全膜法水处理工艺

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全膜法水处理工艺

全膜法水处理工艺是将超滤、微滤、反渗透、EDI等不同的膜工艺有机地组合在一起,达到高效去除污染物以及深度脱盐的目的一种水处理工艺。全膜法处理后的出水可直接满足锅炉补给水、工艺用水、电子超纯水、回用水、循环用水等要求。

反渗透处理装置

EDI电渗析水处理设备

该工艺已成功应用于电力、冶金、石化等多个领域。该工艺的关键技术EDI系电渗析(ED)和离子交换技术(DI)有机结合,达到连续除盐、运行维护简单、无酸碱排放污染。而超/微滤、反渗透已广泛应用于海水(苦咸水)淡化及废水回用。

1、膜分离技术及其优势

膜分离技术是一大类技术的总称。和水处理有关的主要包括微滤、超滤、纳滤和反渗透等几类。目前在经济、技术等方面占主导地位是高分子材料类的产品。

这些膜分离产品均是利用特殊制造的多孔材料的拦截能力,以物理截留的方式去除水中一定颗粒大小的杂质。在压力驱动下,尺寸较小的物质可通过纤维壁上的微孔到达膜的另一侧,而尺寸较大的物

质则不能透过纤维壁而被截留,从而达到筛分溶液中不同大小组分的目的。

其过滤的精度和滤膜本身的孔径大小有关。通常习惯把孔径较大的称为微滤(Microfiltration),而较小的称为超滤(Ultrafiltration),而“孔径”更小则是钠滤和反渗透。

上图显示了水中各种杂质的大小和去除它们所使用的分离方法。反渗透主要用来去除水中溶解的无机盐;而超滤则可以去除病毒、大分子物质、胶体等;微滤一般能够去除水中的细菌、灰尘,具有很好的除浊效果。这些都是传统的过滤(如砂滤、多介质过滤等)无法实现的。

这些膜分离的产品从功能上可以分为反渗透、超滤、微滤等;从形式上分为中空纤维、管式、卷式、平板式等;从材质上分PP、PE、PS、PVDF、Nylon、PAN等多种;从操作方式上分为错流过滤和终端过滤两种,或者分为内压式、外压式等。这些膜产品能够具备优异的分离能力,是和它的结构及材料密不可分的。下面几张图显示了聚合物膜材料的结构。

可见,各种形式的分离膜大都属于非对称的结构,即包括致密的皮层(真正起分离作用)和多孔的支撑层。这种结构既保证了良好的分离效果,又提高了膜通量,降低运行能耗,并抗污堵。这些因素使得膜产品最终能够实现大工业化的应用。

膜分离技术最近受到了污水市场的高度关注,这是因为它具有如下的优点:

1.对杂质的去除效率高,产水水质大大好于传统方法;

2.彻底消除或者大大减少化学药剂的使用,避免二次污染;

3.系统易于自动化,可靠性高。运行简易,设施只有开启,关闭两档;

4.占地面积要求小;

5.与常规水处理系统费用相当

2、废水回用面临的挑战

在下图中归纳了综合利用各种水资源的方式。首先,尽量使水能够循环使用,把原来外排的工业废水和市政污水作为新水源,就可以大大减少对地表水和地下水的需求,也减少了向外排放的污水量;其次,在循环利用水的同时,各种废水中积累的污染物经过浓缩、焚烧、填埋等等方式转化为对环境无害或者少害的形式,可以大大缓解对生态的破坏。这些目标可以通过水价的调整,由政府行为转变为企业自发的市场行为而得以充分实现。

但是使用废水作为新水源,在技术上面临着一个新的挑战。由于各种工业和生活废水中的污染物非常复杂,传统的水处理方法,包括生化处理、混凝、澄清、气浮、吸附、砂滤等等,往往不能高效地去除这些污染物,将废水变成满足使用要求的净水。最近一段时间以来,在电力、冶金、石化等行业纷纷开展了污水回用的工作,计划把循环水排污水、市政废水、含油生产废水等经深度处理后作为循环水补给水、工艺用水、甚至锅炉补给水等。在一些缺水地区,如北京、天津等地也纷纷开展了以市政污水作为工业和生活用水的工作。这些需求大大促进了新技术的应用和成熟—这就是膜分离技术。

3、我国废水回用现状

水是人类赖以生存的基本资源,但是我国的水资源状况不容乐观。首先,中国是一个水资源贫乏的国家,人均水资源拥有量仅为世界平均水平的四分之一。目前,我国黄淮海及内陆河流域有11个省、区、市的人均水资源拥有量低于联合国可持续发展委员会确定的1750立方米用水紧张线。其次,近些年随着我国工业化和城市化的进程,大量的工业和生活污染物排放到环境中,给水体带来越来越严重的污染。从太湖到滇池,从松花江、黄河到长江、珠江,水质逐年恶化。恶化的水质危及工业生产和人们的健康,增加了整个社会获取水资源的成本。目前水资源短缺已成为制约我国经济和社会发展的重要因素。第三,我国水资源浪费严重,特别是工业用水效率总体水平较低。2001年,我国每万元工业产值取水量为90立方米左右,约为发达国家的3-7倍,工业用水重复利用率约52%,远低于发达国家80%的水平,与世界先进水平相比差距悬殊。

今后经济及人口的增长势必使水资源供需矛盾更加突出。据有关研究报告,到21世纪中叶我国人口达到16亿高峰时,全国总取水量有可能接近可用水资源量的极限。为保证经济社会的可持续发展,必须要大幅度提高用水效率。为此,国家在“十五”规划中制定了相应的政策,以控制水污染和用水量的增长。其中包括三大类:

1.采用清洁生产的工艺,减少污染物排放。例如高纯水制备中采用反渗透、EDI等膜分离技术代替离子交换技术,可以消除酸碱废水的排放;

2.采用低耗水的工艺,减少新鲜水的用量。例如火力发电厂

使用空冷技术、干除灰代替水力除灰等;

3.废水回用。把生活污水、工业废水等经过深度处理后,重复使用,甚至实现零排放。这实际上是将污水作为一种新的水源加以充分利用,即减少了新鲜水的利用,又降低了废水的排放量。

其中,实现废水回用或者零排放,最关键的一点就是要去除污水/废水中的各种杂质或者污染物,使净化后的水满足各种工业或者生活用水的水质要求。因此,工程设计时不仅仅要考虑工业或者生活废水实现达标排放,今后越来越多的时候还要考虑将这些废水进一步深度处理,循环使用。为了节约水资源,政府正在出台一系列的政策,包括水价调控、排污权交易等,这些都将通过经济的杠杆,促进废水处理技术和市场的迅速发展。

4、全膜法水处理应用的工程案例

全膜法水处理工艺由超/微滤、反渗透、EDI等不同的膜工艺有机地组合在一起,达到高效去除污染物以及深度脱盐的目的。

出水需求领域:

锅炉补给水

工艺用水

电子超纯水

回用水

循环用水

.................

实际应用领域:

相关文档
最新文档