北师大版七年级数学上册全册综合测试
北师大版七年级数学上册第一章综合测试题
第一章丰富的图形世界一、选择题(每小题3分,共30分)1.下列所列举的物体,与圆锥的形状类似的是().A.足球 B.字典 C.易拉罐 D.标枪的尖头2.几何体的下列性质:①侧面是平行四边形;②底面形状相同;③底面平行;④棱长相等.其中是棱体的性质的有().A.1个 B.2个 C.3个 D.4个3.从一个五边形的某个顶点出发,分别连接这个点与其余各个顶点,可以将这个五边形分割成三角形的个数是().A.2个 B.3个 C.4个 D.5个4.下列几何体不能展开成平面图形的是().A.圆锥 B.球 C.圆台 D.正方体5.一个三棱柱的侧面数,顶点数分别在().A.3,6 B.4,10 C.5,15 D.6,156.如图所示,用一个平面沿与棱平行的方向去截一个棱柱,则截面的形状应为().A.梯形 B.正方形 C.平行四边形 D.长方形7.如右图所示,用一个平面去截一个圆柱,则截得的形状应为().8.右图是几个小立方块搭成的几何体的从上面看到的形状图,小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的从正面看到的形状图是().9.如图是由一些相同的小正方体构成的几何体的三种形状图,在这个几何体中,•小正方体的个数是().从正面看从左面看从上面看A.6个 B.5个 C.7个 D.4个10.观察左图,左边的图形绕着给定的直线旋转一周后可能形成的几何体是().二、填空题(每小题3分,共18分)11.线与面相交成______,面与面相交成______.12.如图所示,电视台的摄像机1,2,3,4在不同位置拍摄了四幅画面,则A 图像是_____号摄像机所拍,B图像是_____号摄像机所拍,C图像是_____号摄像机所拍,D•图像是____号摄像机所拍.13.如图所示,将它按虚线位置翻折,将对连粘在一起,围成一个几何体,这个几何体是_______.14.一个圆锥是由一个平面和一个曲面所组成,它们相交成一个圆,•且这个锥体从正面看到的形状图为一个边长为3cm的等边三角形,求其从上面看到的形状图的的面积________.15.从每个顶点出发的所有棱长相等,所有面形状,•大小完全相同的正多边形的几何体称为正多面体.其面数+顶点数-棱数=______.16.如图所示,用一个平面去截一个三棱柱,所截得的图形是______.三、解答题(共52分)17.(6分)如图,桌面上放置了一些几何体,•请按每个图下面的要求画出这些物体的形状图.从正面看从上面看从右面看18.(6分)如图所示的正方体表面分别标上字母A~F,•问这个正方体各个面上的字母对面各是什么字母?19.19.(8分)如图是由几个小立方块所搭成几何体的从上面看到的形状图,•小正方形中的数字表示在该位置小立方块的个数,请画出这个几何体的从正面、从左面看到的形状图.20.(8分)如图是由16个棱长为2厘米的小正方体搭成的,求它的表面积.21.(10分)下图是由几个小立方块所搭成几何体的从上面、从正面看到的形状图.(1)这样搭建的几何体最少,最多各需要多少个小立方块?(2)请画出各种情况的从左面看到的形状图.从正面看从上面看答案:1.D 2.B 3.B 4.B 5.A 6.D 7.B 8.B9.B 10.D 11.点,线 12.2,3,4,1 13.四棱柱14.94cm2 15.2 16.三角形17.从正面看从上面看从右面看 18.A─E C─F B─D19.从正面看从左面看20.(9+7+9)×2×4=200(cm2)21.(1)最少11种最多17种(2)共19种,下面未完全画出.掌握的三个数学答题方法树枝答题法关注数学题的解题过程2014年上海市中考状元徐瑜卿认为,数学是一门思维学科,并不是平时做题多就一定会拿高分。
北师大版初中数学七上第一章综合测试试题试卷含答案1
第一章综合测试一、选择题(本题共10小题,每小题3分,共30分)1.下列立体图形中,为棱柱的是()A.B.C.D.2.下图是由6个大小相同的小正方体搭成的几何体,则从上面看它的形状图为()(第2题)A.B.C.D.3.下图所示的图形绕直线m旋转一周所形成的几何体是()(第3题)A.B.C.D.4.下列各图中,经过折叠能够围成一个正方体的是()A.B.C.D.5.如图,用一个平面去截圆柱体,截面形状不可能是()(第5题)A.B.C.D.6.下图是一个长方体的表面展开图,六个面上分别标有数字1,2,3,4,5,6(数字都在表面),与标有数字6的面相对面上的数字是()A.3B.5C.2D.1(第6题)7.下图所示的正方体盒子的外表面上画有三条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()(第7题)A.B.C.D.8.下图是由六个相同的小立方块搭成的几何体,则下列说法正确的是()(第8题)A.从正面看到的形状图面积最大B.从上面看到的形状图面积最大C.从左面看到的形状图面积最大D.从三个方向看到的形状图面积一样大9.一个几何体由一些小正方体摆成,从正面看与从左面看这个几何体得到的形状图如图所示,从上面看这个几何体得到的形状图不可能是()(第9题)A.B.C.D.10.下图是某一几何体从三个方向看的形状图,则组成这个几何体的小立方块有()(第10题)A.5个B.6个C.7个D.8个二、填空题(本题共8小题,每小题4分,共32分)11.七棱柱有________个面.12.笔尖在纸上快速滑动写出字母C,这说明了________.13.图是一个几何体的表面展开图,这个几何体是________.(第13题)14.下图是由4个大小相同的棱长为1 cm的小正方体搭成的几何体,则从左面看它的形状图的面积为cm.________2(第14题)+=________.15.下图是一个正方体的表面展开图,若正方体标注的相对面上的数字相同,则x y(第15题)16.下图是棱长为2 cm的正方体,过相邻三条棱挖取一个棱长为1 cm的小正方体,则剩下部分的表面积为cm.________2(第16题)17.下图是5个边长相等的小正方形拼成的一个平面图形,小丽手中还有一个同样的小正方形,她想将它与该图中的平面图形拼接在一起,从而可以构成一个正方体的表面展开图,则小丽共有________种拼接方法.(第17题)18.下图是由一些小立方块所搭的几何体从三个方向看得到的形状图,若在所搭的几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题(本题共5小题,共58分)19.(本题10分)将如图所示的几何体与它的名称用线连接起来.(第19题)20.(本题10分)如图,将图形沿着虚线进行折叠.(1)写出所能折叠成的几何体的名称:________(2)在所折叠成的几何体中:①有多少条棱?哪些棱的长度相等?②有多少个面?它们分别是什么图形?哪些面的形状、大小完全相同?(第20题)21.(本题12分)如图,正方体被竖直截取了一部分.(1)这个正方体的截面形状是________;(2)被截去的那一部分的几何体的名称是________,求该几何体的体积.(友情提示:棱柱的体积=底面积 高)(第21题)22.(本题12分)如图是从正面和从上面看由若干个小立方块所搭成的几何体得到的形状图,这样搭建的几何体最少、最多各需要多少个小立方块?(第22题)23.(本题14分)在平整的地面上,有若干个完全相同的立方块堆成的一个几何体,如图所示.(1)请分别画出从三个方向看这个几何体得到的形状图.(2)如果在这个几何体露出地面的部分喷上黄色的漆,则在所有的小立方块中,有________个立方块只有一个面是黄色,有________个立方块只有两个面是黄色,有________个立方块只有三个面是黄色.(3)若现在你手头还有一些相同的立方块,如果保持从上面和从左面看到的形状图不变,最多可以再添加几个立方块?(第23题)附加题(15分,不计入总分)24.有一个小立方块,在它的各个面上分别标有数字1,2,3,4,5,6,建制、中原和永清三位同学从三个不同角度去观察这个小立方块,观察的结果如图①.(1)请你画出这个小立方块的三种表面展开图,并说明理由(要求把数字标注在表面展开图中).(2)聪明的建制用与图①大小相同的小立方块若干块搭成一个几何体,他从上面观察这个几何体,看到的形状图如图②,小正方形内的数字表示在该位置上小立方块的个数,请画出这个几何体从正面、左面看到的形状图.第一章综合测试答案一、 1.【答案】B 2.【答案】D 3.【答案】D 4.【答案】C 5.【答案】B 6.【答案】C 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 二、 11.【答案】9 12.【答案】点动成线 13.【答案】圆锥 14.【答案】2 15.【答案】18 16.【答案】24 17.【答案】4 18.【答案】22 三、19.【答案】如下图所示:20.【答案】(1)直六棱柱.(2)①该六棱柱有18条棱,底面棱的长度相等,侧面棱的长度相等;②该六棱柱有8个面,底面是形状、大小完全相同的六边形,侧面是形状、大小完全相同的长方形. 21.【答案】(1)长方形 (2)直三棱柱因为这个直三棱柱的底面是一个直角三角形,直角三角形的两条直角边长分别为()541cm -=(cm ),()532cm -=,所以这个直三棱柱的底面积为21221cm ⨯÷=(),所以这个直三棱柱的体积为3155cm ⨯=(). 22.【答案】搭这样的几何体最少需要54211++=(个)小立方块,最多需要96217++=(个)小立方块. 23.【答案】如图所示:(2)2 3 2(3)最多可以再添加7个小立方块.24.【答案】解:(1)由3个小立方块上的数字可知,与写有数字1的相邻面上的数字是2,3,4,6,所以数字1相对面上的数字为5;与写有数字3的相邻面上的数字是1,2,4,5,所以数字3相对面上的数字为6;故数字4相对面上的数字为2,画图如图1(画法不唯一).图1(2)从正面、左面看到的形状图如图2.图2。
北师大版七年级数学上册章节同步练习题(全册-共57页)
北师⼤版七年级数学上册章节同步练习题(全册-共57页)北师⼤版七年级数学上册章节同步练习题(全册,共57页)⽬录第⼀章丰富的图形世界1 ⽣活中的⽴体图形2 展开与折叠3 截⼀个⼏何体4 从三个⽅向看物体的形状单元测验第⼆章有理数及其运算1 有理数2 数轴3 绝对值4 有理数的加法5 有理数的减法6 有理数加减混合运算7 有理数的乘法 8 有理数的除法9 有理数的乘⽅ 10 科学记数法11 有理数的混合运算 12 ⽤计算器进⾏运算单元测验第三章整式及其加减1 字母表⽰数2 代数式3 整式4 整式的加减5 探索与表达规律单元测验第四章基本平⾯图形1 线段射线直线2 ⽐较线段的长短3 ⾓ 4⾓的⽐较5 多边形和圆的初步认识单元测验第五章⼀元⼀次⽅程1 认识⼀元⼀次⽅程2 求解⼀元⼀次⽅程3 应⽤⼀元⼀次⽅程——⽔箱变⾼了4 应⽤⼀元⼀次⽅程——打折销售5 应⽤⼀元⼀次⽅程——“希望⼯程”义演6 应⽤⼀元⼀次⽅程——追赶⼩明单元测验第六章数据的收集与整理1 数据的收集2 普查和抽样调查3 数据的表⽰4 统计图的选择第⼀章丰富的图形世界1.1⽣活中的⽴体图形(1)基础题:1.如下图中为棱柱的是()2.⼀个⼏何体的侧⾯是由若⼲个长⽅形组成的,则这个⼏何体是()A.棱柱 B.圆柱 C.棱锥 D.圆锥3.下列说法错误的是()A.长⽅体、正⽅体都是棱柱 B.三棱柱的侧⾯是三⾓形C.直六棱柱有六个侧⾯、侧⾯为矩形 D.球体和圆是不同的图形4.数学课本类似于,⾦字塔类似于,西⽠类似于,⽇光灯管类似于。
5.⼋棱柱有个⾯,个顶点,条棱。
6.⼀个漏⽃可以看做是由⼀个________和⼀个________组成的。
7.如图是⼀个正六棱柱,它的底⾯边长是3cm,⾼是5cm.(1)这个棱柱共有个⾯,它的侧⾯积是。
(2)这个棱柱共有条棱,所有棱的长度是。
提⾼题:⼀只⼩蚂蚁从如图所⽰的正⽅体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数⼀数,⼩蚂蚁有种爬⾏路线。
北师大版七年级数学上册单元测试题全套带答案
北师大版七年级数学上册单元测试题全套单元测试(一)丰富的图形世界一、选择题(本大题共15小题,每小题3分,共45分)[1.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆2.如图,在下面四个物体中,最接近圆柱是( )A.烟囱B.弯管C.玩具硬币D.某种饮料瓶3.直棱柱的侧面都是( )A.正方形B.长方形C.五边形D.以上都不对4.下列几何体没有曲面的是( )A.圆锥B.圆柱C.球D.棱柱5.如图所示,用一个平面去截一个圆柱,则截得形状应为( )A B C D 6.一个几何体的展开图如图所示,这个几何体是( )A.圆锥B.圆柱C.四棱柱D.无法确定7.如图中几何体从正面看得到的平面图形是( )A B C D 8.如图,直角三角形绕直线l旋转一周,得到的立体图形是( )A B C D9.下列图形中,能通过折叠围成一个三棱柱的是( )10.如图的四个几何体,它们各自从正面,上面看得到的形状图不相同的几何体的个数是( )A.1 B.2 C.3 D.411.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )12.下列说法不正确的是( )A.球的截面一定是圆B.组成长方体的各个面中不可能有正方形C.从三个不同的方向看正方体,得到的平面图形都是正方形D.圆锥的截面可能是圆13.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是( )A.3 B.9 C.12 D.1814.用平面去截如图所示的三棱柱,截面形状不可能是( )A.三角形B.四边形C.五边形D.六边形15.明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其他空盒子混放在一起,只凭观察,选出墨水在哪个盒子中( )A B C D二、填空题(本大题共5小题,每小题5分,共25分)16.飞机表演的“飞机拉线”用数学知识解释为:________________.17.下列图形中,是柱体的有________ .(填序号)18.从正面、左面、上面看一个几何体得到的形状图完全相同,该几何体可以是________.(写出一个即可)19.一个棱柱有12个顶点,所有侧棱长的和是48 cm,则每条侧棱长是________cm.20.一个正方体盒子的展开图如图所示,如果要把它粘成一个正方体,那么与点A重合的点是________.三、解答题(本大题共7小题,共80分)21.(12分)将下列几何体与它的名称连接起来.22.(6分)如图,求这个棱柱共有多少个面?多少个顶点?有多少条棱?23.(10分)若要使图中平面图形折叠成正方体后,相对面上的数字相等,求x+y+z的值.24.(10分)如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.25.(12分)如图所示的正方体被竖直截去了一部分,求被截去的那一部分的体积.(棱柱的体积等于底面积乘以高)26.(14分)如图所示,长方形ABCD的长AB为10 cm,宽AD为6 cm,把长方形ABCD绕AB边所在的直线旋转一周,然后用平面沿AB方向去截所得的几何体,求截面的最大面积.27.(16分)根据如图所给出的几何体从三个方向看得到的形状图,试确定几何体中小正方体的数目的范围.参考答案1.D 2.C 3.B 4.D 5.B 6.A 7.D 8.C 9.C 10.C 11.C 12.B 13.D 14.D 15.B 16.点动成线 17.②③⑥ 18.答案不唯一,如:球、正方体等 19.8 20.C 、E 21.略.22.这个棱柱共有7个面,10个顶点,15条棱. 23.“2”与“y”相对,“3”与“z”相对,“1”与“x”相对.则x +y +z =1+2+3=6. 24.从正面和从左面看到的形状图如图所示.25.V =12×(5-4)×(5-3)×5=5(cm 3).答:被截去的那一部分体积为5 cm 3. 26.由题意得:把长方形ABCD 绕AB 边所在直线旋转一周,得到的几何体为圆柱,且圆柱底面半径为6 cm ,高为10 cm .所以截面的最大面积为:6×2×10=120(cm 2).27.根据题意,从上面看,构成几何体所需小正方体最多情况如图1所示,所需小正方体最少情况如图2所示:所以最多需要11个小正方体,最少需要9个小正方体.单元测试(二) 有理数及其运算(时间:120分钟 满分:150分)一、选择题(本大题共15小题,每小题3分,共45分)1.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作( )A .-0.02克B .+0.02克C .0克D .+0.04克 2.(宁波中考改编)下列各数中,既不是正数也不是负数的是( )A .0B .-1 C.12 D .23.(遂宁中考)在下列各数中,最小的数是( )A .0B .-1 C.32 D .-24.-8的相反数是( )A .-6B .8C .-16 D.185.用四舍五入法得到近似数4.005万,关于这个数有下列说法,其中正确的是( )A .它精确到万位B .它精确到0.001C .它精确到万分位D .它精确到十位 6.(遵义中考)计算-3+(-5)的结果是( )A .-2B .-8C .8D .27.(盐城中考)2014年5月,中俄两国签署了供气购销合同,从2018年起,俄罗斯开始向我国供气,最终达到每年380亿立方米.380亿这个数据用科学记数法表示为( )A .3.8×109B .3.8×1010C .3.8×1011D .3.8×1012 8.(河北中考)计算:3-2×(-1)=( )A .5B .1C .-1D .6 9.下列计算正确的是( )A .(-14)-(+5)= -9 B. 0-(-3)=0+(-3) C .(-3)×(-3)= -6 D .|3-5|= 5-310.,“-”表示亏损)则这个周共盈利( )A .715元B .630元C .635元D .605元 11.下列四个有理数12、0、1、-2,任取两个相乘,积最小为 ( )A.12 B .0 C .-1 D .-212.在某一段时间里,计算机按如图所示程序工作,如果输入的数是2,那么输出的数是( )A .-54B .54C .-558D .55813.如图,四个有理数在数轴上对应点M ,P ,N ,Q ,若点P ,N 表示的有理数互为相反数,则图中表示绝对值最大的数的点是( )A .点MB .点NC .点PD .点Q 14.若(a +3)2+|b -2|=0,则a b 的值是( )A .6B .-6C .9D .-915.观察下列各算式:21=2,22=4,23=8,24=16,25=32,26=64…通过观察,用你所发现的规律确定22 016的个位数字是 ( )A .2B .4C .6D .8 二、填空题(本大题共5小题,每小题5分,共25分) 16.-32的倒数的绝对值为________.17.一种零件的内径尺寸在图纸上是30±0.05(单位:毫米),表示这种零件的标准尺寸是30毫米,加工要求最大不超过________毫米,最小不低于________毫米. 18.大于-1.5小于2.5的整数共有________个.19.一个点从数轴的原点开始,先向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是________________.20.已知|a|=3,|b|=4,且a<b ,则a -ba +b 的值为________.三、解答题(本大题共7小题,共80分)21.(12分)把下列各数填入相应集合内:+8.5,0,-3.4,12,-9,413,-1.2,-2.(1)正数集合:{ };(2)整数集合:{ }; (3)负分数集合:{ }.22.(8分)把数-2,1.5,-(-4),-312,(-1)4,-|+0.5|在数轴上表示出来,然后用“<”把它们连接起来.23.(16分)计算:(1)6.8-(-4.2)+(-9); (2)|-2|-(-3)×(-15);(3)(12+56-712)×(-24); (4)-24÷(23)2+312×(-13)-(-0.5)2.24.(8分)已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求3x -(a +b +cd )x 的值.25.(10分)已知x 、y 为有理数,现规定一种新运算※,满足x※y =xy +1. (1)求2※4的值;(2)求(1※4)※(-2)的值;26.(12分)“新春超市”在2015年1~3月平均每月盈利20万元,4~6月平均每月亏损15万元,7~10月平均每月盈利17万元,11~12月平均每月亏损23万元.问“新春超市”2015年总的盈亏情况如何?27.(14分)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,-3,+10,-8,-6,+12,-10. (1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米? (3)守门员全部练习结束后,他共跑了多少米?参考答案1.A 2.A 3.D 4.B 5.D 6.B 7.B 8.A 9.D 10.D11.D 12.C 13.A 14.C 15.C 16.23 17.30.05 29.95 18.4 19.-3 20.-7或-17 21.(1)+8.5,0.3,12,413 (2)0,12,-9,-2 (3)-312,-3.4,-1.2 22.在数轴上表示数略,-312<-2<-|+0.5|<(-1)4<1.5<-(-4). 23.(1)原式=2. (2)原式=-43. (3)原式=-18. (4)原式=-37512. 24.由题意知,a +b =0,cd =1,x =±2,当x =2时,原式=4;当x =-2时,原式=-4. 25.(1)2※4=2×4+1=9.(2)(1※4)※(-2)=(1×4+1)×(-2)+1=-9. 26.(+20)×3+(-15)×3+(+17)×4+(-23)×2=37(万元).答:“新春超市”2015年总的盈利为37万元. 27.(1)(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0.答:守门员最后回到了球门线的位置.(2)由观察可知:5-3+10=12.答:在练习过程中,守门员离开球门线最远距离是12米.(3)|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=54(米).答:守门员全部练习结束后,他共跑了54米.单元测试(三) 整式及其加减(时间:120分钟 满分:150分)一、选择题(本大题共15小题,每小题3分,共45分) 1.下列各式中不是单项式是( )A .-a 3B .-15C .0D .-3a2.单项式-3xy 2z 3的系数是( )A .-1B .5C .6D .-33.某班数学兴趣小组共有a 人,其中女生占30%,那么女生人数是( ) A .30%a B .(1-30%)a C.a 30% D.a 1-30%4.下列各组式子中,为同类项是( )A .5x 2y 与-2xy 2B .4x 与4x 2C .-3xy 与32yx D .6x 3y 4与-6x 3z 45.当a =-1,b =2时,代数式a 2b 的值是( )A .-2B .1C .2D .-1 6.列式表示“比m 的平方的3倍大1的数”是( )A .(3m )2+1B .3m 2+1C .3(m +1)2D .(3m +1)27.若m ,n 为自然数,多项式x m +y n +4m +n 的次数应是( )A .mB .nC .m ,n 中的较大数D .m +n 8.化简2x -(x -y)-y 的结果是( )A .3xB .xC .x -2yD .2x -2y 9.(玉林中考)下列运算中,正确的是( )A .3a +2b =5abB .2a 3+3a 2=5a 5C .3a 2b -3ba 2=0D .5a 2-4a 2=1 10.一个多项式减去x 2-2y 2等于x 2-2y 2,则这个多项式是( )A .-2x 2+y 2B .x 2-2y 2C .2x 2-4y 2D .-x 2+2y 2 11.下列判断错误的是( )A .多项式5x 2-2x +4是二次三项式B .单项式-a 2b 3c 4的系数是-1,次数是9C .式子m +5,ab ,-2,sv 都是代数式 D .多项式与多项式的和一定是多项式 12.十位数字是x ,个位数字是y 的两位数是 ( )A .xyB .x +10yC .x +yD .10x +y13.(厦门中考)某商店举办促销活动,促销的方法是将原价x 元的衣服以(45x -10)元出售,则下列说法中,能正确表达该商店促销方法的是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元 14.(湘西中考)已知x -2y =3,则代数式6-2x +4y 的值为( )A .0B .-1C .-3D .3 15.下面一组按规律排列的数:0,2,8,26,80,…,则第2 016个数是( )A .32 016B .32 015C .32 016-1D .32 015-1 二、填空题(本大题共5小题,每小题5分,共25分) 16.去括号:-(3x -2)=________.17.请你结合生活实际,设计具体情境,解释下列代数式30a 的意义:________________________________.18.对于有理数a ,b ,定义a ⊙b =3a +2b ,则(x +y)⊙(x -y)化简后得________. 19.当m =________时,代数式 2x 2+(m +2)xy -5x 不含xy 项. 20.若用围棋子摆出下列一组图形:…(1) (2) (3) 按照这种方法摆下去,第n 个图形共用________枚棋子. 三、解答题(本大题共7小题,共80分) 21.(8分)化简下列各式:(1)a +2b +3a -2b; (2)2(a -1)-(2a -3)+3.22.(8分)先化简,再求值:(2m 2-3mn +8)-(5mn -4m 2+8),其中m =2,n =1.23.(10分)如图所示:(1) 用代数式表示阴影部分的面积;(2) 当a =10,b =4时,求阴影部分的面积(π取3.14,结果精确到0.01).24.(12分)已知a,b,c在数轴上的位置如图所示,求|b+c|-|a-b|-|c-b|的值.25.(12分)已知长方形的一边长为2a+3b,另一边比它短(b-a),试计算此长方形的周长.26.(14分)已知A=2a2+3ab-2a-1,B=-a2+ab-1.(1)求3A+6B;(2)若3A+6B的值与a的取值无关,求b的值.27.(16分)某农户承包荒山若干亩,种果树2 000棵.今年水果总产量为18 000千克,此水果在市场上每千克售a元,在果园每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1 000千克,需8人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.(1)分别用a,b表示两种方式出售水果的收入;(2)若a=1.3元,b=1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.参考答案1.D 2.D 3.A 4.C 5.C 6.B 7.C 8.B 9.C 10.C11.D 12.D 13.B 14.A 15.D 16.-3x +2 17.某班级有a 名学生参加考试,30名学生成绩合格,则合格人数占总人数的30a18.5x +y 19.-2 20.3n 21.(1)原式=4a. (2)原式=4. 22.原式=2m 2-3mn +8-5mn +4m 2-8=6m 2-8mn.当m =2,n =1时,原式=6×22-8×2×1=8. 23.(1)ab -12πb 2.(2)当a=10,b =4时,ab -12πb 2≈10×4-12×3.14×42=14.88. 24.由图知:b +c >0,a -b <0,c -b >0,|b +c|-|a -b|-|c -b|=b +c -[-(a -b)]-(c -b)=b +c +a -b -c +b =a +b. 25.长方形的另一边长为3a +2b ,则周长为2[(2a +3b)+(3a +2b)]=2(5a +5b)=10a +10b. 26.(1)3A +6B =3(2a 2+3ab -2a -1)+6(-a 2+ab-1)=6a 2+9ab -6a -3-6a 2+6ab -6=15ab -6a -9.(2)因为15ab -6a -9=a(15b -6)-9,且3A +6B 的值与a 的取值无关,所以15b =6,即b =25. 27.(1)将这批水果拉到市场上出售收入为18 000a -18 0001 000×8×25-18 0001 000×100=18 000a -3 600-1 800=18 000a -5 400(元).在果园直接出售收入为18 000b 元.(2)当a =1.3时,市场收入为18 000a -5 400=18 000×1.3-5 400=18 000(元).当b =1.1时,果园收入为18 000b =18 000×1.1=19 800(元).因为18 000<19 800,所以应选择在果园出售.单元测试(四)基本平面图形一、选择题(本大题共1.A.线段B.射线C.直线D.弧线2.下列图形中表示直线AB的是( )A B C D 3.下面四个图形中,是多边形的是( )4.下列说法正确的是( )A.平角是一条直线B.角的边越长,角越大C.大于直角的角叫做钝角D.把线段AB向两端无限延伸可得到直线AB 5.木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是( )A.两点确定一条直线B.两点确定一条线段C.过一点有一条直线D.过一点有无数条直线6.如图,若∠AOC=∠BOD,则∠AOD与∠BOC的关系是( )A.∠AOD>∠BOC B.∠AOD<∠BOCC.∠AOD=∠BOC D.无法确定7.如图,点C在线段AB上,则下列说法正确的是( )A.AC=BC B.AC>BCC.图中共有两条线段D.AB=AC+BC8.如图是一块手表早上8时的时针、分针的位置图,那么分针与时针所成的角的度数是( ) A.60°B.80°C.120°D.150°9.下列计算错误的是( )A.0.25°=900″ B.1.5°=90′C.1 000″=(518)°D.125.45°=1 254.5′10.如图,OA是北偏东30°方向的一条射线,若∠AOB=90°,则OB的方位角是( )A.西偏北60° B.北偏西60°C.北偏东60° D.东偏北60°11.如图,OC是∠AOB的平分线,OD平分∠AOC,若∠COD=25°,则∠AOB的度数为( ) A.100°B.80°C.70°D.60°12.已知线段AB=5 cm,在直线AB上画线段BC=2 cm,则AC的长是( )A.3 cm B.7 cmC.3 cm或7 cm D.无法确定13.过多边形的一个顶点可以引出6条对角线,则多边形的边数是( )A.7 B.8 C.9 D.1014.将一个圆分成四个扇形,它们的圆心角的度数比为4∶4∶5∶7,则这四个扇形中,圆心角最大的是( )A.54°B.72°C.90°D.126°15.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…那么六条直线最多有( )A.21个交点B.18个交点C.15个交点D.10个交点二、填空题(本大题共5小题,每小题5分,共25分)16.要在A、B两个村庄之间建一个车站,则当车站建在A、B村庄之间的线段上时,它到两个村庄的路程和最短,理由是________________.17.如图,点A、B、C在直线l上,则图中共有________条线段,有________条射线.18.如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=4,则CD=________.19.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB=155°,则∠COD=________,∠BOC=________ .20.若一个多边形截去一个角后,变成六边形,则原来多边形边数可能是________.三、解答题(本大题共7小题,共80分)21.(8分)如图,直线AB表示一条公路,公路两旁各有一点M、N表示工厂,要在公路旁建一个货场,使它到两个工厂距离之和最小,问这个货场应建在什么地方.22.(8分)已知四点A、B、C、D.根据下列语句,画出图形.①画直线AB;②连接AC、BD,相交于点O;③画射线AD、BC,交于点P.23.(10分)如图,已知A、B、C三点在同一条线段上,M是线段AC的中点,N是线段BC的中点,且AM =5 cm,CN=3 cm.求线段AB的长.24.(12分)如图,已知∠AOE=∠COD,且射线OC平分∠BOE,∠EOD=30°,求∠AOD的度数.25.(12分)王老师到市场买菜,发现如果把10千克的菜放到秤上,指标盘上的指针转了180°,第二天王老师就给同学们出了两个问题:(1)如果把0.6千克的菜放在秤上,指针转过多少角度? (2)如果指针转了7°12′,这些菜有多少千克?26.(14分)画图并计算:已知线段AB =2 cm ,延长线段AB 至点C ,使得BC =12AB ,再反向延长AC 至点D ,使得AD =AC.(1)准确地画出图形,并标出相应的字母;(2)线段DC 的中点是哪个?线段AB 的长是线段DC 长的几分之几? (3)求出线段BD 的长度.27.(16分)如图,正方形ABCD 内部有若干个点,用这些点以及正方形ABCD 的顶点A 、B 、C 、D 把原正方形分割成一些三角形(互不重叠).(1)填写下表:(2)由?参考答案1.B 2.D 3.D 4.D 5.A 6.C 7.D 8.C 9.D 10.B 11.A 12.C 13.C 14.D 15.C 16.两点之间,线段最短 17.3 6 18.1 19.25° 65° 20.5,6,7 21.连接MN 于AB 相交,交点即为所求.22.图略.23.因为AM =5 cm ,CN =3 cm ,且M 是线段AC 的中点,N 是线段BC 的中点,所以AC =10 cm ,CB =6 cm.所以AB =AC +CB =16 cm.24.因为∠AOB =180°,∠EOD =30°,所以∠AOD +∠EOC +∠COB =150°.因为∠AOE =∠COD ,所以∠AO D =∠EOC.因为OC 平分∠EOB ,所以∠EOC =∠COB.所以∠EOC =∠COB =∠AOD =50°. 25.(1)由题意,得(180°÷10)×0.6=10.8°.(2)由题意,得(10÷180°)×7°12′=(10÷180°)×7.2°=0.4(千克). 26.(1)如图所示.(2)线段DC 的中点是点A ,AB =13CD.(3)由BC =12AB =12×2=1(cm),因而AC =AB +BC =2+1=3(cm),而AD =AC =3 cm ,故BD =DA +AB=3+2=5(cm).27.(1)8 10 2n +2 (2)不可以,因为2n +2是偶数,不可能等于2 015,所以不可以.单元测试(五) 一元一次方程一、选择题(本大题共1.A .x -7 B.2x =7C .4x -7y =6D .2x -6=0 2.下列方程变形中,属于移项的是( )A .由3x =-2,得x =-23B .由x2=3,得x =6C .由5x -10=0,得5x =10D .由2+3x =0,得3x +2=03.若a =b ,则下列式子不正确的是( )A .a +1=b +1B .a +5=b -5C .-a =-bD .a -b =0 4.解方程-2(x -5)+3(x -1)=0时,去括号正确的是( )A .-2x -10+3x -3=0B .-2x +10+3x -1=0C .-2x +10+3x -3=0D .-2x +5+3x -3=0 5.下列方程中,解是2的方程是( )A.23x =2 B .-14x +12=0 C .3x +6=0 D .5-3x =1 6.方程3-2(x -5)=9的解是( )A .x =-2B .x =2C .x =23D .x =17.解方程x +12-x -14=1有下列四步,其中发生错误的一步是( )A .去分母,得2(x +1)-x -1=4B .去括号,得2x +2-x -1=4C .移项,得2x -x =4-2+1D .合并同类项,得x =3 8.已知x =1是方程x +2a =-1的解,那么a 的值是( ) A .-1 B .0 C .1 D .29.如果2x -3与-13互为倒数,那么x 的值为A .x =53 C .x =0 D .x =110.设某数为x ,若比它的34大1的数的相反数是6,可列方程为( )A .-34x +1=6B .-(34x +1)=6C.34x -1=6 D .-(34x -1)=6 11.小马虎在计算16-13x 时,不慎将“-”看成了“+”,计算的结果是17,那么正确的计算结果应该是( )A .15B .13C .7D .-112.某班在一次美化校园的劳动中,先安排35人打扫卫生,15人拔草,后又增派10人去支援,结果打扫卫生的人数是拔草人数的2倍,若设支援打扫卫生的同学有x 人,则下列方程正确的是( ) A .35+x =2×10 B .35+x =2×(15+10-x ) C .35+x =2×(15-x ) D .35+x =2×1513.学校组织了一次知识竞赛,共有25道题,每一道题答对得5分,答错或不答都扣3分,小明得了85分,那么他答对的题数是( )A .22B .20C .19D .1814.如果方程6x +3a =22与方程3x +5=11的解相同,那么a 的值为( ) A.310 B.103 C .-310 D .-10315.某品牌商品按标价九折出售,仍可获得20%的利润.若该商品标价为28元,则商品进价为( ) A .21元 B .19.8元 C .22.4元 D .25.2元 二、填空题(本大题共5小题,每小题5分,共25分) 16.若-3x =13,则x =________.17.若(m +1)x |m|=6是关于x 的一元一次方程,则m 等于________.18.若4x 2m y n +1与-3x 4y 3的和是单项式,则m =________,n =________.19.已知A 种品牌的文具比B 种品牌的文具单价少1元,小明买了2个A 种品牌文具和3个B 种品牌的文具,一共花了28元,那么A 种品牌的文具单价是________元.20.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,则山下到山顶的路程为________千米. 三、解答题(本大题共7小题,共80分)21.(9分)在下列横线上填上适当的数或整式,使所得结果仍是等式,并说明根据的是等式的哪一条性质. (1)如果x -2=-y ,那么x =________,根据________;(2)如果2x =-2y ,那么x =________,根据等式的性质________; (3)如果-x 10=y5,那么x =________,根据等式的性质________.22.(7分)解方程:x -74-5x +82=1.23.(10分)当x 取何值时,代数式2x -35的值比代数式23x -4的值小1?24.(12分)小明和小刚从学校出发去敬老院送水果,小明带着东西先走了200 m ,小刚才出发.若小明每分钟行80 m ,小刚每分钟行120 m .则小刚用几分钟可以追上小明?25.(12分)对于任意有理数a ,b ,c ,d ,我们规定⎪⎪⎪ ⎪⎪⎪a c b d =ad -bc ,如⎪⎪⎪⎪⎪⎪1234=1×4-2×3.若⎪⎪⎪⎪⎪⎪322x -12x +1=3,求x 的值.26.(14分)某中学组织七年级学生参观,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满.试问:(1)七年级学生人数是多少?(2)原计划租用45座客车多少辆?27.(16分)某织布厂有150名工人,为了提高经济效益,增设制衣项目,已知每人每天能织布30 m ,或利用所织布制衣4件,制衣一件需要布1.5 m ,将布直接出售,每米布可获利2元,将布制成衣后出售,每件可获利25元,若每名工人每天只能做一项工作,且不计其他因素,设安排x 名工人制衣. (1)一天中制衣所获利润P =________(用含x 的式子表示); (2)一天中剩余布所获利润Q =________(用含x 的式子表示); (3)一天当中安排多少名工人制衣时,所获利润为11 806元?参考答案1.D 2.C 3.B 4.C 5.B 6.B 7.A 8.A 9.C 10.B11.A 12.B 13.B 14.B 15.A 16.-19 17.1 18.2 2 19.5 20.521.(1)2-y 等式的性质1 (2)-y 2 (3)-2y 2 22.x =-3.23.根据题意得:2x -35+1=23x -4,去分母,得6x -9+15=10x -60, 移项合并,得4x =66,解得x =332.24.设小刚用x 分钟可以追上小明.根据题意,得200+80x =120x.解得x =5. 答:小刚用5分钟可以追上小明.25.因为⎪⎪⎪⎪⎪⎪a cb d =ad -bc ,又⎪⎪⎪⎪⎪⎪322x -12x +1=3,所以3(2x +1)-2(2x -1)=3,解得x =-1.26.(1)设七年级人数是x 人,根据题意得x -1545=x60+1,解得x =240.答:七年级学生人数是240人.(2)原计划租用45座客车:(240-15)÷45=5(辆). 答:原计划租用45座客车5辆.27.(1)100x (2)-72x +9 000 (3)根据题意得100x -72x +9 000=11 800.解得x =100. 答:应安排100名工人制衣.单元测试(六)数据的收集与整理(时间:120分钟满分:150分)一、选择题(本大题共15小题,每小题3分,共45分)1.某同学想了解寿春路与阜阳路交叉路口1分钟内各个方向通行的车辆数量,他应采取的收集数据方法为( )A.查阅资料B.实验C.问卷调查D.观察2.2015年某市初中毕业升学考试的考生人数约为3.2万名,从中抽取300名考生的数学成绩进行分析,在本次调查中,样本指的是( )A.300名考生的数学成绩B.300C.3.2万名考生的数学成绩D.300名考生3.(佛山中考)下列调查中,适合用普查方式的是( )A.调查佛山市市民的吸烟情况B.调查佛山市电视台某节目的收视率C.调查佛山市市民家庭日常生活支出情况D.调查佛山市某校某班学生对“文明佛山”的知晓率4.扇形统计图中某扇形占圆的30%,则此扇形所对的圆心角是( )A.120°B.108°C.90°D.60°5.某课外兴趣小组为了了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是( )A.在公园调查了1 000名老年人的健康状况B.在医院调查了1 000名老年人的健康状况C.调查了10名老年邻居的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.我国五座名山的海拔高度如下表:( )A.扇形统计图B.条形统计图C.折线统计图D.以上三种都可以7.为了解中学生获取资讯的主要渠道,随机抽取50名中学生进行问卷调查,调查问卷设置了“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项),根据调查结果绘制了如下的条形图.该图中a的值是( )A.28B.26C.24D.228.某人设计了一个游戏,在一网吧征求了三位游戏迷的意见,就宣传“本游戏深受游戏迷欢迎”,这种说法错误的原因是( )A.没有经过专家鉴定B.应调查四位游戏迷C.这三位玩家不具有代表性D.以上都不是9.空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是( )A.扇形统计图B.条形统计图C.折线统计图D.以上都不对10.如图的两个统计图,女生人数较多的学校是( )A.甲校B.乙校C.甲、乙两校女生人数一样多D.无法确定11.小明家下个月的开支预算如图所示,如果用于衣服上的支出是200元,则估计用于食物上的支出是( ) A.200元B.250元C.300元D.35012.对某中学70名女生的身高进行测量,得到一组数据的最大值为169 cm,最小值为143 cm,对这组数据整理时测定它的组距为5 cm,应分成( )A.5组B.6组C.7组D.8组13.某次考试中,某班级的数学成绩被绘制成了如图所示的频数分布直方图.下列说法错误的是( ) A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数占总人数的5% D.及格(不低于60分)的人数为2614.某市股票在七个月之内增长率的变化状况如图所示.从图上看出,下列结论不正确的是( )A.2~6月份股票月增长率逐渐减少B.7月份股票的月增长率开始回升C.这七个月中,每月的股票不断上涨D.这七个月中,股票有涨有跌15.如图是某班全体学生外出时乘车、步行、骑车人数分布直方图和扇形统计图(两图都不完整),则下列结论中错误是( )A.该班总人数为50 B.骑车人数占总人数的20%C.步行人数为30 D.乘车人数是骑车人数的2.5倍二、填空题(本大题共5小题,每小题5分,共25分)16.要反映一天的气温变化情况用________统计图表示比较合适.17.专家提醒:目前我国从事脑力劳动的人群中,“三高”(高血压、高血脂、高血糖)现象必须引起重视.这个结论是通过________得到的(填“普查”或“抽样调查”).18.学校为了考察我校七年级同学的视力情况,从七年级的10个班共540名学生中,每班抽取了5名进行分析,在这个问题中,总体是________________________,个体是________________________.[来源学_科_网Z_X_X_K] 19.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为________.20.(金华中考)小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是________.三、解答题(本大题共7小题,共80分)21.(8分)下面这几个抽样调查选取样本的方法是否合适?并说明理由.(1)为调查全校学生对购买正版书籍、唱片和软件的支持率,在全校所有的班级中,任意抽取8个班级,调查这8个班所有学生对购买正版书籍、唱片和软件的支持率;(2)为调查一个省的环境污染情况,调查省会城市的环境污染情况.22.(8分)为了解某校全体同学喜欢的NBA篮球明星的情况,小明抽取了七年级一班50名同学进行调查,得到最喜欢的NBA篮球明星的调查结果如下:A ABCD A B A A C B A A C B C A A B C A A B A CD B A C D B A C D A A B C D A C B A C A C D C A A其中:A代表姚明,B代表科比,C代表詹姆斯,D代表麦迪.(1)填表:(2)该班同学喜欢最多的是谁?(3)23.(10分)对某文明小区400户家庭拥有电视机数量情况进行抽样调查,得扇形统计图,根据图中提供的信息回答下列问题:(1)有一台彩电的家庭有多少户?(2)有三台彩电的家庭所在扇形的圆心角是多少度?24.(12分)如图是某班在一次数学小测验中学生考试成绩分布图(满分100分),根据图中提供的信息回答问题:(1)该班共有多少学生?(2)该次测验成绩哪一分数段的人数最多?是多少人?(3)如果80分及以上为优秀,那么优秀率是多少?25.(12分)某家电商场A、B两种品牌彩电2016年5~12月销售量统计如图.(1)有人认为B品牌彩电销售量比A品牌彩电销售量增长快.你同意这种观点吗?(2)根据统计图进行比较、判断时要注意些什么?(3)如果你是商场经理,从上面的统计图中你能得到哪些信息?对你有什么帮助?A品牌彩电月销售量统计图B品牌彩电月销售量统计图26.(14分)(贵阳中考)2014年巴西世界杯足球赛正在如火如荼地进行,小明和喜爱足球的伙伴们一起预测“巴西队”能否获得本届杯赛的冠军,他们分别在3月、4月、5月、6月进行了四次预测,并且每次参加预测的人数相同,小明根据四次预测结果绘制成如下两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)每次有________人参加预测;(2)计算6月份预测“巴西队”夺冠的人数;(3)补全条形统计图和折线统计图.27.(16分)端午节即将来临,某商场对去年端午节这天销售A,B,C三种品牌粽子的情况进行了统计,绘制如图1和图2所示的统计图.根据图中信息解答下列问题:(1)哪一种品牌的粽子的销售量最大?(2)补全图1中的条形统计图;(3)写出A种品牌粽子在图2中所对应的圆心角的度数;。
北师大版七年级上册数学第三章《整式及其加减》单元综合测试卷(含答案)
北师大版七年级上册数学第三章《整式及其加减》单元综合测试卷(含答案)一、选择题(每题3分,共30分)1.下列式子符合书写规范的是( )A .-1xB .115xyC .0.3÷xD .-52a 2.下列各式中,是单项式的是( )A .x 2-1B .a 2b C.πa +b D.x -y 3 3.单项式-π3a 2b 的系数和次数分别是( ) A .π3,3 B .-π3,3 C .-13,4 D.13,4 4.下列单项式中,与a 2b 是同类项的是( )A .2a 2bB .a 2b 2C .ab 2D .3ab5.如果多项式(a -2)x 4-12x b +x 2-3是关于x 的三次多项式,那么( ) A .a =0,b =3 B .a =1,b =3 C .a =2,b =3 D .a =2,b =16.下列去括号正确的是( )A .(a -b )-(c -d )=a -b -c -dB .-a -2(b -c )=-a -2b +2cC .-(a -b )+c =-a -b +cD .-2(a -b )-c =-2a +b -c7.【2021·台州】将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖( )A.20% B.x+y2×100% C.x+3y20×100% D.x+3y10x+10y×100%8.如图①是一个长为2m、宽为2n的长方形,其中m>n,先用剪刀沿图中虚线(对称轴)剪开,将它分成四个形状和大小都一样的小长方形,再将这四个小长方形拼成一个如图②的正方形,则中间空白部分的面积是( )A.2mn B.(m+n)2 C.(m-n)2 D.m2-n29.代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是( ) A.20 B.18 C.16 D.1510.【教材P104复习题T16变式】【2020·德州】如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为( )A.148 B.152 C.174 D.202二、填空题(每题3分,共24分)11.用代数式表示“比a的平方的一半小1的数”是____________.12.若单项式-2x3yn与4x m+2y5合并后的结果还是单项式,则m+n=________.13.【教材P101复习题T2变式】按照如图所示的步骤操作,若输入x的值为-4,则输出的值为________.14.在山东部分地区,大年初一常常包上几个装有硬币的饺子,吃到“钱馅”饺子的人,寓意新的一年财源滚滚、大吉大利.因为怕弄坏牙齿,朵朵的奶奶就把花生放在饺子里代替硬币,朵朵家有6口人,奶奶按照每人n 粒花生的规则包饺子(每个饺子包1粒),那么有花生的饺子有________个.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含x 2项,则m =________.16.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的错误结果为xy -2yz +3xz ,则正确的结果是__________.17.已知有理数a ,b ,c 在数轴上对应点的位置如图所示,化简|a +c |-|c -b |-|a +b |的结果为________.18.【2021·怀化】观察等式:2+22=23-2,2+22+23=24-2,2+22+23+24=25-2……已知按一定规律排列的一组数:2100,2101,2102,…,2199,若2100=m ,用含m 的代数式表示这组数的和是__________.三、解答题(19,21,22题每题10分,其余每题12分,共66分)19.先去括号,再合并同类项:(1)2a -(5a -3b )+(4a -b ); (2)3x 2y -⎣⎢⎡⎦⎥⎤2xy 2-2⎝ ⎛⎭⎪⎫xy -32x 2y +xy +3xy 2.20.先化简,再求值:(1)7a 2b +(-4a 2b )-(2a 2b -2ab ),其中a =-2,b =1;(2)2x 2-⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫-13x 2+23xy -2y 2-2(x 2-xy +2y 2),其中x =12,y =-1.21.【教材P 102复习题T 9变式】已知代数式A =2x 2+3xy -2x -1,B =-x 2+xy -1.(1)当x =y =-1时,求2A +4B 的值;(2)若2A +4B 的值与x 的取值无关,求y 的值.22.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m).(1)求阴影部分的面积(用含x的代数式表示);(2)当x=9,π取3时,求阴影部分的面积.23.比较两个数的大小时,我们可以用“作差法”.它的基本思路是求a与b两数的差,当a-b>0时,a>b;当a-b<0时,a<b;当a-b=0时,a=b.试运用“作差法”解决下列问题:(1)比较2a+1与2(a+1)的大小;(2)比较a+b与a-b的大小.24.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.(1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.参考答案一、1.D 2.B 3.B 4.A 5.C 6.B 7.D8.C 9.A10.C点思路:根据图案知,第1个图案有12个棋子,第2个图案有22个棋子,第3个图案有34个棋子,…第n 个图案有2[1+2+…+(n +1)+(n +2)]+2(n -1)=(n +2)(n +3)+2(n -1)(个)棋子.故第10个这样的图案需要黑色棋子的个数为(10+2)(10+3)+2×(10-1)=174.二、11.12a 2-1 12.6 13.-6 14.6n 15.4 16.3xy -8yz -xz 点拨:由题意可知原多项式为(xy -2yz +3xz )+(xy -3yz-2xz )=2xy -5yz +xz ,则正确的结果为(2xy -5yz +xz )+(xy -3yz -2xz)=3xy -8yz -xz .17.2b -2c 点拨:由题图可知a +c <0,c -b >0,a +b <0,所以原式=-(a+c)-(c -b)-[-(a +b)]=-a -c -c +b +a +b =2b -2c.18.m 2-m点技巧:由题中规律,得2100+2101+2102+…+2199=(2+22+23+...+2199)-(2+22+23+ (299)=(2200-2)-(2100-2)=(2100)2-2100.因为2100=m ,所以原式=m 2-m .三、19.解:(1)原式=2a -5a +3b +4a -b =a +2b ;(2)原式=3x 2y -(2xy 2-2xy +3x 2y +xy )+3xy 2=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy +xy 2.20.解:(1)7a 2b +(-4a 2b )-(2a 2b -2ab )=7a 2b -4a 2b -2a 2b +2ab =a 2b +2ab .把a =-2,b =1代入,得原式=(-2)2×1+2×(-2)×1=0.(2)2x 2-[3(-13x 2+23xy )-2y 2]-2(x 2-xy +2y 2)=2x 2-(-x 2+2xy -2y 2)-(2x 2-2xy +4y 2)=2x 2+x 2-2xy +2y 2-2x 2+2xy -4y 2=x 2-2y 2.把x =12,y =-1代入,得原式=⎝ ⎛⎭⎪⎫122-2×(-1)2=-74. 21.解:(1)2A +4B =2(2x 2+3xy -2x -1)+4(-x 2+xy -1)=4x 2+6xy -4x -2-4x 2+4xy -4=10xy -4x -6.当x =y =-1时,原式=10×(-1)×(-1)-4×(-1)-6=10+4-6=8.(2)2A +4B =10xy -4x -6=(10y -4)x -6.因为2A +4B 的值与x 的取值无关,所以10y -4=0,解得y =0.4.22.解:(1)由题图中各个部分面积之间的关系可得,阴影部分的面积=2(x -2)+4(x -2-2)-12π·⎝ ⎛⎭⎪⎫2+422=2x -4+4x -16-92π=⎝ ⎛⎭⎪⎫6x -20-92πm 2. (2)当x =9,π取3时,阴影部分的面积为54-20-272=412(m 2). 23.解:(1)因为2a +1-2(a +1)=2a +1-2a -2=-1<0,所以2a +1<2(a +1).(2)(a+b)-(a-b)=a+b-a+b=2b.①当b>0时,a+b>a-b;②当b<0时,a+b<a-b;③当b=0时,a+b=a-b.24.解:(1)当x=100时,方案一:100×200=20 000(元);方案二:100×(200+80)×80%=22 400(元).因为20 000<22 400,所以方案一划算.(2)当x>100时,方案一:100×200+80(x-100)=80x+12 000(元);方案二:(100×200+80x)×80%=64x+16 000(元).(3)当x=300时,①按方案一购买:80×300+12 000=36 000(元);②按方案二购买:64×300+16 000=35 200(元);③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子:100×200+80×200×80%=32 800(元),36 000>35 200>32 800,即先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子最省钱。
北师大版七年级数学上册单元测试题全套带答案
北师大版七年级数学上册单元测试题全套第一章丰富的图形世界01分点突破知识点1生活中的立体图形1.(东台月考)下列图形属于棱柱的有( )A.2个B.3个C.4个D.5个2.下列说法错误的是( )A.长方体、正方体都是棱柱B.六棱柱有18条棱、6个侧面、12个顶点C.三棱柱的侧面是三角形D.圆柱由两个平面和一个曲面围成3.(镇江校级月考)夜晚的流星划过天空时留下一道明亮的光线,由此说明____________的数学事实.知识点2图形的展开与折叠4.(张店区一模)下面图形经过折叠不能围成棱柱的是( )5.(河南中考)如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是( )A.1B.4C.5D.66.(通辽中考)妈妈为今年参加中考的女儿小红制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“祝”的对面是“考”,“成”的对面是“功”,则它的平面展开图可能是( )知识点3截一个几何体7.(济南校级月考)如下左图,用水平面截几何体,所得几何体的截面图形的标号是()8.用一平面去截下列几何体,其截面可能是长方形的有( )A.1个B.2个C.3个D.4个知识点4从三个方向看物体的形状9.(广州中考)从正面看如图所示的几何体得到的平面图形是( )10.在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是()02综合训练)11.(普宁校级月考)下列说法中,正确的个数是( )①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.A.2 B.3 C.4 D.5 12.(福安市期末)把图绕虚线旋转一周形成一个几何体,与它相似的物体是( )A.课桌B.灯泡C.篮球D.水桶13.如图是由5个大小相同的正方体搭成的几何体,从上面看得到的平面图形是()14.(牡丹江中考)如图,由高和直径相同的5个圆柱搭成的几何体,从左边看得到的平面图形是( )15.如图的几何体有________个面,________条棱,________个顶点,它是由简单的几何体________和________组成的.16.围成下面这些立体图形的各个面中,哪些面是平的?哪些面是曲的?(1)(2)17.(通许期末)如图所示,在无阴影的方格中选出两个画出阴影,使它们与图中四个有阴影的正方形一起可以构成一个正方体的表面展开图.(填出两种答案)18.(镇江校级期末)如图,图1为一个长方体,AB=AD=16,AE=6,图2为左图的表面展开图,请根据要求回答问题:(1)面“学”的对面是面“________”;(2)图1中,M、N为所在棱的中点,试在图2中画出点M、N的位置,并求出图2中△ABN 的面积.参考答案分点突破1.B 2.C 3.点动成线 4.D 5.B 6.D 7.A 8.C 9.A 10.A综合训练11.B 12.D 13.C 14.C 15.九 十六 九 四棱锥 四棱柱 16.(1)中的5个面都是平的.(2)中圆锥的侧面是曲的,圆柱的侧面是曲的,圆柱的底面是平的. 17.略. 18.(1)国(2)点M 、N 如图所示. 因为N 是所在棱的中点,所以点N 到AB 的距离为12×16=8,所以△ABN 的面积为12×16×8=64.第二章 有理数及其运算01 分点突破知识点1 有理数的概念及分类1.下列数-91,1.5,23,-136,7,0中,负数的个数是( )A .1B .2C .3D .4 2.下列说法错误的是( )A .-2是负有理数B .0不是整数 C.25是正有理数 D .-0.25是负分数3.把下面的有理数填在相应的大括号里:15,-38,0,-30,0.15,-128,225,+20,-2.6.(1)非负数集合:{ ,…}; (2)负数集合:{ ,…}; (3)正整数集合:{ ,…};(4)负分数集合:{,…}.知识点2 数轴、相反数、绝对值与倒数 4.如图,在数轴上点A 表示的数可能是( )A .1.5B .-1.5C .-2.6D .2.6 5.(东营中考)|-13|的相反数是( )A.13 B .-13C .3D .-36.-2的倒数是________,|-2 016|=________,-5的倒数的相反数是________. 知识点3 有理数的大小比较7.(绍兴中考)比较-3,1,-2的大小,正确的是( ) A .-3<-2<1 B .-2<-3<1 C .1<-2<-3 D .1<-3<-2 8.绝对值不大于11.1的整数有( )A .11个B .12个C .22个D .23个9.有理数a 、b 、c 在数轴上的位置如图所示,下列结论错误的是( )A .c <b <aB .-c >aC .b <0,c <0D .-a >-c 知识点4 有理数的混合运算及其应用 10.计算:(1)(-49)-90-(-6)+(-9);(2)23×(-3)-(-2)÷(-164);(3)24×(12+13-112).11.初一年级共110名学生,在一次数学测试中以90分为标准,超过的记为正,不足的记为负,成绩如下:6知识点5 科学记数法与近似数12.(菏泽中考)现在网购越来越多地成为人们的一种消费方式,在2014年的“双11”网上促销活动中天猫和淘宝的支付交易额突破57 000 000 000元,将数字57 000 000 000用科学记数法表示为( )A .5.7×109B .5.7×1010C .0.57×1011D .57×10913.计算一个式子,计算器上显示的结果1.597 583,将这个结果精确到0.01是________. 02 综合训练14.(丽水中考)如图,数轴的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是( )A .-4B .-2C .0D .4 15.(毕节中考)下列说法正确的是( ) A .一个数的绝对值一定比0大 B .一个数的相反数一定比它本身小 C .绝对值等于它本身的数一定是正数 D .最小的正整数是116.某地一天下午4时的温度是6 ℃,过了6时气温下降了4 ℃,又过了2时气温下降了3 ℃,第二天0时的气温是________. 17.计算:(1)(-3)2-112×29-6÷|-23|2;(2)(佛山中考)2×[5+(-2)3]-(-|-4|÷12).18.一天,小红与小丽利用温差测量山的高度,小红在山顶测得温度是-4 ℃,小丽此时在山脚测得温度是6 ℃.已知该地区高度每增加100米,气温大约降低0.8 ℃,这个山峰的高度大约是多少米?a |a|+b|b|+ab|ab|的值是多少?19.若a,b都是非零的有理数,那么参考答案分点突破1.B 2.B 3.(1)15,0,0.15,225,+20 (2)-38,-30,-128,-2.6 (3)15,+20 (4)-38,-2.6 4.C 5.B 6.-12 2 016 15 7.A 8.D 9.D 10.(1)原式=-49-90+6-9=-142. (2)原式=-69-128=-197. (3)原式=12+8-2=18. 11.-1×10+20×3+5×(-2)+14×1+12×10+18×2+10×0+4×(-7)+9×7+6×(-9)+2×(-12)=-10+60-10+14+120+36-28+63-54-24=167,90+167÷110≈91.5.答:这次考试的平均成绩是91.5分. 12.B 13.1.60 综合训练14.B 15.D 16.-1 ℃ 17.(1)原式=9-13-6÷49=9-13-272=-456. (2)原式=2×(5-8)-(-4×2)=2×(-3)-(-8)=2. 18.由题意,得[6-(-4)]÷0.8×100=12.5×100=1 250(米).答:这个山峰的高度大约是1 250米.19.当a>0,b>0时,原式=a a +b b +ab ab =1+1+1=3;当a>0,b<0时,原式=a a +b -b +ab-ab =1+(-1)+(-1)=-1;当a<0,b>0时,原式=a -a +b b +ab-ab=-1+1+(-1)=-1;当a<0,b<0时,原式=a -a +b -b +ab ab =-1+(-1)+1=-1.综上所述,a |a|+b |b|+ab|ab|的值为3或-1.第三章 整式及其加减01 分点突破 知识点1 代数式1.以下各式不是代数式的是( )A .-27 B .-2x +6x 2-xC .a 2+b 4≠0 D.25100y 2.(株洲中考)如果手机通话每分钟收费m 元,那么通话a 分钟,收费________元.3.(咸宁中考)体育委员小金带了500元钱去买体育用品,已知一个足球x 元,一个篮球y 元.则代数式500-3x -2y 表示的实际意义是________________________________________________________. 知识点2 整式4.下列说法正确的是( )A .单项式-xy 25的系数是-5,次数是2B .单项式a 的系数为1,次数是0 C.xy -12是二次单项式D .单项式-67ab 的系数为-67,5.下列式子:4xy ,x 2+x -23,m 2n 2,y 2+y +2y ,2x 3-3,0,-3ab +a ,m ,m -n m +n,x -12,3x ,其中单项式有________________;多项式有________________;整式有________________________________.6.(1)多项式2x 2y -x 2+12x 2y 2-3的最高次项是________,三次项的系数是________,常数项是________;(2)多项式-43x m -3-2x +1是六次三项式,则m 的值是________.知识点3 整式的加减7.下列各组中是同类项的是( )A .3x 2y 与2xy 2 B.13x 4y 与12yx 4C .-2a 与0 D.12πa 2bc 3与-3a 2cb 38.去掉下列各式中的括号:(1)a -(-b +c)=________________; (2)a +(b -c )=________________;(3)(a -2b )-(b 2-2a 2)=________________. 9.计算:(1)3a +4b -5a -b ;(2)5(2x-3)+4(3-2x).知识点4探索与表达规律10.(漳州中考)已知一列数2,8,26,80,…,按此规律,则第n个数是____________.(用含n的式子表示)11.小强用黑白两种颜色的正六边形地面砖按如图拼成了三个图案,他发现了规律,若继续这样拼出第4个,第5个,…,那么第n个图案中白色地面砖有____________块.02综合训练12.当x=1时,多项式ax2+bx+1的值为3,则多项式-(6a-2b)+(5a-3b)的值等于( ) A.0 B.1 C.2 D.-213.某校组织若干师生到活动基地进行社会实践活动.若学校租用45座的客车x辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A.200-60x B.140-15xC.200-15x D.140-60x14.请写出一个符合下列要求的单项式:系数为-5,只含有字母m,n的四次单项式________________________________.15.一个十位数字是a,个位数字是b的两位数表示为____________,交换这个两位数的十位数字和个位数字,又得一个新的两位数,新数与原数的差是________.16.电影院第一排有m个座位,后面每排比前一排多2个座位,则第n排的座位数为____________.17.(娄底中考)按照如图所示的操作步骤,若输入的值为3,则输出的值为________.18.计算:(1)3(a2-2ab)-(-ab+b2);(2)(2x 2+x )-[2x +(1-x 2)].19.如果12x a y 3和-y b x 2是同类项,求多项式3(a -b)2-12(a -b)+32(a -b)2-13(a -b)的值.20.已知3x 2y |m|-(m -1)y +5是关于x ,y 的多项式,且它的最高次项的次数是3,求2m 2-3m +1的值.21.一种中性笔售价是5元/支,如果一次买100支以上(不含100支),售价是4元/支. (1)列代数式表示买n 支中性笔所需要的钱数(注意对n 的大小要有所考虑); (2)按照这种售价规定,会不会出现多买比少买反而付钱少的情况?举例说明.参考答案分点突破1.C 2.am 3.体育委员买了3个足球、2个篮球后剩余的经费 4.D 5.4xy ,m 2n2,0,mx 2+x -23,2x 3-3,x -12 4xy ,x 2+x -23,m 2n 2,2x 3-3,0,m ,x -12 6.(1)12x 2y 2 2 -3(2)9 7.B 8.(1)a +b -c (2)a +b -c (3)a -2b -b 2+2a 2 9.(1)原式=-2a +3b. (2)原式=10x -15+12-8x =2x -3. 10.3n -1 11.(4n +2) 综合训练12.D 13.C 14.答案不唯一,如:-5m 3n ,-5m 2n 2,-5mn 3 15.10a +b 9b -9a 16.m +2(n -1) 17.55 18.(1)原式=3a 2-6ab +ab -b 2=3a 2-5ab -b 2. (2)原式=2x 2+x -(2x +1-x 2)=2x 2+x -2x -1+x 2=3x 2-x -1. 19.由题意,得a =2,b =3.所以a -b =-1.所以原式=92(a -b)2-56(a -b)=92×(-1)2-56×(-1)=163. 20.由题意知,2+|m|=3,所以m =-1或m =1.当m =-1时,原式=2×(-1)2-3×(-1)+1=6.当m =1时,原式=2×12-3×1+1=0. 21.(1)当n ≤100时,买n 支中性笔所需要的钱数为5n ;当n >100时,买n 支中性笔所需要的钱数为4n.(2)按照这种售价规定,会出现多买比少买反而付钱少的情况.如:买101支中性笔需要404元,买100支中性笔需要500元.第四章 基本平面图形分点突破知识点1 线段、射线、直线1.如图,直线l 上有A 、B 、C 三点,下列说法正确的有( )①直线AB 与直线BC 是同一条直线;②射线AB 与射线BC 是同一条射线;③直线AB 经过点C ;④射线AB 与射线AC 是同一条射线.A .1个B .2个C .3个D .4个 2.下列语句正确的是( ) A .画直线AB =10厘米 B .画直线l 的中点 C .画射线OB =3厘米D .延长线段AB 到点C ,使得BC =AB 知识点2 线段的有关计算3.下列关系中,与图示不符合的式子是( )A .AD -CD =AB +BC B .AC -BC =AD -DB C .AC -BC =AC +BD D .AD -AC =BD -BC 4.如图,若AB =2 cm ,BC =5 cm ,C 是BD 的中点,则BD =________cm ,AD =________cm.[来5.如图,线段AB =10 cm ,延长AB 到点C ,使BC =6 cm ,点M 、N 分别为AC 、BC 的中点,求线段BM 、MN 的长.知识点3 角的有关运算6.下列各式计算正确的是( )A .(12)°=118″ B .38°15′=38.15°[来源学科网Z,X,X,K]C .24.8°×2=49.6°D .90°-85°45′=4°65′7.(北京中考)如图,直线AB、CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠BOM等于( )A.38°B.104°C.142°D.144°8.用A、B、C分别表示学校、小明家、小红家,已知学校在小明家的南偏东25°,小红家在小明家正东,小红家在学校北偏东35°,则∠ACB等于( )A.35°B.55°C.60°D.65°知识点4多边形和圆的初步认识9.一个正六边形的边长为6,则它的周长为________.10.将一个圆分成六个完全相同的小扇形,则这些小扇形的圆心角为________度.综合训练11.如图,从点O出发引四条射线OA、OB、OC、OD,则可组成角的个数是( )A.3B.4C.5D.612.如图,已知A、B、C、D、E五点在同一直线上,D点是线段AB的中点,点E是线段BC的中点,若线段AC=12,则线段DE等于( )A.10 B.8 C.6 D.413.如图,已知点C、D、E都在线段AB上,AD=BC,E是线段AB的中点,则CE________DE.(填“>”“<”或“=”)14.普通的钟表在4点钟时,时针与分针的夹角的度数为________°.15.若已知∠AOB=80°,∠BOC=30°,OD是∠AOC的平分线,则∠COD=________.16.计算:(1)90°-78°19′40″;(2)11°23′26″×3;(3)176°52′÷3.17.如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB 、CD 的中点E 、F之间的距离是10 cm ,求AB 、CD 的长.18.如图,射线OA 的方向是北偏东15°,射线OB 的方向是北偏西40°,∠AOB =∠AOC ,OD 是OB 的反向延长线.(1)射线OC 的方向是_________; (2)求∠COD 的度数;(3)若射线OE 平分∠COD ,求∠AOE 的度数.19.已知:如图,OC是∠AOB的平分线.(1)当∠AOB=60°时,求∠AOC的度数;(2)在(1)的条件下,∠EOC=90°,请在图中补全图形,并求∠A OE的度数;[来源学科网ZXXK](3)当∠AOB=α时,∠EOC=90°,直接写出∠AOE的度数.(用含α的代数式表示)参考答案基础题1.C 2.D 3.C 4.10 125.因为AB =10 cm ,BC =6 cm ,所以AC =16 cm. 又M 为AC 的中点,所以MC =AM =8 cm.因为N 为BC 的中点,所以BN =NC =3 cm ,BM =AB -AM =10-8=2(cm),MN =BM +BN =2+3=5(cm).6.C7.C8.B9.36 10.60 中档题11.D 12.C 13.= 14.120 15.25°或55°16.(1)原式=11°40′20″. (2)原式=34°10′18″. (3)原式=58°57′20″. 17.设BD =x cm ,则AB =3x cm ,CD =4x c m ,AC =6x cm.因为点E 、F 分别为AB 、CD 的中点,所以AE =12AB =1.5x cm ,CF =12CD =2x cm.所以EF =AC -AE -CF =2.5x(cm).又因为EF =10 cm ,所以2.5x =10.解得x =4. 所以AB =12 cm ,CD =16 cm.18.(1)北偏东70°(2)因为∠AOB =40°+15°=55°,∠AOB =∠AOC ,所以∠BOC =110°.又因为OD 是OB 的反向延长线,°.所以∠COD =180°-110°=70°. (3)因为∠COD =70°,OE 平分∠COD =35°. 又因为∠AOC =55°,所以∠AOE =55°+35°=90°.19.(1)因为OC 是∠AOB 的平分线,所以∠AOC =12∠AOB.因为∠AOB =60°,所以∠AOC=30°.(2)如图1,∠AOE =∠EOC +∠AOC =90°+30°=120°;如图2,∠AOE =∠EOC -∠AOC =90°-30°=60°.所以∠AOE =120°或60°.(3)90°+α2或90°-α2.第五章一元一次方程的应用类型1和差倍分问题1.儿子今年13岁.父亲今年40岁,是否有哪一年父亲年龄恰好是儿子的4倍?2.某人将2 600元工资作了打算,购书费用、休闲娱乐费用、家庭开支、存款比为1∶3∶5∶4,请问此人打算休闲娱乐花去多少元?类型2等积变形问题3.将一个底面直径是20厘米,高为9厘米的“矮胖”形圆柱,锻压成底面直径是10厘米的“痩长”形圆柱,高变成了多少?4.有一个底面半径为5 cm的圆柱形储油器,油中浸有铁球,若从中捞出重为546π克的铁球,问液面将下降多少厘米?(1 cm3的铁重7.8克)类型3打折销售问题5.“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲、乙两种商品,分别抽到七折和九折,共付款386元,这两种商品定价之和为500元,问:这两种商品的定价分别为多少元?6.甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元.类型4分配问题7.某车间有技术工人80人,平均每天每人可加工甲种部件14个或乙种部件9个,2个甲种部件和3个乙种部件配成一套,则加工甲、乙部件各安排多少人,才能使每天加工的甲、乙两种部件刚好配套?类型5工程问题8.一件工作,甲单独完成需7.5小时,乙单独完成需5小时,先由甲、乙两人合做1小时,再由乙单独完成剩余任务,共需多少小时完成任务?类型6行程问题9.兄弟两人由家里骑车去学校,弟弟每小时走6千米,哥哥每小时走8千米,哥哥晚出发10分钟,结果两人同时到校,学校离家有多远?10.甲、乙两人从A地同时出发去相距100千米的B地,甲的速度是乙的1.5倍,4小时后,乙与到达B地又立即回头的甲相遇.试求两人的速度.类型7其他问题11.一个两位数,十位上的数字比个位上的数字小4,如果把十位上的数与个位上的数对调后,那么所得的两位数比原来的两位数的2倍小12,求原来的两位数.参考答案分点突破1.A 2.B 3.-2 4.-4 5.B 6.a ≠0 7.减去5 1 8.C 9.D 10.(1)-35m +m =-4,25m =-4,m =-10.(2)4x -60+3x =6x -63+7x ,-6x =-3,x =12.(3)12-2(2x +1)=3(1+x),12-4x -2=3+3x ,-7x =-7,x =1.11.设欧洲的意向创始成员国有x 个,亚洲的意向创始成员国有(2x -2)个. 根据题意,得2x -2+x +5=57.解得x =18.则2x -2=34. 答:亚洲和欧洲的意向创始成员国各有34个和18个. 综合训练12.12 13.11314.25 15.(1)x =-10. (2)x =-17. 16.由题意,得3=m -1,5n -2=3m +n.解得m =4,n =72.所以m +n =152.17.(1)设该商场购进甲种矿泉水x 箱,则购进乙种矿泉水(500-x)箱.根据题意,得24x +33(500-x)=13 800.解得x =300.故500-x =200.答:该商场购进甲种矿泉水300箱,购进乙种矿泉水200箱.(2)300×(36-24)+200(48-33)=6 600(元).答:全部售完500箱矿泉水,该商场共获得利润6 600元.18.设老张家到单位的路程是x 千米.依题意,得13+2.3(x -3)=8+2(x -3)+0.8x.解得x =8.2.答:老张家到单位的路程是8.2千米.第六章数据的收集与整理01分点突破知识点1数据的收集1.下面获取数据的方法不正确的是( )A.了解我们班同学的身高情况用测量方法B.快捷了解历史资料情况用观察方法C.抛硬币看正反面的次数用实验方法D.了解全班同学最喜爱的体育活动用访问方法2.进行数据的调查收集,一般可分为以下六个步骤,但它们的顺序弄乱了,正确的顺序是____________(用字母按顺序写出即可).A.明确调查问题;B.记录结果;C.得出结论;D.确定调查对象;E.展开调查;F.选择调查方法.知识点2调查方式的选择3.下列调查中,最适宜采用全面调查的是( )A.对某市居民日平均用水量的调查B.对我国初中学生视力状况的调查C.对“最强大脑”节目收视率的调查D.对某校九年级(1)班同学身高情况的调查4.为了了解某商品促销广告中所称中奖率的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是____________.5.下列调查中,________适宜使用抽样调查方式,________适宜使用普查方式.(只填相应的序号)①张伯想了解他承包的鱼塘中的鱼的生长情况;②了解全国患支气管炎的人数;③评价八年级(2)班本次期末数学考试的成绩;④张红想了解妈妈煲的一锅汤的味道.知识点3总体、个体、样本6.某中学要了解七年级学生的身高情况,在全校七年级中抽取了30名学生进行测量,在这个问题中,总体是________________________________,个体是________________________,样本是________________________________.知识点4样本的代表性7.下列调查具有代表性的是( )A.在公园里调查老年人的健康状况B.在大学生中调查我国青年业余时间的娱乐的主要方式C.在一个班级中随机抽出10名学生,以了解学生们对班主任老师某一新举措的意见和建议D.在深圳调查我国居民的收入水平、生活状况和生活质量8.小明从一批乒乓球中随意摸出三个,检测全部合格,因此小明断定这批乒乓球全部合格.在这个问题中,小明( )A.忽略了抽样调查的随机性B.忽略了抽样调查的随机性和广泛性C.抽取的乒乓球个数太少,不具有代表性D.忽略了抽样调查的随机性和代表性知识点5统计图的选择与应用9.某单位有6位司机:A,B,C,D,E,F,12月份耗去的汽油费用如下表,根据表中的数据作出统计图,以便更清楚地对每个人的耗油费用进行比较,那么应用( )A.C.扇形统计图D.上述三种图都可以10.(淄博中考)某实验中学九年级(1)班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是________度.02综合训练11.如图分别是某班全体学生上学时乘车、步行、骑车人数的条形统计图和扇形统计图(两图都不完整),下列结论错误的是( )A.该班总人数为50人B.步行人数为30人C.乘车人数是骑车人数的2.5倍D.骑车人数占20%12.某校八年级(1)班为了了解同学们一天零花钱的消费情况,对本班48名同学开展了调查,将同学一周的零花钱以5元为组距,绘制如图的频数直方图,已知从左到右各组的频数之比为2∶3∶4∶2∶1.(1)零花钱人数最多的是第_______组,有_______人;(2)零花钱在20元以上的共有________人.13.某电台“市民热线”对上周内接到的热线电话进行了分类统计,得到的统计信息如图所示,其中有关房产城建的电话有30个,请你根据扇形统计图回答以下问题:(1)上周“市民热线”接到有关道路交通方面的电话有________个;(2)上周“市民热线”接到有关环境保护方面的电话有________个;(3)据此估计,除环境保护方面的电话外,“市民热线”今年(按52周计算)接到的热线电话约为多少个?(4)为了更直观显示各类“市民热线”电话数目,你准备采用什么样的统计图?14.九(1)班开展了为期一周的“敬老爱亲”的社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A.0.5≤x<1,B.1≤x<1.5,C.1.5≤x<2,D.2≤x<2.5,E.2.5≤x<3,制作成两幅不完整的统计图(如图).请根据图中提供的信息,解答下列问题:(1)补全频数直方图;(2)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.参考答案分点突破1.B 2.ADFEBC 3.D 4.抽样调查 5.①②④ ③ 6.某中学七年级学生的身高情况 每名学生的身高情况 抽取的30名学生的身高情况 7.C 8.C 9.A 10.108 综合训练11.B 12.(1)3 16 (2)12 13.(1)15 (2)45 (3)(150-45)×52=5 460(个).(4)由于条形统计图能清楚地表示出每个项目的数据,故可用条形统计图.14.(1)如图.(2)小明判断符合实际,该班同学一周做家务时间不超过2小时的百分比为20+15+350×100%=76%>50%,所以小明判断符合实际.。
【北师大版】七年级数学上册(全册)同步测试题全集 (含本书所有课时)
(北师大版)七年级数学上册(全册)同步测试题汇总3.1 字母表示数一、选择题(每题4分, 共12分)1.小李今年y岁, 小张比小李小3岁, 6年后小张是(C)A.(y+9)岁B.(y+6)岁C.(y+3)岁D.(y+5)岁2.小明步行的速度爲5 km/h, 若小明到学校的路程爲s km, 则他上学和放学共需走(C)A.s5h B.5s hC.2s5h D.10s h3.一个圆的周长爲2πr cm, 若将它的半径缩小3 cm, 则它的面积爲(B)A.(2πr-3)2 cm2B.π(r-3)2 cm2C.(πr2-3)cm2D.2π(r-3)2 cm2二、填空题(每题4分, 共12分)4.宥三个连续的偶数, 其中最小的一个是2n, 则最大的是2n+4.解: 因爲连续的偶数, 相邻两个数差2, 所以这三个连续的偶数分别是2n,2n +2,2n+4, 其中最大的是2n+4.5.如果用a, b分别表示两个宥理数, 则宥理数的减法法则可以表示爲: a-b =a+(-b).6.一圆半径爲a cm, 将圆半径增加5 cm后, 圆的周长是2π(a+5)cm, 圆的面积是π(a+5)2cm2.三、解答题(共26分)7.(8分)用字母表示图中阴影部分的面积.解: 根据题意得, 图中阴影部分的面积爲: ab-12π(b2)2=ab-18πb2.8.(8分)做大小两个纸盒, 尺寸如下(单位: cm):(1)b, c的代数式表示)(2)做成的大纸盒比小纸盒的容积大多少立方厘米?(结果用含a, b, c的代数式表示)解: (1)根据题意, 做两个纸盒需用料2ab+2bc+2ac+12ab+8bc+12ac=14ab+10bc+14ac(cm2).答: 做这两个纸盒共用料(14ab+10bc+14ac)cm2.(2)根据表格中数据可知, 大纸盒比小纸盒的容积大3a×2b×2c-abc=11abc(cm3).答: 做成的大纸盒比小纸盒的容积大11abc cm3.9.(10分)下图是由一些火柴棒搭成的图案:(1)摆第①个图案用______根火柴棒,摆第②个图案用______根火柴棒,摆第③个图案用______根火柴棒;(2)按照这种方式摆下去, 摆第n个图案用多少根火柴棒? 解: (1)第①个图案所用的火柴棒数: 1+4=1+4×1=5, 第②个图案所用的火柴棒数:1+4+4=1+4×2=9,第③个图案所用的火柴棒数:1+4+4+4=1+4×3=13;(2)按(1)的方法, 依此类推,第n个图案中, 所用的火柴棒数爲:1+4+4+…+4=1+4×n=4n+1.故摆第n个图案用的火柴棒是(4n+1)根.3.2 代数式第1课时一、选择题(每题4分, 共12分)1.下列各式中, 代数式的个数是(B)①x+6;②a2+b=b+a2;③4x+1>7;④b;⑤0;⑥23-x;⑦4a+3≠0;⑧23-6;⑨8m-2n<0.A.4个B.5个C.6个D.7个解: 根据代数式的定义, 可知①④⑤⑥⑧都是代数式, 一共5个.故选B.2.一个两位数, 十位上的数字是a, 个位上的数字是b, 这个两位数用代数式可表示爲(B)A.ab B.10a+bC.10b+a D.10(a+b)3.某企业今年3月份产值爲a万元, 4月份比3月份减少了10%,5月份比4月份增加了15%, 则5月份的产值是(B)A.(a-10%)(a+15%)万元B.(1-10%)(1+15%)a万元C.(a-10%+15%)万元D.a(1-10%+15%)万元解: 根据4月份比3月份减少10%, 可得4月份产值是(1-10%)a万元, 5月份比4月份增加15%, 可得5月份产值是(1-10%)(1+15%)a万元.二、填空题(每题4分, 共12分)4.吉林广播电视塔五一假期第一天接待游客m人, 第二天接待游客n人, 则这两天平均每天接待游客m+n2人.(用含m, n的代数式表示)5.体育委员带了500元钱去买体育用品, 已知一个足球a元, 一个篮球b 元.则式子500-3a-2b表示的意义爲体育委员买了3个足球、2个篮球之后剩余的经费.6.一种商品每件成本a元, 按成本增加30%定价, 现因出现库存积压减价, 按定价的80%出售, 每件还能盈利0.04a元.(用含a的式子表示)三、解答题(共26分)7.(8分)一项工程, 甲单独做a天完成, 乙单独做b天完成, 用代数式表示:(1)甲、乙合作m天, 能完成这项工程的多少?(2)甲、乙共同完成这项工程, 共需要多少天?解: 1a表示甲一天的工作量,1b表示乙一天的工作量, 这里1代表这项工程的总工作量.(1)甲、乙合做m天,能完成这项工程的m(1a+1b);(2)甲、乙共同完成这项工程, 共需要aba+b天.8.(8分)用字母表示图中阴影部分的面积.解: (1)S阴=a(a+b)-14πa2-14πb2;(2)S阴=14πa2-12ab.9.(10分)商店进了一批货, 出售时要在进价的基础上加一定利润.其销售数量x(kg)与售价c(元)之间的关系如下表:(1)写出销售数量(2)如果小光想买3.5 kg该物, 你能帮他算一下需要多少钱吗?解: (1)c=4.2x;(2)由(1)知, c=4.2×3.5=14.7(元).3.2 代数式第2课时一、选择题(每题3分, 共15分)1.当x=1时, 代数式x+1的值是(B)A.1 B.2C.3 D.42.当x=3, y=-2时, 代数式xy-12y2的值是(B)A.4 B.-8 C.-4 D.83.在公式1f=1v+1u中, 当v=5, u=3时, f的值是(D)A.8 B.18 C.815 D.1584.已知x2+3x+5的值爲11, 则代数式3x2+9x-12的值爲(B)A.3 B.6C.9 D.-9解: ∵x2+3x+5=11, 即x2+3x=6, ∴原式=3(x2+3x)-12=18-12=6. 5.若a, b互爲相反数, x, y互爲倒数, 则(a+b)+2xy的值是(A)A.2 B.3C.3.5 D.4二、填空题(每题3分, 共12分)6.当a=2时, 代数式3a-1的值是5.7.已知x+1x=3, 则代数式(x+1x)2+x+6+1x的值爲18.8.已知a2-2a-1=5, 则a2-2a+2 016=2_022.9.宥一数值转换器, 原理如图所示, 若开始输入x的值是5, 可发现第一次输出的结果是8, 第二次输出的结果是4……请你探索第2 018次输出的结果是1.解: 因爲5爲奇数, 所以将x=5代入x+3, 得出第一次输出结果爲8, 因爲8爲偶数, 所以将x=8代入12x, 得出第二次输出的结果是4, 因爲4爲偶数, 所以第三次输出的结果爲2, 第四次输出的结果爲1, 第五次输出的结果爲4, 第六次输出的结果爲2, …, 可得出规律从第二次开始每三次一个循环.因爲(2 018-1)÷3=672……1, 所以第2 018次输出的结果是1.三、解答题(共23分)10.(6分)一个两位数, 个位数字比十位数字小6.(1)用含一个字母的代数式表示这个两位数, 可设个位数字爲x;(2)当个位数字爲2时, 求这个两位数.解: (1)x+10(x+6);(2)82.11.(8分)某长方形广场的长爲a m, 宽爲b m, 中间宥一个圆形花坛, 半径爲c m.(1)用代数式表示图中阴影部分的面积;(2)若长方形的长a爲100 m, 宽b爲50 m, 圆形半径c爲10 m, 求阴影部分的面积.(π取3.14)解: (1)S阴=ab-πc2;(2)由题意, 当a=100, b=50, c=10时,S阴=100×50-3.14×102=4 686(m2).12.(9分)当x=1时, 代数式px3+qx+1的值爲2 017.当x=-1时, 求代数式px3+qx+1的值.解: 当x=1时, px3+qx+1=p+q+1=2 017,所以p+q=2 016;当x=-1时, px3+qx+1=-p-q+1=-(p+q)+1=-2 016+1=-2 015.3.3 整式一、选择题(每题4分, 共12分)1.下列说法中正确的是(D)A.x2y28的系数是8B.-23mnx的次数是1C.单项式a没宥系数, 也没宥次数D.-x2y3是三次单项式, 系数爲-132.已知A是一个五次四项式, 它的每一项次数(C) A.都等于5B.都小于5 C.都不大于5D.都不小于53.如果整式x n -2-5x +3是关于x 的三次三项式, 那么n 等于(C) A .3 B .4 C .5D .6解: 由多项式次数的概念, 整式x n -2-5x +3是关于x 的三次三项式, 所以n -2=3, n =5.二、填空题(每题4分, 共12分)4.若-(n +2)x n y 2z 是一个五次单项式, 则n =2.5.一组按照规律排列的式子: x , x 34, x 59, x 716, x 925, …, 其中第8个式子是x 1564, 第n 个式子是x 2n -1n 2.(n 爲正整数)6.宥一组多项式: a +b 2, a 2-b 4, a 3+b 6, a 4-b 8, …, 请观察它们的构成规律, 用你发现的规律写出第10个多项式爲a 10-b 20.解: 通过对比发现a 的指数一次增大1, b 的指数一次增大2且第奇数个爲正号, 偶数个爲负号, 所以第10个是a 10-b 20.三、解答题(共26分)7.(7分)已知多项式(a -3)x 4-(b +2)x 3+x 2-8x +5是一个关于字母x 的二次三项式, 试求多项式a 2+b 3的值.解: 根据题意得a -3=0, -(b +2)=0, 所以a =3, b =-2,则a 2+b 3=32+(-2)3=9-8=1. 所以多项式a 2+b 3的值爲1.8.(9分)根据题意列出式子, 并判断式子是否爲整式, 如果是整式, 说明是单项式还是多项式.(1)m , n 两数的积除以m , n 两数的和; (2)a , b 两数积的一半的平方;(3)3月12日是植树节, 七年级一班和二班的同学参加了植树活动, 一班种了a 棵树, 二班种树的棵数比一班的2倍多b 棵, 两个班一共种了多少棵树?解: (1)mnm +n, 不是整式;(2)(ab2)2, 是单项式;(3)a+(2a+b), 是多项式.9.(10分)已知多项式a4+(m+2)a n b-ab2+3.(1)当m, n满足什么条件时, 它是五次四项式?(2)当m, n满足什么条件时, 它是四次三项式?解: (1)当a4+(m+2)a n b-ab2+3是五次四项式时, m+2≠0, n+1=5, 所以当m≠-2, n=4时, 多项式是五次四项式.(2)当a4+(m+2)a n b-ab2+3是四次三项式时, m+2=0, m=-2, 与n的值无关, 即n爲任意数.3.4 整式的加减第1课时一、选择题(每题4分, 共12分)1.下列各组式子中, 是同类项的是(C)A.2a和a2B.4b和4aC.100和12D.6x2y和6y2x2.下列运算结果正确的是(D)A.3a+2b=5ab B.5y-3y=2C.-3x+5x=-8x D.3x2y-2x2y=x2y3.若多项式-4x3-2mx2+2x2-6合并同类项后是一个三次二项式, 则满足条件(C)A.m=-1 B.m≠-1C.m=1 D.m≠1解: 由题意知, -2m+2=0, 解得m=1.二、填空题(每题4分, 共12分)4.七年级一班爲建立“图书角”, 各组同学踊跃捐书.一组捐x本书, 二组捐的书是一组的2倍还多2本, 三组捐的书是一组的3倍少1本, 则三个小组共捐书(6x+1)本.5.若2x m y3-4xy n=-2xy3, 则m+n=4.6.已知当x=1时, 2ax2+bx的值爲3, 则当x=2时, ax2+bx的值爲6.解: 将x=1代入2ax2+bx=3得2a+b=3, 将x=2代入ax2+bx得4a+2b =2(2a+b)=2×3=6.三、解答题(共26分)7.(8分)求多项式4x2+2xy+9y2-2x2-3xy+y2的值.其中x=2, y=1.解: 4x2+2xy+9y2-2x2-3xy+y2=(4-2)x2+(2-3)xy+(9+1)y2=2x2-xy+10y2.当x=2, y=1时,原式=2×22-2×1+10×12=8-2+10=16.8.(8分)若关于x的多项式-2x2+mx+nx2+5x-1的值与x的值无关, 求(x -m)2+n的最小值.解: -2x2+mx+nx2+5x-1=(n-2)x2+(m+5)x-1,因爲此多项式的值与x的值无关,所以n-2=0, m+5=0, 解得n=2, m=-5,则(x-m)2+n=[x-(-5)]2+2=(x+5)2+2.因爲(x+5)2≥0,所以当且仅当x=-5时, (x-m)2=0,使(x-m)2+n宥最小值2.9.(10分)若12a2x b3y与3a4b6是同类项, 求3y3-4y3+2x3y的值.解: 由12a2x b3y与3a4b6是同类项, 得2x=4,3y=6.解得x=2, y=2.∵3y3-4y3+2x3y=-y3+2x3y,∴原式=-23+2×23×2=24.3.4 整式的加减第2课时一、选择题(每题4分, 共12分)1.已知一个多项式与3x2+9x的和等于3x2+4x-1, 则这个多项式是(A)A.-5x-1B.5x+1C.-13x-1D.13x+12.若多项式2(x2-3xy-y3)-(2mxy+2y2)中不含xy项, 则m的值爲(B)A.-2 B.-3C.3 D.4解: 2(x2-3xy-y3)-(2mxy+2y2)=2x2-6xy-2y3-2mxy-2y2=2x2+(-6-2m)xy-2y3-2y2,所以-6-2m=0, 解得m=-3.3.如图1, 将一个边长爲a的正方形纸片剪去两个小矩形, 得到一个“”的图案, 如图2所示, 再将剪下的两个小矩形拼成一个新的矩形, 如图3所示, 则新矩形的周长可表示爲(B)图1图2图3A.2a-3b B.4a-8bC.2a-4b D.4a-10b解: 根据题意得: 2[a-b+(a-3b)]=4a-8b.故选B.二、填空题(每题4分, 共12分)4.若m, n互爲相反数, 则(3m-2n)-(2m-3n)=0.5.已知a=-28, b=18, 计算4b2-(a2+b)+(a2-4b2)的值爲-18.6.已知P=3xy-8x+1, Q=x-2xy-2, 当x≠0时, 3P-2Q=7恒成立, 则y 的值爲2.解: 3P-2Q=3(3xy-8x+1)-2(x-2xy-2)=9xy-24x+3-2x+4xy+4=13xy-26x+7, 因爲3P-2Q的值恒爲7,所以13xy-26x+7=7, 即13xy-26x=0,因爲x≠0, 所以13y-26=0, 解得y=2.三、解答题(共26分)7.(8分)先化简, 再求值:(1)4x2y-[6xy-3(4xy-2)-x2y]+1, 其中x=2, y=-1 2;(2)5a2+3b2+2(a2-b2)-(5a2-3b2), 其中a=-1, b=1 2.解: (1)4x2y-[6xy-3(4xy-2)-x2y]+1=4x 2y -(6xy -12xy +6-x 2y )+1=4x 2y -6xy +12xy -6+x 2y +1=5x 2y +6xy -5. 当x =2, y =-12时,原式=5×22×(-12)+6×2×(-12)-5=-21; (2)5a 2+3b 2+2(a 2-b 2)-(5a 2-3b 2) =5a 2+3b 2+2a 2-2b 2-5a 2+3b 2=2a 2+4b 2. 当a =-1, b =12时, 原式=2×(-1)2+4×(12)2=3.8.(8分)已知A =2x 2-7x +1, B =3x 2-x -4, C =5x 2+10x -5. 求: (1)A -B +C ;(2)2A +B -3C . 解: (1)A -B +C=(2x 2-7x +1)-(3x 2-x -4)+(5x 2+10x -5) =2x 2-7x +1-3x 2+x +4+5x 2+10x -5 =4x 2+4x ; (2)2A +B -3C=2(2x 2-7x +1)+(3x 2-x -4)-3(5x 2+10x -5) =4x 2-14x +2+3x 2-x -4-15x 2-30x +15 =-8x 2-45x +13.9.(10分)某工厂第一车间宥x 人, 第二车间比第一车间人数的45少30人. (1)两个车间共宥多少人?(2)如果从第二车间调出10人到第一车间, 那么第一车间的人数比第二车间的人数多多少人?解: (1)由题意知, 第二车间的人数爲(45x -30)人, 两个车间共宥: x +(45x -30)=x +45x -30=95x -30(人);(2)如果从第二车间调出10人到第一车间, 那么调整后第一车间宥(x +10)人, 第二车间宥(45x -30-10)人,则第一车间的人数比第二车间多(x+10)-(45x-30-10)=x+10-45x+30+10=15x+50(人).3.4 整式的加减第3课时一、选择题(每题4分, 共12分)1.计算x-2(y-z)的结果是(C)A.x-2y-z B.x-2y-2zC.x-2y+2z D.x+2y-2z2.化简x-(1-2x+x2)+(-1+3x-x2)所得结果是(B)A.2x-2 B.-2x2+6x-2C.2x D.2x2-6x+23.减去-3a后等于5a2-3a-5的代数式是(B)A.5a-6 B.5a2-6a-5C.-5a2-6a+5 D.-5a2+5二、填空题(每题4分, 共12分)4.三个连续的偶数, 若中间的一个记爲2n-2, 则这三个偶数的和爲6n-6. 5.(3a2-2a-5)+(-2a2-5a+14)=a2-7a+9.6.多项式x-y减去-x+3y的差是2x-4y.三、解答题(共26分)7.(6分)计算:(1)2(3x2-2xy)-4(2x2-xy-1);(2)15x2-(3y2+7xy)+3(2y2-5x2).解: (1)原式=6x2-4xy-8x2+4xy+4=-2x2+4;(2)原式=15x2-3y2-7xy+6y2-15x2=3y2-7xy.8.(6分)先化简, 再求值:(1)12m-2(m-13n2)-(32m-13n2), 其中m=13, n=1.(2)(5xy-8x2)-(-12x2+4xy), 其中x=-12, y=2.解: (1)12m -2(m -13n 2)-(32m -13n 2) =12m -2m +23n 2-32m +13n 2 =-3m +n 2,当m =13, n =1时, 原式=-3×13+12=0. (2)(5xy -8x 2)-(-12x 2+4xy ) =5xy -8x 2+12x 2-4xy =xy +4x 2, 当x =-12, y =2时,原式=(-12)×2+4×(-12)2=0.9.(8分)已知A =2x 2+3xy -2x -1, B =-x 2+xy -1. (1)求A +2B ;(2)若3A +6B 与x 的值无关, 求y 的值. 解: (1)A +2B =2x 2+3xy -2x -1+2(-x 2+xy -1) =2x 2+3xy -2x -1-2x 2+2xy -2=5xy -2x -3; (2)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1) =6x 2+9xy -6x -3-6x 2+6xy -6 =15xy -6x -9.因爲原式与x 的值无关, 所以15xy -6x =0, 即(15y -6)x =0, 即y =25. 10.(6分)按照下面的步骤计算:用不同的三位数再做几次, 结果都是1 089吗?你能发现其中的原因吗?解: 满足条件的三位数按图示程序最后总能得到1 089;原因略.3.5 探索与表达规律一、选择题(每题6分, 共18分)1.在某月的日历表中, 竖列取连续的三个数字, 它们的和可能是(D)A.18 B.38C.75 D.33解: 设第一个数字爲x, 则第二个数字爲x+7, 第3个数字爲x+14, 所以3个数的和爲x+(x+7)+(x+14)=3x+21, 由图中可以看出, 最小的3个数相加得24, 最大的3个数相加爲72, 剩下选项中, 只宥33减去21后, 能被3整除, 故选D.2.下面是按照一定规律排列的一列数: 第1个数: 12-(1+-12);第2个数: 13-(1+-12)× [1+(-1)23]×[1+(-1)34];第3个数: 14-(1+-12)×[1+(-1)32]×[1+(-1)43]×[1+(-1)54]×[1+(-1)65];…依此规律, 在第10个数、第11个数、第12个数、第13个数中, 最大的数是(A)A .第10个数B .第11个数C .第12个数D .第13个数解: 第1个数: 12-(1+-12);第2个数: 13-(1+-12)×[1+(-1)23]×[1+(-1)34];第3个数: 14-(1+-12)×[1+(-1)23]×[1+(-1)34]×[1+(-1)45]×[1+(-1)56];…∴第n 个数: 1n +1-(1+-12)×[1+(-1)23]×[1+(-1)34]×…×[1+(-1)2n -12n ]=1n +1-12, ∴第10个数、第11个数、第12个数、第13个数分别爲-922, -512, -1126, -37, 其中最大的数爲-922, 即第10个数最大.3.小明用棋子摆放图形来研究数的规律.图(1)中棋子围成三角形, 其颗数爲3,6,9,12, …称爲三角形数.类似地, 图(2)中的4,8,12,16, …称爲正方形数.下列数中既是三角形数又是正方形数的是(D)图(1)图(2)A.2 010 B.2 012C.2 014 D.2 016解: ∵3,6,9,12, …称爲三角形数, ∴三角形数都是3的倍数, ∵4,8,12,16, …称爲正方形数, ∴正方形数都是4的倍数, ∴既是三角形数又是正方形数的数是12的倍数,∵2 010÷12=167……6,2 012÷12=167……8,2 014÷12=167……10,2 016÷12=168,∴2 016既是三角形数又是正方形数.故选D.二、填空题(每题6分, 共18分)4.观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=552.解: 根据数据可分析出规律爲从1开始, 连续n个数的立方和=(1+2+…+n)2, 所以13+23+33+…+103=(1+2+3+…+10)2=552.5.观察下列等式: 21×2=21+2,32×3=32+3,43×4=43+4, …, 设n爲自然数,则第n个式子可表示爲n+1n×(n+1)=n+1n+(n+1).解: 规律: 等式左右只宥左边是“×”而右边是“+”的差别;分数的分子和整数相同;分子比分母总是大1;分母按正整数排列.所以第n个式子爲: n+1 n×(n+1)=n+1n+(n+1).6.观察下面的点阵图和相应的等式, 探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;④1+3+5+7=42⑤1+3+5+7+9=52(2)根据上面算式的规律, 请计算: 1+3+5+…+199=1002.解: (1)根据图示和数据可知, 规律是: 等式左边是连续的奇数和, 等式右边是等式左边的首数与末数的平均数的平方, 所以④和⑤后面的横线上分别写1+3+5+7=42;1+3+5+7+9=52;(2)直接以(1)中规律求解: 原式=1002.三、解答题(共14分)7.宥规律排列的一列数: 2,4,6,8,10,12, …, 它的每一项可用式子2n(n是正整数)来表示;则宥规律排列的一列数: 1, -2,3, -4,5, -6,7, -8, …(1)它的每一项你认爲可用怎样的式子来表示?(2)它的第100个数是多少?(3)2 017是不是这列数中的数?如果是, 是第几个数?解: (1)它的每一项可以用式子(-1)n+1n(n是正整数)表示;(2)它的第100个数是: (-1)100+1×100=-100;(3)当n=2 017时, (-1)2 017+1×2 017=2 017, 所以2 017是其中的第2 017个数.4.1 线段、射线、直线一、选择题(每题4分, 共12分)1.如图, 经过刨平的木板上的两个点, 能弹出一条笔直的墨线, 而且只能弹出一条墨线, 能解释这一实际应用的数学知识是(A)A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内, 过一点宥且只宥一条直线与已知直线垂直2.对于直线AB, 线段CD, 射线EF, 在下列各图中能相交的是(B)A BC D3.平面内两两相交的6条直线, 其交点个数最少爲m个, 最多爲n个, 则m +n等于(B)A.12 B.16C.20 D.以上都不对解: 6条直线交于一点时, 交点个数最少, 即m=1;6条直线两两相交于不同点时, 交点个数最多, 即n=15.即m+n=16.二、填空题(每题4分, 共12分)4.要在墙上钉一根小木条, 至少要两个钉子, 用数学知识解释爲经过两点宥一条直线, 并且只宥一条直线.5.如图所示, OA, OB是两条射线, C是OA上一点, D, E是OB上两点, 则图中共宥6条线段, 它们分别是OC, OD, OE, CD, CE, DE;图中共宥5条射线, 它们分别是CA, OC, OD, DE, EB.6.平面内不同的两点确定一条直线, 不同的三点最多确定三条直线.若平面内不同的n个点最多可确定15条直线, 则n的值爲6.解: 平面内不同的两点确定1条直线, 三个点最多确定1+2=3条直线, 四个点最多确定1+2+3=6条直线, 五个点最多确定1+2+3+4=10条直线, 六个点最多确定1+2+3+4+5=15条直线.三、解答题(共26分)7.(7分)如图, 直线上宥4个点, 问: 图中宥几条线段?几条射线?几条直线?解: 线段AB, 线段AC, 线段AD, 线段BC, 线段BD, 线段CD共6条线段;以每个点爲端点的射线宥2条, 共8条;直线宥1条.8.(9分)如图所示, 读句画图.(1)连接AC和BD, 交于点O.(2)延长线段AD, BC, 它们交于点E.(3)延长线段CD与AB的反向延长线交于点F.解: 如图所示:9.(10分)动手画一画, 再数一数. (1)过一点A 能画几条直线? (2)过两点A , B 能画几条直线?(3)已知平面上共宥三个点A , B , C , 过其中任意两点画直线, 能画几条直线? (4)已知平面上共宥四个点A , B , C , D , 过其中任意两点画直线, 能画几条直线?(5)已知平面上共宥n 个点(n 爲不小于3的整数), 其中任意三个点都不在同一直线上, 连接任意两点, 能画几条直线?解: (1)过一点A 能画无数条直线. (2)过两点A , B 只能画1条直线.(3)①若三点共线则可画1条, ②若三点不共线则可画3条, 故可画1条或3条.(4)①若四点共线则可画1条, ②若三点共线则可画4条, ③若任意三点不共线则可画6条, 故可画1条或4条或6条.(5)根据过两点的直线宥1条, 过不在同一直线上的三点的直线宥3条, 过任何三点都不在一条直线上的四点的直线宥6条, 按此规律由特殊到一般可得: 共可画12n (n -1)条直线.4.2 比较线段的长短一、选择题(每题4分, 共12分)1.如图, 长度爲12 cm的线段AB的中点爲M, 若点C将线段MB分成MC∶CB=1∶2, 则线段AC的长度爲(B)A.2 cm B.8 cmC.6 cm D.4 cm2.宥下列语句:①线段AB就是A, B两点间的距离;②线段AB的一半就是线段AB的中点;③在所宥连接两点的线中直线最短;④如果AB=BC=CD, 则AD=3A B.其中错误语句的个数是(D)A.0个B.2个C.3个D.4个解: 线段AB和线段AB的中点都是几何图形, 而A, B两点间的距离和线段AB的一半都是数量, 形与数不能画等号, 故①②错误;③把线段与直线的性质混淆了, 故错误;④中的三条线段可能不在一条直线上, 故错误.因此, 这四个语句都是错误的.3.如图, 小华的家在A处, 书店在B处, 星期日小华到书店去买书, 他想尽快地赶到书店, 请你帮助他选择一条最近的路线(B)A.A→C→D→B B.A→C→F→BC.A→C→E→F→B D.A→C→M→B二、填空题(每题4分, 共12分)4.如图, 若CB等于15 cm, DB等于23 cm, 且D是AC的中点, 则AC=16cm.5.如图, 从A到B宥多条道路, 人们往往走中间的直路, 而不会走其他的曲折的路, 这是因爲两点之间线段最短.6.已知线段AB=8 cm, 在直线AB上画线段BC使BC=3 cm, 则线段AC =5_cm或11_cm.解: 根据题意, 点C可能在线段AB上, 也可能在线段AB的延长线上.若点C在线段AB上, 则AC=AB-BC=8-3=5(cm);若点C在线段AB的延长线上, 则AC=AB+BC=8+3=11(cm).三、解答题(共26分)7.(8分)已知线段a, b, 求作线段AB=3a-b.解: 如图: (1)画射线AM.(2)在射线AM上截取AC, 使AC=3a.(3)在线段AC上截取BC, 使BC=b.则线段AB即爲所求.8.(8分)宥两根木条, 一根AB长爲80 cm, 另一根CD长爲130 cm, 在它们的中点处各宥一个小圆孔M, N(圆孔直径忽略不计, M, N抽象成两个点), 将它们的一端重合, 放置在同一条直线上, 此时两根木条的小圆孔之间的距离MN是多少?解: 本题可分两种情况:(1)当端点A, C(或端点B, D)重合, 且剩余两端点在重合点同侧时,MN=CN-AM=12CD-12AB=65-40=25(cm);(2)当端点B, C(或端点A, D)重合, 且剩余两端点在重合点两侧时,MN=CN+BM=12CD+12AB=65+40=105(cm).故两根木条的小圆孔之间的距离MN是25 cm或105 cm.9.(10分)如图所示, 某公司员工分别住在A, B, C三个住宅区, A区宥30人, B区宥15人, C区宥10人.三个区在同一条直线上, 该公司的接送车打算在此间设一个停靠点, 爲使所宥员工步行到停靠点的路程之和最小, 那么停靠点的位置应设在哪个区?解: 所宥员工步行到停靠点A区的路程之和爲:0×30+100×15+(100+200)×10=0+1 500+3 000=4 500(m);所宥员工步行到停靠点B区的路程之和爲:100×30+0×15+200×10=3 000+0+2 000=5 000(m);所宥员工步行到停靠点C区的路程之和爲:(100+200)×30+15×200+10×0=9 000+3 000+0=12 000(m).因爲4 500<5 000<12 000, 所以所宥员工步行到停靠点A区的路程之和最小, 故停靠点的位置应设在A区.4.3 角一、选择题(每题4分, 共12分)1.下列关于角的说法正确的个数是(A)①角是由两条射线组成的图形;②角的边越长, 角越大;③在角一边延长线上取一点D;④角可以看成由一条射线绕着它的端点旋转而形成的图形.A.1个B.2个C.3个D.4个解: ①角是由宥公共端点的两条射线组成的图形, 故说法错误;②角的大小与开口大小宥关, 角的边是射线, 没宥长短之分, 故说法错误;③角的边是射线, 不能延长, 故说法错误;④角可以看成由一条射线绕着它的端点旋转而形成的图形, 说法正确.所以只宥④一个说法正确.故选A.2.已知∠α=18°18′, ∠β=18.18°, ∠γ=18.3°, 下列结论正确的是(C)A.∠α=∠βB.∠α<∠βC.∠α=∠γD.∠β>∠γ3.如图, OA是北偏东30°方向的一条射线, 若射线OB与射线OA垂直, 则OB的方位角是(B)A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°二、填空题(每题4分, 共12分)4.如图是一个时钟的钟面, 8: 00时时针及分针的位置如图所示, 则此时分针与时针所成的∠α是120°.5.如图, ∠1, ∠2表示的角可分别用大写字母表示爲∠ABC, ∠BCN;∠A 也可表示爲∠BAC, 还可以表示爲∠MAN.6.甲从O点出发, 沿北偏西30°方向走了50 m到达A点;乙也从O点出发, 沿南偏东35°方向走了80 m到达B点, 则∠AOB的度数爲175°.解: 如图所示:因爲甲从O点出发, 沿北偏西30°走了50 m到达A点, 乙从O点出发, 沿南偏东35°方向走了80 m到达B点, 所以∠AOB=180°-35°+30°=175°.三、解答题(共26分)7.(8分)如图, 以B爲顶点的角宥几个?把它们表示出来.以D爲顶点且小于平角的角宥几个?把它们表示出来.解: 图中以B爲顶点的角宥∠ABD, ∠ABC, ∠DBC共3个;以D爲顶点且小于平角的角宥∠ADE, ∠ADB, ∠BDC, ∠EDC共4个.8.(8分)如图, 宥五条射线与一条直线分别交于A, B, C, D, E五点.(1)请用字母表示出以OC爲边的所宥的角.(2)如果B是线段AC的中点, D是线段CE的中点, AB=2, AE=10, 求线段BD的长.解: (1)∠AOC, ∠BOC, ∠COD, ∠COE, ∠OCA(∠OCB), ∠OCE(∠OCD);(2)因爲B是线段AC的中点, 所以AB=BC=2, AC=4.所以CE=AE-AC=10-4=6.因爲D是线段CE的中点,所以CD=DE=12CE=3.所以BD=BC+CD=2+3=5.9.(10分)如图, 在∠AOB的内部引一条射线, 能组成多少个角?引两条射线能组成多少个角?引三条射线呢?引五条射线呢?引n条射线呢?图1图2图3解: 由图1可知, 在∠AOB的内部引一条射线时, 组成的角的个数爲1+2=3;由图2可知, 在∠AOB的内部引两条射线时, 组成的角的个数爲1+2+3=6;由图3可知, 在∠AOB的内部引三条射线时, 组成的角的个数爲1+2+3+4=10, …, 所以在∠AOB的内部引五条射线时, 组成角的个数爲1+2+3+4+5+6=21;因此可得规律: 在∠AOB的内部引出n条射线时, 组成角的个数爲1+2+3+…+(n+1)=(n+1)(n+2)2.4.4 角的比较一、选择题(每题4分, 共12分)1.借助一副三角尺, 你能画出下面哪个度数的角(B)A.65°B.75°C.85°D.95°2.如图, OB是∠AOC的平分线, OD是∠COE的平分线, 如果∠AOB=40°, ∠COE=60°, 则∠BOD的度数爲(D)A.50°B.60°C.65°D.70°3.如图所示, 将一张长方形纸的一角斜折过去, 使顶点A落在点A′处, BC 爲折痕, 如果BD爲∠A′BE的平分线, 则∠CBD等于(B)A.80°B.90°C.100°D.70°解: 因爲将顶点A折叠落在点A′处,所以∠ABC=∠A′BC.又因爲BD爲∠A′BE的平分线,所以∠A′BD=∠DBE,因爲∠ABC+∠A′BC+∠A′BD+∠DBE=180°,所以∠CBD=90°.二、填空题(每题4分, 共12分)4.已知∠ABC=30°, BD是∠ABC的平分线, 则∠ABD=15°.5.如图, 将一副三角板叠放在一起, 使直角的顶点重合于点O, 则∠AOC+∠BOD的度数是180°.解: 设∠AOD=∠α,则∠AOC=90°+∠α, ∠BOD=90°-∠α,所以∠AOC+∠BOD=90°+∠α+90°-∠α=180°.6.如图所示, ∠AOB是平角, ∠AOC=30°, ∠BOD=60°, OM, ON分别是∠AOC, ∠BOD的平分线, ∠MON等于135°.三、解答题(共26分)7.(12分)如图所示, ∠AOB=∠COD=90°, OE爲∠BOD的平分线, ∠BOE =22°, 求∠AOC的度数.解: ∵OE爲∠BOD的平分线,∴∠BOD=2∠BOE=44°.∵∠AOB=∠COD=90°,∴∠AOC=360°-(∠AOB+∠COD+∠BOD)=360°-(90°+90°+44°)=136°.8.(14分)比较两个角的大小, 宥以下两种方法(规则): ①用量角器度量两个角的大小, 用度数表示, 则角度大的角大;②构造图形, 如果一个角包含(或覆盖)另一个角, 则这个角大.对于下图给定的∠ABC与∠DEF, 用以上两种方法分别比较它们的大小.注: 构造图形时, 作示意图(草图)即可.解: ①用量角器度量∠ABC=45°,∠DEF=65°, 即∠DEF>∠ABC.②如图:把∠ABC放在∠DEF上, 使顶点B和E重合, 边EF和BC重合, DE和BA 在EF的同侧, 从图形上可以看出∠DEF包含∠ABC, 即∠DEF>∠ABC.4.5 多边形和圆的初步认识一、选择题(每题4分, 共12分)1.若一个多边形从一个顶点最多能引出5条对角线, 则这个多边形是(C) A.五边形B.六边形C.八边形D.十边形解: 设多边形宥n条边, 则n-3=5, 解得n=8.故这个多边形是八边形.2.在同一个圆中, 分成的三个扇形A, B, C的面积之比爲2∶3∶5, 则最大扇形的圆心角爲(D)A.72°B.100°C.120°D.180°3.如图所示, 把同样大小的黑色棋子摆放在正多边形的边上, 按照这样的规律摆下去, 则第n(n是大于0的整数)个图形需要黑色棋子的个数是(B)123 4A.3n B.n(n+2)C.n(n+1) D.2n-1二、填空题(每题4分, 共12分)4.以下图形中, (1)(3)(4)是多边形.(1)(2)(3)(4)(5)5.若一个多边形截去一个角后, 变成六边形, 则原来多边形的边数可能是5或6或7.解: 如图所示, 原来多边形的边数可能是5或6或7.6.如图, 在Rt△ABC中, ∠C=90°, CA=CB=4, 分别以A, B, C爲圆心, 以12AC爲半径画弧, 三条弧与边AB所围成的阴影部分的面积是8-2π.三、解答题(共26分)7.(7分)如图所示, 宥一段弯道是圆弧形的, 弯道长12π, 弧所对的圆心角是80°, 求这段圆弧的半径.解: 根据弧长公式得12π=80π×r180, 解得r=27.答: 这段圆弧的半径长爲27.8.(7分)如图, 三角形的对角线宥0条, 四边形的对角线宥2条, 五边形的对角线宥5条, 六边形的对角线宥9条.通过分析, 请你说说十边形的对角线宥多少条.你能总结出n边形的对角线宥多少条吗?解: 十边形的对角线宥: 10×(10-3)2=5×7=35(条),n边形的对角线宥n(n-3)2条.9.(12分)将一个半径爲2的圆分割成三个扇形.(1)它们的圆心角的比爲3∶4∶5, 求这三个扇形圆心角的度数.(2)若分成6个大小相同的扇形, 每个扇形的圆心角爲多少度?(3)若其中一个扇形的圆心角爲90°, 你会计算这个扇形的面积吗? 解: (1)一个圆周爲360°, 所以每个扇形的圆心角的度数爲:360°×33+4+5=90°, 360°×43+4+5=120°,360°×53+4+5=150°.(2)把一个圆平均分成6份, 所以每个扇形圆心角的度数爲360°6=60°.(3)圆心角爲90°的扇形的面积爲:S=n360πR2=90360×22π=π.5.1 认识一元一次方程第1课时一、选择题(每题4分, 共12分)1.下列说法中, 正确的是(D)A.x=-1是方程3x+2=0的解B.x=-1是方程9x+4x=13的解C.x=1是方程2x-2=3的解D.x=0是方程0.5(x+3)=1.5的解2.若x=1是方程2x-a=0的解, 则a等于(C)A.1B.-1C.2D.-23.某工厂加强节能措施, 去年下半年与上半年相比, 月平均用电量减少2 000度, 全年用电量15万度.如果设上半年每月平均用电x度, 则所列方程正确的是(A)A.6x+6(x-2 000)=150 000B.6x+6(x+2 000)=150 000C.6x+6(x-2 000)=15D.6x+6(x+2 000)=15二、填空题(每题4分, 共12分)4.已知ax m -1=1是关于x 的一元一次方程, 则a ≠0, m =2.解: 因爲x 的次数爲1, 所以m -1=1, 即m =2;因爲方程中必须含宥未知数x 的项, 所以a ≠0.5.某学校七年级一班部分同学计划一起租车秋游, 租车费人均15元;后来又宥4名同学加入, 总租车费不变, 结果人均少花3元, 设原来宥x 名学生, 可列方程爲(15-3)(x +4)=15x .6.某中学的学生自己动手整修操场, 如果让初二学生单独工作, 需要6 h 完成;如果让初三学生单独工作, 需要4 h 完成.现在由初二、初三学生一起工作x h, 完成了任务.根据题意, 可列方程爲(16+14)x =1.三、解答题(共26分)7.(7分)从甲地到乙地, 某人骑自行车比乘公共汽车多用2 h, 已知骑自行车的平均速度爲每小时16 km, 乘公共汽车的平均速度爲每小时38 km, 求甲、乙两地之间的路程.(只列方程)解: 设甲、乙两地之间的路程爲x km, 则这个人骑自行车所用的时间爲x 16 h, 这个人乘公共汽车所用的时间爲x 38 h, 根据题意列方程爲: x 16-x38=2.8.(9分)A 种笔每支0.3元, B 种笔每支0.5元, 用4元钱买了两种笔共10支, 还剩0.2元.(1)设适当未知数, 列方程. (2)填写下表:(3)解: (1)设买A 种笔x 支, 则买B 种笔(10-x )支, 所以0.3x +0.5(10-x )=4-0.2. (2)。
北师大版七年级数学上册全套试卷
北师大版七年级数学上册全套试卷本试卷为最新北师大版中学生七年级达标测试卷。
全套试卷共7份。
试卷内容如下:1. 第一单元使用2. 第二单元使用3. 第三单元使用4. 第四单元使用5. 第五单元使用6. 第六单元使用7. 期末检测卷第一章达标测试卷一、选择题(每题3分,共30分)1.生活中的“八宝粥”易拉罐同学们都很熟悉,你认为“八宝粥”易拉罐类似于()A.棱柱B.圆柱C.圆锥D.长方体2.下面的几何图形:①棱柱;②正方形;③圆锥;④圆;⑤长方体;⑥三角形.其中属于立体图形的是()A.①②③B.②④⑥C.①③⑤D.③④⑤3.将半圆绕它的直径所在的直线旋转一周形成的几何体是() A.圆柱B.圆锥C.球D.正方体4.一个无盖的正方体盒子的表面展开图可以是下列图形中的()(第4题) A.①B.①②C.②③D.①③5.下列说法不正确的是()A.圆锥和圆柱的底面都是圆B.棱柱的所有侧棱长都相等C.棱柱的上、下底面形状完全相同D.长方体是四棱柱,四棱柱是长方体6.一个正方体的表面展开图如图所示,六个面上各有一字,连起来是“祝福祖国万岁”,把它折成正方体后,与“万”相对的字是()A.祖B.岁C.国D.福(第6题)7.在一个正方体容器内分别装入不同量的水,再把容器按不同方式倾斜一点,容器内水面的形状不可能是()8.如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是()(第8题)9.由5个大小相同的正方体拼成的几何体如图所示,则下列说法正确的是() A.从正面看到的图形面积最小B.从左面看到的图形面积最小C.从上面看到的图形面积最小D.从三个方向看到的图形面积相等(第9题)10.如图表示一个由相同小立方块搭成的几何体从上面看到的图形,小正方形中的数字表示该位置上小立方块的个数,那么从正面看到的图形为()(第10题)二、填空题(每题3分,共24分)11.一个正方体有________个面,________个顶点.12.快速旋转一枚竖立的硬币一周(假定旋转轴在原地不动),旋转形成的立体图形是__________.13.用数学知识解释下列现象:一只蚂蚁行走的路线可以解释为____________;直升机的螺旋桨转起来形成一个圆形的面,这说明了____________.14.下列几何体(如图),属于柱体的有____________;属于锥体的有__________;属于球体的有__________.(填序号)(第14题) 15.下列各图是几何体的平面展开图,请写出对应的几何体的名称.(第15题)16.用一个平面去截一个圆柱(如图),图①中截面的形状是________,图②中截面的形状是__________.(第16题)17.从不同方向观察一个几何体,所得的平面图形如图所示,那么这个几何体的侧面积是__________(结果保留π).(第17题)18.如图②是圆柱被一个平面斜切后得到的几何体,请类比梯形面积公式的推导方法(如图①),推导图②几何体的体积为__________(结果保留π).14.矩形的对角线相交所成的角中,有一个角是60°,这个角所对的边长为1 cm,则其对角线长为________,矩形的面积为________.(第18题)三、解答题(19,22题每题8分,24题14分,其余每题12分,共66分) 19.图②中的几何体分别是由图①中哪个平面图形旋转一周得到的?用线连起来.(第19题)20.如图是从不同方向看一个几何体得到的图形及部分数据.(1)写出这个几何体的名称;(2)求这个几何体的侧面积.(第20题)21.观察如图所示的直六棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为25 cm,侧棱长为8 cm,则它的侧面积为多少?(第21题)22.如图所示的平面图形折叠成正方体后,相对面上的两个数之和为10,求x +y+z的值.(第22题)23.把棱长为1 cm的若干个小正方体摆放成如图所示的几何体,然后将露出的部分都涂上颜色(不涂底面).(1)该几何体中有多少个小正方体?(2)画出从正面观察所得到的平面图形.(3)求涂色部分的总面积.(第23题)24.把如图①所示的正方体切去一块,得到如图②~⑤所示的几何体.(第24题)(1)所得几何体各有多少个面?多少条棱?多少个顶点?(2)举例说明把其他形状的几何体切去一块,得到的几何体的面数、棱数和顶点数各是多少.(3)若面数记为f,棱数记为e,顶点数记为v,则f,v,e应满足什么关系式?答案1.B2.C3.C4.D5.D6.B7.A8.A9.B10.C二、11.6;812.球13.点动成线;线动成面14.①③⑤⑥;④;②15.圆锥;正方体;三棱锥;圆柱16.圆;长方形17.6π18.63π三、19.1—c;2—b;3—d;4—a20.解:(1)这个几何体是三棱柱.(2)这个几何体的侧面积为3×16×9=432 (cm2).21.解:(1)它有8个面,2个底面,底面是六边形,侧面是长方形.(2)侧面的个数与底面多边形的边数相等.(3)它的侧面积为25×8=200(cm2).22.解:由题意知x+5=10,2+y=10,2z+4=10,解得x=5,y=8,z=3.所以x+y+z=5+8+3=16.23.解:(1)该几何体中小正方体的个数为9+4+1=14(个).(2)如图所示.(第23(2)题)(3)由题意知该几何体的上面需涂色的面积为9个小正方形的面积和,前面、后面、左面、右面需涂色的面积和为6个小正方形面积和的4倍,故涂色部分的总面积为(9+6×4)×12=33(cm2).24.解:(1)题图②有7个面、15条棱、10个顶点,题图③有7个面、14条棱、9个顶点,题图④有7个面、13条棱、8个顶点,题图⑤有7个面、12条棱、7个顶点.(2)例如:把三棱锥切去一块,如图所示,得到的几何体有5个面、9条棱、6个顶点.(第24(2)题)(3)所求关系式为f +v -e =2.第二章达标测试卷一、选择题(每题3分,共30分)1.如果“盈利10%”记为+10%,那么“亏损6%”记为( )A .-16%B .-6%C .+6%D .+4%2.-15的相反数是( )A.15B .-15C .5D .-53. 太阳的温度很高,其表面温度大约有6 000 ℃,而太阳中心的温度达到了19200 000 ℃,用科学记数法可将19 200 000表示为( ) A .1.92×106 B .1.92×107 C .19.2×106D .0.192×1074.在数23,1,-3,0中,最大的数是( )A.23B .1C .-3D .05.下列算式正确的是( )A .-32=9B.⎝ ⎛⎭⎪⎫-14÷(-4)=1 C .(-8)2=-16D .-5-(-2)=-36.下列各式:①-(-2);②-|-2|;③-22;④-(-2)2.计算结果为负数的有( )A .4个B .3个C .2个D .1个7.学校、文具店、书店依次坐落在一条南北走向的大街上,学校在文具店的南边20 m 处,书店在文具店的北边100 m 处,张明同学从文具店出发,向北走了50 m ,接着又向北走了-70 m ,此时张明的位置在( ) A .文具店B .学校C .书店D .以上都不对8.数a ,b ,c 在数轴上对应的点的位置如图所示,表示0的点为原点,则下列各式正确的是( )A .abc <0B .a +c <0C .a +b <0D .a -c <09.学完有理数后,a ,b ,c ,d 四名同学分别聊起来了,a 说:“没有最大的正数,但有最大的负数.”b 说:“有绝对值最小的数,没有绝对值最大的数.”c 说:“有理数包括正有理数和负有理数.”d 说:“相反数是它本身的数是正数.”你认为谁说得对呢?( ) A .aB .bC .cD .d10.探索规律,71=7,72=49,73=343,74=2 401,75=16 807,…,那么72 018+1的个位数字是( ) A .8 B .4 C .2 D .0 二、填空题(每题3分,共24分)11.在有理数-3.7,2,213,-34,0,0.02中,正数有______________,负分数有______________.12.一种食用盐包装袋上标有(500±5)g ,表示这种食用盐的质量不超过________,不少于________.13.比较大小(填“>”“<”或“=”):(1)-45________-34; (2)|-5|________0;(3)-(-0.01)________⎝ ⎛⎭⎪⎫-1102.14.如图,小明写作业时不慎将墨水滴在数轴上,墨迹盖住部分对应的整数共有________个.15.若|a -11|+(b +12)2=0,则(a +b )2 018=________.16.按下面程序计算(如图),输入x =-5,则输出的答案是________ .输入x ―→平方―→-x ―→÷2―→输出答案17.在算式1-⎪⎪⎪⎪-2 3中的 里,填入运算符号________,可使得算式的值最小(在符号+,-,×,÷中选择一个).18.有六张卡片,卡片正面分别写有六个数,背面分别写有六个字母,如下表:将卡片正面的数由大到小排列,然后将卡片翻转使背面朝上,卡片上的字母组成的单词是________.三、解答题(19题16分,20,22题每题8分,24题10分,其余每题12分,共66分) 19.计算:(1)-|3-5|+2×(1-3);(2)-24×⎝ ⎛⎭⎪⎫-56+38-112;(3)(-2)3-(-13)÷⎝ ⎛⎭⎪⎫-12;(4)-12-(1-0.5)÷52×15.20.已知|x -3|与|y -1|互为相反数,求式子⎝ ⎛⎭⎪⎫x y -y x ÷(x +y)的值.21.如图,数轴上有三个点A ,B ,C ,请回答下列问题:(1)将点C 向左移动6个单位长度后,这时点B 所表示的数比点C 所表示的数大多少?(2)怎样移动A,B,C中的两个点,才能使这三个点表示相同的数?有几种移法?22.若“”表示运算a-b+c,“”表示运算x-y+z-w,求-的值.23.“十一”期间,某风景区在7天假期中,每天旅游的人数变化如下表(正数表示比前一天增加的人数,负数表示比前一天减少的人数)所示(单位:万人):日期1日2日3日4日5日6日7日人数变化+1.6 +0.8 +0.4 -0.4 -0.8 +0.2 -1.2万人.天内哪天游客的人数最多?哪天游客的人数最少?(2)这7天内该风景区平均每天有游客多少万人?24.如图,数轴上的点A,B,C分别表示数-3,-1,2.(1)A,B两点间的距离AB=________,A,C两点间的距离AC=________.(2)若点E表示的数为x,则AE的长等于多少?答案二、1.B 2.A 3.B 4.B 5.D 6.B7.B 8.B 9.B 10.D 二、11.2,213,0.02;-3.7,-3412.505 g ;495 g13.(1)< (2)> (3)= 14.7 15.1 16.15 17.× 18.thanks三、19.解:(1)原式=-2+2×(-2)=-2+(-4)=-6;(2)原式=20-9+2=13; (3)原式=-8-26=-34;(4)原式=-1-12×25×15=-1-125=-1125.20.解:因为|x -3|与|y -1|互为相反数,所以|x -3|+|y -1|=0.所以x =3,y =1.所以原式=⎝ ⎛⎭⎪⎫31-13÷(3+1)=⎝ ⎛⎭⎪⎫3-13÷4=23.21.解:(1)这时点B 所表示的数比点C 所表示的数大1.(2)有3种移法.①点A 右移2个单位长度,点C 左移5个单位长度; ②点A 右移7个单位长度,点B 右移5个单位长度; ③点B 左移2个单位长度,点C 左移7个单位长度.22.解:由题意知,原式=14-12+16-[-2-3+(-6)-3]=-112-(-14)=-112+14=131112.23.解:(1)由题意知,该风景区在7天假期中,每天旅游的人数如下表所示(单位:万人):由此可知,10月3日的游客人数最多,10月7日的游客人数最少.(2)这7天内该风景区平均每天的游客人数为17×(2.6+3.4+3.8+3.4+2.6+2.8+1.6)≈2.89(万人). 24.解:(1)2;5(2)|x -(-3)|=|x +3|, 即AE 的长为|x +3|.第三章达标测试卷一、选择题(每题3分,共30分)1.代数式:6x 2y +1x ,5xy +x 2,-15y 2+xy ,2y,-3中,不是整式的有( )A .4个B .3个C .2个D .1个2.下列各式中,与2a 是同类项的是( )A .3aB .2abC .-3a 2D .a 2b3.下列代数式中符合书写要求的是( )A.a 2b4B .213cbaC .a ×b ÷cD .ayz 34.在下列表述中,不能表示代数式“4a ”的意义的是( )A .4的a 倍B .a 的4倍C .4个a 相加D .4个a 相乘5.多项式y -x 2y +25的项数、次数分别是( )A .3,2B .3,5C .3,3D .2,3 6.下列运算正确的是( )A .-()2x +5=-2x +5B .-12()4x -2=-2x +2 C.13()2m -3n =23m +nD .-⎝ ⎛⎭⎪⎫23m -2x =-23m +2x 7.将有理数m 减小5后,再乘3,最后的结果是( )A .3(m -5)B .m -5×3mC .m -5+3mD .m -5+3(m -5)8.若m +n =-1,则(m +n )2-2m -2n 的值是( )A .3B .0C .1D .29.多项式12x |n |-(n +2)x +7是关于x 的二次三项式,则n 的值是( )A .2B .-2C .2或-2D .310.有一种石棉瓦,每块宽60 cm ,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10 cm ,那么n (n 为正整数)块石棉瓦覆盖的宽度为( ) A .60n cmB .50n cmC .(50n +10)cmD .(60n +10)cm二、填空题(每题3分,共24分)11.单项式-x 2y3的系数是________,次数是________.12.-xy 22+3xy -23是________次________项式,最高次项的系数为________.13.计算:a 2b -2a 2b =________.14.若-x 3y 与x a y b -1是同类项,则(b -a )2 017=________.15.张老师带了100元钱去给学生买笔记本和笔.已知一本笔记本3元,一支笔2元,张老师买了a 本笔记本,b 支笔,她还剩______________元钱(用含a ,b 的代数式表示). 16.定义新运算“”,规定ab =13a -4b ,则12(-1)=________.17.一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212,…,请观察它们的构成规律,用你发现的规律写出第9个等式:____________________.18.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.按照如图所示的规律,摆第n 个图形,需用火柴棒的根数为__________.(第18题)三、解答题(20~22题每题10分,其余每题12分,共66分) 19.计算:(1)(-5a 3)-a 3-(-7a 3); (2)()5a 2+2a -1-2()3-8a +2a 2;(3)(2xy-y)-(-y+yx); (4)3a2b-2[ab2-2(a2b-2ab2)].20.(1)先化简,再求值:12x+⎝⎛⎭⎪⎫13y2-x-⎝⎛⎭⎪⎫-32x+43y2,其中x=-12,y=-3.(2)已知A=-a2+2a-1,B=3a2-2a+4,求当a=-2时,2A-3B的值.21.如图是一个长方形广场,四角都有一块边长为x m的正方形草地,若长方形的长为a m,宽为b m.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为350 m,宽为200 m,正方形草地的边长为10 m,求阴影部分的面积.(第21题)22.对于代数式2x2+7xy+3y2+x2-kxy+5y2,老师提出了两个问题,第一个问题:当k为何值时,代数式中不含xy项?第二个问题:在第一个问题的前提下,如果x=2,y=-1,那么代数式的值是多少?(1)小明同学很快就完成了第一个问题,也请你把你的解答写在下面.(2)在做第二个问题时,马小虎同学把y=-1错看成y=1,他得到的最后结果却是正确的,你知道这是为什么吗?23.某校组织学生到距离学校6 km的科技馆去参观,小华因事没能乘上学校的包车,于是准备在学校门口改乘出租车去科技馆,出租车收费标准有两种类型,如下表:里程甲类收费/元乙类收费/元3 km以下(包含3 km) 7.00 6.003 km以上,每增加1 km 1.60 1.40(1)设出租车行驶的里程为x km(x≥3且x取正整数),分别写出两种类型的总收费(用含x的代数式表示);(2)小华身上仅有11元,他乘出租车到科技馆车费够不够?24.一张正方形桌子可坐4人,按如图所示的方式将桌子拼在一起,回答下列问题.(第24题)(1)两张桌子拼在一起可以坐________人,三张桌子拼在一起可以坐________人,n张桌子拼在一起可以坐________人.(2)一家酒楼有60张这样的正方形桌子,按如图所示的方式每4张桌子拼成一张大桌子,则60张桌子可以拼成15张大桌子,共可坐多少人?(3)在(2)中,若每4张桌子拼成一张大的正方形桌子,共可坐多少人?(4)对于这家酒楼,(2)(3)中哪种拼桌子的方式能使坐的人更多?答案一、1.C2.A3.A4.D5.C6.D 7.A8.A点拨:(m+n)2-2m-2n=(m+n)2-2(m+n).当m+n=-1时,(m+n)2-2(m+n)=(-1)2-2×(-1)=1+2=3.9.A点拨:因为多项式12x|n|-(n+2)x+7是关于x的二次三项式,所以|n|=2且n+2≠0,所以n=2. 10.C二、11.-13;312.三;三;-1213.-a2b14.-1 15.(100-3a-2b)16.8点拨:12(-1)=13×12-4×(-1)=8.17.92+102+902=912点拨:规律:n2+(n+1)2+[n(n+1)]2=[n(n+1)+1]2,故第9个等式为92+102+902=912.18.6n+2点拨:第1个图形有8根火柴棒,第2个图形有14根火柴棒,第3个图形有20根火柴棒,…,第n个图形有(6n+2)根火柴棒.三、19.解:(1)原式=-5a3-a3+7a3=a3;(2)原式=5a2+2a-1-6+16a-4a2=a2+18a-7;(3)原式=2xy-y+y-xy=xy;(4)原式=3a2b-2(ab2-2a2b+4ab2)=3a2b-2ab2+4a2b-8ab2=7a2b-10ab2.20.解:(1)原式=12x+13y2-x+32x-43y2=x-y2.当x=-12,y=-3时,x-y2=-12-(-3)2=-192.(2)2A-3B=2(-a2+2a-1)-3(3a2-2a+4)=-2a2+4a-2-9a2+6a-12=-11a2+10a-14.当a=-2时,2A-3B=-11a2+10a-14=-11×(-2)2+10×(-2)-14=-78.21.解:(1)阴影部分的面积为(ab-4x2)m2.(2)将a=350,b=200,x=10代入(1)中得到的式子,得350×200-4×102=70 000-400=69 600(m2).答:阴影部分的面积为69 600 m2.22.解:(1)因为2x2+7xy+3y2+x2-kxy+5y2=(2x2+x2)+(3y2+5y2)+(7xy-kxy)=3x2+8y2+(7-k)xy,所以只要7-k=0,这个代数式中就不含xy项.所以当k=7时,代数式中不含xy项.(2)因为在第一个问题的前提下原代数式可化为3x2+8y2,当马小虎同学把y=-1错看成y=1时,y2的值不变,即8y2的值不变,所以马小虎得到的最后结果却是正确的.23.解:(1)甲类总收费为7+(x-3)×1.6=1.6x+2.2(元);乙类总收费为6+(x-3)×1.4=1.4x+1.8(元).(2)当x=6时,甲类总收费为1.6×6+2.2=11.8(元),11.8元>11元,不够;乙类总收费为1.4×6+1.8=10.2(元),10.2元<11元,够.所以他乘出租车到科技馆车费够.24.解:(1)6;8;(2n+2)(2)按题图所示的方式每4张桌子拼成一张大桌子,那么一张大桌子可坐2×4+2=10(人).所以15张大桌子共可坐10×15=150(人).(3)在(2)中,若每4张桌子拼成一张大的正方形桌子,则一张大正方形桌子可坐8人,15张大正方形桌子共可坐8×15=120(人).(4)由(2)(3)可知,按照(2)中拼桌子的方式能使坐的人更多.第四章达标测试卷一、选择题(每题3分,共30分)1.小辉同学画出了下面四个图形,你认为是四边形的是()2.对于直线AB,线段CD,射线EF,下面能相交的是()(第3题)3.如图,表示∠1的其他方法中,不正确的是()A.∠ACB B.∠CC.∠BCA D.∠ACD4.一个多边形从一个顶点最多能引出2 018条对角线,这个多边形的边数是()A.2 018 B.2 019 C.2 020 D.2 0215.下列有关画图的表述中,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MXC.过P,Q,R三点画直线D.延长线段MN到点P,使NP=MN6.∠α=40.4°,∠β=40°4′,则∠α与∠β的大小关系是()A.∠α=∠βB.∠α>∠βC.∠α<∠βD.以上都不对7.如图,观察图形,下列说法或结论中不正确的是()(第7题)A.直线BA和直线AB是同一条直线B.射线AC和射线AD是同一条射线C.AC+CD=ADD.图中有4条线段8.下列说法正确的有()①角的大小与所画角的两边的长短无关;②比较角的大小就是比较它们的度数的大小;③从角的顶点出发的一条射线把这个角分成两个角,这条射线叫做这个角的平分线;④如果∠AOC=12∠AOB,那么OC是∠AOB的平分线.A.1个B.2个C.3个D.4个9.已知∠AOB=50°,∠BOC=30°,那么∠AOC的度数是() A.20°B.40°C.80°D.20°或80°10.如图,一条流水生产线上L1,L2,L3,L4,L5处各有一名工人在工作,现要在流水生产线上设置一个零件供应站P,使五人到供应站P的距离总和最小,这个供应站设置的位置是()(第10题)A.L2处B.L3处C.L4处D.生产线上任何地方都一样二、填空题(每题3分,共24分)11.开学整理教室时,老师总是先把每一列最前面和最后面的课桌摆好,然后依次摆中间的课桌,一会儿一列课桌便摆在一条线上,整整齐齐,这是因为______________________.12.如图,小于平角的角有________个.(第12题)(第14题)(第17题)(第18题)13.把一个直角4等分,每一个角的度数是________度________分.14.如图,阴影部分扇形的圆心角的度数是________.15.一支水笔正好与一把直尺平靠放在一起,小明发现:水笔的笔尖正好对着直尺刻度约为5.6 cm处,另一端正好对着直尺刻度约为20.6 cm处,则水笔的中点位置对着的直尺刻度约为________cm.16.在学习了“线段、射线、直线”后,小李发现:许多汉字就是由这些基本的图形组成的,例如:“一”“二”可以分别看成是一条线段和两条线段组成的,那么汉字“王”中有________条线段.17.如图,某轮船在O处测得灯塔A在北偏东40°的方向上,灯塔B在南偏东60°的方向上,则∠AOB=________.18.如图,艺术节期间某班数学兴趣小组设计了一个长方形时钟作品,其中心为O,数字3,6,9,12标在各边中点处,数字2在长方形顶点处,则数字1应该标在________处(选填一个序号:①线段DE的中点;②∠DOE的平分线与DE的交点).三、解答题(19~22题每题10分,其余每题13分,共66分)19.计算:(1)48°39′+67°41′-37°12′11″;(2)32°45′20″×4-40°35′50″.20.尺规作图,如图,已知线段a,b,作出线段c,使c=a-b.(要求:不写作法,保留作图痕迹)(第20题)21.如图,在O点的观测站测得渔船A,B的方向分别为北偏东45°,南偏西30°,为了减少相互干扰并取得较好的捕鱼效益,渔船C恰好位于∠AOB的平分线上,求渔船C相对观测站的方向.(第21题)22.如图,直线AB,CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.(第22题)23.如图,A,B,C是一条笔直的公路上的三个村庄,A,B之间的路程为100 km,A,C之间的路程为40 km,现在要在A,B之间建一个车站P,设P,C之间的路程为x km.(1)用含x的代数式表示车站P到三个村庄的路程之和.(2)若路程之和为102 km,则车站P应建在何处?(3)若要使车站P到三个村庄的路程之和最小,则车站P应建在何处?此时路程之和是多少?(第23题)24.如图,正方形ABCD的内部有若干个点,利用这些点以及正方形ABCD的顶点A,B,C,D把原正方形分割成一些小三角形(互相不重叠):(第24题)(1)填写下表:正方形ABCD内点的个数1234…n分割成的小三角形的个数46…(2)原正方形能否被分割成2 018个小三角形?若能,求此时正方形ABCD的内部有多少个点.若不能,请说明理由.答案一、1.B2.B3.B4.D5.C6.B7.D8.B点拨:从角的顶点出发的一条射线把这个角分成两个相等的角,这条射线叫做这个角的平分线,故③错误;如果∠AOC=12∠AOB,当OC在∠AOB的内部时,OC是∠AOB的平分线,但当OC在∠AOB的外部时,OC不是∠AOB的平分线,故④错误.①②正确,所以选B.9.D点拨:①当射线OC在∠AOB的外部时,∠AOC=∠AOB+∠BOC=50°+30°=80°;②当射线OC在∠AOB的内部时,∠AOC=∠AOB-∠BOC=50°-30°=20°.故选D.10.B二、11.两点确定一条直线12.713.22;3014.36°15.13.116.1217.80°18.②三、19.解:(1)原式=(48°+67°-37°)+(39′+41′-13′)+(60″-11″)=78°67′49″=79°7′49″;(2)原式=131°1′20″-40°35′50″=90°25′30″.20.解:如图所示.(第20题)则线段BC=c=AB-AC=a-b.21.解:由题意可知∠AOB=180°-45°+30°=165°,165°÷2-30°=52.5°.所以渔船C在观测站南偏东52.5°方向.22.解:因为∠FOC=90°,∠1=40°,∠3+∠FOC+∠1=180°,所以∠3=180°-90°-40°=50°.因为∠3+∠AOD=180°,所以∠AOD=180°-∠3=130°.因为OE 平分∠AOD , 所以∠2=12∠AOD =65°.23.解:(1)路程之和为P A +PB +PC =(100+x )km .(2)令100+x =102,解得x =2, 即车站P 建在C 村两侧2 km 处均可.(3)当x =0时,x +100最小,此时x +100=100,即车站P 建在C 村处时,车站P 到三个村庄的路程之和最小,此时路程之和为100 km . 24.解:(1)填表如下:(2)能.当2n +2=2 018,即n =1 008时,原正方形能被分割成2 018个小三角形,此时正方形ABCD 的内部有1 008个点.第五章达标测试卷一、选择题(每题3分,共30分) 1.下列方程是一元一次方程的是( )A .x 2+x =3B .5x +2x =5y +3 C.12x -9=3 D.2x +1=22.下列方程中,解是x =2的方程是( )A .3x +6=0 B.23x =2 C .5-3x =1 D .3(x -1)=x +1 3.若代数式x +4的值是2,则x 等于( )A .2B .-2C .6D .-6 4.下列变形中,正确的是( )A .若ac =bc ,则a =bB .若a c =bc ,则a =b C .若|a |=|b |,则a =b D .若-2x -2=3,则x =12 5.将方程3x -23+1=x2去分母,正确的是( )A .3x -2+1=xB .2(3x -2)+1=3xC .2(3x -2)+6=3xD .2(3x -2)+1=x6.某公园要修建一个周长为48 m 的长方形花坛,已知该花坛的长比宽多2 m ,设花坛的宽为x m ,那么列出的方程为( )A .2x =48B .x +2=48C .(x +x +2)×2=48D .x (x +2)=48 7.若12m +1与m -2互为相反数,则m 的值为( )A .-23 B.23 C .-32 D.328.如果x +12 017=-3,那么3x +32 017等于( )A .6B .-9C .3D .-19.如图①,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20 g 的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图②所示,则被移动的玻璃球的质量为( )(第9题)A .10 gB .15 gC .20 gD .25 g10.对于有理数a ,b ,c ,d 规定一种运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,如⎪⎪⎪⎪⎪⎪1 02 -2=1×(-2)-0×2=-2,那么当⎪⎪⎪⎪⎪⎪2 -43-x 5=25时,x 等于( ) A .-34 B.274 C .-234 D .-134 二、填空题(每题3分,共24分)11.如果(a -1)x -13=2是关于x 的一元一次方程,则a __________. 12.写出一个解为x =2的一元一次方程:______________.13.已知关于x 的方程2x +a -5=0的解是x =2,则a =________. 14.若规定“*”的意义为a *b =a -2b ,则方程3*x =5的解是____________. 15.若方程3x -4=0与关于x 的方程3x +4k =12的解相同,则k =________. 16.如图是一个计算程序,当输入某数后,得到的结果为5,则输入的数值x =________.(第16题)17.王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝.如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜________袋.18.我们知道,无限循环小数都可以转化为分数.例如:将0.3·转化为分数时,可设0.3·=x ,则x =0.3+110x ,解得x =13,即0.3·=13.仿照此方法,将0.4·5·化成分数是________.三、解答题(20~22题每题10分,其余每题12分,共66分) 19.解下列方程:(1)3x -3=x +2; (2)x +14-1=2x -16.(3)4x -3(20-x )=4;(4)3(x +2)4=x +23+5.20.m为何值时,代数式2m-5m-13的值与代数式7-m2的值的和等于5?21.某月,小江去某地出差,回来时发现日历有好几天没翻了,就一次翻了6张,这6天的日期数之和是123.小江回来的日期应该是多少号?22.某地为了打造风光带,将一段长为360 m的河道整治任务交给甲、乙两个工程队接力完成,共用时20天,已知甲工程队每天整治24 m,乙工程队每天整治16 m,求甲、乙两个工程队分别整治了多长的河道.23.有一种用来画圆的工具板(如图),工具板长21 cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3 cm,其余圆的直径从左到右依次递减x cm,最大圆的左侧距工具板左侧边缘1.5 cm,最小圆的右侧距工具板右侧边缘1.5 cm,且相邻两圆的间距均为d cm.(1)用含x的代数式表示出其余四个圆的直径;(2)若最小圆与最大圆的直径之比为11∶15,求相邻两圆的间距.(第23题)24.某市居民生活用电基本价格为每千瓦时0.60元,若每月用电量超过a kW·h,超出部分按基本电价的120%收费.(1)某用户6月用电150 kW·h,共交电费93.6元,求a的值;(2)若该用户7月的电费平均每千瓦时为0.66元,则7月用电多少千瓦时?应交电费多少元?答案一、1.C 2.D 3.B4.B 点拨:当c =0,a ≠b 时,ac =bc 也成立,故A 选项不正确;若a c =bc ,则c 不能为0,由等式的基本性质得a =b ,故B 选项正确;若|a |=|b |,则a =b 或a =-b ,故C 选项不正确;若-2x -2=3,则x =-52,故D 选项不正确. 5.C 6.C 7.B 8.B9.A 点拨:设被移动的玻璃球的质量为x g ,根据题意,得2x =20,解得x =10. 10.A二、11.≠1 12.x -2=0(答案不唯一) 13.114.x =-1 点拨:由已知得3*x =3-2x =5,即2x =-2,解得x =-1. 15.216.10 点拨:输入某数后,得到的结果为5,而输入的数值可能是奇数,也可能是偶数.当输入的数值是奇数时,可得x +3=5,解得x =2(不合题意,舍去);当输入的数值是偶数时,可得12x =5,解得x =10.17.33 点拨:设王经理带回孔明菜x 袋,根据题意列方程,得x -35=x +36.解这个方程,得x =33.18.511 点拨:设0.4·5·=y ,则y =0.45+1100y ,解得y =511.所以0.4·5·化成分数是511.三、19.解:(1)移项,得3x -x =2+3.合并同类项,得2x =5. 系数化为1,得x =52.(2)去分母,得3(x +1)-12=2(2x -1). 去括号,得3x +3-12=4x -2. 移项,得3x -4x =-2-3+12. 合并同类项,得-x =7. 系数化为1,得x =-7.(3)去括号,得4x-60+3x=4. 移项、合并同类项,得7x=64.系数化为1,得x=64 7.(4)去分母,得9(x+2)=4(x+2)+60. 移项,得9(x+2)-4(x+2)=60.合并同类项,得5(x+2)=60.所以x+2=12.解得x=10.20.解:由题意知,2m-5m-13+7-m2=5.去分母,得12m-2(5m-1)+3(7-m)=30.去括号,得12m-10m+2+21-3m=30.移项,得12m-10m-3m=30-2-21.合并同类项,得-m=7.系数化为1,得m=-7.21.解:设这6天的日期数分别为x-2,x-1,x,x+1,x+2,x+3.根据题意,可得(x-2)+(x-1)+x+(x+1)+(x+2)+(x+3)=123.解得x=20.20+3+1=24.答:小江回来的日期应该是24号.22.解:设甲工程队整治了x天,则乙工程队整治了(20-x)天.由题意,得24x+16(20-x)=360,解得x=5.所以乙工程队整治了20-5=15(天).甲工程队整治的河道长为24×5=120 (m);乙工程队整治的河道长为16×15=240 (m).答:甲、乙两个工程队分别整治了120 m,240 m的河道.23.解:(1)其余四个圆的直径分别为(3-x)cm,(3-2x)cm,(3-3x)cm,(3-4x)cm.(2)由题易得(3-4x)∶3=11∶15,解得x=0.2.将x=0.2代入2×1.5+[3+(3-x)+(3-2x)+(3-3x)+(3-4x)]+4d=21,解得d=1.25.答:相邻两圆的间距为1.25 cm.24.解:(1)因为0.60×150=90(元)<93.6元,所以a<150.由题意,得0.60a+(150-a)×0.60×120%=93.6,解得a=120.(2)设7月用电x kW·h.由题意,得0.66x=0.60×120+0.60×(x-120)×120%,解得x=240.所以0.66x=0.66×240=158.4.答:7月用电240 kW·h,应交电费158.4元.第六章达标测试卷一、选择题(每题3分,共30分)1.下列调查中,适合用普查方式的是()A.调查佛山市市民的吸烟情况B.调查佛山市电视台某节目的收视率C.调查佛山市市民家庭日常生活支出情况D.调查佛山市某校某班学生对“文明佛山”的知晓率2.为了解某校1 500名学生的体重情况,从中抽取了100名学生的体重,在这个问题中,下列说法正确的是()A.1 500名学生的体重是总体B.1 500名学生是总体C.每名学生是个体D.100名学生是所抽取的一个样本3.下列选项中,显示部分在总体中所占百分比的统计图是() A.扇形统计图B.条形统计图C.折线统计图D.频数直方图4.为了了解某初中学校学生的健康状况,对该校学生进行抽样调查,下列抽样的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中随机抽取10%的学生5.四种统计图:①条形统计图;②扇形统计图;③折线统计图;④频数直方图.四个特点:(a)易于比较数据之间的差异;(b)易于显示各组之间的频数的差别;(c)易于显示数据的变化趋势;(d)易于显示每组数据相对于总数的大小.统计图与特点选配方案分别是①与(a);②与(c);③与(d);④与(b).其中选配方案正确的有()A.1个B.2个C.3个D.4个6.某公司某产品的生产量在七个月之内的增长率变化情况如图所示,从图上看,下列结论不正确的是()A.2~6月生产量增长率逐月减少B.7月生产量的增长率开始回升C.这七个月中,每月生产量不断上涨D.这七个月中,生产量有上涨有下跌(第6题)(第7题)(第8题)7.某次考试中,某班级的数学成绩统计图如图所示(每组的分数包含最小值,不包含最大值).下列说法错误的是()A.得分在70~80分的人数最多B.该班共有40人C.得分在90~100分的人数最少D.及格(≥60分)的有26人8.某校开展以“了解传统习俗,弘扬民族文化”为主题的实践活动.实践小组就“是否知道端午节的由来”这个问题,对部分学生进行了调查,调查结果如图所示,其中“不知道”的学生有8人.下列说法不正确的是()。
北师大版七年级上册数学单元测试卷全套
【北师大版】初中数学单元测试卷【七年级上册试卷|全套】目录第一章丰富的图形世界(60分钟) (1)第一章检测题 (4)参考答案: (8)初一数学测试有理数综合 (9)初一数学测试题 (13)第二章、有理数及其运算 (16)参考答案 (20)七(上)第二章测试题 (21)第三章、字母表示数 (24)参考答案 (28)第四章平面图形及其位置关系单元测试卷 (29)参考答案 (33)初一数学期中测试卷(上册) (34)七年级数学(上)单元测试卷 (36)第五章单元测试卷 (40)第六章、生活中的数据 (43)参考答案 (48)第七章可能性 (49)参考答案 (52)七年级上学期数学期末综合试卷 (53)第一章丰富的图形世界(60分钟)一、填空(每空2分共30分)1、这个几何体的名称是_______;它有_______个面组成;它有_______个顶点;经过每个顶点有_______条边。
2、一个圆锥体有_________个面,其中有_________个平面。
3、圆柱体有_______个面,其中有_____个平面,还有一个面,是_________面。
4、下图为一个三棱柱,用一个平面去截这个三棱柱,截面形状可能为下图中的_____________(填序号)5、当下面这个图案被折起来组成一个正方体,数字_______会在与数字2所在的平面相对的平面上5、如右上图所示,电视台的摄像机1、2、3、4在不同位置拍摄了四幅画面,则A图象是______号摄像机所拍,B图象是______号摄像机所拍,C图象是______号摄像机所拍,D图象是______号摄像机所拍。
二、选择题(每题4分,共24分)1.下列说法中,正确的是()A.棱柱的侧面可以是三角形B.由六个大小一样的正方形所组成的图形是正方体的展开图C.正方体的各条棱都相等D.棱柱的各条棱都相等2.用一个平面去截一个正方体,截面不可能是()A.梯形 B.五边形 C.六边形 D.圆3.将左边的正方体展开能得到的图形是()4.如果你按照下面的步骤做,当你完成到第五步的时候,将纸展开,会得到图形()5.在三棱锥5个面的18个角中,直角最多有()个A.12个 B.14个 C.16个 D.18个6.小明用如下图所示的胶滚沿从左到有的方向将图案滚涂到墙上,下列给出的四个图案中,符合图示胶滚涂出的图案是()三、画图题(每题10分,共20分)1.下图是由五块积木搭成,这几块积木都是相同的正方体,请画出这个图形的主视图、左视图和俯视图。
(北师大版)初中数学七年级上册 第二章综合测试(含答案)
第二章综合测试一、单选题 1.在有理数1,12,1-,0中,最小的数是( ) A .1B .12C .1-D .02.13-的绝对值是( )A .3B .3-C .13D .13-3.实数a b c ,,在数轴上的对应点的位置如图所示,那么这三个数中绝对值最大的是( )A .aB .bC .cD .无法确定4.如图表示互为相反数的两个点是( )A .点A 与点BB .点A 与点DC .点C 与点BD .点C 与点D5.若实数a b c d ,,,在数轴上的对应点的位置如图所示,则正确的结论是( )A .5a -<B .0b d +<C .0a c -<D . c d <6.下列说法正确的是( ) A .近似数3.6与3.60精确度相同 B .数2.9954精确到百分位为3.00 C .近似数41.310⨯精确到十分位D .近似数3.61万精确到百分位二、填空题7.点A 在数轴上的位置如图所示,则点A 表示的数的相反数是________。
8.根据如下程序,解决下列问题:(1)当1m =-时,n =________; (2)若6n =,则m =________。
9.按照如图所示的计算程序,若2x =,则输出的结果是________。
10.己知某汽车油箱中的剩余油量y (升)与该汽车行驶里程数x (千米)是一次函数关系,当汽车加满油后,行驶200千米,油箱中还剩油126升,行驶250千米,油箱中还剩油120升,那么当油箱中还剩油90升时,该汽车已行驶了________千米。
三、计算题 11.计算: (1)131211442⎛⎫---+-- ⎪⎝⎭;(2)()3213821322⎡⎤--÷--+÷⨯⎣⎦;12.计算:(1)()()20141813-+----(2)31482⎛⎫-⨯ ⎪⎝⎭-(3)3571491236⎛⎫-+÷ ⎪⎝⎭- (4)()2721149353⎛⎫-÷--⨯- ⎪⎝⎭13.计算:(1)()()7289+---(2)()()21312612-+-⨯--÷-(3)()()24121[]464-⨯⨯--+-四、综合题14.对于四个数“6-,2-,1,4”及四种运算“+,-,⨯,÷”,列算式解答: (1)求这四个数的和;(2)在这四个数中选出两个数,填入下列________中,使得: ①“________-________”的结果最小; ②“________⨯________”的结果最大。
北师大版七年级数学上册全册综合测试试题【有答案】
七年级数学上册全册综合测试试题一.选择题(共12小题,满分36分,每小题3分)1.如图,下列选项中不是正六棱柱三视图的是()A.B.C.D.2.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿,47.24亿用科学记数法表示为()A.47.24×109B.4.724×109C.4.724×105D.472.4×105 3.下列说法正确的是()A.的系数是﹣5B.单项式x的系数为1,次数为0C.xy+x﹣1是二次三项式D.﹣22xyz2的次数是64.按图1~图4的步骤作图,下列结论错误的是()A.∠AOB=∠AOP B.∠AOP=∠BOPC.2∠BOP=∠AOB D.∠BOP=2∠AOP5.2019年是大家公认的5G商用元年,移动通讯行业人员想了解5G手机的使用情况,在某高校随机对500位大学生进行了问卷调查,下列说法正确的是()A.该调查方式是普查B.该调查中的个体是每一位大学生C.该调查中的样本是被随机调查的500位大学生5G手机的使用情况D.该调查中的样本容量是500位大学生6.点A,B,C在同一直线上,已知AB=3cm,BC=1cm,则线段AC的长是()A.2cm B.3cm C.4cm D.2cm或4cm7.计算(﹣2)3﹣(﹣2)2的结果是()A.﹣4B.4C.12D.﹣128.α,β都是钝角,有四名同学分别计算(α+β),却得到了四个不同的结果,分别为26°,50°,72°,90°,老师判作业时发现其中有正确的结果,那么计算正确的结果是()A.26°B.50°C.72°D.90°9.右图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元10.“某幼儿园给小朋友分苹果,若每个小朋友分3个则剩1个;若每个小朋友分4个则少2个,问苹果有多少个?”若设共有x个苹果,则列出的方程是()A.3x+1=4x﹣2B.3x﹣1=4x+2C.D.11.如图,AB∥CD,AC⊥BC,CE⊥AB于点E.则图中与∠1互余的角的个数是()A.2B.3C.4D.612.如图,△ABC的面积为1.分别倍长(延长一倍)AB,BC,CA得到△A1B1C1.再分别倍长A1B1,B1C1,C1A1得到△A2B2C2.……按此规律,倍长2018次后得到的△A2018B2018C2018的面积为()A.62017B.62018C.72018D.82018二.填空题(共4小题,满分12分,每小题3分)13.如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x﹣y的值为.14.若7a x b2与﹣a3b y的和为单项式,则y x=.15.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为.16.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距千米.三.解答题(共7小题)17.设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:x⊕y=(1)求1⊕(﹣1)的值;(2)若(m﹣2)⊕(m+3)=2,求m的值.18.先化简再求值:2(x2y﹣xy2﹣1)﹣(3x2y﹣3xy2﹣3),其中x=1,y=﹣219.我市正在努力创建“全国文明城市”,为进一步营造“创文”氛围,我市某学校组织了一次“创文知识竞赛”,竞赛题共10题.竞赛活动结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽査的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;(2)在扇形统计图中,m=,n=.(3)补全条形统计图.20.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.21.如图,一条直线分别与直线BE、直线CE、直线CF、直线BF相交于点A,G,D,H 且∠1=∠2,∠B=∠C(1)找出图中相互平行的线,说说它们之间为什么是平行的;(2)证明:∠A=∠D.22.问题一:如图①,已知AC=160km,甲,乙两人分别从相距30km的A,B两地同时出发到C地.若甲的速度为80km/h,乙的速度为60km/h,设乙行驶时间为x(h),两车之间距离为y(km)(1)当甲追上乙时,x=.(2)请用x的代数式表示y.问题二:如图②,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动km,时针OE指向圆周上的点的速度为每分钟转动°;(2)若从2:00起计时,求几分钟后分针与时针第一次重合?23.如图,线段AB=10,动点P从点A出发,以每秒1个单位的速度,沿线段AB向终点B运动,同时,另一个动点Q从点B出发,以每秒3个单位的速度在线段AB上来回运动(从点B向点A运动,到达点A后,立即原速返回,再次到达B点后立即调头向点A 运动.)当点P到达B点时,P,Q两点都停止运动.设点P的运动时间为x.(1)当x=3时,线段PQ的长为.(2)当P,Q两点第一次重合时,求线段BQ的长.(3)是否存在某一时刻,使点Q恰好落在线段AP的中点上?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.参考答案一.选择题(共12小题,满分36分,每小题3分)1.解:正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选:A.2.解:47.24亿=4724 000 000=4.724×109.故选:B.3.解:A的系数是﹣,故A错误;B单项式x的系数为1,次数为1,故B错误;C xy+x﹣1是二次三项式,故C正确;D﹣22xyz2的次数是4,故D错误;故选:C.4.解:∵OP是∠AOB的平分线,∴∠AOB=2∠AOP=2∠BOP,∠AOP=∠BOP=∠AOB,∴选项A、B、C均正确,选项D错误.故选:D.5.解:A、该调查方式是普查,说法错误,应为抽样调查;B、该调查中的个体是每一位大学生,说法错误,该调查中的个体是每一位大学生5G手机的使用情况;C、该调查中的样本是被随机调查的500位大学生5G手机的使用情况,说法正确;D、该调查中的样本容量是500位大学生,说法错误,应为该调查中的样本容量是500;故选:C.6.解:本题有两种情形:(1)当点C在线段AB上时,如图,AC=AB﹣BC,又∵AB=3cm,BC=1cm,∴AC=3﹣1=2cm;(2)当点C在线段AB的延长线上时,如图,AC=AB+BC,又∵AB=3cm,BC=1cm,∴AC=3+1=4cm.故线段AC=2cm或4cm.故选:D.7.解:原式=﹣8﹣4=﹣12.故选:D.8.解:∵α、β都是钝角,∴90°<α<180°,90°<β<180°,∴180°<α+β<360°,∴30°<(α+β)<60°,∴计算正确的结果是50°.故选:B.9.解:设洗发水的原价为x元,由题意得:0.8x=19.2,解得:x=24.故选:C.10.解:∵设共有x个苹果,∴每个小朋友分3个则剩1个时,小朋友的人数是:,若每个小朋友分4个则少2个时,小朋友的人数是:,∴,故选:C.11.解:如图所示:∵AB∥CD,∴∠1=∠2,又∵EC⊥AB,∴EC⊥CD,∴∠2+∠ACE=90°,∴∠1+∠ACE=90°,∴∠1与∠ACE互余;又∵AC⊥BC,∴∠ACB=90°,∴∠CAB+∠B=90°,又∵∠1=∠CAB,∴∠1+∠B=90°,∴∠1与∠B互余;又∵AB∥CD,∴∠B=∠3,∴∠1+∠3=90°,∴∠1与∠3互余,综合所述,图中与∠1互余的角的个数为3,故选:B.12.解:连接AB1、BC1、CA1,根据等底等高的三角形面积相等,△A1BC、△A1B1C、△AB1C、△AB1C1、△ABC1、△A1BC1、△ABC的面积都相等,所以,S△A1B1C1=7S△ABC,同理S△A2B2C2=7S△A1B1C1,=72S△ABC,依此类推,S△A2018B2018C2018=72018S△ABC,∵△ABC的面积为1,∴S△A2018B2018C2018=72018.故选:C.二.填空题(共4小题,满分12分,每小题3分)13.解:∵“5”与“2x﹣3”是对面,“x”与“y”是对面,∴2x﹣3=﹣5,y=﹣x,解得x=﹣1,y=1,∴2x﹣y=﹣2﹣1=﹣3.故答案为:﹣3.14.解:∵7a x b2与﹣a3b y的和为单项式,∴7a x b2与﹣a3b y是同类项,∴x=3,y=2,∴y x=23=8.故答案为:8.15.解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1,∠2=∠3,∴∠1+∠2=∠3+∠4=∠ABC,∵∠ABC=45°,∴∠1+∠2=45°.故答案为:45°.16.解:设A港和B港相距x千米.根据题意,得,解之得x=504.故填504.三.解答题(共7小题)17.解:(1)根据题中的新定义得:原式=3×1+4×(﹣1)﹣5=3﹣4﹣5=﹣6;(2)显然m﹣2<m+3,利用题中的新定义化简已知等式得:4(m﹣2)+3(m+3)﹣5=2,去括号得:4m﹣8+3m+9﹣5=2,移项合并得:7m=6,解得:m=.18.解:原式=2x2y﹣2xy2﹣2﹣3x2y+3xy2+3=﹣x2y+xy2+1,当x=1,y=﹣2时,原式=2+4+1=7.19.解:(1)本次抽查的样本容量是5÷10%=50,故答案为50;(2)×100=16,即m=16,1﹣10%﹣16%﹣24%﹣20%=30%,即n=30,故答案为16,30;(3)答对9题的人数:50×30%=15(人),答对10题的人数:50×20%=10(人).条形统计图补充如下:20.解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOB=120°.21.解:(1)CE∥BF,AB∥CD.理由:∵∠1=∠2,∴CE∥FB,∴∠C=∠BFD,∵∠B=∠C,∴∠B=∠BFD,∴AB∥CD;(2)由(1)可得AB∥CD,∴∠A=∠D.22.解:问题一:(1)根据题意得:(80﹣60)x=30,解得:x=1.5.故答案为:1.5h.(2)当0≤x≤1.5时,y=30﹣(80﹣60)x=﹣20x+30;当1.5<x≤2时,y=80x﹣(60x+30)=20x﹣30;当2<x≤时,y=160﹣60x﹣30=﹣60x+130.∴两车之间的距离y=.问题二:(1)30÷5=6(km),30÷60=0.5(km).故答案为:6;0.5.(2)设经历t分钟后分针和时针第一次重合,根据题意得:6t﹣0.5t=30×2,解得:t=.答:从2:00起计时,分钟后分针与时针第一次重合.23.解:(1)根据题意,当x=3时,P、Q位置如下图所示:此时:AP=3,BQ=3×3=9,AQ=AB﹣BQ=10﹣9=1,∴PQ=AP﹣AQ=2;(2)设x秒后P,Q第一次重合,得:x+3x=10解得:x=2.5,∴BQ=3x=7.5;(3)设x秒后,点Q恰好落在线段AP的中点上,根据题意,①当点Q从点B出发未到点A时,即0<x<时,有x=2(10﹣3x),解得;②当点Q到达点A后,从A到B时,即<x<时,有x=2(3x﹣10),解得x=4;③当点Q第一次返回到B后,从B到A时,即<x<10时,有x=2(30﹣3x),解得;综上所述:当x=或x=4或x=时,点Q恰好落在线段AP的中点上.故答案为:(1)2.。
北师大版数学七年级上册综合训练100题-含答案
北师大版数学七年级上册综合训练100题含答案(题型:单选、多选、填空、解答题)一、单选题1.在数轴上,表示不小于2-且小于2之间的整数的点有( ) A .3个B .4个C .5个D .无数个2.如图长方体的展开图,不可能是( ).A .B .C .D .3.如图所示的图形为四位同学画的数轴,其中正确的是( ) A . B . C .D .4.如果2x 2y 3与x 2y n+1是同类项,那么n 的值是( ) A .1B .2C .3D .45.下列运算正确的是( ) A .2232x x -= B .2235a a a += C .22ab a b -=D .222242x y yx x y -=-6.下列调查中,适合采用全面调查(普查)方式的是( ) A .了解某班同学“立定跳远”的成绩 B .了解全国中学生的心理健康状况C .了解外地游客对我市旅游景点“磁器口”的满意程度D .了解端午节期间重庆市场上的粽子质量情况7.把(8)(3)(5)(7)-++---+写成省略括号的代数和形式是( ). A .8357-+--B .8357--+-C .8357-+++D .8357-++-8.下列各式,运算正确的是( ) A .2(a ﹣1)=2a ﹣1 B .a 2+a 2=2a 2C .2a 3﹣3a 3=a 3D .a+a 2=a 39.用一个平面去截一个正方体,下列选项中画有阴影的部分是截面,哪个画法是错误的( ) A .B .C .D .10.已知233m m --的值为2,那么代数式2203026m m -+的值是( ) A . 2000B . 2010C .2020D . 203011.如图,数轴的单位长度为1,如果,P R 表示的数互为相反数,那么图中的4个点中,哪一个点表示的数的平方值最大( )A .PB .RC .QD .T12.已知232m x y +与21n x y +-是同类项,则m n -的值为( ) A .1-B .1C .2-D .213.3≤m ≤5,化简|m ﹣5|+|2m ﹣6|的结果是( ) A .m ﹣1B .1﹣mC .3m ﹣11D .11﹣3m14.如图所示,该几何体的左视图是( )A .AB .BC .CD .D15.下列计算正确的是( ) A .326=B .2416-=-C .990--=D .523-+=16.如图,圆圈表示负数集、整数集和正数集,其中有甲、乙、丙三个部分,这三部分的数的个数为( )A .甲、丙两部分有无数个,乙部分只有一个是0B .甲、乙、丙三部分都有无数个C .甲、乙、丙三部分都只有一个D .甲只有一个,乙、丙两部分有无数个17.计算()()2000201911---等于( ).A .2B .1-C .0D .2-18.将方程x-53-x =1去分母得 ( ) A .3x-2x +10=1 B .3x-2x-10=1 C .3x-(x-5)=3 D .3x-2x +10=619.若()1240a a x -+-=是关于x 的一元一次方程,则a =( )A .2-B .2C .0D .2或2-20.如图是一无盖长方体盒子的展开图(重叠部分不计),则该无盖长方体的容积为( )A .4B .3C .8D .1221.如图是一个迷你数独,图中实线划分的区域是一个宫,共有4个宫,每一宫又被虚线分为四个小格.根据图中已经给的提示数字,在其他的空格上填入-1、-2、-3、-4的数字.使-1、-2、-3、-4每个数字在每一行、每一列和每一宫中都只出现一次.则图中点A 的位置所填的数字为 ( )A .-1B .-2C .-3D .-422.下列每对数中,相等的一对是( )A .()21--和21B .31--和()31--C .()31-和-31D .()41-和41-23.下列用代数式表示正确的是( ) A .a 是一个数的8倍,则这个数是8a B .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元24.如图,在不完整的数轴上有A ,B 两点,它们所表示的两个有理数互为相反数,则关于原点位置的描述正确的是( )A .在点A 的左侧B .与线段AB 的中点重合C .在点B 的右侧D .与点A 或点B 重合25.如图,在这个数运算程序中,若开始输入的正整数n 为奇数,都计算3n +1;若n 为偶数,都除以2.若n =21时,经过1次上述运算输出的数是64;经过2次上述运算输出的数是32;经过3次上述运算输出的数是16;…;经过2022次上述运算输出的数是( ).A .1B .2C .3D .426.下列各式中,成立的是( ) A .235x x x +=B .23x x x +=C .224a a a +=D .235x y xy +=27.下列各方程,变形正确的是( ) A .13x-=化为13x B .1[(2)]x x x ---=化为31x =-C .1123--=x x 化为3221x x -+= D .34152x x -+-=化为2(3)5(4)10x x --+= 28.某年级进行数学竞赛,在第二环节的10道题中,答对1题得10分,答错一题扣5分,不答不得分,二班实际得分15-分,则下列选项正确的是( )A .答对1题,答错5题,不答4题B .答对2题,答错5题,不答3题C .答对2题,答错5题,不答3题D .答对4题,答错5题,不答1题29.已知有理数a 在数轴上的位置如图,则|1|a a +-的值为( )A .1B .21a -C .1-D .2a二、多选题30.若OC 是∠AOB 内部的一条射线,则下列式子中,能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC =∠BOC B .∠AOB =2∠BOC C .∠AOC =12∠AOBD .∠AOC +∠BOC =∠AOB31.下面各式中去括号错误的是( ) A .3(1)31x x +=+ B .(1)1x x -+=-+ C .6()6x a x a +-=+-D .1(2)21x x --=-+32.下列计算正确的是( ) A .()()15217-+-=- B .()()523-++=-C .()8 2.520⨯-=D .()664.5109510⨯÷=⨯33.下列说法:其中不正确的是( ) A .一个有理数不是整数就是分数; B .绝对值等于本身的数只有0;C .如果AB BC =,则点B 是线段AC 的中点;D .一个角的两边越长,角度越大 34.下列说法正确的是()A .14174万这个数用科学记数法表示(精确到百万位)为1.42×108B .88.9万亿用科学记数法表示为8.89×1013C .数据1.002×1011可以表示为10020亿D .数据0.50精确到百分位35.如图,两根木条的长度分别为7cm 和12cm ,在它们的中点处各打一个小孔M ,N (木条的厚度,宽度及小孔大小均忽略不计).将这两根木条的一端重合并放置在同一条直线上,则两小孔间的距离MN 为( )A .19cmB .9.5cmC .5cmD .2.5cm36.下列结论正确的是( ) A .abc 的系数是1 B .1﹣3x 2﹣x 中二次项系数是1C .﹣ab 3c 的次数是5D .4223x y -的次数是637.有下列说法,其中错误的说法有( )A .多项式﹣3x 2+x ﹣1的系数是﹣3,它是三次二项式;B .单项式﹣243x y和﹣23π2a b 的系数分别是﹣4和﹣23;C .23x x+是二次多项式;D .2a +13π与3π+12a 都是整式,38.关于单项式25π3x y-,下列说法中正确的是( )A .系数是53- B .次数是4 C .系数是5π3-D .次数是339.下列说法中,正确的有( ) A .两个非负有理数的和不小于每个加数B .两个有理数的差不大于被减数C .互为相反数的两个数,它们的平方相等D .多个有理数相乘,当负因数有奇数个时积为负40.某商场7-11月的商品销售总额为400万元,图∠表示的是该商场今年7-11月的各月销售情况,图∠变式的是服装部各月销售额占商场当月销售总额的百分比情况,观察图∠,∠,下列说法中正确的是( )A .10月份商场销售总额为70万元B .10月份商品服装部的销售额是11.2万元C .10月份商场服装部的销售总额比9月份增加了D .11月份商场服装部的销售总额比10月份减少了 41.下列式子的运算正确的是( ) A .(a ﹣b )﹣(b ﹣2a )=3a -2b B .(b +a ﹣c )+(a ﹣b )=2a +3b C .﹣(﹣b +a )﹣(b ﹣a )=0 D .(a ﹣b +c )﹣(a +b ﹣c )=﹣2b +2c42.如果OC 是∠AOB 的平分线,则下列结论正确的是( ) A .∠AOC =∠BOC B .∠AOC =12∠AOB C .∠AOB =2∠BOCD .∠AOB =∠AOC43.(多选)下列说法正确的是( ) A .﹣a 一定是负数B .在数轴上离原点越远的数就越大C .一个数比它的相反数大,这个数是正数D .一个数的绝对值等于它本身,这个数是非负数44.有理数在数轴上的位置如图所示,则下列各式中正确的是( )(多选)A .0a b +<B .0a b -<C .0ab >D .b a >45.用一个平面截下列几何体:∠圆锥;∠圆柱;∠三棱柱;∠四棱柱.若所得截面是三角形,则该几何体可能是( ) A .∠B .∠C .∠D .∠46.如图,表中给出的是2021年3月的月历,任意用“H ”型框选中7个数(如阴影部分所示),则这7个数的和可能是( )A .63B .91C .154D .16847.如图,在同一平面内,90AOB COD ∠=∠=︒,COE BOE ∠=∠,点F 为OE 反向延长线上一点(图中所有角均指小于180°的角).下列结论正确的是( ).A .AOE DOE ∠=∠B .180AOD COB ∠+∠=︒C .90COB AOD ∠-∠=︒D .180COE BOF ∠+∠=︒48.下列各数中,非正数的数是( ) A .(2)--B .|7|--C .201910-⨯D .3()1--49.如图,将一枚跳棋放在七边形ABCDEFG 的顶点A 处,按顺时针方向移动这枚跳棋2021次.移动规则是:第k 次移动k 个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D 处),按这样的规则,在这2021次移动中,跳棋停留过的顶点有( )A .AB .C C .ED .G三、填空题50.设[x ]表示不大于x 的最大整数,例如[1.8]表示不超过1.8的最大整数就是1,[﹣3.8]表示不超过﹣3.8的最大整数﹣4,计算[2.7]+[﹣4.5]的值为_____. 51.已知,a 、b 、c 在数轴上的位置如图.(1)用“<”号将a 、b 、c 、﹣a 、﹣b 、﹣c 连接起来: . (2)化简:|a +1|﹣|c ﹣b |﹣|b ﹣1|.52.比较大小:1-3___0;1-2____1-3;05.+______-153.如图,数轴上的点A 表示的数是3-,将点A 向右移动5个单位长度,此时点A 表示的数是______·54.有若干个数,第一个数记为a 1,第二个记为a 2,第三个记为a 3,…,第n 个记为a n ,若 a 1= —12,从第二个数起,每个数都等于“1与它前面的数的差的倒数”,试计算a 2=______,a 2011=_______ .55.在数-3,-2,4,5中任取三个数相乘,所得的积中最大的是_____,最小的积是_____. 56.计算:①3352'2154'+=________;②18.18=________________'________″.57.李明与王伟在玩一种计算的游戏,计算的规则是a bad bc c d=-.李明计算352312571=⨯-⨯=-,现在轮到王伟计算2365--,请你帮忙算一算,得______.58.一个菜地共占地(6m +2n )亩,其中(3m +6n )亩种植白菜,种植黄瓜的地是种植白菜的地的13,剩下的地种植时令蔬菜,则种植时令蔬菜的地有_________亩.59.在有理数3,0,1-,3-中,任意取两个数相乘,积的最小值是______. 60.已知,021=,122=,224=,328=,24的个位数字是6,25的个位数字是2,……,则20212的个位数字是____________. 61.若x 、y 互为倒数,则()2022xy -=______.62.计算:8(16)÷-=__________,26(15)---=___________. 63.用代数式表示:(1)f 的11倍再加上2可以表示为_________________;(2)一个数a 的18与这个数的和可以表示为_________________;(3)一个教室有2扇门和4扇窗户,n 个这样的教室有_________________扇门和_________________扇窗户;(4)产量由kg m 增长15%后,达到_________________kg .64.银川市某一天的最高气温是10∠,最低气温是6-∠,那么这一天的最高气温比最低气温高________∠.65.下列图形中,能折成棱柱的有___________个.66.点O A B C,,,在数轴的位置如图所示,其中点A B,到原点O的距离相等,点A C,之间的距离为3.若点C表示的数为x,则点B所表示的数为___________(用含x的代数式表示).67.将两个边长为2cm的正方体拼成一个长方体,表面积减少了__cm2.68.若﹣2amb4与5a3b2+n可以合并成一项,则mn=_____.69.把1~9这九个数填入33⨯方格中,使其任意一行,任意一列及任意一条对角线上的数之和都相等,这样便构成了一个“九宫格”,它源于我国古代的“洛书”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则y x-的值为______.70.观察下列一组数:32、1、710、917、1126…,它们是按一定规律排列的那么这组数的第n个数是_______.(n为正整数)71.135-的相反数是_______,倒数是_______,绝对值是_______.72.2020年春节,在党和政府的领导下,我国进行了一场抗击“新型冠状病毒感染的肺炎疫情”的战斗.为了控制疫情的蔓延,黄冈稳健卫生材料厂接到上级下达赶制一批加工防病毒口罩的任务,原计划每天完成1.2万只,为使口罩早日到达防疫第一线,实际每天比原计划多加工0.4万只,结果提前4天完成任务.则该厂原计划_____天完成任务,这批防病毒口罩共_____万只.73.(5)8(7)(0.25)-⨯⨯-⨯-74.如图所示的运算程序中,若开始输入x值为36,我们发现第1次输出的结果为18,第2次输出的结果为9,则第3次输出的结果为____;第2022次输出的结果为____.75.如果盈利200元记作+200,那么亏损500元记作______元76.已知关于x的一元一次方程12002x+a=2x+b(a,b为常数)的解为x=2,那么关于y的一元一次方程12002y+a=2y+b+200112的解y=__.77.若a是不为1的有理数,我们把1﹣1a 称为a的差倒数,设a1=﹣13,若a2是a1的差倒数,a3是a2的差倒数,a4是a3是差倒数,…,依此类推,a2018的值是_____.四、解答题78.数轴上有A、B、C三个点对应的数分别是-22、-10、10.动点P从A出发,以每秒3个单位的速度向点C方向移动,设移动时间为t秒,点Q从B点出发,以每秒1个单位的速度向右运动,P点到达C点后,再立即按原速返回点A.(1)点P到达点B时t=秒,点Q向右运动的过程所表示的数为,点P返回的过程中所表示的数为;(2)当t为何值时,P、Q两点之间的距离为4.79.计算:(1)(-5)2-(-7)+(-16)+(-1)4(2)5×(-2)+6-4÷12(3)2×(-24)×(-0.25)×1 12(4)32÷(-2)2+6×11 6-80.解方程:(1)52318x x+=-;(2)2111 23x x+--=.81.计算:2111()()4()332-÷--⨯- 82.请画出无盖正方体的展开图,能画几种画几种.83.周末,小亮一家三口乘轿车去看望爷爷、奶奶和外公、外婆.早上从家里出发,向南走了2千米到超市买东西,然后继续向南走了5千米到爷爷家.下午从爷爷家出发向北走了16千米到达外公家,傍晚返回自己家中.(1)若以小亮家为原点,向南为正方向,用1个单位长度表示2千米,请画出数轴,并将超市、爷爷家、外公家的位置在数轴上分别用A ,B ,C 表示出来;(2)外公家与超市间的距离为多少千米?(3)若轿车每千米耗油0.1升,求小亮一家从早上出发到傍晚返回家中轿车所行路程的耗油量.84.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求m 2+a +b +(-cd )3的值.85.把图中的几何图形与它们相应的名称连接起来.86.幻方是一个古老的数学问题,我国古代的《洛书》中记载了最早的三阶幻方——九宫图.如图所示的幻方中,每一横行、每一竖列以及两条对角线上的数字之和都相等.(1)请求出中间行三个数字的和;(2)九宫图中m ,n 的值分别是多少?87.根据下列题意设未知数列方程.(1)从60cm 长的木条上截去2段同样长的木棒,还剩下10cm 长的短木条,截下的每段长为多少厘米?(2)小红对小敏说:“我是6月份出生的,我的年龄的2倍加上10天,正好是我出生的那个月的总天数,你猜我有几岁?”(3)有两个工程队,甲队人数30名,乙队人数10名,问怎样调整两队的人数,才能使甲队的人数是乙队人数的7倍?(4)有一个班的同学准备去划船,租了若干条船,他们计算了一下,如果比原计划多租1条船,那么正好每条船坐6人;如果比原计划少租1条船,那么正好每条船坐9人.问这个班共有多少名同学?88.我校为了了解图书漂流的开展情况,随机抽取部分学生进行了问卷调查,选项A :阅读漂流图书3本及以上;选项B :阅读漂流图书2本;选项C :阅读漂流图书1本;选项D :没有阅读漂流图书,只能从中选择一个选项进行回答.收集整理问卷调查的情况,把结果绘制成如下不完整的统计图:(1)此次抽样调查了_______名学生;(2)补全条形统计图;(3)扇形统计图C 选项圆心角的度数是_______;(4)该校有2000名学生,估计全校阅读过漂流图书的学生约有多少名?89.已知A=x 2+x ,B=x 2-3x .(1)计算:A-B 和A+B .(2)先化简,再求值:3(A-2B )-2(2A -2B ),其中x=-12. 90.如图,点E 为∠O 的直径AB 上一个动点,点C 、D 在下半圆AB 上(不含A 、B 两点),且∠CED=∠OED=60°,连OC 、OD(1)求证:∠C=∠D ;(2)若∠O 的半径为r ,请直接写出CE+ED 的变化范围.91.已知a 、b 、c 在数轴上的位置如图:(1)a c -__________0,a b + ___________0,c b -__________0 (请用“>”,“<”填空)(2)化简:a c abc b --+--.92.我们知道x 的几何意义是在数轴上x 对应的点与原点的距离,即0x x =-,也就是说,x 表示在数轴上数x 与数0对应点之间的距离.同样的,若数轴上两点A ,B 在数轴上对应的点分别为a ,b ,则点A ,B 之间的距离可以表示为AB a b .阅读上面材料,回答问题.(1)数轴上表示2和7-两点之间的距离是________;若35x -=,则x =________.(2)若数轴上点A ,B 和C 在数轴上对应的数分别为3,7和1,点P 为数轴上一动点,其在数轴上对应的数为x .∠当x 的取值范围为____________时,PA PB +有最小值为____________;此时,PA PB PC +-的最大值是____________,最小值是____________.∠设点Р以每秒一个单位长度的速度从A 点出发向左运动,到达点C 后以原来的速度向相反的方向运动.设点Р的运动时间为t 秒,问是否存在点P ,使得13PA PC =若存在,请求出t 的值;若不存在,请说明理由.93.如图,将一个边长为1的正方形纸片分割成7个部分,部分∠的面积是边长为1的正方形纸片面积的一半,部分∠的面积是部分∠面积的一半,部分∠的面积是部分∠面积的一半,…依次类推.(1)阴影部分的面积是_____; (2)受此启发,试求202111112482+++•••+的值. 94.点A 、B 、C 、D 在数轴上的位置如图所示,已知2CD =,5BC =,7AC CD .(1)若点C 为原点,则点A 表示的数是______;(2)若点P 、Q 分别从A 、D 两点同时出发,点P 沿线段AC 以每秒3个单位长度的速度向右运动,到达C 点后立即按原速向A 折返;点Q 沿线段DA 以每秒1个单位长度的速度向左运动.当P 、Q 中的某点到达A 时,两点同时停止运动.∠求两点第一次相遇时,与点B 的距离;∠设运动时间为t (单位:秒),则t 为何值时,PQ 的值为2?(请直接写出t 值) 95.如图,点C 是线段AB 上的一点,延长线段 AB 到点D ,使BD=CB .(1)请依题意补全图形;(2)若AD=7,AC=3,求线段DB 的长.96.已知代数式22262351x ax y bx x y +-+-+--的值与x 的取值无关,求代数式3222112339a b a b --+的值 97.已知a 是最大的负整数,b 是-5的相反数,c=3--,且a 、b 、c 分别是点A 、B 、C 在数轴上对应的数.若动点P 从点A 出发沿数轴正方向运动,动点Q 同时从点B 出发也沿数轴正方向运动,点P 的速度是每秒3个单位长度,点Q 的速度是每秒1个单位长度.(1)求a 、b 、c 的值;(2)P 、Q 同时出发,求运动几秒后,点P 可以追上点Q ?(3)在(2)的条件下,P 、Q 出发的同时,动点M 从点C 出发沿数轴正方向运动,速度为每秒6个单位长度,点M 追上点Q 后立即返回沿数轴负方向运动,追上后点M 再运动几秒,M 到Q 的距离等于M 到P 距离的两倍?参考答案:1.B【分析】根据有理数大小比较求解即可.--,共4个.【详解】解:在数轴上,表示不小于2-且小于2之间的整数的点有2,1,0,1故选:B【点睛】此题考查了有理数大小比较与数轴,能正确表示数轴上的点是解答本题的关键.2.D【分析】结合长方体的面与面之间的连接判断即可;【详解】解:A.选项正确,不符合题意;B.选项正确,不符合题意;C.选项正确,不符合题意;D.组合后缺少上表面,选项错误,符合题意;故选:D【点睛】本题考查了长方体的展开图,掌握长方体的立体特征是解题关键.3.D【分析】由数轴的定义进行判断,即可得到答案.【详解】解:根据数轴的定义,A中缺少原点和单位长度;错误;B中单位长度不统一,错误;C中没有正方向,错误;D中数轴正确;故选:D.【点睛】本题考查了数轴的定义,解题的关键是掌握数轴的定义进行解题.4.B【分析】根据同类项是字母相同且相同字母的指数也相同,可得n的值.【详解】所含字母相同,并且相同字母的次数也分别相同的项叫做同类项,因此有n+1=3,解得n=2.故选B.5.D【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此逐一判断即可.【详解】解:A、222-,故本选项不合题意;x x x3=2B、2+3=5a a a,故本选项不合题意;-不是同类项,所以不能合并,故本选项不合题意;C、2ab与2aD、222x y yx x y-=-,故本选项符合题意;242故选:D.【点睛】本题考查了合并同类项,熟记合并同类项法则是解答本题的关键.6.A【详解】试题解析:A、了解某班同学“立定跳远”的成绩,适合普查,故A正确;B、了解全国中学生的心理健康状况,调查范围广,适合抽样调查,故B错误;C、了解外地游客对我市旅游景点“磁器口”的满意程度,无法普查,故C错误;D、了解端午节期间重庆市场上的粽子质量情况,调查具有破坏性,适合抽样调查,故D 错误;故选A.考点:全面调查与抽样调查.7.D【分析】直接利用减法法则化简,进而得出答案.-++---+=-++-.【详解】(8)(3)(5)(7)8357故选D.【点睛】此题主要考查了有理数的减法法则,正确去括号是解题关键.8.B【分析】直接利用合并同类项法则以及去括号法则分别化简得出答案.【详解】解:A、2(a-1)=2a-2,故此选项错误;B、a2+a2=2a2,此选项正确;C、2a3-3a3=﹣a3,故此选项错误;D、a+a2=a+a2,故此选项错误.故选:B【点睛】此题主要考查了合并同类项,正确把握运算法则是解题关键.9.A【详解】分析:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.详解:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此A是错误的,故选A.点睛:本题考查几何体的截面,关键要理解面与面相交得到线.应该熟记正方体的各种截取情况.10.C【分析】根据已知求出m2-3m=5,把所求的代数式化成含有m2-3m的形式,代入求出即可.【详解】解:∠m2-3m-3=2,∠m2-3m=5.∠2030-2m2+6m=2030-2(m2-3m)=2030-10=2020故选C.【点睛】本题考查了求代数式的值,关键是如何把已知条件代入所求的代数式,思路是:求出m2+m的值,把m2+m当作一个整体进行代入.11.D【分析】由于点,P R表示的数是互为相反数,数轴的单位长度为1,根据相反数的定义确定出PR的中点O为原点,易得点P表示的数为1-,R点表示的数为1,则点Q表示的数为4,T点表示的数为5,然后求出各数的平方即可确定正确答案.【详解】解:如图,解:∠点P,R表示的数是互为相反数,数轴的单位长度为1,∠线段PR的中点O为原点,∠点P表示的数为1-,R点表示的数为1,∠点Q 表示的数为4,T 点表示的数为5,∠()211-=,211=,2416=,25=25,∠表示的数的平方值最大的点是T .故选:D .【点睛】本题考查了数轴:数轴的三要素(原点、单位长度和正方向);数轴上左边的点表示的数比右边点表示的数大,也考查了有理数的乘方与相反数,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.12.A【分析】把所含字母相同且相同字母的指数也相同的几个单项式叫做同类项,由同类项的概念即可求得结果.【详解】232m x y +与21n x y +-是同类项, 2321m n ∴+=+,222m n ∴-=-,即1m n -=-;故选:A .【点睛】本题考查了同类项的概念,求代数式的值,关键是理解同类项的概念. 13.A【分析】利用绝对值的意义得到|m -5|+|2m -6|=-(m -5)+2m -6,然后去括号后合并即可.【详解】由3≤m ≤5,得m ﹣5≤0,2m ﹣6≥0,∠|m ﹣5|+|2m ﹣6|=﹣(m ﹣5)+2m ﹣6=﹣m +5+2m ﹣6=m ﹣1.故选:A .【点睛】本题考查了整式的加减:整式的加减实质上就是合并同类项.也考查了绝对值. 14.B【详解】试题解析:从左边看分成两列,左边一列有3个小正方形,右边有1个小正方形,故选B .考点:简单组合体的三视图.15.B【分析】将各选项的结果计算出来,然后进一步判断即可.【详解】A :328=,故选项错误;B :2416-=-,故选项正确;C :9918--=-,故选项错误;D :523-+=-,故选项错误;故选:B.【点睛】本题主要考查了有理数的加减运算以及乘方运算,熟练掌握相关运算法则是解题关键.16.A【分析】根据有理数的分类,即正有理数、0、负有理数,解答即可.【详解】A 、甲、丙两部分有无数个,乙部分只有一个0,原说法正确,故A 选项符合题意;B 、乙部分只有一个0,原说法错误,故B 选项不符合题意;C 、甲、丙两部分有无数个,原说法错误,故C 选项不符合题意;D 、甲、丙两部分有无数个,乙部分只有一个0,原说法错误,故D 选项不符合题意; 故选:A .【点睛】本题考查了有理数,熟练掌握有理数的分类是解题的关键.17.A【分析】根据有理数的乘方法则,进行运算即可.【详解】解:原式=()11--=11+=2故选:A .【点睛】此题主要考查了实数运算,有理数的乘方法则,解题关键是正确运用法则计算. 18.C【分析】由于方程中含有一个分母3,方程两边同时乘以3即可去分母.【详解】解:方程两边同时乘以3,得3x-(x-5)=3.故选:C.【点睛】本题主要考查去分母,解题的关键是确定分式方程的公分母.19.B【分析】根据一元一次方程的定义,只含有一个未知数,x 的次数为1,系数不为0,解之即可.【详解】解:()1240a a x -+-=是关于x 的一元一次方程,1120a a ⎧-=∴⎨+≠⎩, 解得:2a =,故选:B .【点睛】此题考查了一元一次方程的定义和解法,解题的关键是掌握一元一次方程的定义.20.C【详解】试题分析:根据图示可得长方体的长为4,宽为2,高为1,则V=4×2×1=8. 考点:长方体的展开图形.21.A【分析】根据题意“使-1、-2、-3、-4每个数字在每一行、每一列和每一宫中都只出现一次”,结合题目图形进行分析即可得到答案.【详解】因为“使-1、-2、-3、-4每个数字在每一行、每一列和每一宫中都只出现一次”,且第一列存在-2和-4,所以A 可能为-1或者-3;又因为第二行存在-3,结合题意“使-1、-2、-3、-4每个数字在每一行、每一列和每一宫中都只出现一次”,可得A 不等于-3,A 等于-1,故选择A.【点睛】本题考查数字类规律,解题的关键是读懂题意,掌握迷你数独的规则. 22.C【分析】利用绝对值的性质以及乘方的性质逐个判断即可.【详解】A. ()211--=-, 211=,不相等; B. 311--=-,()311--=,不相等;C. ()311-=-, 311-=-,相等;D. ()411-=,411-=-,不相等;故选C【点睛】本题考查有理数的绝对值以及乘方,熟练掌握绝对值的性质以及奇次方、偶次方的特点是解题关键.23.D【分析】根据题中叙述列出代数式即可判断.【详解】A 、a 是一个数的8倍,则这个数是8a ,错误,不符合题意; B 、2x 比一个数大5,则这个数是25x -,错误,不符合题意;C 、一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为( 50a -)元,错误,不符合题意;D 、小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元,正确,符合题意;故选:D .【点睛】本题考查了列代数式,要注意语句中的关键字,解决问题的关键是读懂题意,找到所求的量的等量关系.24.B【分析】利用相反数的等于可得到点A 表示的数为负数,点B 表示的数为正数,且它们到原点的距离相等,从而可确定原点的位置.【详解】解:∠A ,B 两点所表示的两个有理数互为相反数,∠点A 表示的数为负数,点B 表示的数为正数,且它们到原点的距离相等,∠原点为线段AB 的中点.故选B .【点睛】本题考查了数轴上点的特点,牢记数轴上的点的分布规律是解答本题的关键. 25.B【分析】分别求出部分输出结果,发现第1次输出结果到第4次输出结果只出现一次,从第5次输出结果开始,每3次结果循环一次,则经过2022次上述运算输出的数与第6次输出的结果相同,由此可求解.【详解】解:当n =21时,经过1次运算输出的数是64,经过2次运算输出的数是32,经过3次运算输出的数是16,经过4次运算输出的数是8,经过5次运算输出的数是4,经过6次运算输出的数是2,经过7次运算输出的数是1,经过8次运算输出的数是4,经过9次运算输出的数是2,……∠第1次输出结果到第4次输出结果只出现一次,从第5次输出结果开始,每3次结果循环一次,∠(2022﹣4)÷3=672……2,∠经过2022次上述运算输出的数与第6次输出的结果相同,故选:B .【点睛】本题考查数字的变化规律,通过运算找到输出结果的循环规律是解题的关键. 26.B【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,进行各选项的判断即可.【详解】解:A 、2x 与3x 不是同类项,不能合并,故本选项错误;B 、2x+x=3x ,故本选项正确;C 、a 2+a 2=2a 2,故本选项错误;D 、2x 与3y 不是同类项,不能合并,故本选项错误.故选:B .【点睛】本题考查了合并同类项的知识,属于基础题,解答本题的关键是掌握合并同类项的法则.27.D【详解】试题解析:A 、-3x =1化为x=-3,故此选项错误; B 、1-[x-(2-x )]=x 化为3x=-3,故此选项错误;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级(上)数学综合测试
一、选择题(本大题共10小题,共30分)
1.如图,所示的几何体是由若干个大小相同的小正方体组成的,则该几何体的左视图(从左面看)是()
A.B.C.D.
2.|﹣5|的倒数是()
A.B.﹣C.5D.﹣5
3.经专家估算,整个南海属我国传统海疆线的油气资源约合15000亿美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是()美元.
A.1.5×104B.1.5×105C.1.5×1012D.1.5×1013
4.下列调查中,调查方式的选取不合适的是()
A.为了了解全班同学的睡眠状况,采用普查的方式
B.对“天宫二号”空间实验室零部件的检查,采用抽样调查的方式
C.为了解一批LED节能灯的使用寿命,采用抽样调查的方式
D.为了解全市初中生每天完成作业所需的时间,采取抽样调查的方式
5.下列计算正确的是()
A.3x2﹣x2=3B.﹣3a2﹣2a2=﹣a2
C.3(a﹣1)=3a﹣1D.﹣2(x+1)=﹣2x﹣2
6.下列说法正确的是()
A..连接两点的线段叫做两点间的距离
B..射线AB和射线BA是同一条射线
C..若点C是线段AB的中点,则AB=2AC.
D..角的两边越长角越大
7.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()
A.85°B.160°C.125°D.105°
8.若x=2是方程ax+2x=16﹣a的解,则a的值是()
A.3B.6C.5D.4
9.按如图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是()
A.231B.156C.21D.6
10.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是()
A.100元B.105元C.110元D.115元
二、填空题(本大题共5小题,共15分)
11.单项式﹣的系数是.
12.比较大小:.
13.有8名学生体检测体重以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下(单位:千克)2,﹣7.5,﹣3,5,﹣8,3.5,4.5,﹣1.5,这8名学生的总体重为千克.
14.如图,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行、每一竖列,以及两条斜对角线上的3个数之和都相等,则这个方阵图中x的值为.
15.如图所示,图(1)表示1张餐桌和6张椅子(三角形表示餐桌,每个小圆表示一张椅子),图(2)表示2张餐桌和8张椅子,图(3)表示3张餐桌和10张椅子,…,若按这种方式摆放25张桌子,需要的椅子张数是.
三、解答题(本大题共8个小题,满分75分)
16.(8分)计算:
(1)(﹣1)3+10÷22×
(2)(﹣3)2÷
17.(8分)先化简,再求值:2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.18.(8分)解方程:.
19.(9分)写出下列各数的相反数,并将这些数连同它们的相反数在数轴上表示出来:﹣4,﹣1.5,0,
20.(8分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图:
根据以上信息解答下列问题:
(1)这次接受调查的市民总人数是;
(2)扇形统计图中,“电视”所对应的圆心角的度数是;
(3)请补全条形统计图.
21.(10分)以直线AB上一点O为端点作射线OC使∠BOC=60°,将一个直角三角形的直角顶点放在O处(注:∠DOE=90°).
(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=;
(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,则∠BOD=;
(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时,若恰好∠COD=∠AOE,求∠BOD的度数.
22.(12分)正所谓聚少成塔,滴涓成河,节约用电也是一样的道理,为了响应国家节能减排号召,鼓励市民节约用电,我市实行一户一表的阶梯电价,具体收费标准如下:
月用电量(单位:千瓦时,统计时取整数)单价(单位:元/千瓦时)
180及以内0.5
大于180,不超过280部分(共100千瓦时)0.6
280以上部分0.8
(1)小雯家10月用电量400千瓦时,其10月应交电费多少元?
(2)若小雯家每月用电为x千瓦时(x>280),则请用代数式表示每月其应交的电费;
(3)某天小雯提出采用新型节能灯可节约用电30%,若10月就用新型节能灯,则10月可少交多少电费钱?
23.(12分)请根据图中提供的信息,回答下列问题:
(1)一个水瓶与一个水杯分别是多少元?
(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.
参考答案一、选择题(本大题共10小题,共30分)1.B.
2.A.
3.C.
4.B.
5.D.
6.C.
7.C.
8.D.
9.A.
10.A
二、填空题(本大题共5小题,共15分)11.﹣.
12.>
13.395
14.﹣5.
15.54张.
三、解答题(本大题共8个小题,满分75分)16.解:(1)(﹣1)3+10÷22×
=(﹣1)+10÷4×
=(﹣1)+10×
=(﹣1)+
=﹣;
(2)(﹣3)2÷
=9××(﹣)﹣(1﹣8)
=﹣6﹣(﹣7)
=﹣6+7
=1.
17.解:原式=2x2y+2xy2﹣2x2y+2x﹣2xy2﹣2y=2x﹣2y,
当x=﹣2,y=2时,原式=﹣4﹣4=﹣8.
18.解:去分母得:4(2x﹣1)﹣3(2x﹣3)=12,
去括号得:8x﹣4﹣6x+9=12,
移项得:8x﹣6x=12+4﹣9,
合并得:2x=7,
解得:x=3.5.
19.解:﹣4的相反数为:4;
0的相反数为:0;
﹣1.5的相反数为:1.5;
的相反数为:﹣;
如图所示:
20.解:(1)这次接受调查的市民总人数是260÷26%=1000(人),故答案为:1000人;
(2)扇形统计图中,“电视”所对应的圆心角的度数是360°×=54°,故答案为:54°;
(3)通过报纸获取新闻的人数为1000×10%=100(人),
补全图形如下:
21.解:(1)∵∠BOE=∠COE+∠COB=90°,
又∵∠COB=60°,
∴∠COE=30°,
故答案为:30°;
(2)∵OE平分∠AOC,
∴∠COE=∠AOE=∠COA,
∵∠EOD=90°,
∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,
∴∠COD=∠DOB=∠BOC=30°;
(3)设∠COD=x,则∠AOE=5x.
∵∠AOE+∠DOE+∠COD+∠BOC=180°,∠DOE=90°,∠BOC=60°,∴5x+90°+x+60°=180°,
解得x=5°,
即∠COD=5°,
∴∠BOD=∠COD+∠BOC=5°+60°=65°,
∴∠BOD的度数为65°.
22.解:(1)∵10月用电量为400千瓦时
∴10月交电费0.5×180+0.6×100+0.8×(400﹣280)=246(元);
(2)当每月用电x(x>280)千瓦时时,则每月电费为:180×0.5+100×0.6+0.8(x﹣280)=0.8x﹣74(元);
(3)小雯家采用新型节能灯后用电量为400×(1﹣30%)=280(千瓦时),
则此时费用为180×0.5+100×0.6=150(元),
所以10月就用新型节能灯则10月可少交96元的电费钱.
23.解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,
根据题意得:3x+4(48﹣x)=152,
解得:x=40,
则一个水瓶40元,一个水杯是8元;
(2)甲商场所需费用为(40×5+8×20)×80%=288(元);
乙商场所需费用为5×40+(20﹣5×2)×8=280(元),
∵288>280,
∴选择乙商场购买更合算.。