A .a 一定带正电,b 一定带负电B .电场力对a 做正功,对b 做负功C .a 的速度将减小,b 的速度将增大D .a 的加速度将减小,b 的加速度将增大考点一 电场强度的叠加与计算 1.场强的公式三个公式⎩⎪⎪⎨⎪⎪⎧E =F q ⎩⎪⎨⎪⎧ 适用于任何电场与检验电荷是否存在无关E =kQr 2⎩⎪⎨⎪⎧ 适用于点电荷产生的电场Q 为场源电荷的电荷量E =U d ⎩⎪⎨⎪⎧适用于匀强电场U 为两点间的电势差,d 为沿电场方向两点间的距离2.电场的叠加(1)电场叠加:多个电荷在空间某处产生的电场强度为各电荷单独在该处所产生的电场强度的矢量和.(2)运算法则:平行四边形定则.例1如图所示,分别在A 、B 两点放置点电荷Q 1=+2×10-14C 和Q 2=-2×10-14C.在AB 的垂直平分线上有一点C ,且AB =AC =BC =6×10-2m .求:(1)C 点的场强;(2)如果有一个电子静止在C 点,它所受的库仑力的大小和方向如何?突破训练1 如图所示,在水平向右、大小为E 的匀强电场中,在O 点固定一电荷量为Q 的正电荷,A 、B 、C 、D 为以O 为圆心、半径为r 的同一圆周上的四点,B 、D 连线与电场线平行,A 、C 连线与电场线垂直.则( )A .A 点的场强大小为E2+k 2Q 2r4B .B 点的场强大小为E -k Qr 2C .D 点的场强大小不可能为0D .A 、C 两点的场强相同突破训练2 均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场.如图所示,在半球面AB 上均匀分布正电荷,总电荷量为q ,球面半径为R ,CD 为通过半球顶点与球心O 的直线,在直线上有M 、N 两点,OM =ON =2R .已知M 点的场强大小为E ,则N 点的场强大小为 ( ) A .kq2R 2-EB .kq4R 2 C .kq4R2-ED .kq4R 2+E 考点二 两个等量点电荷电场的分布等量同种点电荷和等量异种点电荷的电场线的比较例2 如图所示,两个带等量负电荷的小球A 、B (可视为点电荷),被固定在光滑的绝缘水平面上,P 、N 是小球A 、B 连线的水平中垂线上的两点,且PO =ON .现将一个电荷量很小的带正电的小球C (可视为质点)由P 点静止释放,在小球C 向N 点运动的过程中,下列关于小球C 的说法可能正确的是 ( )A .速度先增大,再减小B .速度一直增大C .加速度先增大再减小,过O 点后,加速度先减小再增大D.加速度先减小,再增大突破训练2如图所示,在真空中有两个固定的等量异种点电荷+Q和-Q.直线MN是两点电荷连线的中垂线,O是两点电荷连线与直线MN的交点.a、b是两点电荷连线上关于O的对称点,c、d是直线MN上的两个点.下列说法中正确的是()A.a点的场强大于b点的场强;将一检验电荷沿MN由c移动到d,所受电场力先增大后减小B.a点的场强小于b点的场强;将一检验电荷沿MN由c移动到d,所受电场力先减小后增大C.a点的场强等于b点的场强;将一检验电荷沿MN由c移动到d,所受电场力先增大后减小D.a点的场强等于b点的场强;将一检验电荷沿MN由c移动到d,所受电场力先减小后增大1.基本思路2.运动情况反映受力情况(1)物体静止(保持):F合=0.(2)做直线运动①匀速直线运动,F合=0.②变速直线运动:F合≠0,且F合与速度方向总是一致.(3)做曲线运动:F合≠0,F合与速度方向不在一条直线上,且总指向运动轨迹曲线凹的一侧.(4)F合与v的夹角为α,加速运动:0°≤α<90°;减速运动:90°<α≤180°.(5)匀变速运动:F合=恒量.例4如图所示,一根长为L=1.5 m的光滑绝缘细直杆MN竖直固定在电场强度大小为E=1.0×105 N/C、与水平方向成θ=30°角的斜向上的匀强电场中,杆的下端M固定一个带电小球A,带电荷量为Q=+4.5×10-6 C;另一带电小球B穿在杆上可自由滑动,带电荷量为q=+1.0×10-6C,质量为m=1.0×10-2kg.现将小球B从杆的N 端由静止释放,小球B开始运动.(静电力常量k=9.0×109 N·m2/C2,g=10 m/s2)(1)求小球B开始运动时的加速度a;(2)当小球B的速度最大时,求小球距M端的高度h1;(3)若小球B从N端运动到距M端的高度为h2=0.61 m时,速度v=1.0 m/s,求此过程中小球B电势能的改变量ΔE p.突破训练4 如图所示,在真空中一条竖直向下的电场线上有a 、b 两点.一带电质点在a 处由静止释放后沿电场线向上运动,到达b 点时速度恰好为零.则下列说法正确的是 ( ) A .该带电质点一定带正电荷 B .该带电质点一定带负电荷C .a 点的电场强度大于b 点的电场强度D .质点在b 点所受到的合力一定为零例3如图所示,光滑绝缘的水平桌面上,固定着一个带电量为+Q 的小球P ,带电量分别为-q 和+2q 的小球M 和N ,由绝缘细杆相连,静止在桌面上,P 与M 相距L ,P 、M 和N 视为点电荷,下列说法正确的是 ( ) A .M 与N 的距离大于LB .P 、M 和N 在同一直线上C .在P 产生的电场中,M ,N 处的电势相同D .M 、N 及细杆组成的系统所受合外力为零突破训练3 如图所示,两个质量均为m ,带电荷量均为+q 的小球A 、B ,一个固定在O 点的正下方L 处,另一个用长为L 的细线悬挂在O 点,静止时,细线与竖直方向的夹角为60°,以下说法不正确的是 ( )A .O 点处的电场强度的大小为3kqL 2B .A 在B 处产生的电场强度大小为kqL 2C .细线上的拉力为3kq 2L2D .B 球所受A 球的库仑力和线的拉力的合力方向竖直向上1.对于由点电荷Q 产生的电场,下列说法正确的是 ( )A .电场强度的定义式仍成立,即E =FQ ,式中的Q 就是产生电场的点电荷B .在真空中,电场强度的表达式为E =kQr 2,式中Q 就是产生电场的点电荷C .在真空中,电场强度的表达式E =kqr 2,式中q 是检验电荷D .以上说法都不对 答案 B2.(2013·新课标全国卷Ⅱ)如图所示,在光滑绝缘水平面上,三个带电小球a 、b 和c 分别位于边长为l 的正三角形的三个顶点上;a 、b 带正电,电荷量均为q ,c 带负电.整个系统置于方向水平的匀强电场中.已知静电力常量为k .若三个小球均处于静止状态,则匀强电场场强的大小为 ( )A B C . 23kq l D .3.一带电粒子只在电场力作用下从A 运动到B ,轨迹如图中虚线所示,由此可知 ( )A .粒子带正电B .粒子的加速度不断减小C .粒子在A 点的动能比B 点大D .B 点的场强比A 点的小4.如图所示,空间存在着强度E =2.5×102N/C ,方向竖直向上的匀强电场,在电场内一长为L =0.5m 的绝缘细线,一端固定在O 点,另一端拴着质量m =0.5kg 、电荷量q =4×10-2C 的小球.现将细线拉直到水平位置,使小球由静止释放,当小球运动到最高点时细线受到的拉力恰好达到它能承受的最大值而断裂.取g =10m/s 2.求:(1)小球的电性;(2)细线能承受的最大拉力;(3)当小球继续运动后与O 点水平方向距离为L 时,小球距O 点的高度. 答案 (1)正电 (2)15N (3)0.625 m►题组1 电场强度的概念及计算、电场线1.下列关于电场强度的两个表达式E =F /q 和E =kQ /r 2的叙述,正确的是( )A .E =F /q 是电场强度的定义式,F 是放入电场中的电荷所受的力,q 是产生电场的电荷的电荷量B .E =F /q 是电场强度的定义式,F 是放入电场中电荷所受的电场力,q 是放入电场中电荷的电荷量,它适用于任何电场C .E =kQ /r 2是点电荷场强的计算式,Q 是产生电场的电荷的电荷量,它不适用于匀强电场D .从点电荷场强计算式分析库仑定律的表达式F =k q 1q 2r 2,式kq 2r 2是点电荷q 2产生的电场在点电荷q 1处的场强大小,而kq 1r2是点电荷q 1产生的电场在q 2处场强的大小2.如图所示,真空中O 点有一点电荷,在它产生的电场中有a 、b 两点,a 点的场强大小为E a ,方向与ab 连线成60°角,b 点的场强大小为E b ,方向与ab 连线成30°角.关于a 、b 两点场强大小E a 、E b 的关系,以下结论正确的是 ( )A .E a =33E bB .E a =13E bC .E a =3E bD .E a =3E b3.如图甲所示,在x 轴上有一个点电荷Q (图中未画出),O 、A 、B 为轴上三点,放在A 、B 两点的试探电荷受到的电场力跟试探电荷所带电荷量的关系如图乙所示,则 ( )A .A 点的电场强度大小为2×103 N/CB .B 点的电场强度大小为2×103 N/C C .点电荷Q 在A 、B 之间D .点电荷Q 在A 、O 之间4.某静电场中的电场线方向不确定,分布如图所示,带电粒子在电场中仅受静电力作用,其运动轨迹如图中虚线所示,由M 运动到N ,以下说法正确的是 ( )A .粒子必定带正电荷B .该静电场一定是孤立正电荷产生的C .粒子在M 点的加速度小于它在N 点的加速度D .粒子在M 点的速度小于它在N 点的速度 ►题组2 电场强度的矢量合成问题5.如图所示,a 、b 两点处分别固定有等量异种点电荷+Q 和-Q ,c 是线段ab 的中点,d 是ac 的中点,e 是ab 的垂直平分线上的一点,将一个正点电荷先后放在d 、c 、e 点,它所受的电场力分别为F d 、F c 、F e ,则下列说法中正确的是( )A .F d 、F c 、F e 的方向都是水平向右B .F d 、F c 的方向水平向右,F e 的方向竖直向上C .F d 、F e 的方向水平向右,F c =0D .F d 、F c 、F e 的大小都相等6.如图所示,A 、B 、C 、D 、E 是半径为r 的圆周上等间距的五个点,在这些点上各固定一个点电荷,除A 点处的电荷量为-q 外,其余各点处的电荷量均为+q ,则圆心O 处( )A .场强大小为kqr 2,方向沿OA 方向B .场强大小为kqr 2,方向沿AO 方向C .场强大小为2kqr 2,方向沿OA 方向D .场强大小为2kqr2,方向沿AO 方向7.在电场强度为E 的匀强电场中,取O 点为圆心,r 为半径作一圆周,在O 点固定一电荷量为+Q 的点电荷,a 、b 、c 、d 为相互垂直的两条直线和圆周的交点.当把一检验电荷+q 放在d 点恰好平衡(如图所示,不计重力).问: (1)匀强电场电场强度E 的大小、方向如何?(2)检验电荷+q 放在点c 时,受力Fc 的大小、方向如何? (3)检验电荷+q 放在点b 时,受力F b 的大小、方向如何? 答案 (1)k Qr2 方向沿db 方向(2)2k Qqr 2 方向与ac 成45°角斜向左下(3)2k Qqr2 方向沿db 方向►题组3 应用动力学和功能观点分析带电体的运动问题8.在真空中上、下两个区域均有竖直向下的匀强电场,其电场线分布如图7所示.有一带负电的微粒,从上边区域沿平行电场线方向以速度v 0匀速下落,并进入下边区域(该区域的电场足够广),在如图所示的速度—时间图像中,符合粒子在电场内运动情况的是(以v 0方向为正方向)( )9.一根长为l 的丝线吊着一质量为m ,带电荷量为q 的小球静止在水平向右的匀强电场中,如图所示,丝线与竖直方向成37°角,现突然将该电场方向变为竖直向下且大小不变,不考虑因电场的改变而带来的其他影响(重力加速度为g ,cos 37°=0.8,sin 37°=0.6),求:(1)匀强电场的电场强度的大小; (2)小球经过最低点时丝线的拉力. 答案 (1)3mg 4q (2)4920mg10.如图所示,绝缘光滑水平轨道AB 的B 端与处于竖直平面内的四分之一圆弧形粗糙绝缘轨道BC 平滑连接,圆弧的半径R =0.40 m .在轨道所在空间存在水平向右的匀强电场,电场强度E =1.0×104 N/C .现有一质量m =0.10 kg 的带电体(可视为质点)放在水平轨道上与B 端距离s =1.0 m 的位置,由于受到电场力的作用带电体由静止开始运动,当运动到圆弧形轨道的C 端时,速度恰好为零.已知带电体所带电荷量q =8.0×10-5 C ,取g =10 m/s 2,求:(1)带电体运动到圆弧形轨道的B 端时对圆弧轨道的压力;(2)带电体沿圆弧形轨道从B 端运动到C 端的过程中,摩擦力做的功. 答案 (1)5.0 N ,方向竖直向下 (2)-0.72 J。
电场力的性质
7.2 电场力的性质概念梳理: 一、静电场1.电场是存在于电荷周围的一种物质,静电荷产生的电场叫静电场.2.电荷间的相互作用是通过电场实现的.电场的基本性质是对放入其中的电荷有力的作用. 二、电场强度1.物理意义:表示电场的大小和方向.2.定义:电场中某一点的电荷受到的电场力F 跟它的电荷量q 的比值叫做该点的电场强度. 3.定义式:E =q F .4.单位:N/C 或V/m .5.矢量性:电场强度是矢量,正电荷受力的方向为该点电场强度的方向,电场强度的叠加遵从平行四边形定则.6.决定因素:电场强度决定于电场本身,与检验电荷q 无关. 三、真空中点电荷的电场强度 1.公式:E =k Qr2.2.方向:正电荷电场中某点的场强方向沿该点与电荷连线并背离电荷,负电荷电场中某点的场强方向沿该点与电荷连线并指向电荷. 四、匀强电场如果电场中各点电场强度的大小相等,方向相同,这个电场就叫匀强电场. 五、电场线1.定义:为了直观形象地描述电场中各点场强的强弱及方向,在电场中画出一系列的曲线,使曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的强弱. 2.性质:(1)始于正电荷(或无穷远),止于负电荷(或无穷远); (2)任何两条电场线都不能相交; (3)电场线与等势面处处垂直; (4)由高电势指向低电势.考点一 电场强度1.对三个电场强度公式E =q F 、E =k Q r 2和E =Ud 的正确理解表达式比较 E =q FE =k Q r 2E =U d公式意义 电场强度的 定义式 真空中点电荷的 电场强度的决定式 匀强电场E 与U 的关系式 适用条件 一切电场 ①真空;②点电荷 匀强电场 比较决定因素 电场本身决定,与q 无关场源电荷Q 和场源电荷到该点的距离r 共同决定 电场本身决定相同点矢量,1 N/C =1 V/m注意针对电场中某点的电场强度,公式E =qF 只是电场强度的定义式而非决定式,q 是引入的试探电荷,E 与q 无关,不能说E 与F 成正比、E 与q 成反比,电场中某点的场强和放入的试探电荷无关,是由电场本身的性质决定的.孤立点电荷Q 的电场中,E =kQr 2是电场的决定式,可以说E 与Q 成正比、E 与r 2成反比.E =U d表达式中d 是沿电场线方向上的距离,不能说E 与U 成正比、E 与d 成反比.2.场强叠加原理和应用(1)当空间有几个点电荷同时存在时,它们的电场就互相叠加,形成合电场,这时某点的场强就是各个点电荷单独存在时在该点产生的场强的矢量和.(2)场强是矢量,遵守矢量合成的平行四边形定则,注意只有同时作用在同一区域的电场才能叠加.(3)电场中某点处的电场强度E 是唯一的,它的大小和方向与放入该点的点电荷q 无关,它决定于形成电场的电荷(源电荷)及空间位置,电场中每一点对应的电场强度与放入该点的电荷无关.【例1】点电荷A 电量为Q ,在其电场中的P 点放置另一电量为q 的点电荷B ,下面关于P 点的场强的判断正确的是( ) A .若将A 的电量加倍,则P 的场强加倍 B .若将B 的电量加倍,则P 的场强加倍 C .若改变A 的电性,则P 的场强反向 D .若改变B 的电性,则P 的场强反向【练习】如图所示,一带电荷量为q的金属球,固定在绝缘的支架上,这时球外P点的电场强度为E0.当把一电荷量也是q的点电荷放在P点时,测得点电荷的受到的静电力为F1;当把电荷量为aq的点电荷放在P点时,测得这个点电荷的受到的静电力为F2,则在国际单位制中( )A.F1的数值等于qE0B. F2的数值等于aF1C. a比1小得越多,F2的数值越接近aqE0D. a比1小得越多,F2的数值越接近aF1【例2】如图所示,位于正方形四个顶点处分别固定有点电荷A、B、C、D,四个点电荷的带电量均为q,其中点电荷A、C带正电,点电荷B、D带负电,试确定过正方形中心O并与正方形垂直的直线上到O点距离为x的P点处的电场强度的大小和方向.【练习】如图所示,带电荷量为+q的点电荷与均匀带电薄板相距为2d,点电荷到带电薄板的垂线通过板的几何中心.若图中a点处的电场强度为零,根据对称性,带电薄板在图中b 点处产生的电场强度大小为____________________,方向__________________.(静电力常量为k)【例3】ab是长为l的均匀带电细杆,P1、P2是位于ab所在直线上的两点,位置如图所示.ab 上电荷产生的静电场在P1处的场强大小为E1,在P2处的场强大小为E2.则以下说法正确的是( )A.两处的电场方向相同,E1>E2B.两处的电场方向相反,E1>E2C.两处的电场方向相同,E1<E2D.两处的电场方向相反,E1<E2【练习】如图所示,AC、BD为圆的两条互相垂直的直径,圆心为O,将带有等量电荷q的正、负点电荷放在圆周上,它们的位置关于AC对称.要使圆心O处的电场强度为零,可在圆周上再放置一个适当电荷量的正点电荷+Q,则该点电荷+Q应放在()A.A点B.B点C.C点D.D点考点二电场线几种典型电场的电场线分布1.等量同种和异种点电荷的电场两点电荷连线的中垂线上的电场分布及特点的比较比较项目等量同种电荷等量异种电荷在连线上最小交点O处的场强为零在中垂线上最大向外先增大向外逐渐减小由O沿中垂线向外场强的变化后减小关于O点对称的两点A与A′,等大、反向等大、同向B与B′场强的关系2.电场线与带电粒子运动轨迹的关系一般情况下,带电粒子在电场中的运动轨迹不会与电场线重合,只有同时满足以下三个条件时,两者才会重合:(1)电场线为直线;(2)电荷初速度为零,或速度方向与电场线平行;(3)电荷仅受电场力或所受其他力合力的方向与电场线平行.【例1】法拉第首先提出用电场线形象生动地描绘电场,如图所示为点电荷a、b所形成电场的电场线分布图,以下几种说法中正确的是()A.a、b为异种电荷,a的电荷量大于b的电荷量B.a、b为异种电荷,a的电荷量小于b的电荷量C.a、b为同种电荷,a的电荷量大于b的电荷量D.a、b为同种电荷,a的电荷量小于b的电荷量【练习】法拉第首先提出用电场线形象生动地描绘电场,如图所示为点电荷a、b所形成电场的电场线分布图,以下几种说法正确的是( )A.a、b为异种电荷,a的电荷量大于b的电荷量B.a、b为异种电荷,a的电荷量等于b的电荷量C.a、b为同种电荷,a的电荷量大于b的电荷量D.a、b为同种电荷,a的电荷量等于b的电荷量【例2】如图所示,正电荷q在电场力作用下由P向Q做加速运动,而且加速度越来越大,那么可以断定,它所在的电场是图中哪一个( )【练习】一带负电荷的质点,在电场力作用下沿曲线abc从a运动到c,已知质点的速率是递减的。
电场力的性质-电场强度
四.电场线 为形象描述电场而引入的 假想曲线.
几种典型的电场线
1、孤立点电荷周围电场的电场线
2、等量的异号电荷产生的电场的电场线
3、等量的同号电荷产生的电场的电场线
4、匀强电场的电场线:平行等距的直线
5、点电荷与带电平板的电场线分布
电场线的特点
(1)电场线的疏密表示场强的强弱;电 场线上每一点的切线方向表示该点的场 强方向. (2)电场线从正电荷出发到负电荷终止. •或者从正电荷出发终止于无穷远处; •或者从无穷远处出发终止于负电荷.
(3)电场线不能相交,也不能相切; 更不能认为是电荷在电场中的运动轨迹.
(4)顺着电场线的方向电势逐渐降 低,而且降落得最快; (5)电场线与等势面处处垂直.
【高考佐证 2】 (2010· 新课标全国卷)静电 除尘器是目前普遍采用的一种高效除尘器. 某除尘器模型的收尘板是很长的条形金属 板,图 3 中直线 ab 为该收尘板的横截面. 工作时收尘板带正电,其左侧的电场线分 图 3 布如图所示;粉尘带负电,在电场力作用下向收尘板运 动, 最后落在收尘板上. 若用粗黑曲线表示原来静止于 P 点的带电粉尘颗粒的运动轨迹,下列 4 幅图中可能正确 的是(忽略重力和空气阻力) ( )
【高考佐证 1】 (2009· 海南)如图 1 所 示,两等量异号的点电荷相距为 2a. M 与两点电荷共线,N 位于两点电 荷连线的中垂线上,两点电荷连线 中点到 M 和 N 的距离都为 L,且 L≫a.略去(a/L)n(n≥2)项的贡献,则 两点电荷的合电场在 M 和 N 点的强度 A.大小之比为 2,方向相反 B.大小之比为 1,方向相反 C.大小均与 a 成正比,方向相反 D.大小均与 L 的平方成反比,方向相互垂直 ( ) 图 1
§1 电场的力的性质
第九章 电场 §1 电场的力的性质一、库仑定律真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。
即:221rqkq F = 其中k 为静电力常量, k =9.0×10 9 N m 2/c 21.成立条件①真空中(空气中也近似成立),②点电荷。
即带电体的形状和大小对相互作用力的影响可以忽略不计。
(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r 都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心距代替r )。
2.同一条直线上的三个点电荷的计算问题【例1】 在真空中同一条直线上的A 、B 两点固定有电荷量分别为+4Q 和-Q 的点电荷。
①将另一个点电荷放在该直线上的哪个位置,可以使它在电场力作用下保持静止?②若要求这三个点电荷都只在电场力作用下保持静止,那么引入的这个点电荷应是正电荷还是负电荷?电荷量是多大?【例2】已知如图,带电小球A 、B 的电荷分别为Q A 、Q B ,OA=OB ,都用长L 的丝线悬挂在O 点。
静止时A 、B 相距为d 。
为使平衡时AB 间距离减为d /2,可采用以下哪些方法A .将小球A 、B 的质量都增加到原来的2倍 B .将小球B 的质量增加到原来的8倍C .将小球A 、B 的电荷量都减小到原来的一半D .将小球A 、B 的电荷量都减小到原来的一半,同时将小球B 的质量增加到原来的2倍3.与力学综合的问题。
【例3】 已知如图,光滑绝缘水平面上有两只完全相同的金属球A 、B ,带电量分别为-2Q 与-Q 。
现在使它们以相同的初动能E 0(对应的动量大小为p 0)开始相向运动且刚好能发生接触。
接触后两小球又各自反向运动。
当它们刚好回到各自的出发点时的动能分别为E 1和E 2,动量大小分别为p 1和p 2。
有下列说法:①E 1=E 2> E 0,p 1=p 2> p 0 ②E 1=E 2= E 0,p 1=p 2= p 0③接触点一定在两球初位置连线的中点右侧某点 ④两球必将同时返回各自的出发点。
电场力的性质
电场力的性质知识目标一、电荷、电荷守恒定律1、两种电荷:用毛皮摩擦过的橡胶棒带负电荷,用丝绸摩擦过的玻璃棒带正电荷。
2、元电荷:一个元电荷的电量为1.6×10-19C,是一个电子所带的电量。
说明:任何带电体的带电量皆为元电荷电量的整数倍。
3、起电:使物体带电叫起电,使物体带电的方式有三种①摩擦起电,②接触起电,③感应起电。
4、电荷守恒定律:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,系统的电荷总数是不变的.注意:电荷的变化是电子的转移引起的;完全相同的带电金属球相接触,同种电荷总电荷量平均分配,异种电荷先中和后再平分。
二、库仑定律1.内容:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。
2.公式:F=kQ1Q2/r2 k=9.0×109N·m2/C23.适用条件:(1)真空中;(2)点电荷.点电荷是一个理想化的模型,在实际中,当带电体的形状和大小对相互作用力的影响可以忽略不计时,就可以把带电体视为点电荷.(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心距代替r)。
点电荷很相似于我们力学中的质点.注意:①两电荷之间的作用力是相互的,遵守牛顿第三定律②使用库仑定律计算时,电量用绝对值代入,作用力的方向根据“同种电荷互相排斥,异种电荷互相吸引”的规律定性判定。
【例1】在光滑水平面上,有两个带相同电性的点电荷,质量m 1=2m 2,电量q 1=2q 2,当它们从静止开始运动,m 1的速度为v 时,m 2的速度为 ;m 1的加速度为a 时,m 2的加速度为 ,当q 1、q 2相距为r 时,m 1的加速度为a ,则当相距2r 时,m 1的加速度为多少?解析:由动量守恒知,当m 1的速度为v 时,则m 2的速度为2v ,由牛顿第二定律与第三定律知:当m 1的加速度为 a 时,m 2的加速度为2a . 由库仑定律知:a=221r q kq /m ,a /=2214r q kq /m,由以上两式得a /=a/4 答案:2v ,2a ,a/4点评:库仑定律中的静电力(库仑力)是两个电荷之间的作用力,是作用力与反作用力,大小相同,方向相反,在同一直线上,作用在两个物体上,二力属同种性质的力,而且同时产主同时消失。
电场的力、能的性质
电场的两个重要性质 1电场的力的性质例1有三个完全相同的金属球A 、B 、C ,A 带电量7Q ,B 带电量-Q ,C 不带电.将A 、B 固定,且A 、B 间距离远大于其半径.然后让C 反复与A 、B 接 触,最后移走C 球.试问A 、B 间的相互作用力变为原来的多少倍? 解答 C 球反复与A 、B 接触,最后三个球带相同的电量,其电量7()'23+-==Q Q Q Q . 设A 、B 球间距离为r ,其原先的相互作用力大小 21222277===q q Q Q Q F k kk r r r . A 、B 球碰后的相互作用力大小 212222''22'4===q q Q Q Q F k k k r r r,4'7=F F . 故A 、B 间的相互作用力变为原来的47倍. 点评:本题涉及中和、接触起电等现象及电荷守恒定律、库仑定律等知识,在审题时,能从“C 反复与A 、B 接触”这句话中挖掘出最终三球带电量相同这一隐含条件是至关重要。
例2 有一个点电荷Q 的电场中,Ox 坐标轴与它的一条电场线重合,坐标轴上A 、B 两点的坐标分别为2.0m 和5.0m.已知放在A 、B 两点的试探电荷受到的电场力方向都跟x 轴的正方向相同,电场力的大小跟试探电荷所带电荷量大小的关系如图中直线A 、B 所示,放在A 点的电荷带正电,放在B 点的电荷带负电.求: (1)B 点的电场强度的大小和方向;(2)试判断点电荷Q 的电性,并确定点电荷Q 的位置坐标.解析:(1)由图可得B 点电场强度的大小5.2==qF E B N/C . 因B 点的试探电荷带负电,而受力指向x 轴的正方向,故B 点场强的方向沿x 轴的负方向. (2)因A 点的正电荷受力和B 点的负电荷受力均指向x 轴的正方向, 故点电荷Q 位于A 、B 两点之间,带负电.设点电荷Q 的坐标为x ,则2)2(-=x Q kE A ,2)5(x Q kE B -=由图可得40=A E N/C ,解得x=2.6m.2 电场的能的性质例3.两个带等量正电的点电荷,固定在图中P 、Q 两点,MN 为PQ 连线的中垂线,交PQ 于O 点,A 点为MN 上的一点。
电场力的性质
大小 (1)定义式:E=F/q
(2)决定式: E=kQ/r2 (3)匀强电场:E =U/d
大小(1)定义式:E=F/q 比值定义法特点: ①普遍适用 ②与F、q无关,不能说正比和反比 ③数值上等于单位--------F E
q
F
(2)决定式: E=kQ/r2 条 件:点电荷 Q: 场源电荷
第1讲 电场力的性质
(第二课时) 学习要求: 1、了解电场的定义和基本性质 2、掌握电场强度的定义及叠加方法 3、掌握电场线的特点及其应用
一、电场 四、
1、客观存在:
存在于电荷周围,能传递电荷间相互作用 的一种特殊物质.非分子态
2、基本性质:
对放入其中的电荷有力的作用
3、电场强度:
描述电场力的性质的物理量 方向(规定): 正电荷在电场中某点所受静电力的方向为 该点电场强度的方向.
1 江苏卷]下列选项中的各 圆环 小试身手 [2013· 4 大小相同,所带电荷量已在图中标出,且电荷均匀分 1 布,各 圆环间彼此绝缘.坐标原点 O 处电场强度最 4 大的是( )
1 解析 设所带电荷量为 q 的 圆环在 O 点处产生的场强大小 4 为 E0,根据对称性可得四种情况下,O 点处的场强大小分别为 EA=E0、EB= 2E0、EC=E0、ED=0,B 项正确. 答案 B
小试身手 A、B 是一条电场线上的两个点, 一带负电的粒子仅在电场力作用下以一 定的初速度从 A 点沿电场线运动到 B 点, 其速度 v 和时间 t 的关系图象如图甲所示. 则此电场的电场线分布可能是下图中的( A )
【解析】由图象可知,粒子做加速度增大的减速 运动,故从 A 到 B:(1)电场强度应逐渐变大,电场线 逐渐变密;(2)负电荷所受电场力的方向与电场线的方 向相反.所以,带负电的粒子是顺电场线方向运动, 而且是由电场线疏处到达密处.
电场的力的性质
电场的力的性质知识点一 电荷及电荷守恒定律 1.元电荷、点电荷 (1)元电荷:e =1.6×10-19C ,所有带电体的电荷量都是元电荷的整数倍,其中质子、正电子的电荷量与元电荷相同.(2)点电荷:当带电体本身的大小和形状对研究的问题影响很小时,可以将带电体视为点电荷.2.静电场(1)定义:存在于电荷周围,能传递电荷间相互作用的一种特殊物质. (2)基本性质:对放入其中的电荷有力的作用.3.电荷守恒定律(1)内容:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量保持不变.(2)起电方式:摩擦起电、接触起电、感应起电. (3)带电实质:物体带电的实质是得失电子. 知识点二 库仑定律1.内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比.作用力的方向在它们的连线上.2.表达式:F =k q 1q 2r 2,式中k =9.0×109 N·m 2/C 2,叫静电力常量.3.适用条件:真空中的点电荷. 知识点三 电场强度、点电荷的场强1.定义:放入电场中某点的电荷受到的电场力F 与它的电荷量q 的比值. 2.定义式:E =Fq.单位:N/C 或V/m.3.点电荷的电场强度:真空中点电荷形成的电场中某点的电场强度:E =k Qr 2.4.方向:规定正电荷在电场中某点所受电场力的方向为该点的电场强度方向.5.电场强度的叠加:电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的矢量和,遵从平行四边形定则. 知识点四 电场线1.定义:为了形象地描述电场中各点电场强度的强弱及方向,在电场中画出一些曲线,曲线上每一点的切线方向都跟该点的电场强度方向一致,曲线的疏密表示电场的强弱.2.【基础自测】1.如图所示的情况中,a、b两点电势相等、电场强度也相同的是(D)解析:平行板电容器中场强相同而电势不同,A错误;点电荷等势面上的点,电势相等而场强不同,B错误;两等量同种电荷其连线的中垂线上与连线中点等距的任意两点电势相等而场强的方向不同,C错误;两等量异种电荷其连线的中垂线上与连线中点等距的任意两点电势为零,场强相同,D正确.2.关于静电场,下列结论普遍成立的是(B)A.电场强度为零的地方,电势也为零B.电场强度的方向与等势面处处垂直C.随着电场强度的大小逐渐减小,电势也逐渐降低D.任一点的电场强度总是指向该点电势降落的方向解析:电场强度与电势没有直接关系,电场强度为零时,电势不一定为零;电势为零时,电场强度不一定为零,故A、C 错误;电场线与等势面垂直,而电场强度的方向为电场线的方向,所以电场强度的方向与等势面垂直,故B正确;顺着电场线方向电势降低,但电势降低的方向并不一定是电场强度的方向,电场强度的方向是电势降低最快的方向,故D错误.3.A、B两个点电荷在真空中所产生的电场的电场线(方向未标出)如图所示,图中C点为两个点电荷连线的中点,MN为两个点电荷连线的中垂线,D为中垂线上的一点,电场线的分布关于MN左右对称.则下列说法正确的是(A)A.这两个点电荷一定是等量异种电荷B.这两个点电荷一定是等量同种电荷C.C点的电场强度比D点的电场强度小D.C点的电势比D点的电势高解析:根据电场线的特点,从正电荷出发到负电荷终止可以判断,这两点电荷是两个等量异种电荷,故A正确,B错误;在两等量异种电荷连线的中垂线上,中间点电场强度最大,也可以从电场线的疏密判断,所以C点的电场强度比D点的电场强度大,故C错误;中垂线和电场线垂直,所以中垂线为等势线,所以C点的电势等于D点的电势,故D错误.4.已知均匀带电的无穷大平面在真空中激发电场的场强大小为σ2ε0,其中σ为平面上单位面积所带的电荷量,ε0为常量,如图所示的平行板电容器,极板正对面积为S,其间为真空,带电量为Q,不计边缘效应时,极板可看作无穷大导体板,则极板间的电场强度大小和两极板间相互的静电引力大小分别为(D)A.Qε0S和Q2ε0S B.Q2ε0S和Q2ε0SC.Q2ε0S和Q22ε0S D.Qε0S和Q22ε0S解析:两极板均看作无穷大导体板,极板上单位面积上的电荷量σ=QS;则单个极板形成的场强E0=σ2ε0=Q2ε0S,两极板间的电场强度为:2×σ2ε0=Qε0S;两极板间的相互引力F=E0Q=Q22ε0S.5.(多选)如图为静电除尘器除尘机理示意图,尘埃在电场中通过某种机制带电,在电场力的作用下向集尘极迁移并沉积,以达到除尘目的,下列表述正确的是(BD)A.到达集尘极的尘埃带正电荷B .电场方向由集尘极指向放电极C .带电尘埃所受电场力的方向与电场方向相同D .同一位置带电荷量越多的尘埃所受电场力越大解析:由题图所示可知,集尘极电势高,放电极电势低,放电极与集尘极间电场方向向左,即电场方向由集尘极指向放电极,尘埃在电场力的作用下向集尘极迁移,则知尘埃所受的电场力向右,故到达集尘极的尘埃带负电荷,故A 错误,B 正确.电场方向向左,带电尘埃所受电场力方向向右,带电尘埃所受电场力的方向与电场方向相反,故C 错误.由F =Eq 可知,同一位置带电荷量越多的尘埃所受电场力越大,故D 正确.6.如图所示,水平地面上方分布着水平向右的匀强电场,有14圆弧形的绝缘硬质管竖直固定在匀强电场中,圆心与管口在同一水平线上,管的半径为R ,下端管口切线水平,离水平地面的距离为h ,有一质量为m 的带电荷量+q 的小球从管的上端口A 由静止释放,小球与管间摩擦不计,小球从下端管口飞出时,管壁对小球的作用力为4mg ,g 取10 m/s 2.求:(1)小球运动到管口B 时的速度大小. (2)匀强电场的场强.(3)若R =0.3 m ,h =5.0 m ,小球落地时的速度大小. 解析:(1)小球从下端管口飞出时,由牛顿第二定律得: F N -mg =m v 2BR解得:v B =3gR(2)小球从A 运动到管口B 的过程中,由动能定理得: mgR +qER =12m v 2B 解得:E =mg2q(3)小球离开管口B 后,水平方向做匀加速运动,竖直方向做自由落体运动,则有: 竖直方向:h =12gt 2解得:t =1 s v y =gt =10 m/s 水平方向:qE =ma v x =v B +at 解得:v x =8 m/s故:v =v 2x +v 2y =241 m/s答案:(1)3gR (2)mg2q(3)241 m/s知识点一 库仑定律的理解及应用1.对库仑定律的两点理解(1)F =k q 1q 2r2,r 指两点电荷间的距离.对可视为点电荷的两个均匀带电球,r 为两球心间距.(2)当两个电荷间的距离r →0时,电荷不能视为点电荷,库仑定律不再适用,它们之间的静电力不能认为趋于无限大. 2.解决库仑力作用下平衡问题的方法步骤库仑力作用下平衡问题的分析方法与纯力学平衡问题的分析方法是相同的,只是在原来受力的基础上多了电场力.具体步骤如下:确定研究对象—可以根据问题需要,选择“整体法”或“隔离法” 受力分析—多了电场力()F =kq 1q 2r 2或F =qE 列平衡方程—F 合=0或F x =0、F y =0 3.“三个自由点电荷平衡”的问题(1)平衡的条件:每个点电荷受到另外两个点电荷的合力为零或每个点电荷处于另外两个点电荷产生的合电场强度为零的位置.(2)1.如图所示,半径相同的两个金属球A 、B 带有相等的电荷量,相隔一定距离,两球之间相互吸引力的大小是F .今让第三个半径相同的不带电的金属小球先后与A 、B 两球接触后移开.这时,A 、B 两球之间的相互作用力的大小是( A )A.F8 B.F 4 C.3F 8D.3F 4解析:A 、B 两球互相吸引,说明它们必带异种电荷,设它们带的电荷量分别为+q 、-q .当第三个不带电的C 球与A 球接触后,A 、C 两球带电荷量平分,每个球带电荷量为q 1=+q2,当再把C 球与B 球接触后,两球的电荷先中和再平分,每球带电荷量q 2=-q 4.由库仑定律F =k q 1q 2r 2知,当移开C 球后,A 、B 两球之间的相互作用力的大小变为F ′=F8,A 项正确.2.(多选)如图所示,水平地面上固定一个光滑绝缘斜面,斜面与水平面的夹角为θ.一根轻质绝缘细线的一端固定在斜面顶端,另一端系有一个带电小球A ,细线与斜面平行.小球A 的质量为m 、电量为q .小球A 的右侧固定放置带等量同种电荷的小球B ,两球心的高度相同、间距为d .静电力常量为k ,重力加速度为g ,两带电小球可视为点电荷.小球A 静止在斜面上,则( AC )A .小球A 与B 之间库仑力的大小为kq 2d 2B .当q d =mg sin θk 时,细线上的拉力为0 C .当q d =mg tan θk 时,细线上的拉力为0 D .当q d=mgk tan θ时,斜面对小球A 的支持力为0 解析:根据库仑定律可得两小球之间的库仑力大小为F =kq 2d 2,选项A 正确;当细线上的拉力为0时,小球A 受到库仑力、斜面支持力、重力,由平衡条件得kq 2d 2=mg tan θ,解得qd=mg tan θk,选项B 错误,C 正确;由受力分析可知,斜面对小球的支持力不可能为0,选项D 错误.3.相距为L 的点电荷A 、B 带电荷量分别为+4q 和-q ,如图所示,今引入第三个点电荷C ,使三个点电荷都处于平衡状态,则C 的带电荷量和放置的位置是( C )A .-q ,在A 左侧距A 为L 处B .-2q ,在A 左侧距A 为L2处C .+4q ,在B 右侧距B 为L 处D .+2q ,在B 右侧距B 为3L2处解析:A 、B 、C 三个电荷要平衡,必须三个电荷在一条直线上,外侧两个电荷相互排斥,中间电荷吸引外侧两个电荷,所以外侧两个电荷距离大,要平衡中间电荷的引力,必须外侧电荷电量大,中间电荷电量小,所以C 必须带正电,在B 的右侧,设C 所在位置与B 的距离为r ,则C 所在位置与A 的距离为L +r ,要能处于平衡状态,所以A 对C 的电场力大小等于B 对C 的电场力大小,设C 的电量为Q ,则有:k 4q ·Q (L +r )2=k Q ·q r 2,解得:r =L ,对点电荷A ,其受力也平衡,则:k 4q ·Q (L +r )2=k 4q ·qL 2,解得:Q =4q ,即C 带正电,电荷量为4q ,在B 的右侧距B 为L 处,故选项C 正确.知识点二 电场线的理解与应用1.电场线的三个特点(1)电场线从正电荷或无限远处出发,终止于无限远或负电荷处. (2)电场线在电场中不相交.(3)在同一幅图中,电场强度较大的地方电场线较密,电场强度较小的地方电场线较疏. 2.六种典型电场的电场线3.两种等量点电荷的电场分析沿连线先变小后变大4.4.一金属容器置于绝缘板上,带电小球用绝缘细线悬挂于容器中,容器内的电场线分布如图所示,容器内表面为等势面,A、B为容器内表面上的两点,下列说法正确的是(C)A.A点的电场强度比B点的大B.小球表面的电势比容器内表面的低C.B点的电场强度方向与该处内表面垂直D.将检验电荷从A点沿不同路径移到B点,电场力所做的功不同解析:由题图知,B点处的电场线比A点处的密,则A点的电场强度比B点的小,选项A错误;沿电场线方向电势降低,选项B错误;电场强度的方向总是与等势面(容器内表面)垂直,选项C正确;沿任意路径将检验电荷由A点移动到B点,电场力做功都为零,选项D错误.5.如图所示为两个等量点电荷的电场线,图中A点和B点、C点和D点皆关于两电荷连线的中点O对称,若将一电荷放在此电场中,则以下说法正确的是(D)A.电荷在O点受力最大B.电荷沿直线由A到B的过程中,电场力先增大后减小C.电荷沿直线由A到B的过程中,电势能先增大后减小D.电荷沿直线由C到D的过程中,电场力先增大后减小解析:根据电场线的疏密特点,在AB直线上,O点电场强度最小,则受到电场力最小,而在CD直线上,O点的电场强度最大,则受到电场力最大,因此电荷在O点受力不是最大,故A错误.根据电场线的疏密可知,从A到B的过程中,电场强度先减小后增大,则电场力也先减小后增大;同理从C到D的过程中,电场强度先增大后减小,则电场力也先增大后减小,故B错误,D正确.电荷沿直线由A到B的过程中,无法确定电荷做功的正负,因此无法确定电势能变化,故C错误.6.(多选)两个相同的负电荷和一个正电荷附近的电场线分布如图所示,c是两负电荷连线的中点,d点在正电荷的正上方,c、d到正电荷的距离相等,则(ACD)A.a点的电场强度比b点的大B.a点的电势比b点的高C.c点的电场强度比d点的大D.c点的电势比d点的低解析:由题图看出,a点处电场线比b点处电场线密,则a点的场强大于b点的场强,故A正确;电场线从正电荷到负电荷,沿着电场线电势降低,所以b点的电势比a点的高,所以B错误;负电荷在c点的合场强为零,c点只有正电荷产生的电场强度,在d点正电荷产生的场强向上,两个负电荷产生的场强向下,合场强是它们的差值,所以c点的电场强度比d 点的大,所以C正确;正电荷到c点的平均场强大于正电荷到d点的平均场强,根据U=Ed可知,正电荷到c点电势降低的多,所以c点的电势比d点的低;也可以根据电势这样理解:正电荷在d、c两点产生的电势相等,但两个负电荷在d点产生的电势高于c点,所以c点的总电势低于d点,所以D正确.知识点三带电体的力电综合问题1.解决力电综合问题的一般思路2.分析力电综合问题的三种途径(1)建立物体受力图景.①弄清物理情境,选定研究对象.②对研究对象按顺序进行受力分析,画出受力图.③应用力学规律进行归类建模.(2)建立能量转化图景:运用能量观点,建立能量转化图景是分析解决力电综合问题的有效途径.(3)运用等效思维法构建物理模型:电场力和重力做功均与路径无关,在同一问题中可将它们合成一个等效重力,从而使问题简化.典例(2017·北京卷)如图所示,长l=1 m的轻质细绳上端固定,下端连接一个可视为质点的带电小球,小球静止在水平向右的匀强电场中,绳与竖直方向的夹角θ=37°.已知小球所带电荷量q=1.0×10-6 C,匀强电场的场强E=3.0×103 N/C,重力加速度g取10 m/s2,sin37°=0.6,cos37°=0.8.求:(1)小球所受电场力F的大小.(2)小球的质量m.(3)将电场撤去,小球回到最低点时速度v的大小.【审题关键点】解此题应注意两点(1)小球平衡时,正确进行受力分析.(2)撤去电场后,小球会从高处摆下,在小球从开始运动到到达最低点的过程中,机械能守恒.【解析】本题考查物体的平衡与动能定理.(1)F=qE=3.0×10-3 N.(2)由qEmg=tan37°,得m=4.0×10-4 kg.(3)由mgl(1-cos37°)=12m v2,得v=2gl(1-cos37°)=2.0 m/s.【答案】(1)3.0×10-3 N(2)4.0×10-4 kg(3)2.0 m/s【突破攻略】解此类问题应注意三点(1)电子、质子、正负离子等基本粒子在没有明确指出或暗示时一般不计重力,带电油滴、带电小球、带电尘埃等带电体一般计重力;(2)分析研究对象所处的状态是平衡状态(静止或匀速直线运动)还是非平衡状态(变速运动等);(3)根据平衡条件或牛顿第二定律列方程求解.7.有三个完全相同的金属小球A、B、C,其中小球A和B带有等量的同种电荷,小球C(未画出)不带电,如图所示,A球固定在竖直支架上,B球用不可伸长的绝缘细线悬于A球正上方的O点处,静止时细线与竖直方向的夹角为θ.小球C可用绝缘手柄移动,重力加速度为g,现在进行下列操作,其中描述与事实相符的是(B)A.仅将球C与球A接触后离开,B球再次静止时细线中的张力比原来要小B.仅将球C与球B接触后离开,B球再次静止时细线与竖直方向的夹角为θ1,仅将球C与球A接触后离开,B球再次静止时细线与竖直方向的夹角为θ2,则θ1=θ2C.剪断细线瞬间,球B的加速度等于gD.剪断细线后,球B将沿OB方向做匀变速直线运动直至着地解析:仅将球C与球A接触后离开,球A的电荷量减半,致使A、B间的库仑力减小,对球B进行受力分析如图,可知它在三个力的作用下平衡,由三角形相似(图中阴影)可知mgH=TL,故细线的张力大小不变,故A错误;将球C与球B接触后离开,与球C与球A接触后离开这种情况下A、B间的斥力相同,故夹角也相同,故B正确;剪断细线瞬间,球B在重力和库仑力作用下运动,其合力斜向右下方,与原来细线的张力等大反向,故其加速度不等于g,故选项C错误;剪断细线后,球B在空中运动时受到的库仑力随间距的变化而变化,即球B在落地前做变加速曲线运动,故选项D错误.8.(多选)如图所示,竖直平面内有固定的半径为R的光滑绝缘圆形轨道,水平匀强电场平行于轨道平面向左,P、Q分别为轨道的最高、最低点.质量为m、电荷量为q的带正电小球(可视为质点)在轨道内运动,已知重力加速度为g,场强E=3mg4q.要使小球能沿轨道做完整的圆周运动,下列说法中正确的是(BC)A .小球过Q 点时速度至少为5gRB .小球过Q 点时速度至少为23gR2C .小球过Q 、P 点受轨道弹力大小的差值为6mgD .小球过Q 、P 点受轨道弹力大小的差值为7.5mg解析:根据“等效场”知识可得,电场力与重力的合力大小为mg 效=(mg )2+(qE )2=54mg ,则g 效=54g ,如图所示,tan θ=qE mg =34,即θ=37°,当小球刚好通过C 点关于O 对称的D 点时,就能做完整的圆周运动.小球在D 点时,由电场力和重力的合力提供向心力,则54mg =m v 2DR ,从Q 到D ,由动能定理得-mg (R +R cos θ)-qER sin θ=12m v 2D -12m v 2Q ,联立解得v Q =23gR 2,故A 错误,B 正确;在P 点和Q 点,由牛顿第二定律得F Q -mg =m v 2Q R ,F P +mg =m v 2PR ,从Q 到P ,由动能定理得-mg ·2R =12m v 2P -12m v 2Q,联立解得F Q -F P =6mg ,C 正确,D 错误.9.如图所示,绝缘的水平面上有一质量为0.1 kg 的带电物体,物体与水平面间的动摩擦因数μ=0.75,物体恰能在水平向左的匀强电场中向右匀速运动,电场强度E =1×103 N/C ,g 取10 m/s 2.(1)求物体所带的电荷量;(2)只改变电场的方向,使物体向右加速运动,求加速度的最大值及此时电场的方向.解析:(1)物体向右匀速运动,则电场力与摩擦力大小相等,方向相反,因摩擦力方向向左,故电场力方向向右,而电场方向向左,则物体带负电.由Eq =μmg解得q =μmg E=7.5×10-4 C(2)设电场方向与水平方向的夹角为θ,则 Eq cos θ-μ(mg -qE sin θ)=ma 解得a =qEm(cos θ+μsin θ)-μg由数学知识可知,当θ=37°时,cos θ+μsin θ有极大值54,此时a =158 m/s 2即电场方向与水平方向的夹角为37°斜向左下时,加速度有最大值,为a =158m/s 2. 答案:(1)-7.5×10-4 C (2)158m/s 向左下方与水平方向成37°角巧解场强的四种方法场强有三个公式:E =F q 、E =k Q r 2、E =Ud ,在一般情况下可由上述公式计算场强,但在求解带电圆环、带电平面等一些特殊带电体产生的场强时,上述公式无法直接应用.这时,如果转换思维角度,灵活运用补偿法、微元法、对称法、极限法等巧妙方法,可以化难为易.(一)补偿法将有缺口的带电圆环补全为圆环,或将半球面补全为球面. (二)微元法可将带电圆环、带电平面等分成许多微元电荷,每个微元电荷可看成点电荷,再利用公式和场强叠加原理求出合场强. (三)对称法利用空间上对称分布的电荷形成的电场具有对称性的特点,可以使复杂电场的叠加计算大为简化. (四)等效法在保证效果相同的条件下,将复杂的电场情景变换为简单的或熟悉的电场情景.10.(2019·石家庄质检)均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场.如图所示,在半球面AB 上均匀分布正电荷,总电荷量为q ,球面半径为R ,CD 为通过半球面顶点与球心O 的轴线,在轴线上有M 、N 两点,OM =ON =2R .已知M 点的场强大小为E ,则N 点的场强大小为( A )A.kq2R 2-E B.kq 4R 2 C.kq4R 2-E D.kq4R 2+E 解析:左半球面AB 上的正电荷产生的电场等效为带正电荷为2q 的整个球面的电场和带电荷-q 的右半球面的电场的合电场,则E =k 2q(2R )2-E ′,E ′为带电荷-q 的右半球面在M 点产生的场强大小.带电荷-q 的右半球面在M 点的场强大小与带正电荷为q 的左半球面AB 在N 点的场强大小相等,则E N =E ′=k 2q (2R )2-E =kq2R 2-E ,则A 正确. 11.下列选项中的各14圆环大小相同,所带电荷量已在图中标出,且电荷均匀分布,各14圆环间彼此绝缘.坐标原点O 处电场强度最大的是( B )解析:将圆环分割成微元,根据对称性和矢量叠加,D 项O 点的场强为零,C 项等效为第二象限内电荷在O 点产生的电场,大小与A 项的相等,B 项正、负电荷在O 点产生的场强大小相等,方向互相垂直,合场强是其中一个的2倍,也是A 、C 项场强的2倍,因此B 项正确.12.(2019·济南模拟)MN 为足够大的不带电的金属板,在其右侧距离为d 的位置放一个电荷量为+q 的点电荷O ,金属板右侧空间的电场分布如图甲所示,P 是金属板表面上与点电荷O 距离为r 的一点.几位同学想求出P 点的电场强度大小,但发现问题很难,经过研究,他们发现图甲所示的电场分布与图乙中虚线右侧的电场分布是一样的.图乙中是两等量异号点电荷的电场线分布,其电荷量的大小均为q ,它们之间的距离为2d ,虚线是两点电荷连线的中垂线.由此他们分别对甲图P 点的电场强度方向和大小做出以下判断,其中正确的是( C )A .方向沿P 点和点电荷的连线向左,大小为2kqdr 3B .方向沿P 点和点电荷的连线向左,大小为2kq r 2-d 2r 3C .方向垂直于金属板向左,大小为2kqdr 3D .方向垂直于金属板向左,大小为2kq r 2-d 2r 3解析:据题意,从乙图可以看出,P 点电场方向为水平向左;由图乙可知,正、负电荷在P 点电场的叠加,其大小为E =2k q r 2cos θ=2k qdr3,故选项C 正确.13.如图所示,均匀带电圆环所带电荷量为Q ,半径为R ,圆心为O ,P 为垂直于圆环平面中心轴上的一点,OP =L ,试求P 点的场强.解析:设想将圆环看成由n 个小段组成,当n 相当大时,每一小段都可以看成点电荷,其所带电荷量Q ′=Qn ,由点电荷场强公式可求得每一小段带电体在P 处产生的场强为E =kQ nr 2=kQ n (R 2+L 2).由对称性知,各小段带电体在P 处场强E 的垂直于中心轴的分量E y 相互抵消,而其轴向分量E x 之和即为带电环在P 处的场强E P ,E P =nE x =nk Q n (R 2+L 2)cos θ=k QL(R 2+L 2)32. 答案:k QL(R 2+L 2)32。
电场的力的性质
在物理学中,就用比值 F/q来表示电场的强弱。
2.电场强度:
1)、 定义:
放入电场中某点的电荷受到的电场力与 它所带电荷量的比值,叫做这一点的电 场强度,简称场强。
2)、 公式: E ? F q
3)、 单位:牛顿/库仑(N/C)
为 q ,方向为 向左 ;若将A处放点
电荷为-2q,则该处电场强度大小
F
为
q
,方向为 向左 。
5)、电场强度的物理意义:
电场强度是描述电场本身的力的性质的物 理量,反映电场中某一点的电场性质,其大小 表示电场的强弱,由产生电场的场源电荷和点 的位置决定,与检验电荷无关。数值上等于单 位电荷在该点所受的电场力。
如图,在电荷 Q周围跟Q距离相 等的不同点 A、B放上试探电荷 q, 电荷 q受到的电场力的大小是否相 等? A、B两点的电场强度是否相同?
A.
+q
+Q .
+q
.B
[解析] 试探电荷 q在A、B两点所受的电场力大 小相等,但方向不同,所以 A、B两点的电场强 度不相同。
? 关于电场,下列叙述正确的是( ) A.以点电荷为圆心,r为半径的球面上,各点
[解析]在点电荷Q形成的电场中,在距离 Q为r的P
点放一试探电荷 q 根据库仑定律, q受到的库仑力的大小 : F = k Qq 又由电场强度的定义可得出 P点的场强 E的大小:r 2
F E= q
=k Q r2
2、E ? F q
和
E?
k
Q r2
的区别:
适用范围 电荷的意义
E? F q
E
电场力的性质
第六章 静电场第1节 电场力的性质(1)任何带电体所带的电荷量都是元电荷的整数倍。
(√) (2)点电荷和电场线都是客观存在的。
(×) (3)根据F =k q 1q 2r2,当r →0时,F →∞。
(×)(4)电场强度反映了电场力的性质,所以电场中某点的电场强度与试探电荷在该点所受的电场力成正比。
(×)(5)电场中某点的电场强度方向即为正电荷在该点所受的电场力的方向。
(√) (6)真空中点电荷的电场强度表达式E =kQr 2中,Q 就是产生电场的点电荷。
(√)(7)在点电荷产生的电场中,以点电荷为球心的同一球面上各点的电场强度都相同。
(×) (8)电场线的方向即为带电粒子的运动方向。
(×)(1)1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。
(2)1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。
(3)1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e 的电荷量,获得诺贝尔奖。
突破点(一) 库仑定律及库仑力作用下的平衡1.对库仑定律的两点理解(1)F =k q 1q 2r 2,r 指两点电荷间的距离。
对可视为点电荷的两个均匀带电球,r 为两球心间距。
(2)当两个电荷间的距离r →0时,电荷不能视为点电荷,它们之间的静电力不能认为趋于无限大。
2.解决库仑力作用下平衡问题的方法步骤库仑力作用下平衡问题的分析方法与纯力学平衡问题的分析方法是相同的,只是在原来受力的基础上多了电场力。
具体步骤如下:3.“三个自由点电荷平衡”的问题(1)平衡的条件:每个点电荷受到另外两个点电荷的合力为零或每个点电荷处于另外两个点电荷产生的合电场强度为零的位置。
(2)[典例] (多选)如图所示,把A 、B 两个相同的导电小球分别用长为0.10m 的绝缘细线悬挂于O A 和O B 两点。
用丝绸摩擦过的玻璃棒与A 球接触,棒移开后将悬点O B 移到O A 点固定。
电场力的知识点总结
电场力的知识点总结电场力是指在电场中由于电荷之间的相互作用产生的力。
电场力是物理学中重要的概念之一,它在许多领域都有重要的应用,如电子设备、通讯系统、能源生产等。
本文将从电场的基本概念、电场力的产生和性质、电场力的应用等方面,对电场力的知识点进行总结。
一、电场的基本概念1. 电场的概念电场是指物质周围的空间中存在的一种力场,它是由电荷引起的相互作用力所组成的。
在电场中,电荷会受到电场力的作用,从而产生相应的运动和变化。
2. 电场强度的概念电场强度是描述电场的一个重要物理量,它表示单位正电荷在电场中受到的力的大小和方向。
电场强度的大小和方向决定了电场力的大小和方向,可以通过电场线图形象地表示出来。
3. 电场的特点电场具有以下特点:(1)电场力是以静电作用为基础的,是一种距离相关的力。
(2)电场力是一种矢量力,具有大小和方向。
(3)电场力是一种场力,它是在空间的任意位置都存在的。
二、电场力的产生和性质1. 电荷之间的相互作用电场力是由电荷之间的相互作用产生的。
电荷之间的相互作用是静电作用,它由库伦定律描述,即同号电荷之间的电场力是斥力,异号电荷之间的电场力是引力。
2. 电场力的计算根据库伦定律,可以计算出点电荷之间的电场力大小:\[F = \frac{{k|q_1q_2|}}{{r^2}}\]式中,\(F\)表示电场力的大小,\(k\)为库伦常数,\(q_1\)和\(q_2\)分别为两个电荷的大小,\(r\)为它们的距离。
3. 电场力的性质电场力具有以下性质:(1)电场力是一种相互作用力,它是由两个电荷之间相互作用产生的。
(2)电场力遵循叠加原理,即多个电荷之间的电场力可以相互叠加。
(3)电场力是一种静电力,它与电荷的静电性质有关,不受电荷的运动状态影响。
三、电场力的应用1. 电场力的应用领域电场力在生活和工业中有许多重要的应用,如电子设备、通讯系统、能源生产等。
电场力在这些领域的应用主要包括:(1)静电吸附:利用电场力的作用,可以实现物体的静电吸附,如喷漆、印刷等工艺中常用的电场吸附技术。
电场力基本概念与性质
通过电场线的变化,可以分析静电感应过程 中电荷的分布和移动情况。
04
高斯定理和环路定理在电场 中应用高斯定理Βιβλιοθήκη 容表述及物理意义高斯定理内容
在真空静电场中,通过任闭合曲面的 电通量等于该闭合曲面内所包围的电 荷的代数和除以真空中的介电常数。
物理意义
高斯定理反映了静电场是有源场这一 特性,即静电场可以从正电荷或无限 远发出,终止于无限远或负电荷,静 电场线不闭合,静电场是有源场。
利用高斯定理求解常见电荷分布问题
均匀带电球体
通过高斯面选取和对称性分析,可以求解出均匀带电球体内外任 一点的电场强度。
无限长均匀带电直线
通过构建圆柱形高斯面,可以求解出无限长均匀带电直线外任一 点的电场强度。
无限大均匀带电平面
通过构建平行板电容器模型和高斯面的选取,可以求解出无限大 均匀带电平面外任一点的电场强度。
电场线的绘制方法
根据电场强度和方向,按 照一定的比例和规则绘制 出电场线。
电场线的特点
起始于正电荷(或无穷远 ),终止于负电荷(或无 穷远),不相交、不闭合 ,疏密表示电场的强弱。
典型电场线分布特征分析
点电荷的电场线
带电体的电场线
以点电荷为球心的一簇射线,离点电 荷越近,电场线越密。
根据带电体的形状和电荷分布情况, 电场线可能呈现不同的分布特征。
面临挑战
未来静电屏蔽技术将面临更多挑战,如新型电磁干扰源的不断出现、对屏蔽效能要求的 不断提高、环保和可持续发展等要求的提高等。同时,静电屏蔽技术也需要与其他技术
相结合,形成更完善的电磁防护体系。
06
实验探究:验证库仑定律和 测量点电荷间作用力
实验目的和原理介绍
实验目的
电场的基本性质
电场的基本性质电场是电荷周围的一种物理场,它对电荷具有吸引或排斥的作用。
电场的基本性质包括电场力、电场强度和电势三个方面。
本文将依次介绍这些基本性质。
一、电场力电场力是电场作用在电荷上的力,它的大小与电荷量及其所处位置有关。
根据库仑定律,两个电荷之间的电场力与它们之间的距离成反比,与电荷量的乘积成正比。
具体而言,当两个电荷同性时,电场力为排斥力;当两个电荷异性时,电场力为吸引力。
电场力的方向始终指向电场中心,即指向电荷所在位置。
二、电场强度电场强度是描述电场的物理量,表示单位正电荷所受的电场力。
它的计算公式为电场强度等于电场力除以正电荷所带电量。
电场强度与电荷量成正比,与距离的平方成反比。
电场强度的方向与电场力的方向一致,即与电荷的性质有关。
在均匀电场中,电场强度大小始终保持不变。
三、电势电势是描述电场能量分布的物理量,表示单位正电荷在电场中的电势能。
它的计算公式为电势等于电场力所做的功除以正电荷所带电量。
电势与电荷量成正比,与距离成反比。
与电场强度不同的是,电势是标量,没有方向性。
在均匀电场中,电势强度在空间中是均匀分布的。
不同位置的电势可以通过电势差来衡量,电势差等于电势高减去电势低。
电势差大于零表示从电势低的位置移动到电势高的位置需要做功,反之则表示从电势高的位置移动到电势低的位置可以释放能量。
总结:电场的基本性质包括电场力、电场强度和电势。
电场力是电场作用在电荷上的力,它具有排斥或吸引的作用,且方向指向电荷所在位置。
电场强度是描述电场的物理量,表示单位正电荷所受的电场力,它与电荷量成正比,与距离的平方成反比。
电势是描述电场能量分布的物理量,它表示单位正电荷在电场中的电势能,与电荷量成正比,与距离成反比。
电势差表示不同位置的电势之差,其正负表示从一位置到另一位置所需的能量变化情况。
这些基本性质在电场研究和实际应用中起着重要的作用。
参考文献:1. Griffiths, D.J. (1989). Introduction to Electrodynamics (2nd ed.). Prentice Hall.2. Tipler, P.A., & Mosca, G. (2007). Physics for Scientists and Engineers (6th ed.). W.H. Freeman and Company.。
《电场力的性质》课件
电场的性质
总结词
电场具有物质性、有源性、矢量性、变化性等性质。
详细描述
电场是一种客观存在的特殊物质,具有物质性;电场由电荷产生,具有有源性; 电场对放入其中的电荷的作用力方向,说明电场具有矢量性;变化的电场能产生 磁场,变化的磁场也能产生电场,说明电场具有变化性。
电场的分类
总结词
电场可分为静电场和感应电场。
静电复印
利用静电感应原理,在光 导体上形成静电潜像,再 通过显影和定影,形成复 印品。
电磁感应的应用
电磁感应
感应电动机
因磁通量变化产生感应电动势的现象 。
利用电磁感应原理将电能转换为机械 能理改变交流电压的设 备。
电场力在电子设备中的应用
电子显微镜
利用电场力控制样品在显微镜中 的位置和运动。
实验步骤与结果分析
步骤四
分析实验数据,得出结论。
结果分析
通过实验数据,可以发现电场力与电场强度成正比,与电荷 量成正比,符合库仑定律。同时,电场力方向与电场强度方 向相同,符合左手定则。实验结果与理论预测一致,验证了 电场力的性质和电场强度的关系。
THANK YOU
感谢各位观看
详细描述:在等势面上,电场线的密度较小,说 明该处的电场强度较小,因此受到的电场力也较 小。反之,在电场线密度较大的地方,受到的电 场力较大。
04
电场力在生活中的应用
静电感应的应用
01
02
03
静电感应
当一个带电体靠近导体时 ,导体因静电感应而带电 的现象。
静电除尘
利用静电场使气体电离, 从而使尘粒带电并在电场 力的作用下运动而达到除 尘目的。
03
电场力与电场的关系
电场力与电场强度的关系
电场力的性质
电场力的性质一、电荷库仑定律1、电荷守恒定律和元电荷自然界中只有两种电荷,正电荷和负电荷。
电荷的多少叫做电荷量,正电荷的电荷量用正数表示,负电荷的电荷量用负数表示。
同种电荷互相排斥,异种电荷互相吸引。
使物体带电的方法有:(1)摩擦起电;(2)接触带电;(3)感应起电。
不管哪种方式使物体带电,都是由于电荷转移的结果。
元电荷e=1.60×10-19C.2、电荷守恒定律电荷既不能创造,也不能消灭,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变。
这个结论叫做电荷守恒定律。
3、比荷:带电粒子的电荷量与粒子的的质量之比,叫做该粒子的比荷。
4、库仑定律真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们距离的二次方成反比,作用力的方向在它们的连线上。
(1)公式(2)k=9.0×109N·m2/c2(3)适用于点电荷(注意:看作点电荷的前提是带电体间的距离远大于带电体的尺寸5、由于物体带电是由于电荷的转移,可知,物体所带电荷量或者等于电荷量e,或者等于电荷量e的整数倍。
电荷量e称为元电荷,e=1.60×10-19C,比荷C/kg.6、点电荷:如果带电体的距离比它们自身的大小大得多,带电体的大小和形状忽略不计。
这样的带电体可看作点电荷,它是一种理想化的物理模型。
二、电场电场强度1、电场的基本性质:就是对放入其中的电荷有力的作用,这种力叫做电场力。
2、电场是一种特殊的物质形态。
3、电场强度放入电场中某点的电荷受到的电场力F跟它的电荷量q的比值,叫做该点的电场强度,简称场强。
(1)公式(2)单位V/m1V/m=1N/C(3)矢量性:规定正电荷在该点受电场力的方向为该点场强的方向。
4、点电荷电场的场强5、电场的叠加原理:如果有几个点电荷同时存在,它们的电场就互相叠加,形成合电场。
这时某点的场强等于各个电荷单独存在时在该点产生的场强的矢量和。
电场力和电势
电场力和电势电场力(Electric Field Force)和电势(Electric Potential)是研究电磁学中重要的概念。
在本文中,我们将探讨电场力和电势的定义、性质和相关的应用。
通过深入了解这两个概念,我们可以更好地理解电场与电势的本质和作用。
一、电场力的定义和性质电场力是指在电场中,由于电荷相互作用而产生的作用力。
电场力的大小和方向受到电荷之间距离的影响,遵循库仑定律。
库仑定律表明,电场力正比于电荷的乘积,反比于它们之间的距离的平方。
表达式如下:F = k * (q1 * q2) / r²其中,F表示电场力的大小,k为库仑常量,q1和q2为电荷的大小,r为电荷之间的距离。
电场力的方向是由于电荷之间的相互作用而确定的,当两个电荷具有相同符号(正或负)时,电场力是相互排斥的;当两个电荷有不同符号时,电场力是相互吸引的。
二、电势的定义和性质电势是指在电场中单位正电荷所具有的电势能。
我们可以将电势看作是一个描述电场中能量分布的物理量。
电势是标量,通常用V表示,单位是伏特(V)。
电势的定义是通过改变单位正电荷所做的功来描述的。
当单位正电荷从一个位置移动到另一个位置时,所受到的外力所做的功称为电势能的变化。
电势可以用数学公式表示为:V = W / q其中,V表示电势,W表示电势能的变化,q表示单位正电荷。
电势是标量,它与路径无关,只与两个位置之间的距离有关。
在电势能相对较高的位置,单位正电荷具有较大的电势;在电势能相对较低的位置,单位正电荷具有较小的电势。
三、电场力和电势的关系电场力和电势之间存在着密切的关系。
电场力可以通过电势的梯度(即电势函数对坐标的偏导数)来计算。
具体地,电场力的大小可以通过以下公式计算:F = -∇V其中,F表示电场力的大小,V表示电势,∇表示梯度运算符。
这个公式表明,电场力的方向与电势的梯度相反,也就是说,在电势下降的方向上,电场力是正向的;在电势上升的方向上,电场力是负向的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1 电场的力的性质
教学目标:
(一)知识与技能
1.两种电荷,电荷守恒,真空中的库仑定律,电荷量。
2.电场,电场强度,电场线,点电荷的场强,匀强电场,电场强度的迭加。
(二)过程与方法
培养学生学会分析和处理电场问题的一般方法。
(三)情感态度与价值观
培养学生的观察和探索能力
教学重点:库仑定律,电场强度
教学难点:对电场强度的理解
教学方法:讲练结合,计算机辅助教学
课时安排:
复习课(2课时)
教学过程:
一、库仑定律
真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。
即:
22
1 r q
kq
F 其中k为静电力常量,k=9.0×10 9 N m2/c2
1.成立条件
①真空中(空气中也近似成立),②点电荷。
即带电体的形状和大小对相互作用力的影响可以忽略不计。
(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心距代替r)。
2.同一条直线上的三个点电荷的计算问题
【例1】在真空中同一条直线上的A、B两点固定有电荷量分别为+4Q和-Q的点电荷。
+4Q
A B C
-Q
①将另一个点电荷放在该直线上的哪个位置,可以使它在电场力作用下保持静止?②若要求这三个点电荷都只在电场力作用下保持静止,那么引入的这个点电荷应是正电荷还是负电荷?电荷量是多大?
3.与力学综合的问题。
【例2】已知如图,带电小球A 、B 的电荷分别为Q A 、Q B ,OA=OB ,都用长L 的丝线悬挂在O 点。
静止时A 、B 相距为d 。
为使平衡时AB 间距离减为d /2,可采用以下哪些方法
A .将小球A 、
B 的质量都增加到原来的2倍 B .将小球B 的质量增加到原来的8倍
C .将小球A 、B 的电荷量都减小到原来的一半
D .将小球A 、B 的电荷量都减小到原来的一半,同时将小球B 的质量增加到原来的2倍
电场的最基本的性质是对放入其中的电荷有力的作用,电荷放入电场后就具有电势能。
1.电场强度
电场强度E 是描述电场的力的性质的物理量。
(1)定义:放入电场中某点的电荷所受的电场力F 跟它的电荷量q 的比值,叫做该点
的电场强度,简称场强。
q
F
E =
①这是电场强度的定义式,适用于任何电场。
②其中的q 为试探电荷(以前称为检验电荷),是电荷量很小的点电荷(可正可负)。
③电场强度是矢量,规定其方向与正电荷在该点受的电场力方向相同。
(2)点电荷周围的场强公式是:2
r kQ
E =
,其中Q 是产生该电场的电荷,叫场电荷。
匀强电场
等量异种点电荷的电场 等量同种点电荷的电场
- - - -
点电荷与带电平板
+
孤立点电荷周围的电场
⑶匀强电场的场强公式是:d
U
E
,其中d 是沿电场线方向上的距离。
【例3】 图中边长为a 的正三角形ABC 的三点顶点分别固定三个点电荷+q 、+q 、-q ,求该三角形中心O 点处的场强大小和方向。
【例4】 如图,在x 轴上的x = -1和x =1两点分别固定电荷量为- 4Q 和+9Q 的点电荷。
求:x 轴上合场强为零的点的坐标。
并求在x = -3点处的合场强方向。
2.电场线
要牢记以下6种常见的电场的电场线
注意电场线的特点和电场线与等势面间的关系:
①电场线的方向为该点的场强方向,电场线的疏密表示场强的大小。
②电场线互不相交。
A
B
C O
E B
E A E C -5 -3 -1 1 -4Q +9Q
【例5】如图所示,在等量异种点电荷的电场中,将一个正的试探电荷由A 点沿直线移到O点,再沿直线由O点移到c点。
在该过程中,检验电荷所受的
电场力大小和方向如何改变?其电势能又如何改变?
小结:板书:
课后记:+ -
a O
c
2013届高三物理教案
《电场》
窦人镜。