寄存器与存储器(1)
寄存器和存储器的区别
/p-20032411.html寄存器和存储器的区别如果仅是讨论CPU的范畴寄存器在cpu的内部,容量小,速度快存储器一般都在cpu外部,容量大,速度慢回答者:athlongyj - 高级经理六级6-1 08:52 从根本上讲,寄存器与RAM的物理结构不一样。
一般寄存器是指由基本的RS触发器结构衍生出来的D触发,就是一些与非门构成的结构,这个在数电里面大家都看过;而RAM则有自己的工艺,一般1Bit由六MOS管构成。
所以,这两者的物理结构不一样也导致了两者的性能不同。
寄存器访问速度快,但是所占面积大。
而RAM相反,所占面积小,功率低,可以做成大容量存储器,但访问速度相对慢一点。
1、寄存器存在于CPU中,速度很快,数目有限;存储器就是内存,速度稍慢,但数量很大;计算机做运算时,必须将数据读入寄存器才能运算。
2、存储器包括寄存器,存储器有ROM和RAM寄存器只是用来暂时存储,是临时分配出来的,断电,后,里面的内容就没了`````寄存器跟存储器有什么区别?一般数据在内存里面,要处理(或运算)的时候,独到寄存器里面。
然后CPU到寄存器里面拿值,拿到运算核内部,算好了在送到寄存器里面再到内存寄存器跟存储器有什么区别?寄存器跟存储器有什么区别?寄存器上:“一个操作码+一个操作数”等于一条微指令吗?一条微指令是完成一条机器指令的一个步骤对吗?cpu是直接跟寄存器打交道的对吗?也就是说寄存器是运算器、控制器的组成部分对不?设计一条指令就是说把几条微指令组合起来对吗?刚开始学硬件相关知识,学的晕头转向的!!存储器与寄存器区别2009-06-09 12:27寄存器是CPU内部存储单元,数量有限,一般在128bit内,但是速度快,CPU访问几乎没有任何延迟。
分为通用寄存器和特殊功能寄存器。
通常说的存储器是独立于cpu之外的,比如内存,硬盘,光盘等。
所有数据必须从存储器传入寄存器后,cpu才能使用。
程序存储器指令寄存器程序计数器地址寄存器2009年05月21日星期四下午 10:411、程序存储器(program storage)在计算机的主存储器中专门用来存放程序、子程序的一个区域。
计算机组成原理存储器(1)(1)
计算机组成原理存储器(1)(1)1.存储器⼀、单选题(题数 54,共7 )1在下述存储器中,允许随机访问的存储器是()。
(1.2分)A、磁带 B 、磁盘 C 、磁⿎ D 、半导体存储器正确答案 D2若存储周期250ns,每次读出16位,则该存储器的数据传送率为()。
(1.2分)A、4×10^6字节/秒B、4M字节/秒C、8×10^6字节/秒D、8M字节/秒正确答案 C3下列有关RAM和ROM得叙述中正确的是()。
IRAM是易失性存储器,ROM是⾮易失性存储器IIRAM和ROM都是采⽤随机存取⽅式进⾏信息访问IIIRAM和ROM都可⽤做CacheIVRAM和ROM都需要进⾏刷新(1.2分)A、仅I和IIB、仅I和IIIC、仅I,II,IIID、仅II,III,IV正确答案 A4静态RAM利⽤()。
(1.2分)A、电容存储信息B、触发器存储信息C、门电路存储信息D、读电流存储信息正确答案 B5关于计算机中存储容量单位的叙述,其中错误的是()。
(1.2分)A、最⼩的计量单位为位(bit),表⽰⼀位“0”或“1”B、最基本的计量单位是字节(Byte),⼀个字节等于8bC、⼀台计算机的编址单位、指令字长和数据字长都⼀样,且是字节的整数倍D、主存容量为1KB,其含义是主存中能存放1024个字节的⼆进制信息正确答案 C6若CPU的地址线为16根,则能够直接访问的存储区最⼤容量为()。
(1.2分)A、1MB、640KC、64KD、384K正确答案 C7由2K×4的芯⽚组成容量为4KB的存储器需要()⽚这样的存储芯⽚。
(1.2分)A、2B、4C、8D、16正确答案 B8下⾯什么存储器是⽬前已被淘汰的存储器。
(1.2分)A、半导体存储器B、磁表⾯存储器C、磁芯存储器D、光盘存储器正确答案 C9下列⼏种存储器中,()是易失性存储器。
(1.2分)A、cacheB、EPROMC、FlashMemoryD 、 C D-ROM正确答案 A10下⾯关于半导体存储器组织叙述中,错误的是什么。
寄存器是什么?内存、寄存器和存储器的区别
寄存器是什么?内存、寄存器和存储器的区别
什么是寄存器?寄存器就是计算机中⽤来在操作时暂时存储信息的部件。
说到存储信息,你是不是想到了内存卡和存储器,那你知道它们之间的区别吗?不知道的话,下⾯贤集⽹⼩编来给您说说寄存器是什么?内存、寄存器和存储器的区别。
1、寄存器是什么?
寄存器是中央处理器内的组成部分。
寄存器是有限存贮容量的⾼速存贮部件,它们可⽤来暂存指令、数据和地址。
在中央处理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序计数器(PC)。
2、内存、寄存器和存储器的区别
从范围来看,它们所指的范畴不⼀样。
1)寄存器是和CPU⼀起的,只能存少量的信息,但是存取速度特别快;
2)存储器是指的是硬盘,U盘,软盘,光盘之类的存储⼯具,速度最慢;。
寄存器结构、存储器管理
08
例: MOV AX, [BX+03H]
CX——Count可以作计数寄存器使用。 在循环LOOP指令和串处理指令中用作隐含计数器。 例: MOV CX , 200H AGAIN: …… …… LOOP AGAIN ;(CX)-1(CX),结果0转AGAIN DX——Data可以作为数据寄存器使用。 一般在双字长乘除法运算时, 把DX和AX组合在一起存放一个双字长(32位)数,DX用来存放高16位; 对某些I/O操作DX可用来存放I/O的端口地址(口地址 256)。 例: MUL BX ; (AX)(BX)(DX)(AX) 例: IN AL , DX
奇偶标志PF(Parity Flag)
若算术运算的结果有溢出,则OF=1;
否则 OF=0
3AH + 7CH=B6H,产生溢出:OF=1 AAH + 7CH=(1)26H,没有溢出:OF=0
溢出标志OF(Overflow Flag)
3AH+7CH=B6H,就是58+124=182,
什么是溢出
处理器内部以补码表示有符号数 8位表达的整数范围是:+127 ~ -128 16位表达的范围是:+32767 ~ -32768 如果运算结果超出这个范围,就产生了溢出 有溢出,说明有符号数的运算结果不正确
01
AX——(Accumulator)作为累加器。
02
它是算术运算的主要寄存器,
03
所有I/O指令都使用这一寄存器与外部设备交换数据。
04
例: IN AL , 20H
05
OUT 30H , AX
06
BX——Base用作基址寄存器使用。
07
在计算内存储器地址时,经常用来存放基址。
0
计算机组成原理中的存储器与寄存器
计算机组成原理中的存储器与寄存器计算机组成原理是计算机科学和工程领域中的基础课程,它涉及到计算机的各个组成部分以及它们之间的工作原理。
存储器和寄存器是计算机重要的组成部分,它们在数据存储和数据传输方面起到了至关重要的作用。
本文将深入探讨计算机组成原理中的存储器与寄存器。
一、存储器存储器是计算机用于存储和访问数据的物理组件。
它由一组存储单元组成,每个存储单元可以存储一个固定大小的数据。
存储器根据其访问方式可以分为随机存储器(RAM)和只读存储器(ROM)。
1. 随机存储器(RAM)随机存储器是计算机中最常用的存储器类型之一。
它具有随机访问的能力,即可以直接访问任何存储单元。
RAM是易失性存储器,当计算机断电时,其中的数据将会丢失。
它主要用于存储临时数据和程序指令。
2. 只读存储器(ROM)只读存储器是一种不可更改的存储器,其中的数据在计算机断电时依然保持不变。
ROM常用于存储计算机的固件和启动程序等无需修改的数据。
与RAM不同,ROM无法直接修改其中的数据,因此被称为只读存储器。
二、寄存器寄存器是计算机中最快速的存储器,它被用于执行计算和数据传输等临时性操作。
寄存器具有很高的读取和写入速度,但其容量较小。
计算机中的寄存器包括通用寄存器、特殊寄存器和程序计数器等。
1. 通用寄存器通用寄存器是一类用于存储操作数和计算结果的寄存器。
它们具有固定的位数,通常为32位或64位。
通用寄存器可以存储整数、浮点数和指针等不同类型的数据。
在计算机执行程序时,通用寄存器被广泛用于数据的传递和临时存储。
2. 特殊寄存器特殊寄存器包括程序计数器(PC)、指令寄存器(IR)和状态寄存器等。
程序计数器用于存储下一条要执行的指令地址,指令寄存器用于存储当前正在执行的指令,而状态寄存器用于存储计算机的运行状态信息,如标志位等。
三、存储器与寄存器的作用和区别存储器和寄存器在计算机中起着不同的作用。
1. 存储器的作用存储器主要用于存储程序和数据,可以实现数据的长期保存。
存储器与寄存器设计
存储器与寄存器设计1. 导言在计算机系统中,存储器和寄存器是两个重要的组成部分。
存储器用于存储数据和指令,而寄存器则用于临时存放和处理数据。
本文将重点论述存储器和寄存器的设计原则和方法。
2. 存储器设计存储器是计算机系统中用于存储数据和指令的设备。
其设计需要考虑容量、速度、稳定性和可靠性等因素。
2.1 存储器类型常见的存储器类型包括随机存取存储器(RAM)、只读存储器(ROM)、闪存等。
在设计存储器时,需要根据应用需求选择合适的类型。
2.2 存储器组织结构存储器的组织结构分为层次式结构和平坦式结构。
层次式结构包括高速缓存、主存储器和辅助存储器,其中高速缓存用于提高读写速度。
平坦式结构指主存储器和辅助存储器直接相连,适用于较小规模的系统。
2.3 存储器管理存储器管理是指对存储器进行分配和回收等操作。
常用的存储器管理方式有静态存储器管理和动态存储器管理。
静态存储器管理通过编译器确定存储器的分配和回收时机,而动态存储器管理由操作系统负责管理。
3. 寄存器设计寄存器是计算机系统中用于临时存放和处理数据的设备。
其设计需要考虑存储容量、读写速度和位宽等因素。
3.1 寄存器的种类常见的寄存器种类包括通用寄存器、特定用途寄存器和状态寄存器等。
通用寄存器用于存放临时数据,特定用途寄存器用于特定计算操作,状态寄存器用于存放处理器的状态信息。
3.2 寄存器位宽寄存器的位宽决定了其可以存储的最大数据量。
在设计寄存器时,需要根据计算需求选择合适的位宽,以提高计算效率。
3.3 寄存器读写速度寄存器的读写速度对计算机系统的性能有重要影响。
为提高读写速度,可采用并行读写、预取和流水线等技术。
4. 存储器与寄存器协同设计存储器和寄存器在计算机系统中紧密配合,提供高效的数据存储和处理能力。
在存储器和寄存器的设计过程中,需要考虑它们的互联和数据传输等问题。
4.1 存储器与寄存器的接口存储器和寄存器通过总线进行数据传输。
在设计存储器与寄存器的接口时,需要考虑数据传输的稳定性和速度。
电路基础原理数码逻辑电路的存储器与寄存器
电路基础原理数码逻辑电路的存储器与寄存器在电路基础原理的学习中,数码逻辑电路是一个非常重要的概念。
数码逻辑电路是利用数字信号来处理和传输信息的电路。
而在数码逻辑电路中,存储器和寄存器是两个非常关键的组成部分。
存储器是一种用于存储和读取信息的电路。
常见的存储器有随机存储器(RAM)和只读存储器(ROM)。
RAM是一种易失性存储器,它可以在电源关闭之前存储和读取数据。
它由许多存储单元组成,每个存储单元都可以存储一个二进制位。
这些存储单元可以通过地址线进行选择,使得我们可以根据需要读取或写入特定的存储单元。
RAM的易失性意味着在断电时会失去存储的信息,所以它通常用作临时存储器,用于计算机的运行时存储。
ROM是一种只读存储器,其中的信息一旦写入就不能被改变。
它通常被用来存储程序代码和其他不需要频繁修改的数据。
ROM中的存储单元是非易失性的,这意味着在断电时依然可以保留数据。
ROM的制造工艺决定了数据内容无法更改,所以它被称为只读存储器。
寄存器是一种用于存储和移动数据的电路。
它通常由多个存储单元组成,每个存储单元可以存储一个二进制位。
与RAM不同的是,寄存器可以直接根据需要选择和读取其中的存储单元,而无需使用地址线。
寄存器常用于存储中间结果或在计算机CPU中用于快速存储和移动数据。
除了RAM、ROM和寄存器,还有其他一些存储器组件,如闪存和缓存。
闪存是一种非易失性存储器,它通常用于移动设备和计算机的永久存储。
缓存是一种用于快速存储和调用数据的存储器,它位于CPU和主存之间,可以提高计算机的运行速度。
数码逻辑电路的存储器和寄存器在现代电子设备中起着至关重要的作用。
它们为计算机和其他数字系统提供了数据的存储和传输功能。
不同类型的存储器和寄存器适用于不同的应用场景。
例如,RAM用于临时存储数据,ROM用于存储固定数据,寄存器用于数据的快速存储和移动。
它们共同构成了计算机和其他数字设备的核心部分。
总的来说,电路基础原理中关于数码逻辑电路的存储器和寄存器是非常重要的概念。
存储器与寄存器的组成与工作原理
存储器与寄存器的组成与工作原理存储器与寄存器是计算机系统中重要的组成部分,它们在数据存储和处理方面发挥着关键的作用。
本文将从存储器与寄存器的组成结构、工作原理两个方面进行介绍。
一、存储器的组成与工作原理存储器,简单来说,是用于存储和读取数据的计算机设备。
它由一系列存储单元组成,每个存储单元能够存储一定数量的数据。
根据存取方式的不同,存储器可以分为随机存储器(RAM)和只读存储器(ROM)。
1. 随机存储器(RAM)随机存储器是一种临时存储介质,具有读写功能。
它由一系列存储单元组成,每个存储单元都有一个独立的地址。
数据可以通过地址访问和存取。
随机存储器的存储单元可以分为静态随机存储器(SRAM)和动态随机存储器(DRAM)两种。
静态随机存储器(SRAM)由触发器组成,每个存储单元由6个触发器构成,能够稳定地存储数据。
它的读写速度较快,但芯片密度较低,价格较高。
动态随机存储器(DRAM)利用电容器存储数据,需要定期刷新来保持数据的有效性。
相较于SRAM,DRAM的芯片密度较高,价格也较低,但读写速度较慢。
2. 只读存储器(ROM)只读存储器是一种只能读取数据而不能写入数据的存储设备。
它通常用于存储不会改变的程序代码和固定数据。
只读存储器的存储单元由硅片上的门电路组成,数据在制造过程中被写入,不可修改。
二、寄存器的组成与工作原理寄存器是一种用于暂存和处理数据的高速存储设备。
它位于计算机的中央处理器内部,是一组用于存储指令、地址和数据的二进制单元。
寄存器的组成与存储器相比较小,但速度更快。
它由多个存储单元组成,每个存储单元能够存储一个或多个二进制位。
寄存器的位数决定了其可以存储的数据量大小。
寄存器在计算机中发挥着重要的作用,它可以用于暂存指令和数据,提高计算机的运行效率。
它还可以用于存储地址,使得计算机能够正确地访问存储器中的数据。
寄存器具有多种类型,常见的有通用寄存器、程序计数器、指令寄存器等。
通用寄存器用于存储临时数据,程序计数器用于存储下一条要执行的指令地址,指令寄存器用于存储当前正在执行的指令。
电路基础原理数字信号的存储器与寄存器实现
电路基础原理数字信号的存储器与寄存器实现在电路基础原理中,数字信号的存储器与寄存器是关键的组成部分。
它们扮演着信息存储和传输的重要角色。
本文将详细介绍数字信号的存储器与寄存器的实现原理。
1. 数字信号的存储器数字信号的存储器是用于存储二进制数据的电路。
常见的存储器类型包括SR(Set-Reset)存储器、D(Data)存储器和JK存储器等。
其中,SR存储器是最简单的一种。
它有两个输入端,分别是Set和Reset,以及两个输出端,分别是Q和Q'。
当Set端为1,Reset端为0时,SR存储器的状态变为1。
当Set端为0,Reset端为1时,SR存储器的状态变为0。
当Set端和Reset端同时为1时,SR存储器的状态是无法确定的。
为了解决SR存储器的不确定性问题,D存储器应运而生。
D存储器有一个输入端D,即数据输入端。
当D为1时,D存储器的状态变为1;当D为0时,D存储器的状态变为0。
相比于SR存储器,D存储器只有一个输入端,更加简洁。
另一个常见的存储器类型是JK存储器。
JK存储器有两个输入端J和K,以及两个输出端Q和Q'。
当J和K同时为1时,JK存储器的状态不变。
当J为1,K为0时,JK存储器的状态变为1。
当J为0,K为1时,JK存储器的状态变为0。
当J和K同时为0时,JK存储器的状态也是无法确定的。
2. 数字信号的寄存器数字信号的寄存器是一种可以在时钟信号的作用下存储和传输数据的电路。
它常用于在数码管、LED灯等显示设备中,以及在计算机等系统中。
寄存器通常由触发器(Flip Flop)和多路选择器构成。
触发器有很多种类,常见的有D触发器、JK触发器和T触发器等。
与存储器类似,触发器也可以通过时钟信号的作用控制数据的存储和输出。
多路选择器可以选择不同的输入信号,并将其传递到输出端。
对于寄存器来说,多路选择器常用于选择输入信号和输出信号的连接。
寄存器的实现原理是:在每个时钟跳变的时刻,输入信号被保存在触发器中,然后通过多路选择器选择性地传递到输出端。
计算机存储器的分类
计算机存储器的分类计算机存储器是计算机硬件中重要的组成部分,用于存储和读取数据。
根据存储数据的方式和特点,计算机存储器可以分为主存储器、辅助存储器、高速缓存和寄存器等几种类型。
一、主存储器主存储器(Main Memory)是计算机中最重要的存储器之一,也是CPU直接访问的存储器。
主存储器通常采用半导体存储器芯片制成,常见的有动态随机存取存储器(DRAM)和静态随机存取存储器(SRAM)。
主存储器的特点是读写速度快,但容量有限,数据在断电时会丢失。
二、辅助存储器辅助存储器(Auxiliary Memory)用于长期存储大量的数据和程序。
辅助存储器的容量较大,但读写速度相对较慢。
常见的辅助存储器包括硬盘、光盘、磁带等。
硬盘是计算机中最常见的辅助存储器,具有容量大、价格低廉的优点。
三、高速缓存高速缓存(Cache)是位于CPU和主存储器之间的一种存储器,用于提高计算机的运行速度。
由于CPU的运算速度远远快于主存储器的读写速度,所以引入高速缓存可以减少CPU等待数据的时间。
高速缓存分为一级缓存和二级缓存,一级缓存通常集成在CPU中,而二级缓存则位于CPU和主存储器之间。
高速缓存的容量较小,但读写速度非常快。
四、寄存器寄存器(Register)是CPU内部最快的存储器,用于存储指令和数据。
寄存器的容量非常有限,但读写速度极快。
寄存器主要用于存储CPU当前执行的指令和数据,以及临时存储运算结果等。
以上是根据存储器的特点和用途对计算机存储器进行的分类。
在实际应用中,不同类型的存储器相互配合,共同完成计算机的数据存储和读取工作。
主存储器作为计算机的主要存储介质,负责存储正在运行的程序和数据;辅助存储器则用于长期存储大量的数据和程序;高速缓存用于提高计算机的运行速度,减少CPU等待数据的时间;寄存器则承担着临时存储和传输数据的任务。
在计算机存储器的发展中,随着技术的进步,存储器的容量越来越大,读写速度也越来越快。
电路中的存储器与寄存器
电路中的存储器与寄存器电路在现代科技中扮演了重要的角色,无论是计算机还是其他电子设备,都需要使用各种各样的电路来完成各种功能。
而在这些电路中,存储器和寄存器是两个常见的组件,它们在信息的存储和传递中起到了至关重要的作用。
存储器是电路系统中用于存储和检索数据的设备。
它可以被视为一个巨大的数据表,每个单元存储着一个特定的数据值。
在计算机中,存储器通常由许多存储单元组成,每个单元都有一个唯一的地址。
通过输入相应的地址,我们可以读取或写入存储单元中的数据。
存储器可以分为随机存取存储器(RAM)和只读存储器(ROM)。
RAM 允许数据的读取和写入,而 ROM 只能读取已经存储在其中的数据。
RAM 在计算机中扮演着重要的角色,它是临时储存数据的地方,当计算机开机时,操作系统和其他程序都会加载到 RAM 中进行执行。
而寄存器则是一种特殊的存储器,它在电子设备中被用来暂时存储一些特定的信息。
寄存器可以看作是存储器的一种特殊形式,它通常是由一组连续的存储单元组成,每个单元可以存储一个固定大小的数据位。
在计算机中,寄存器被用来存储暂时的结果、内存地址和控制信号等。
寄存器在计算机的运算过程中起到了关键的作用。
例如,当我们进行加法运算时,需要将待加数和被加数存储在寄存器中进行计算,然后将计算结果存储回寄存器。
因此,寄存器的能力和性能直接决定了计算机的运算速度和效率。
除了在计算机中,存储器和寄存器在其他电子设备中也起到了重要的作用。
在智能手机中,存储器被用来存储用户的数据和应用程序,寄存器被用来处理各种输入和控制信号。
在数字摄像机中,存储器被用来存储照片和视频。
在智能家居系统中,存储器被用来存储用户的设置和各种设备的状态。
总而言之,存储器和寄存器是电路中不可或缺的组件。
它们在各种电子设备和计算机系统中起到了至关重要的作用。
无论是存储器还是寄存器,它们的能力和性能都是衡量设备品质的重要指标。
因此,在设计和选择电路时,我们需要充分考虑存储器和寄存器的特点和需求,以确保电路的正常运作和高效性能。
寄存器
串行NOR Flash是一种非易失性的存储器,具有存储容量大、数据保存时间长的特点,其擦写次数多达10万次,数据保存时间长达20年,数据更新速度比EEPROM要快很多,在断电的情况下也能保存数据,常用来保存一些重要的配置信息。NOR Flash的传输效率很高,操作频率高达104MHz,具有很高的成本效益。
NOR Flash
NOR Flash可用来存放数据或者代码,存放的数据和代码可以实现掉电保存,NOR Flash分串行NOR Flash和并行NOR Flash两种。
并行NOR Flash是一种非易失性的存储器,具有存储容量大,数据保存时间长的特点,应用程序可以直接在NOR Flash内运行,用户不必把代码再读到RAM中运行。NOR Flash的传输效率很高,具有很高的成本效益。
MRAM
MRAM是一种非挥发性随机存取存储器,它拥有静态随机存储器(SRAM)的高速读取写入能力,以及动态随机存储器(DRAM)的高集成度,而且基本上可以无限次地重复写入。MRAM有并行MRAM和串行MRAM两种。
并行MRAM具有快速、非易失性的SRAM读写周期,一般是35ns,数据保存超过20年,有兼容SRAM的TSOPII封装和兼容SRAM的BGA封装。8位MRAM系列容量为256Kb到16Mb,16位MRAM系列容量为1Mb到16Mb,提供符合RoHS规范的TSOP和BGA两种封装。与所有Everspin非易失性RAM一样,所有器件可无限次读写。
ISSI公司的存储器
ISSI是一家国际性的高科技公司,专门从事设计、开发、制造和销售高性能集成电路存储器,是北美最大的SRAM制造商之一。ISSI的核心产品包括高速、低功耗的SRAM,中、低容量的DRAM,EEPROM及其他集成电路存储器。这些产品满足了半导体器件市场和客户多元化的要求。 ISSI的产品结合了集成电路设计的尖端技术及先进的制造工艺。
计算机存储器的层次结构与功能
计算机存储器的层次结构与功能计算机存储器是计算机中非常重要的组成部分之一,负责存储和提供数据和指令。
存储器的设计涉及到不同层次的结构和功能,这些层次相互协作,共同完成数据的存储和访问任务。
本文将就计算机存储器的层次结构与功能展开讨论。
一、存储器的层次结构计算机存储器的层次结构是按照访问速度和容量大小进行划分的,分为CPU寄存器、高速缓存、主存储器和辅助存储器四个层次。
1. CPU寄存器CPU寄存器是存储在CPU内部的最快速的存储器,用于保存CPU 当前执行的指令和数据。
由于寄存器靠近CPU,其访问速度极快,但容量非常有限,通常只能存储少量的数据。
寄存器不需要通过地址来访问,而是通过寄存器名直接访问。
2. 高速缓存高速缓存(Cache)是位于CPU和主存储器之间的一层存储器,用于解决CPU和主存储器之间速度不匹配的问题。
高速缓存采用了局部性原理,将CPU频繁访问的数据和指令缓存到离CPU更近的位置,以减少访问主存储器的次数,从而提高系统的性能。
3. 主存储器主存储器(Main Memory)是计算机中存储数据和程序的主要设备,是CPU进行读写操作的对象。
主存储器的容量较大,但速度相对较慢。
主存储器通常采用随机访问存储器(RAM)技术实现,它能够以任意顺序访问存储的数据,并且具有易失性的特点,即断电后数据会丢失。
4. 辅助存储器辅助存储器(Auxiliary Storage)是计算机中容量最大、速度最慢、价格最便宜的存储器。
辅助存储器主要用于长期存储数据和程序,常见的辅助存储设备包括硬盘、光盘和磁带等。
辅助存储器具有持久性(永久存储)、高容量和低造价的特点,但访问速度较慢。
二、不同层次存储器的功能不同层次的存储器在计算机系统中发挥着不同的角色,具有不同的功能。
1. CPU寄存器的功能CPU寄存器主要用于存储指令和数据,并进行快速的读写操作。
它的容量非常有限,但速度非常快,能够满足CPU对数据和指令的高速访问需求。
数字电路寄存器的名词解释
数字电路寄存器的名词解释数字电路寄存器是计算机中的一种重要的电子元件,用于存储和传输数字数据。
寄存器通常由触发器组成,是计算机中的一种高速存储器,其内部电路能够存储和处理二进制数据,并在需要的时候将数据传递给其他部件。
本文将对数字电路寄存器的相关概念进行详细解释。
一、寄存器的基本原理寄存器是由多个触发器组成的,每个触发器都有两个状态,分别称为“存储状态”和“非存储状态”。
寄存器能够实现对数据的选取、存储和传输。
在计算机中,寄存器通常由若干个比特(bit)组成,每个比特能够存储一个二进制数值,因此寄存器的位数决定了它能够存储的数据范围。
二、寄存器的类型1. 数据寄存器(Data Register):数据寄存器用于临时存储计算机中正在处理的数据。
它是CPU内部的一部分,主要用于存储算术运算的中间结果或者计算机执行指令时的操作数。
2. 累加器(Accumulator):累加器是一种特殊的数据寄存器,用于存储算术运算和逻辑运算的结果。
它是计算机中的一个重要组成部分,常用于实现加法、减法以及逻辑运算等操作。
3. 计数器(Counter):计数器是一种特殊的寄存器,用于存储和计数输入脉冲的数量。
计数器通常采用二进制数字进行计数,并且能够实现循环计数和计数器重置等功能。
4. 移位寄存器(Shift Register):移位寄存器用于将数据按位进行移动。
它由若干个触发器组成,并且能够实现数据的串行输入和输出。
移位寄存器常被用于实现数据的并行转串行和串行转并行等操作。
三、寄存器的应用寄存器在数字电路中具有广泛的应用。
以下是几个常见的应用场景:1. 存储器(RAM):存储器是计算机中用于存储数据和指令的部件,其中包括数据寄存器。
存储器一般用于临时存储程序运行过程中的各种数据,如变量、数组等。
2. 控制器(Controller):控制器是计算机系统中用于控制和指导各个硬件模块工作的部件,其中包括计数器和移位寄存器。
控制器通常用于处理输入信号,并向其他组件发送控制信号,实现特定的功能。
单片机中寄存器的作用
单片机中寄存器的作用单片机中寄存器的作用1、寄存器的作用寄存器是单片机中最重要的部件之一,它可以保存信息(数据和指令),以及控制信号。
寄存器可以把数据存放在内部,以便处理器对其进行操作。
所有的电脑、控制系统中都要求有寄存器,它们可以依据操作系统、存储器或处理器的要求,在操作系统、存储器或处理器之间传递信息。
2、寄存器的功能(1)存储寄存器存储寄存器是一种用于存放控制指令、地址、数据等信息的存储器,可以把各种信息存放在内部,以便处理器对其进行操作。
(2)控制寄存器控制寄存器用来控制电路的运行,它可以把外部信号转换成内部控制信号。
(3)状态寄存器状态寄存器可以把外部信号转换成内部状态码,用来描述当前的状态,它可以用来检测、追踪和控制系统的运行状态,例如报警状态、可断电状态等。
(4)状态传感器状态传感器是一种特殊的寄存器,它能够检测电路中的状态,可以通过状态传感器确定电路的某个状态是否合法。
(5)常量存储器常量存储器是一种用于存储固定数据的存储器,它可以把特定的值存储下来,以便在日后使用。
例如,时钟时间、计算机参数或系统参数等。
3、寄存器的用途(1)控制存储器存储器可以把指令和数据存放在寄存器上,以便处理器读取它。
存储器可以将指令转换成控制信号,以便处理器能够控制其他电路的运行。
(2)状态检测状态寄存器可以用来检测系统的状态,比如有无故障,有无内存空间,有无电源等。
它可以帮助程序员更好的控制电路的运行,实现系统的自检和自动恢复。
(3)定时器定时器是一种特殊的寄存器,它能够定时记录系统的运行时间,也可以用来生成时钟信号,以便系统能够在合适的时间进行操作。
计算机组成简答题答案
(一)说明计算机系统的层次结构。
计算机系统可分为:微程序机器级,一般机器级(或称机器语言级),操作系统级,汇编语言级,高级语言级。
(二)请说明SRAM的组成结构,与SRAM相比,DRAM在电路组成上有什么不同之处?SRAM存储器由存储体、读写电路、地址译码电路、控制电路组成,DRAM还需要有动态刷新电路。
(三)请说明程序查询方式与中断方式各自的特点。
程序查询方式,数据在CPU和外围设备之间的传送完全靠计算机程序控制,优点是硬件结构比较简单,缺点是CPU效率低,中断方式是外围设备用来“主动”通知CPU,准备输入输出的一种方法,它节省了CPU时间,但硬件结构相对复杂一些。
(四)简要描述外设进行DMA操作的过程及DMA方式的主要优点。
(1)外设发出DMA请求;(2)CPU响应请求,DMA控制器从CPU接管总线的控制;(3)由DMA控制器执行数据传送操作;(4)向CPU报告DMA操作结束。
主要优点是数据数据速度快.(五)在寄存器—寄存器型,寄存器—存储器型和存储器—存储器型三类指令中,哪类指令的执行时间最长?哪类指令的执行时间最短?为什么?寄存器-寄存器型执行速度最快,存储器-存储器型执行速度最慢。
因为前者操作数在寄存器中,后者操作数在存储器中,而访问一次存储器所需的时间一般比访问一次寄存器所需时间长。
(六)什么是存储保护?通常采用什么方法?当多个用户共享主存时,为使系统能正常工作,应防止由于一个用户程序出错而破坏其它用户的程序和系统软件,还要防止一个用户程序不合法的访问不是分给它的主存区域。
为此,系统提供存储保护。
通常采用的方法是:存储区域保护和访问方式保护。
(七)说明计数器定时查询工作原理。
计数器定时查询方式工作原理:总线上的任一设备要求使用总线时,通过BR线发出总线请求。
总线控制器接到请求信号以后,在BS线为“0”的情况下让计数器开始计数,计数值通过一组地址线发向各设备。
每个设备接口都有一个设备地址判别电路,当地址线上的计数值与请求总线的设备相一致时,该设备置“1”BS线,获得总线使用权,此时中止计数查询。
存储器和寄存器有什么区别?
存储器(Memory)和寄存器(Register)是计算机系统中用于存储数据的两种不同类型的组件。
它们的主要区别如下:
1. 功能:存储器是用于存储大量数据和程序的地方,其中包括操作系统、应用程序和用户数据。
它通常用于长期存储,并在需要时进行读写操作。
寄存器是一种高速的临时存储器,用于存储和操作处理器(CPU)在执行指令期间的中间结果和控制信息。
2. 容量:存储器的容量可以很大,通常以字节(Byte)或其倍数表示,可存储大量的数据。
寄存器的容量相对较小,通常以位(bit)或字(Word)表示,因为它们用于处理器的内部运算和状态存储。
3. 访问速度:存储器的访问速度比寄存器要慢得多,因为它们通常位于较慢的主存储器(RAM)中。
而寄存器是CPU内部的组件,具有非常高的访问速度,可以立即获取和存储数据。
4. 使用方式:存储器通常用于存储程序和数据,可以按需读取和写入。
它是计算机系统中的主要数据存储区域。
寄存器用于存储指令操作的操作数和结果以及其他控制信息,用于
执行指令级操作和控制计算机的运算过程。
总而言之,存储器和寄存器在计算机系统中具有不同的作用和特点。
存储器用于长期存储和读写大量数据,而寄存器作为处理器内部的快速临时存储器,用于处理器的操作和控制。
它们共同构成了计算机系统中的数据和指令存储层次结构。
寄存器存储、存储器存储(主存),立即数
操作数存储位置只有三种:寄存器存储、存储器存储(主存),立即数指令按功能可分为6大类
一、数据传送指令
二、算术运算指令
三、逻辑指令
四、串操作类指令
串的寻址方式均使用以下方式:
源串操作数地址由DS:[SI]表示(DS可以有其他段寄存器替代)
目的串操作数地址由ES:[DI]表示(ES不可替代)
修改SI/DI的规则:
若标志寄存器中DF=0,那么SI/DI加2(字串)或加1(字节串),否则减2(字串)或减1(字节串)
五、控制转移类指令
(1)无条件转移指令JMP三种格式
(2)条件转移指令(参考P102表)
(3)循环指令
(4)子程序调用与返回指令
(5)中断及中断返回指令
六、处理机控制类指令。
计算机组成原理习题答案第六章
1.如何区别存储器和寄存器?两者是一回事的说法对吗?解:存储器和寄存器不是一回事。
存储器在CPU 的外边,专门用来存放程序和数据,访问存储器的速度较慢。
寄存器属于CPU 的一部分,访问寄存器的速度很快。
2.存储器的主要功能是什么?为什么要把存储系统分成若干个不同层次?主要有哪些层次?解:存储器的主要功能是用来保存程序和数据。
存储系统是由几个容量、速度和价存储系统和结构各不相同的存储器用硬件、软件、硬件与软件相结合的方法连接起来的系统。
把存储系统分成若干个不同层次的目的是为了解决存储容量、存取速度和价格之间的矛盾。
由高速缓冲存储器、主存储器、辅助存储器构成的三级存储系统可以分为两个层次,其中高速缓存和主存间称为Cache -主存存储层次(Cache 存储系统);主存和辅存间称为主存—辅存存储层次(虚拟存储系统)。
3.什么是半导体存储器?它有什么特点?解:采用半导体器件制造的存储器,主要有MOS 型存储器和双极型存储器两大类。
半导体存储器具有容量大、速度快、体积小、可靠性高等特点。
半导体随机存储器存储的信息会因为断电而丢失。
4.SRAM 记忆单元电路的工作原理是什么?它和DRAM 记忆单元电路相比有何异同点?解:SRAM 记忆单元由6个MOS 管组成,利用双稳态触发器来存储信息,可以对其进行读或写,只要电源不断电,信息将可保留。
DRAM 记忆单元可以由4个和单个MOS管组成,利用栅极电容存储信息,需要定时刷新。
5.动态RAM 为什么要刷新?一般有几种刷新方式?各有什么优缺点?解:DRAM 记忆单元是通过栅极电容上存储的电荷来暂存信息的,由于电容上的电荷会随着时间的推移被逐渐泄放掉,因此每隔一定的时间必须向栅极电容补充一次电荷,这个过程就叫做刷新。
常见的刷新方式有集中式、分散式和异步式3种。
集中方式的特点是读写操作时不受刷新工作的影响,系统的存取速度比较高;但有死区,而且存储容量越大,死区就越长。
分散方式的特点是没有死区;但它加长了系统的存取周期,降低了整机的速度,且刷新过于频繁,没有充分利用所允许的最大刷新间隔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
整理课件
基本概念
寄存器; 移位寄存器; 序列信号; 随机存取存储器; 只读存储器。
3
整理课件
设计项目
广告灯控制电路
存储器
01010101
---0000 ---0001 ----000 ---0011 ---0100 ---0101 --------
00----0001 00----0010 00----0100 00----1000
当CP=0时,Q =D,电路接收输入数据;即当使能信号到来 (不锁存数据)时,输出端的信号随输入信号变化;
当CP=1时,D数据输入不影响电路的状态,电路锁定原数据。
即当使能信号结束后(锁存),数据被锁住,输出状态保持不 变。
8
整理课件
锁存器具有接收、存放、输出和清除数码的功能,在接收 指令(在计算机中称为写指令)控制下,将数据送入寄存器存 放;需要时可在输出指令(读出指令)控制下,将数据由寄存 器输出。
工作过程:
假设要传送数据1011。
10 12
3 4
1 1 0
1
0 1 1
0
0 0 1
1
0 0 0
1
串入串出:前触发器输出端Q与后数据输入端D相连接。当时 钟到时,加至串行输入端DSR的数据送Q0,同时Q0的数据右移 至Q1,Q1的数据右移至Q2,以此类推。将数码1101右移串行输 入给寄存器共需要4个移位脉冲
15
整理课件
74LS194功能表
输
入
输出
CR S1 S0 CP DSL DSR D0 D1 D2 D3 Q0 Q1 Q2 Q3 功
能
0 X X X X X X X X X 0 0 0 0 异步清零
1 X X 0 X X XX X X
保持
保持
1 0 0 X X X XX X X
保持
保持
1 01
X 1 X X X X 1 Q0 Q1 Q2 右移输入1
16
整理课件
8.1.2 移位寄存器的应用
一、移位寄存器构成序列脉冲发生器
序列信号:是在同步脉冲的作用下 按一定周期循环产生的一串二进制信 号。如:0111-----0111,每4位重复一 次,称为4位序列信号。
序列脉冲信号广泛用于数字设备 测试、通信和遥控中的识别信号或 基准信号等。
移位寄存器组成的8位序列信号发生器,序列信号为: 00001111
10
整理课件
三、移位寄存器
移位寄存器:存储数据,所存数据可在移位脉冲作用下 逐位左移或右移。即实现串入串出。
在数字电路系统中,由于运算(如:二进制的乘除法)的 需要,常常要求实现移位功能。
分类:单向移位、双向移位。
1.单向移位寄存器
(1)右移位寄存器
串行 数据 输入
清零端
11
同步移位时 钟输入端
整理课件
1 01
X 0 X X X X 0 Q0 Q1 Q2 右移输入0
1 10
1 X X X X X Q1 Q2 Q3 1 左移输入1
1 10
0 X X X X X Q1 Q2 Q3 0 左移输入0
1 11
X X D0 D1 D2 D3 D0 D1 D2 D3 并入并出
工作方式控制端S1S0区分四种功能: S1S0=00、保持; S1S0=10、左移存储; S1S0=01、右移存储; S1S0=11并入并出.
Q3可串行输出从输入端DSR存入的数据,4个移位脉冲后收 到第一个数据,要全部输出共需8个移位脉冲。
12
整理课件
时序图:
并行输出
串行输出
13
整理课件
2. 具有并入并出、串入串出功能的移位寄存器:
1
0
1
1
1
11
0
1
1
并入并出:当IE=1时,在时钟脉冲CP的作用下并行数据输入端 D0~D3的数会存入寄存器Q0~Q3。
寄存器:用于暂时存储二进制数据与代码的电路。 分 类:基本寄存器、移位寄存器。 组 成:触发器和门电路。一个触发器能存放一位二
进制数码;N个触发器可以存放N 位二进制数码。
8.1.1 寄存器的结构、原理
一、基本寄存器 仅有并入、并出存取数据功能的寄存器。
1. 组成: N个D触发器构成。
6
整理课件
输出端
项目八 寄存器与 存储器及应用
8.1 寄存器 8. 2 存储器 8.3 寄存器与存储器例表 本章小结
1
整理课件
主要内容
寄存器的功能、分类、结构、工作原理; 存储器的功能、分类、结构、工作原理; 寄存器、存储器的应用。
主要技能
寄存器与存储器的正确使用技能和功能测试技能; 熟练应用寄存器和存储器构成具特定功能的逻辑电路; 能完成电路的安装与功能调试。
10---0001
------- 01---0010
111---
111--- 10---0101
存储预置数
4
译位寄存器
01010101
整理课件
寄存器与存储器的区别:
寄存器:用于暂时存储二进制数据或代码的电路。 存储器:用于长期存储大量二进数据或代码的电路。集成很 高。
5
整理课件
8.1 寄存器及应用
控制时钟
脉冲端输入 0
1
0
1
0
1
0
1
2.工作原理
数码输入端
CP不为上升沿时 , R D =1,寄存器输出保持不变 CP 上升沿时,且 R D =1,输入端D0-D3送寄存器。
R D =0, 异步清零。
7
整理课件
二、具有锁存功能的寄存器 1.锁存器的结构及工作原理
由D锁存器组成。
CP---即为送数脉冲输入端,又为 锁存控制信号输入端,即使能信号, 低电平有效。
2.集成数码锁存器74LS373
74LS373是—— 8位数据锁存器。
9
整理课件
74LS373功能表
OC
输入
输出
CD
Q
01
1
1
01 00 1X
0
0
X Q0(被锁存状态)
X
Z(高阻态)
0C为三态控制端(低电平有效): 当 0C =1时,输出为高 阻态;当0C =0时,8个数据传送到输出端
C为锁存控制输入端(高电平有效):当C=0时,保持输入端 数据不变,当C=1时,接收输入端数据。
串入串出:原理与前述相同,略。
14
整理课件
3. 集成双向移位寄存器——74LS194 74LS194是四位双向移位寄存器。
引脚及功能简介:
DSR: 右移串行数据输入端 DSL: 左移串行数据输入端 D0~D3:并行数据输入端 Q0~Q3: 数据输出端 CP :时钟输入端(上升沿有效) S0、S1: 工作方式控制端 RD : 数据清0输入端(低电平清0)
17
整理课件
工作原理分析:
状态表
CP
S1S0=01,为右移方式,Q3作为输出端。
1
首先令CR=0,输出端全为零,Q3非后 2