高考导数解答题中常见的放缩大法精选.

合集下载

高考导数解答题中常见的放缩大法完整版.doc

高考导数解答题中常见的放缩大法完整版.doc

(高手必备)高考导数大题中最常用的放缩大法相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论⑴sin ,(0,)x x x π<∈,变形即为sin 1x x<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1.⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>.将这些不等式简单变形如下: exx ex e x e x x x x x 1ln ,,1,1ln 11-≥≥+≥-≤≤-那么很多问题将迎刃而解。

例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(⋅≤>++=若对任意的设恒成立,求a 的取值范围。

放缩法:由可得:1+≥x e x 2)1(ln 1ln 2)1(ln )1(ln 1ln ln 22=+-++≥+-=+-=+-+x x x x x x e x x xe x x e x x x x高考中最常见的放缩法可总结如下,供大家参考。

第一组:对数放缩(放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ⎛⎫<-> ⎪⎝⎭,()11ln 012x x x x ⎛⎫>-<< ⎪⎝⎭, )ln 1x x<>,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102x x x x +≤--<<,()()21ln 102x x x x +≥-> (放缩成类反比例函数)1ln 1x x≥-,()()21ln 11x x x x ->>+,()()21ln 011x x x x -<<<+, ()ln 11x x x +≥+,()()2ln 101x x x x +>>+,()()2ln 101x x x x +<<+第二组:指数放缩(放缩成一次函数)1x e x ≥+,x e x >,x e ex ≥, (放缩成类反比例函数)()101x e x x ≤≤-,()10x e x x<-<, (放缩成二次函数)()21102x e x x x ≥++>,2311126x e x x x ≥+++, 第三组:指对放缩()()ln 112x e x x x -≥+--=第四组:三角函数放缩()sin tan 0x x x x <<>,21sin 2x x x ≥-,22111cos 1sin 22x x x -≤≤-. 第五组:以直线1y x =-为切线的函数ln y x =,11x y e -=-,2y x x =-,11y x=-,ln y x x =. 拓展阅读:为何高考中总是考这些超越函数呢?和x e xln 因为高考命题专家是大学老师,他们站在高观点下看高中数学,一览无遗。

放缩法技巧全总结(高考精品,吐血推荐,不看后悔一辈子)

放缩法技巧全总结(高考精品,吐血推荐,不看后悔一辈子)

2010高考数学备考之放缩技巧放缩法精选大全证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn n n 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i ji j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn 412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222nn n -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m nk m nk m m k k n nnn n k m k k111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m nk m nk m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn na a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n n n n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n +++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xx x f ln )(=,得到22ln ln n n n n ≤αα,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n na a a n n+==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21nn n n a 211ln 2+++≤。

高考数学备考之放缩技巧(一)

高考数学备考之放缩技巧(一)

高考数学备考之 放缩技巧(一)证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k.解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k(2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk Λ奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n n C T r r rn r(4)25)1(123112111)11(<-++⨯+⨯++<+n n n n Λ (5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n (12)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n Λ(2)求证:n n412141361161412-<++++Λ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n n n ΛΛΛ(4) 求证:)112(2131211)11(2-+<++++<-+n nn Λ解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n n n -+<+++=++++ΛΛ (3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n n n ΛΛ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+Λ再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n nΛ例3.求证:35191411)12)(1(62<++++≤++n n n n Λ解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk Λ 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n nn n n n ΛΛ当3≥n 时,)12)(1(61++>+n n nn n ,当1=n 时,2191411)12)(1(6n n n n ++++=++Λ,当2=n 时,2191411)12)(1(6n n n n ++++<++Λ, 所以综上有35191411)12)(1(62<++++≤++n n n n Λ例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n af a +=.设1(1)b a ∈,,整数11ln a bk a b -≥.证明:1k a b +>.解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km mm k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a akm m m<∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+Λ321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n+≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n nn111111111])1([01)2()1()1(Λ所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([Λ故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m k k m k k m 而正是成立的,所以原命题成立.例6.已知n n n a 24-=,nnn a a a T +++=Λ212,求证:23321<++++n T T T T Λ.解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n nnn T -+-=-----=+++-++++=ΛΛ所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n nnn T⎪⎭⎫⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n n n n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n n T T T T ΛΛ例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ证明: nn n n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n n x x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++Λ.解析:先构造函数有x x x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n n n +++--<++++ΛΛ cause⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121ΛΛΛ6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---Λ所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n n n Λ例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n αααααααΛ解析:构造函数x xx f ln )(=,得到22ln ln n n n n ≤αα,再进行裂项)1(1111ln 222+-<-≤n n n nn ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:n n n 1211)1ln(113121+++<+<++++ΛΛ 解析:提示:2ln 1ln 1ln 1211ln)1ln(++-++=⋅⋅-⋅+=+ΛΛn nn n n n n n n函数构造形式:x x x x 11ln ,ln -><当然本题的证明还可以运用积分放缩 如图,取函数x x f 1)(=,首先:⎰-<nin ABCFx S 1,从而,)ln(ln |ln 11i n n x x i n n i n nin --==<⋅--⎰取1=i 有,)1ln(ln 1--<n n n ,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n ,n n n ln )1ln(11-+<+,相加后可以得到:)1ln(113121+<++++n n Λ另一方面⎰->ni n ABDExS 1,从而有)ln(ln |ln 11i n n x x i i n n i n nin --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n ,所以有n n 1211)1ln(+++<+Λ,所以综上有n n n 1211)1ln(113121+++<+<++++ΛΛ例11.求证:e n <+⋅⋅++)!11()!311)(!211(Λ和e n <+⋅⋅++)311()8111)(911(2Λ.解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n Λ 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案函数构造形式:)0(13)1ln(1)0(132)1ln(>+>++⇔>+->+x x x x x x x (加强命题)例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n Λ解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:F E D C B A n-inyxO12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n Λ例14. 已知112111,(1).2n n n a a a n n +==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21nn n n a 211ln 2+++≤。

导数大题中最常用的放缩大法

导数大题中最常用的放缩大法

导数大题中最常用的放缩大法相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论⑴sin ,(0,)x x x π<∈,变形即为sin 1x x<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1.⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>.将这些不等式简单变形如下: exx ex e x e x x x x x 1ln ,,1,1ln 11-≥≥+≥-≤≤-那么很多问题将迎刃而解。

例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(⋅≤>++=若对任意的设恒成立,求a 的取值范围。

放缩法:由可得:1+≥x e x 2)1(ln 1ln 2)1(ln )1(ln 1ln ln 22=+-++≥+-=+-=+-+x x x x x x e x x xe x x e x x x x高考中最常见的放缩法可总结如下,供大家参考。

第一组:对数放缩(放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ⎛⎫<-> ⎪⎝⎭,()11ln 012x x x x ⎛⎫>-<< ⎪⎝⎭, )ln 1x x<>,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102x x x x +≤--<<,()()21ln 102x x x x +≥-> (放缩成类反比例函数)1ln 1x x≥-,()()21ln 11x x x x ->>+,()()21ln 011x x x x -<<<+, ()ln 11x x x +≥+,()()2ln 101x x x x +>>+,()()2ln 101x x x x +<<+第二组:指数放缩(放缩成一次函数)1x e x ≥+,x e x >,x e ex ≥, (放缩成类反比例函数)()101x e x x ≤≤-,()10x e x x<-<, (放缩成二次函数)()21102x e x x x ≥++>,2311126x e x x x ≥+++, 第三组:指对放缩()()ln 112x e x x x -≥+--=第四组:三角函数放缩()sin tan 0x x x x <<>,21sin 2x x x ≥-,22111cos 1sin 22x x x -≤≤-. 第五组:以直线1y x =-为切线的函数ln y x =,11x y e -=-,2y x x =-,11y x=-,ln y x x =. 拓展阅读:为何高考中总是考这些超越函数呢?和x e x ln 因为高考命题专家是大学老师,他们站在高观点下看高中数学,一览无遗。

高考数学_压轴题_放缩法技巧全总结.pdf

高考数学_压轴题_放缩法技巧全总结.pdf
23
1 2( 2 n 1 1)
n
解析 :(1) 因为 1
2
( 2n 1)
1 (2n 1)( 2n 1)
11
1 ,所以
2 2n 1 2n 1
n
1
i 1 (2i 1) 2
11 1(
23
1
11 1
)1 (
)
2n 1
2 3 2n 1
(2) 1 1 1 4 16 36
11 1
2
4n
(1 4
2
2
11
1
2) n
(1 1 4
3(2n 1) 2 n
n
2n 1 2 3
n
12 2n 1 3
(14)
k2
1
1
k! (k 1)! (k 2)! (k 1) ! (k 2) !
(15)
1
n
n(n 1)
n 1(n 2)
(15)
i2 1
j2 1
i2 j2
ij
(i j)( i 2 1 j 2 1)
ij
1
i2 1
j2 1
例 2.(1) 求证 :1
1 ,所以 n 1
2n 1
k 1k2
1 12
3
1 5
1
1
25
1
2n 1 2n 1
33
奇巧积累 :(1) 1
n2
4 4n2
4
1
1
4n2
1
2 2n
1
2n
1
(2) 1
2
1
1
C1n
C2
1n
( n 1) n( n 1)
n(n 1) n( n 1)

2022高考数学函数与导数—导数中的放缩问题

2022高考数学函数与导数—导数中的放缩问题

函数与导数—导数中的放缩问题专题综述放缩法是解决函数不等式问题的利器,导数压轴题中的函数往往是指数、对数与其他函数综合,或者指对数并存的超越函数,有时直接构造出的函数难以直接求出最值,需要借助放缩解决.利用导数判断函数单调性、解决函数零点问题、不等式证明等问题中都会用到放缩法,使问题难度降低.常用的放缩方式有:①常用不等式放缩:指数放缩、对数放缩、三角放缩;②利用已知题目信息放缩;③根据已知参数范围或常识,减少变量,适当放缩;③利用单调性放缩;④利用基本不等式放缩: 若0a b >>,则211ln ln 2a b a bb ab a b a b-+<<<<-+;⑤由数值大小关系直接放缩,做题时灵活运用.本专题就前3种,重点探究.专题探究探究1:利用不等式放缩函数中有指数、对数、三角函数时,直接求导,导数不等式无法解出,根据函数结构,选择不等式进行放缩,使函数简单化. 常用不等式有:(1)三角函数放缩:①0,,sin tan 2x x x x π⎛⎫∀∈<< ⎪⎝⎭;②21sin 2x x x ≥-;③22111cos 1sin 22x x x -≤≤-(2)指数放缩:①1x e x ≥+;②x e ex ≥(1,y x y ex =+=为函数x y e =图象的两条切线);③()101xe x x ≤≤-;④()10x e x x≤-< (3)对数放缩:①11ln 1x x x -≤≤-;②ln x x e ≤;③1ln x ex ≥-;(1,xy x y e =-=为函数ln y x =图象的两条切线)(4)指对放缩:()()ln 112xe x x x ->+--=(2021安徽省合肥市联考) 已知函数()(ln ),.xe f x a x x a R x=--∈(1)当0a >时,讨论函数()f x 的单调性;(2)当1a =-时,函数1()()()x g x f x x e mx x =+++满足:对任意(0,)x ∈+∞,都有()1g x 恒成立,求实数m 的取值范围.【审题视点】第(2)问显化函数()g x ,恒成立问题回顾常用的方法(专题1.3.7):分离参数、含参讨论单调性等方法,由解析式的具体结构确定方法与细节.【思维引导】分离参数以后,函数中有指、对结构,若直接通过求导判断单调性求最值,方法较困难,利用不等关系1x e x ≥+,得ln ln 1x x e x x +≥++,使难度大大降低.【规范解析】解:(1)()f x 的定义域是(0,)+∞,22()(1)()x x x a xe e ax e x f x a x x x -+-'=--=,当0a >,0x >时,令()0f x '>,则1x <∴()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;(2)当1a =-时,1()()()ln (1)x x g x f x x e mx xe x m x x=+++=-++,()()0,,1x g x ∀∈+∞≥即ln 1ln 1ln 11x x x x xe x e m x x++-+--=-,1.恒成立问题求参:分离参数构造函数求最值;2.构造的函数中有ln x 、ln x x e +,通过求导判断单调性求最值较困难,通过常用不等关系1xe x ≥+,进行放缩,是函数简单化.设()1x F x e x =--,则()1x F x e '=-,令()0F x '>,则0x >∴()f x 在()0,+∞上单调递增,在(),0-∞上单调递减∴()(0)0F x F =,即1(x e x +当且仅当0x =时“=”成立),故ln ln 1(x x e x x +++当且仅当ln 0x x +=时“=”成立), ()ln G x x x =+在(0,)+∞上是增函数,且11()10G e e=-<,(1)10G =>,故存在01(,1)x e∈使得ln 0x x +=成立,故ln 1ln 1ln (ln 1)112x x x e x x x x x++-+-++--=-(当且仅当0x x =时“=”成立),∴2m -,即m 的取值范围是[2,).-+∞【探究总结】常见的不等关系要灵活运用,解题时函数结构复杂,可考虑运用上述不等式进行放缩,使问题简答化.但不等式1,,ln 1,ln xxx e x e ex x x x e≥+≥≤-≤,从图象的角度看,是以直代曲,放缩的程度大,容易出现误差,在使用时要注意.另外若是求参数取值范围问题,要考虑不等式中的等号能否取到.(2021山东省泰安市一模) 已知函数()()ln 2xf x e x k -=-,(k 为常数, 2.718e =⋅⋅⋅是自然对数的底数),曲线()y f x =在点()()1,1f 处的切线与y 轴垂直.(1)求()f x 的单调区间;(2)设()()1ln 1xx x g x e-+=,对任意0x >,证明:()()21x x x g x e e -+<+. 探究2:利用已证结论放缩1.对使用过得不等关系,构造函数证明成立;2.利用不等关系进行替换.恒成立求取值范围的问题,放缩以后,要确保不等式中等号能否取到解答题的上一问中证明的不等式,或者推导过程中证明出的结论,为后续的证明提供放缩的依据.需证明的不等式为关于n 的多项式的和或不等式结构复杂,利用已证结论,进行放缩,使不等式化繁为简,便于构造函数求最值.(2021湖南省郴州市模拟) 已知函数()e (1)ln(1) 1.x f x x x =-++-(1)当0x >时,证明:()0f x >;(2)已知数列{}n a 的通项公式为1e 1nn n na n -=+,证明:12ln (1).n a a a n ++⋅⋅⋅+>+ 【审题视点】第(2)问,出现数列的前n 项和,且不能用常规的求和方法求和,借助第一问的结论对n a 的通项公式进行放缩,便于求和.【思维引导】对第一问的不等式进行变形,观察n a 的结构,进行放缩,能够用已知方法求和.【规范解析】解:(1)由题意得 ()()ln(1)10x f x e x x '=-+->, 设()ln(1)1x g x e x =-+-,则1(1)1()11x xe x g x e x x +-'=-=++, 当0x >时, 1x e >,11x +>,则(1)1x e x +>则(1)1()01x e x g x x +-'=>+, ()g x ∴在()0,+∞上单调递增,故()()00g x g >=,即()0f x '> ()f x ∴在()0,+∞上单调递增,∴当0x >时,()(0)0f x f >=,即()0f x >(2)由(1)知:当0x >时,()(1)ln(1)10x f x e x x =-++->,即1ln(1)1x e x x ->++ 令1x n=,则11ln()1nne n n n n -+>+,12231ln ln ln12n n a a a n++++>+++ 231ln()ln(1)12n n n+=⨯⨯⨯=+ ∴12ln (1)n a a a n ++⋅⋅⋅+>+【探究总结】函数中证明与n 有关的求和问题,或不等式证明问题,要仔细观察不等式结构特点,往往会利用前一问的结论,或者解题过程中的结论.利用已证结论,进行放缩,化繁为简,证明不等式的成立.(2021广东省东莞市联考) 已知函数()ln (1),(0)f x x a x a =-->( 2.718e ≈即自然对数的底数).(1)若函数()f x 在()1,+∞上是单调减函数,求实数a 的取值范围; (2)在(1)的条件下,当n N +∈时,证明:2311111111.2222n e ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭探究3:利用已知参数范围或常识放缩函数解析中含有参数,且已知参数范围,证明不等式成立,可以从参数的范围入手,使参数取确定的值或利用单调性、其它不等关系,对不等式进行放缩,减少变量,使函数结构简单,易于判断单调性.(2021河北省石家庄联考) 已知函数()(2).x f x e k x =-+(1)讨论函数()f x 的单调性;(2)证明:当0k e <<时,()(1ln )0.f x k x x ++->【审题视点】已知参数范围,证明不等式成立,且函数指对结构都有,若含参讨论难度大,可能要借助放缩,化繁为简.【思维引导】1.对已证不等式进行变形,变形为与n a 通项公式相似的结构;2.对自变量进行替换,得出新的不等式.利用不等式性质进行求和,实现放缩,证明结论.第(2)问不等式的证明,函数中有x e ,ln x ,构造函数求导,含参讨论解导数不等式较困难,可巧妙利用参数的范围,参数取确定的值,进行放缩,求不含参函数的最值较为简单.【规范解析】解:(1)由题意得 ()e .x f x k '=- ①当0k 时,()e 0x f x k '=->,∴函数()f x 在(,)-∞+∞上单调递增;②当0k >时,令()e 0x f x k '=-> 得ln x k >,则()g x '在(0,)+∞上单调递增,且(1)0g '= 当(0,1)x ∈时,()0g x '< 当(1,)x ∈+∞时,()0g x '>)0,10⎫->⎪⎭∴当0k e <<时,()(1ln )0.f x k x x ++->【探究总结】不等式的证明问题中含有参数,若直接构造函数含参讨论,难以解决的情况下,为避开讨论,可以在参数给定的范围内,结合不等式的结构进行第一步的放缩,达到消参的目的,转化为证明不含参的不等式.若不等式的结构依然复杂,在利用常用不等关系、已证结论等方法进一步放缩.(2021湖北省荆州市高三模拟) 已知函数()ln(2).x m f x e x -=-(1)设1x =是函数()f x 的极值点,求m 的值并讨论()f x 的单调性; (2)当2m 时,证明:()ln 2.f x >-专题升华导数解答题中函数多以xe 、ln x 型的函数与其他函数结合的形式出现,考查零点问题、不等式证明问题、恒成立问题等方向时,如果利用常规方法处理时,因函数结构复杂求导判断单调性难度较大,通过放缩将难以处理的函数转化为较为简单的函数进行处理.放缩法较为灵活,要根据不等式的结构、形式等特征,使条件与结论建立联系,选择适当的方法是关键. 1.积累常见的不等结论:如探究1中提及的不等式,解题时需构造函数,证明其正确性,再进行放缩.利用不等式进行放缩,体现了数学中的化归与转化思想,也体现了处理数学问题时以直代曲、以曲代曲的方法.2.巧用已证不等式,顺水推舟:利用已证不等式(或结论) “服务”于后续问题的求解,这类题目最明显的“暗示”,即为证明一个类似于数列求和的不等式,需利用已证不等式进行逐项替换放缩.若题目的第一问证明不等式,在后续解题时,留意是否会利用已证结论.3.已知参数范围:含参不等式的证明时,若因为参数的存在使函数讨论非常复杂,可考虑结合参数范围及其它结论进行放缩.4.其他放缩方法:除了上述三种难度较大的放缩方法以外,单调性、已知结论、基本不等式等.如利用基本不等式进行放缩,化曲为直,()202x x +=≥;和积互化等.不仅仅应用于简化不等式,在解题过程中,也可能用放缩证明代数式的值.长干行·其一[唐]李白妾发初覆额,折花门前剧。

常用导数放缩法

常用导数放缩法

一:消参放缩(适合含参)1.已知函数f(x)=e x-ln(x+m).(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明f(x)>0.解:(1)f′(x)=1e xx m -+.由x=0是f(x)的极值点得f′(0)=0,所以m=1.于是f(x)=e x-ln(x+1),定义域为(-1,+∞),f′(x)=1e1 xx-+.函数f′(x)=1e1xx-+在(-1,+∞)单调递增,且f′(0)=0.因此当x∈(-1,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.所以f(x)在(-1,0)单调递减,在(0,+∞)单调递增.(2)当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时,f(x)>0.当m=2时,函数f′(x)=1e2xx-+在(-2,+∞)单调递增.又f′(-1)<0,f′(0)>0,故f′(x)=0在(-2,+∞)有唯一实根x0,且x0∈(-1,0).当x∈(-2,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0得0e x=01 2x+,ln(x0+2)=-x0,故f(x)≥f(x0)=01 2x++x0=212xx(+)+>0.综上,当m≤2时,f(x)>0.2.已知函数f(x)=m e x-ln x-1.(Ⅰ)当m =1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当m ≥1时,证明:f(x)>1.【答案】(Ⅰ)y =(e -1)x(Ⅱ)当m ≥1时,f (x)= m e x-ln x -1≥e x-ln x -1.(放缩)要证明f (x)>1,只需证明e x-ln x -2>0.3.知函数1()ln(1)(1)nf x a xx=+--,其中*x∈N,a为常数.(Ⅱ)当1a =时,证明:对任意的正整数n ,当2n ≥时,有()1f x x -≤. 当1a =时,1()ln(1)(1)nf x x x =+--.当2x ≥时,对任意的正整数n ,恒有11(1)nx -≤,故只需证明1ln(1)1x x +--≤.令()1(1ln(1))2ln(1)h x x x x x =--+-=---,[)2x ∈+∞,,则12()111x h x x x -'=-=--,当2x ≥时,()0h x '≥,故()h x 在[)2+∞,上单调递增,因此当2x ≥时,()(2)0h x h =≥,即1ln(1)1x x +--≤成立. 故当2x ≥时,有1ln(1)1(1)nx x x +---≤.即()1f x x -≤.二:构造放缩(适合f(x)或其变式的N 项和有关)4.设函数()()2ln 1f x x b x =++.(1)若x =1时,函数()f x 取最小值,求实数b 的值;(2)若函数()f x 在定义域上是单调函数,求实数b 的取值范围;(3)若1b =-,证明对任意正整数n ,不等式33311......31211)1(n <k f nk ++++∑=都成立解:(1)由x + 1>0得x > – 1∴f(x)的定义域为( - 1,+ ∞),对x ∈ ( - 1,+ ∞),都有f(x)≥f(1),∴f(1)是函数f(x)的最小值,故有f /(1) = 0,,022,12)(/=+∴++=bx b x x f 解得b= - 4. 经检验合题意;(2)∵,12212)(2/+++=++=x b x x x b x x f 又函数f(x)在定义域上是单调函数,∴f /(x) ≥0或f /(x)≤0在( - 1,+ ∞)上恒成立.若f /(x) ≥0,∵x + 1>0,∴2x 2+2x+b ≥0在( - 1,+ ∞)上恒成立,即b ≥-2x 2-2x =21)21(22++x 恒成立,由此得b ≥21; 若f /(x) ≤0, ∵x + 1>0, ∴2x 2+2x+b ≤0,即b ≤- (2x 2+2x)恒成立,因-(2x 2+2x) 在( - 1,+ ∞)上没有最小值,∴不存在实数b 使f(x) ≤0恒成立.综上所述,实数b 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21. (3)当b= - 1时,函数f(x) = x 2- ln(x+1),令函数h(x)=f(x) – x 3= x 2– ln(x+1) – x 3,则h /(x) = - 3x 2 +2x - 1)1(31123+-+-=+x x x x ,∴当[)+∞∈,0x 时,h /(x)<0所以函数h(x)在[)+∞∈,0x 上是单调递减.又h(0)=0,∴当()+∞∈,0x 时,恒有h(x) <h(0)=0,[ 即x 2– ln(x+1) <x 3恒成立.故当()+∞∈,0x 时,有f(x) <x 3..∵()1,0,,k N k +∈∴∈+∞取,1k x =则有311(),f k k < ∴33311 (312)11)1(n <k f nk ++++∑=,故结论成立。

不得不看的高考数学导数解题技巧切线放缩

不得不看的高考数学导数解题技巧切线放缩

题 型:切线放缩问题解法突破:顾名思义是构造函数不等式的一种常用方法,多用于将指数、对数、无理根式统一到一阶幂函数的形式,用时还需考虑函数的凹凸性(凹凸性过于复杂的函数需慎用),难点是寻找切线放缩的位置?通常于端点处进行放缩,不行的话后移选取特殊点,若还是搞不定则需要待定系数法进行选取。

此法虽误差较大,但效果明显,出师亦多建奇功!例 题:(改编题)求证:2ln x e x x >+(0x >)分析与解:函数左凹右凸,适合切线放缩,但从何处放缩呢?此时不妨用筛法,在你的知识体系中不断搜寻,一一试验,例如:1,1x e x ≥+,x e ex ≥,224x e x e ≥,212x x e x ≥++(为常用不等式,法2)2,1ln x x -≥,2ln ex x -≥,ln x x e≥,…… 但不等式繁多,从来源处一一搜寻则工程浩大,题干中亦未给出更多的提示条件,故不可取,不妨用待定系数为取值创造一些条件。

选取切点()11,x x e 与()222,2ln x x x +,分别构造切线,有 ()11122112ln 12ln x x x e e x x e x x x x x ⎛⎫≥+->++-≥+ ⎪⎝⎭ 即1212x e x =+,()1121ln 1x x e x ->-,不妨取11x =,212x e =-.上述为分析过程,不可以此为解题步骤,需诸君按此编写答案即可,不赘述。

变式训练:(2018·湖北模拟改)若0x >,求证:218224xx e x x -⋅>+++.归纳总结:变式训练需进行224xe x e ≥12x ≥+两处放缩,都不大容易想,希望各位同学,慢慢参悟。

____________________________________________________________ ___________________________________________________________________________________________________________________________________.以下为本人精选或改编的一些练习,陈列于此仅供参考!1,136ln x x e -<;2,()11ln 2x x e x -->-; 3,(2006·港澳竞赛)(此为切线放缩的一个妙用)已知,,,a b c d 是满足1a b c d +++=的正数,求证:()()33332222168a b c d a b c d +++≥++++. 4,若0i x >,(1,2,3i =),且311i i x ==∑,则2221231112711110A x x x =++≤+++.(其他条件不变,若313i i x ==∑,试证明32A ≥.) 5,,,a b c 为实数,证明32a b c b c a c a b ++≥+++. 6,已知,a b 为正实数,且2a b +=,求证:1111ln ln 2a a b b +++≥. 7,若,y,z x 为非负实数,且222y z 1x ++=,证明:2221114x y z x y z ++≤+++.。

高考导数解答题中常见的放缩大法

高考导数解答题中常见的放缩大法

For personal use only in study and research; not forcommercial use(高手必备)高考导数大题中最常用的放缩大法相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论⑴sin ,(0,)x x x π<∈,变形即为sin 1x x<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1.⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>.将这些不等式简单变形如下: exx ex e x e x x x x x 1ln ,,1,1ln 11-≥≥+≥-≤≤-那么很多问题将迎刃而解。

例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(⋅≤>++=若对任意的设恒成立,求a 的取值范围。

放缩法:由可得:1+≥x e x 2)1(ln 1ln 2)1(ln )1(ln 1ln ln 22=+-++≥+-=+-=+-+x x x x x x e x x xe x x e x x x x高考中最常见的放缩法可总结如下,供大家参考。

第一组:对数放缩(放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ⎛⎫<-> ⎪⎝⎭,()11ln 012x x x x ⎛⎫>-<< ⎪⎝⎭, )ln 1x x<>,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102x x x x +≤--<<,()()21ln 102x x x x +≥->(放缩成类反比例函数)1ln 1x x ≥-,()()21ln 11x x x x ->>+,()()21ln 011x x x x -<<<+, ()ln 11x x x +≥+,()()2ln 101x x x x +>>+,()()2ln 101x x x x +<<+第二组:指数放缩(放缩成一次函数)1x e x ≥+,x e x >,x e ex ≥, (放缩成类反比例函数)()101x e x x ≤≤-,()10x e x x<-<, (放缩成二次函数)()21102x e x x x ≥++>,2311126x e x x x ≥+++, 第三组:指对放缩()()ln 112x e x x x -≥+--=第四组:三角函数放缩()sin tan 0x x x x <<>,21sin 2x x x ≥-,22111cos 1sin 22x x x -≤≤-. 第五组:以直线1y x =-为切线的函数ln y x =,11x y e -=-,2y x x =-,11y x =-,ln y x x =. 拓展阅读:为何高考中总是考这些超越函数呢?和x e x ln 因为高考命题专家是大学老师,他们站在高观点下看高中数学,一览无遗。

2022年高考数学放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)

2022年高考数学放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)

n
21 3 2
n(n 1)
(5)
2n
1 (2n
1)
1 2n 1
1 2n
(6) 1 n 2 n n 2
(7) 2( n 1 n) 1 2( n n 1) n
(8)
2 2n
1
1 2n
3
1 2n
1
(2n 1) 2n1
1 (2n 3) 2n
(9)
k(n
1 1
k)
n
1 1
k
1 k
34.已知数列 an 的首项
a1
3 5

an1
3an 2an 1

n
1、
2


(1)证明:对任意的
x
0

an
1 1 x
1
1 x2
2 3n
x
,n
1、2


(2)证明: a1 a2
an
n2 . n 1
12、经典题目方法探究
35.已知函数 f (x) ln(1 x) x .若 f (x) 在区间[0, n](n N*) 上的最小值为 bn ,令 an ln(1 n) bn .求
(Ⅰ)①求证:函数 g(x) f (x) 在 (0, ) 上是增函数;
x
①当 x1 0,x2 0 时,证明: f x1 f x2 f x1 x2 ;
(Ⅱ)已知不等式 ln(x 1) x 在 x 1且 x 0 时恒成立,求证:
1
22
ln
22
1 32
ln
32
1 42
ln
an 1, ai 0 (i 1, 2
n) ,求证: a12 a22 a1 a2 a2 a3

导数放缩的常见技巧

导数放缩的常见技巧

导数放缩的常见技巧
导数放缩的常见技巧包括对数放缩、指数放缩、以直线为切线的函数等。

这些技巧在数学领域有着广泛的应用,如微积分、线性代数、概率论等。

此外,在具体问题中,导数放缩的技巧还可以结合不等式的传递性和放缩法使用,例如找到一个缩小(或放大)的中间量B,使得证明B>C比证明A>C更便捷。

这种技巧常用于不等式证明和数学竞赛中。

需要注意的是,导数放缩技巧的应用需要根据具体问题选择合适的技巧,并且需要熟练掌握各种技巧的原理和适用条件。

同时,还需要注意技巧的局限性,不能过度使用或滥用。

高考数学导数放缩大全

高考数学导数放缩大全

高考导数大题中常用的放缩大法切线放缩及推广⑴ 111ln 1xe x x x x x≥+>>−≥≥− 拆开任意组合,在其定义域内恒成立 *1x e x ≥+在0x =时取等;ln x 1x ≤−,1ln 1x x ≥−在1x =时取等。

⑵ x e ex ≥ 切点为(1,)eln x x e≥ 切点为(,1)e 略证: 1.构造()1x f x e x =−−,证得1x e x ≥+,对其①ln x 代x ,证得1ln x x −≥②ln x −代x ,证得1ln 1x x≥−③1x −代x ,证得x e ex ≥. 2.对于x e ex ≥①ln x 代x ,证得ln x x e ≥②ln x −代x ,证得 3.对于,两边同时取对数,继而1x −代x ,化简为ln x 1x ≤− 4.对于,两边同时取对数,继而x −代x ,化简为ln x x <5.其他常用变形:,,,x nx x nn x x e x e e n n>=>>=>> 11ln ln ln n n x x x x x <=><=><三角不等式sin tan ,[0,)2x x x x π<<∈不等式链(调几对根算方)数列不等式第一组:对数放缩(放缩成一次函数)ln 1x x ≤−,ln x x <,(放缩成双撇函数)()11ln 12x x x x <−> ,()11ln 012x x x x >−<< ,)ln 1x x <−>,)ln 01x x ><< (ln x < (放缩成二次函数)2ln x x x ≤−,()()21ln 1102x x x x +≤−−<<,()()21ln 102x x x x +≥−> (放缩成类反比例函数)1ln 1x x≥−,()()21ln 11x x x x −>>+,()()21ln 011x x x x −<<<+, ()ln 11x x x +≥+,()()2ln 101x x x x +>>+,()()2ln 101x x x x+<<+,1ln x ex ≥−第二组:指数放缩(放缩成一次函数)1x e x ≥+,x e x >,x e ex ≥,122x e x ≥+(放缩成类反比例函数)()101x e x x≤≤−,()10x e x x <−< (放缩成二次函数)()21102x e x x x ≥++>,2311126x e x x x ≥+++,2x e x > 第三组:指对放缩()()ln 112x e x x x −≥+−−=第四组:三角函数放缩sin tan ,[0,)2x x x x π<<∈,21sin 2x x x ≥−,22111cos 1sin 22x x x −≤≤−泰勒公式。

常用导数放缩法

常用导数放缩法

常用导数放缩法一:消参放缩(适合含参)已知函数$f(x)=e^{-\ln(x+m)}$。

1) 设$x_0$是$f(x)$的极值点,求$m$,并讨论$f(x)$的单调性;2) 当$m\leq2$时,证明$f(x)>0$。

解:(1) $f'(x)=e^{-x/(x+m)}$。

由$x_0$是$f(x)$的极值点得$f'(x_0)=0$,所以$m=1$。

于是$f(x)=e^{-\ln(x+1)}$,定义域为$(-1,+\infty)$,$f'(x)=e^{-x/(x+1)}/(x+1)$。

函数$f'(x)=e^{-x/(x+1)}/(x+1)$在$(-1,+\infty)$单调递增,且$f'(0)=0$。

因此当$x\in(-1,0)$时,$f'(x)0$。

所以$f(x)$在$(-1,0)$单调递减,在$(0,+\infty)$单调递增。

2) 当$m\leq2$,$x\in(-m,+\infty)$时,$\ln(x+m)\leq\ln(x+2)$,故只需证明当$m=2$时,$f(x)>0$。

当$m=2$时,函数$f'(x)=e^{-x/(x+2)}/(x+2)$。

又$f'(-1)0$,故$f'(x)=0$在$(-2,+\infty)$有唯一实根$x$,且$x\in(-1,0)$。

当$x\in(-2,x)$时,$f'(x)0$,从而当$x=x$时,$f(x)$取得最小值。

由$f'(x)=e^{-x/(x+2)}/(x+2)$得$e^x/(x+2)$在$(-2,+\infty)$单调递增。

故$f(x)\geq f(x)=(x+1)^2/(x+2)$。

综上,当$m\leq2$时,$f(x)>0$。

2.已知函数$f(x)=me^x-\ln x-1$。

Ⅰ)当$m=1$时,求曲线$y=f(x)$在点$(1,f(1))$处的切线方程;Ⅱ)当$m\geq1$时,证明:$f(x)>1$。

高考数学 压轴题 放缩法技巧全总结(最强大)

高考数学   压轴题   放缩法技巧全总结(最强大)

高考数学压轴题放缩法技巧全总结(最强大)高考数学-压轴题-放缩法技巧全总结(最强大)变焦技术(高考数学备考资料)证明级数不等式由于其思维跨度大、建构性强,充满了思考和挑战。

它可以全面全面地测试学生的潜能和后续学习能力。

因此,它已成为高考最后一道题和各级各类竞赛题命题的优秀材料。

这类问题的解决策略往往是:多角度观察给定序列的通项结构,深入分析其特点,把握其规律,适当放大缩小;主要有以下膨胀和收缩技术:一、裂项放缩例1(1)请问?K1n24k2?124n2?11? n2n值;(2)验证:?1.五2k?1k3解析:(1)因为211,那么n212n 1.2(2n?1)(2n?1)2n?12n?12n?12n?1k?14k?14(2)因为n1111?251?,所以?1?1?2??11????2?2?2???k352n?12n?133??k?114n?1?2n?12n?1?n2?41奇巧积累:(1)1441?? 1.2.2.2.2N4N?1.2n?12n?1.R1r?中国?(2)121112cn?1cn(n?1)n(n?1)n(n?1)n(n?1)(3) t1n!11111 (r?2)rrr!(n?r)!nr!r(r?1)r?1rn(4)(1?1)n?1.1.1.1.氮气?13? 215?n(n?1)21?n?2?nn?2?2n?12n?3?211?n?1(2n?1)?2(2n?3)?2n(5)111? Nnnn2(2?1)2?12(6)21?1(7)2(n?1?n)?1?2(n?n?1)(8)n?n(9)111?111?11,????k(n?1?k)?n?1?kk?n?1n(n?1?k)k?1?nn?1?k?n11??(n?1)!n!(n?1)!(10)(11)1n?2(2n?1?2n?1)?222n?1.2n?1.N211? N22(11)(12)(13)(14)2n?111 (n?2)n2nnnnnnnnnn?1n?1n(2?1)(2?1)(2?1)(2?1)(2?2)(2?1)(2?1)2?12? 11n3?1n?n21111 n(n?1)(n?1)?n(n?1)??n(n?1)?N1.N一1?n?1?n?1?1n?1?2n?n?111N1n?一2n12n?n?32?132n?1?2?2n?(3?1)?2n?3?3(2n?1)?2n?2n?1?k?211??k!?(k?1)!?(k?2)!(k?1) !(k?2)!1.NN1(n?2)n(n?1)(15)22(15)i?1?j?1?i2?j2(i?j)(i2?1?j2?1)i?j?i?ji2?1?j2?1?1例2(1)验证:1?11171? 2.(n?2)2262(2n?1)35(2n?1)(2)验证:1?1.1.1.1.12416364n24n(3)验证:1?1.3.1.3.5.1.3.5.(2n?1)?2n?1.一22?42?4?62?4?62nn(4)求证:2(n?1?1)?1?1?11?2(2n?1?1)23分析:(1)因为111?11?,所以2(2n?1)(2n?1)2?2n?12n?1?(2n?1)?(2i?1)i?1n12111111?1?(?)?1?(?)232n?1232n 1(2)11111(111)1(111)222416364n42n4n(3)首先证明1?3.5.(2n?1)?2.4.6.2n12n?1.重新连接1n?2?n?2?n进行裂项,最后就可以得到答案(4)首先,再次证明1n1n?2(n?1?n)?2n?1?n22,所以容易经过裂项得到2(n?1?1)?1?1?1123n从平均不平等性来看,很明显这是真的,2(2n12n1)2n12n1n211n22所以1?1?11?2(2n?1?1)23n例3.求证:6n1115?1.2.(n?1)(2n?1)49n31?n21??1?2?214n?12n?12n?1?2?n?414解析:一方面:因为,所以kk?1n1211?25? 11? 1.2.1.2n?12n?1.33? 35另一方面:1?1.1.1.1.1.1.249n2?33? 411n1n(n1)n1n1当n?3时,什么时候?2点,总结一下6n111n6n,当n?1时,?12?(n?1)(2n?1)49nn?1(n?1)(2n?1)6n111?12,(n?1)(2n?1)49n,6n1115?12?(n?1)(2n?1)49n3案例4(2022年国家第一卷)集合函数f(x)?十、xlnx。

2019届高考导数解答题中常见的放缩大法

2019届高考导数解答题中常见的放缩大法












x2 x1
(2 x1 ) (2 x2 ) (2 x1 ) (2 x2 ) 2 x1 x2 1
ln(2 x1) ln(2 x2) ln(2 x1) ln(2 x2)
2
2
,矛盾。
由 (x1 1)2 (x2 1)2 0, 4 (x1 x2 ) 0 ,故 x1 x2 2
(2)法一: f (x) (x 2)ex a(x 1)2 0 即 (2 x)ex a(x 1)2 0;

f
( x1 )

f
(
x2
)

0

(2 (2

x1)e x1 x2 )ex2
a(x1 1)2 a(x2 1)2
,两式相减得
(2 x1)ex1 (2 x2 )ex2 a(x1 x2 )(x1 x2 2),
放缩法:由 ex x 1可得:
e2x ln x 1 xex (ln x 1) e2xln x (ln x 1) 2x ln x 1 (ln x 1) 2
x
x
x
x
高考中最常见的放缩法可总结如下,供大家参考。 第一组:对数放缩
(放缩成一次函数) ln x x 1, ln x x , ln 1 x x
近似函数在这一点的邻域中的值,如果这个点是 0,就是形式比较简单的麦克劳林级数。简而言之,它的功能就 是把超越式近似表示为幂函数。常见的幂级数展示式有:
(放缩成双撇函数)
ln
x

1 2

放缩法技巧窍门全情况总结(尖子生解决高考数学最后一题之瓶颈之精华)

放缩法技巧窍门全情况总结(尖子生解决高考数学最后一题之瓶颈之精华)

高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk Λ 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC T r rr n r (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn Λ (5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n nn n n n n n n n n n n n (12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n (13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n (15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n Λ (2)求证:nn412141361161412-<++++Λ(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ(4) 求证:)112(2131211)11(2-+<++++<-+n nn Λ解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222n nn -+<+++=++++ΛΛ (3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ΛΛ,再结合nn n -+<+221进行裂项,最后就可以得到答案 (4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到 nn 131211)11(2++++<-+Λ再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n nΛ例3.求证:35191411)12)(1(62<++++≤++n n n n Λ解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk Λ 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n ΛΛ当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++Λ,当2=n 时,2191411)12)(1(6nn n n ++++<++Λ,所以综上有35191411)12)(1(62<++++≤++n n n n Λ例4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a<<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m kk k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111 例5.已知m m m m m n S x N m n ++++=->∈+Λ321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1( ∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1(Λ所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m nk m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([Λ故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nnna a a T +++=Λ212,求证:23321<++++n T T T T Λ. 解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n n n nT -+-=-----=+++-++++=ΛΛ所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n n T T T T ΛΛ 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n xn,求证: *))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++Λ. 解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn +++--<++++ΛΛ 因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121ΛΛΛ6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---Λ 所以6653651333ln 44ln 33ln 22ln +-=--<++++n n nn nn Λ例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n αααααααΛ 解析:构造函数xx x f ln )(=,得到22ln ln nn nn≤αα,再进行裂项)1(1111ln 222+-<-≤n n nnn ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:nn n 1211)1ln(113121+++<+<++++ΛΛ解析:提示:2ln 1ln 1ln 1211ln )1ln(++-++=⋅⋅-⋅+=+ΛΛn n n n n n n n n 函数构造形式:x x x x 11ln ,ln -><当然本题的证明还可以运用积分放缩 如图,取函数xx f 1)(=,首先:⎰-<nin ABCFx S1,从而,)ln(ln |ln 11i n n x x i nn in nin --==<⋅--⎰取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n,n n n ln )1ln(11-+<+,相加后可以得到:F E D C BA n-inyxO)1ln(113121+<++++n n Λ 另一方面⎰->ni n ABDExS 1,从而有)ln(ln |ln 11i n n x x i i n n i n ni n --==>⋅---⎰ 取1=i 有,)1ln(ln 11-->-n n n , 所以有nn 1211)1ln(+++<+Λ,所以综上有nn n 1211)1ln(113121+++<+<++++ΛΛ 例11.求证:e n <+⋅⋅++)!11()!311)(!211(Λ和e n<+⋅⋅++)311()8111)(911(2Λ.解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n Λ解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案函数构造形式:)0(13)1ln(1)0(132)1ln(>+>++⇔>+->+x x x x x x x (加强命题)例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n nΛ解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n nΛ例14. 已知112111,(1).2n n na a a n n +==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n aln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a n n a)2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21nn n n a 211ln 2+++≤。

放缩法在导数压轴题中的应用

放缩法在导数压轴题中的应用

放缩法在导数压轴题中的应用放缩法是高中数学中一种重要的数学方法,尤其在证明不等式中经常用到。

近几年数列在高考中的难度要求降低,放缩法的应用重点也逐渐从证明数列不等式转移到导数压轴题中,尤其是在导数不等式证明中更是大放异彩。

下面举几个例子,以供参考。

一、利用基本不等式放缩,化曲为直例1(2012年高考辽宁卷理科第21题(Ⅱ)):设$f(x)=\ln(x+1)+x+1-1$,证明:当$0<x<2$时,$f(x)<\frac{9x}{x+6}$。

证明:由基本不等式,当$x>0$时,$2(x+1)\cdot1<x+2$,故$x+1<\frac{x+2}{2}$。

因此,$f(x)<\ln(x+1)+\frac{x+2}{2}-1$。

记$h(x)=\ln(x+1)+\frac{x}{2}-\frac{9x}{2(x+6)}$,则$h'(x)=\frac{1154x(x^2+15x-36)}{(x+12)^2(x+6)^2}$。

当$0<x<2$时,$h'(x)<0$,所以$h(x)$在$(0,2)$内是减函数。

故$h(x)<h(0)=\frac{9}{2}$,即$f(x)<\frac{9x}{x+6}$。

评注:本题第(Ⅱ)问若直接构造函数$h(x)=f(x)-\frac{9x}{x+6}$,对$h(x)$进行求导,由于$h'(x)$中既有根式又有分式,因此$h'(x)$的零点及相应区间上的符号很难确定,而通过对$x+1$进行放缩处理,使问题得到解决。

上面的解法中,难点在用基本不等式证明$x+1<\frac{x^2+1}{2}$,亦即是将抛物线弧$y=x+1$放大化简为直线段$y=\frac{x^2+1}{2}$,而该线段正是在左端点$(0,1)$处的切线,这种“化曲为直”的方法是我们用放缩法处理函数问题的常用方法。

2023高考专题篇:5种放缩方法汇总

2023高考专题篇:5种放缩方法汇总

学习札记钻研数学钻研数学5种放缩方法汇总放缩法就是针对不等式的结构特征,运用不等式的性质,将不等式的一边或两边进行放大或缩小,也就是对代数式进行恰到好处的变形,使问题便于解决.放缩方法众多,各有优劣,黑猫花猫能抓住耗子就是好猫……放缩法大致分为以下几类:.将代数式中的分母和分子同时扩大和缩小Ⅰ;Ⅱ.利用均值不等式或其它的不等式放缩数式;Ⅲ.也可以在不等式两边同时加上或减去某一项;Ⅳ.可以把代数式中的一些项进行分解再重新组合,这样就可以消去一些项便于求解,这也是我们常用的裂项法.导数的解答题中,经常会用到一些不等式进行放缩,主要分为五类:.Ⅰ切线不等式①e x ≥x +1;②ln x ≤x -1;③e x ≥ex ;④ln x ≤e 1x ;⑤ln x ≥1-x1.xyy =x +1y =x -11=y e xy =lnxy =exy =exⅡ.与三角有关的一些不等式①当x ≥0时,sin x ≤x ,cos x ≥1-x 22;2时,cos x ≤1-x 24②当0≤x ≤π③当0<x <;π2时,sin x <x <tan x ;学习札记④当0<x ≤钻研数学钻研数学π2时,sin x x ≥π2.Ⅲ.一些常见不等式(稍微提高)①当x >1时,x 2-x +2121<(x -1)x +1<ln x <x -1x<21 x -x 1;②当0<x <1时,21 x -x 1 <x -12x<ln x <(x -1)x +1<x 2-x +211;1x ③对数平均不等式:∀x 1>x 2>0,x 1x 2<ln 2x x -1-ln x 2x 1<+x 22.Ⅳ.一些不常见的不等式①当x >0时,e x >1+x +21x 2;+②当0<x <1时,ln1x 1-x >2x +32x 3;+ 当-1<x <0时,ln 1x 1-x <2x +32x 3.Ⅴ.偶尔用上的不等式1≤1+n1x .当n >1,n ∈N ∗,x >-1时,则:(1+x )n≥1+nx ,(1+x )n(当且仅当x =0时等号成立.)在解答导数问题时,我们经常使用到函数的切线、割线逼近进行放缩,两个常用的结论为ln x ≤x -1(当且仅当x =1时取等号),e x ≥x +1(当且仅当x =0时取等号),借助这两个结论可以将超越函数放缩成一次函数.针对高考压轴导数问题,放缩法可以起到很好的效果.使用放缩法需要较高的拆分组合技巧,一定要注意同向传递,还要把握好放缩的“尺度”,否则将达不到预期的目的,或者会得出错误的结论.在不等式“改造”或证明的过程中,有时借助于e x ,ln x 有关的常用不等式进行适当的放缩,再进行证明,会取得意想不到的效果.典例1.已知函数f (x )=ae x +2x -1(其中常数e =2.71828⋯,是自然对数的底数).ⅰ讨论f (x )的单调性;ⅱ证明:对任意的a ≥1,当x >0时,f (x )≥(x +ae )x .典例剖析指数放缩学习札记钻研数学钻研数学解析:ⅰ求导,得f(x )=ae x+2.当a ≥0时,f (x )>0,f (x )在R 上单调递增;当a <0时,令f (x )=0,得x =ln -a2.2当x ∈ -∞,ln -a 时,f (x )>0,f (x )单调递增;当x ∈ ln - a2,+∞时,f (x )<0,f (x ) 单调递减.综上,当a ≥0时,f (x )在R 上单调递增;2当a <0时,f (x )在 -∞,ln -a上单调递增 ,2,+∞ 上单调递减.在 ln -aⅱ解法1:指对处理技巧exx 型当a ≥1,x >0时,要证f (x )≥(x +ae )x ,x 2-(2即ae x -x 2+(2-ae )x -1≥0,即1--)x +ae 1ae x≥0,x 2-(2令g (x )=1--)x +ae 1x,ae x (x -1则g (x )=)(+ae -3)ae x,①当a ≥e3时,令g (x )=0,得x =1,故当x ∈(0,1)时,g (x )<0,g (x )单调递减;当x ∈(1,+∞),g (x )>0,g (x )单调递增.所以g (x )≥g (1)=0,即f (x )≥(x +ae )x .②当1≤a <e3吋,令g (x )=0,得x =1,或x =3-ae .当x ∈(0,3-ae ),(1,+∞),g (x )>0,g (x )单调递增;当x ∈(3-ae ,1),g (x )<0,g (x )单调递减.又g (0)=1-a1≥0,g (1)=0,故此时g (x )≥0,即f (x )≥(x +ae )x .综上,对任意的a ≥1,当x >0时,f (x )≥(x +ae )x .解法2:指对处理技巧e xx+主元放缩 当a ≥1,x >0时,要证f (x )≥(x +ae )x ,即a e x -ex -(x -1)2≥0,即证e x x -x a -ax 1+a2-e ≥0,令g (x )=e x x -x a -ax 1+a2-e ,(x -1)-x -ae 则g (x )=x1ax 2,学习札记当a ≥1时,ae x -x -1≥e x -x -1,当且仅当a =1时等号成立,令ℎ(x )=e x-x -1,则ℎ(x )=e x-1>0在(0,+∞)上恒成立,故ℎ(x )单调递增,ℎ(x )>ℎ(0)=0,g (x )=0,则x =1,所以x ∈(0,1)时,g (x )<0,g (x )单调递减;当x ∈(1,+∞)时,g (x )>0,g (x )钻研数学钻研数学单调递增.所以g (x )≥g (1)=0,即e x x -x a -ax 1+a2-e ≥0,即f (x )≥(x +ae )x .综上,对任意的a ≥1,当x >0时,f (x )≥(x +ae )x .解法3:直接讨论法当a ≥1,x >0时,要证f (x )≥(x +ae )x ,即a e x -ex -(x -1)2≥0,令g (x )=ae x -x 2+(2-ae )x -1,则g (x )=ae x -2x -(ae -2),因此g (x )=ae x -2在(0,+∞)上单调递增.①当a ≥2时,g (x )>0在(0,+∞)上恒成立,故g (x )单调递增,又g (1)=0,故当x ∈(0,1)时,g (x )<0,g (x )单调递减,当x ∈(1,+∞)时,g (x )>0,g (x )单调递增.所以g (x )≥g (1)=0,即f (x )≥(x +ae )x .当1≤a <2时,令g (x )=0,得x =ln a2∈(0,1).当x ∈ 0,ln a 2,g (x )<0,g (x )单调递减;当x ∈ ln a 2,+∞,g (x )>0,g (x )单调递增.2②当e -1≤a <2时,g (0)=a (1-e )+2≤0,又g (1)=0,g ln a2<g (1)=0,故当x ∈(0,1)时,g (x )<0,g (x )单调递减;当x ∈(1,+∞)时,g (x )>0,g (x )单调递增.所以g (x )≥g (1)=0,即f (x )≥(x +ae )x .2③当1≤a <e -1时,则g (0)=a (1-e )+2>0,又g ln a 2<g (1)=0,故存在唯一x 0∈ 0,ln a2,使得ℎ x 0=0,当x ∈ 0,x 0,(1,+∞)时,g (x )>0,g (x )单调递增;当x ∈ x 0,1时,g (x )<0,g (x )单调递减.又g (0)=a -1≥0,g (1)=0.故此时g (x )≥0,即f (x )≥(x +ae )x .综上,对任意的a ≥1,当x >0时,f (x )≥(x +ae )x .学习札记钻研数学钻研数学解法4:主元放缩+指数放缩法当a ≥1,x >0时,要证f (x )≥(x +ae )x ,即a e x-ex -(x -1)2≥0,令g (x )=e x -ex ,则g (x )=e x -e ,令g (x )=0,得x =1.当x ∈(-∞,1),g (x )<0,g (x )单调递减;当x ∈(1,+∞),g (x )>0,g (x )单调递增.所以g (x )≥g (1)=0,即e x -ex ≥0,当且仅当x =1时等号成立,故a e x -ex ≥e x -ex ,当且仅当a =1,x =1时等号成立;要证a e x -ex -(x -1)2≥0,只需要证e x -ex -(x -1)2≥0.策略一:直接讨论法令ℎ(x )=e x -ex -(x -1)2(x >0),则ℎ (x )=e x -e -2(x -1),ℎ (x )=e x -2,令ℎ (x )=0,得x =ln2.当x ∈(0,ln2)时,ℎ (x )<0,ℎ (x )单调递减;当x ∈(ln2,+∞)时,ℎ (x )>0,ℎ (x )单调递增.又ℎ (0)=3-e >0,ℎ (1)=0,ℎ (ln2)<0,因此存在唯一x 0∈(0,ln2),使得ℎ x 0=0.当x ∈ 0,x 0时,ℎ (x )>0,ℎ(x )单调递增;当x ∈ x 0,1,ℎ (x )<0,ℎ(x )单调递减.又ℎ(0)=0,ℎ(1)=0,故此时ℎ(x )≥0恒成立,即f (x )≥(x +ae )x .综上,对任意的a ≥1,当x >0时,f (x )≥(x +ae )x .策略二:指数处理,同解法 1ex 即证1-+(-1)x 2e x ex ≥0,令g (x )=1-+(-1)x 2e x ,(x -1则g (x )=)(+e -3x )e x,令g (x )=0,得x =1,或x =3-e .当x ∈(0,3-e ),(1,+∞)时,g (x )>0,g (x )单调递增;当x ∈(3-e ,1)时,g (x )<0,g (x )单调递减.又g (0)=0,g (1)=0,故此时g (x )≥0,即f (x )≥(x +ae )x .综上,对任意的a ≥1,当x >0时,f (x )≥(x +ae )x .策略三:指对处理,同解法2即证e x x -x -x1+2-e ≥0,令g (x )=e x x -x -x (x -1)-x -e 1+2-e ,则g(x )=x 1 x 2.令ℎ(x )=e x -x -1,则ℎ (x )=e x -1>0在(0,+∞)上恒成立,故ℎ(x )单调递增,从而ℎ(x )>ℎ(0)=0,令g (x )=0,则x =1.当x ∈(0,1)时,g (x )<0,g (x )单调递减;学习札记当x ∈(1,+∞)时,g (x )>0,g (x )钻研数学钻研数学单调递增.所以g (x )≥g (1)=0,即e x x -x -x1+2-e ≥0,从而f (x )≥(x +ae )x .综上,对任意的a ≥1,当x >0时,f (x )≥(x +ae )x .点评:本题的第ⅱ问是一道开放性较强的试题,可以从多角度入手分析.当a ≥1,x >0时,要证f (x )≥(x +ae )x ,即ae x -x 2+(2-ae )x -1≥0,观察此时含有指数项ae x ,也含有二次项,直接讨论至少要求两次导数才便于探究(解法2),结合指对处理技巧,可考虑同时除以ae x ,这样求导后就只需要讨论二次型函数即可.x 2-(2即证g (x )=1--)x +ae 1ae x≥0,求导后是可因式分解的二次函数,且两根易求,分别为x =1与x =3-ae .但对于x =3-ae 是否在区间(0,+∞)内不能确定,因此需要进行讨论.解法1采用的是整理为ex x 型函数,解法2则是整理为e xx 型的函数,解法2采用的是直接讨论.对于解法4,观察到所证不等式中含有e x 与ex ,即可联想到e x ≥ex ,为此将待证式整理成a e x -ex -(x -1)2≥0, 借助e x ≥ex ,只需要证明e x -ex -(x -1)2≥0即可.接下来的证明与前述含参讨论的情形大同小异,可直接讨论,也可采用指对处理.1.已知函数f (x )=e x -x (e 为自然对数的底数).ⅰ求函数f (x )的最小值;ⅱ若n ∈N *,证明: n 1n + n 2n +⋯+ n n -1n + n n en <e -1.解析:ⅰ∵f (x )=e x -x ,∴f (x )=e x -1,令f (x )=0,得x =0.∴当x >0时,f (x )>0,当x <0时,f (x )<0.∴函数f (x )=e x -x 在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增.∴当x =0时,f (x )有最小值1.ⅱ由(1)知,对任意实数x 均有e x -x ≥1,即1+x ≤e x .令x =-nk(n ∈N *,k =1,2,n -1),则0<1-n k ≤e -k n ,∴ 1-nk n≤ e -n k n =e -k (k =1,2,n -1).典例精练学习札记钻研数学钻研数学即n n -k n ≤e -k(k =1,2,n -1).∵ n n n =1 ,∴ n 1n + n 2n +⋯+ n n -1n +n n n ≤e -(n -1)+e -(n -2)+⋯⋅+e -2+e -1+1.∵e -(n -1)+e -(n -2)+⋯+e -2+e -1+1=1-e -n 1-e -1<1-1e-1=e e -1,∴ n 1n + n 2n +⋯+ n n -1n + n n e n <e -1.典例1.已知函数f (x )=x ln -x1.ⅰ求函数f (x )的单调区间;ⅱ证明:在x >21且x ≠1时,f (x )<x 2+43恒成立.解析:f (x ⅰ)=1ln x -1+x(ln x )2(x >0,且x ≠1),令g (x )=ln x -1+x 1,则g (x )=x 1-x 12=x x -21,当x ∈(0,1)时,g (x )<0,g (x )单调递减;当x ∈(1,+∞)时,g (x )>0,g (x )单调递增;故g (x )>g (1)=0,即f (x )>0恒成立,故f (x )在(0,1),(1,+∞)上单调递增.综上,f (x )的单调递增区间为(0,1),(1,+∞),无单调递减区间.ⅱ解法1:放缩法今ℎ(x )=x -1-ln x (x >0),则ℎ (x )=x -x1,当x ∈(0,1),ℎ (x )<0,ℎ(x )单调递减;当x ∈(1,+∞),ℎ (x )>0,ℎ(x )单调递增.故ℎ(x )≥ℎ(1)=0,即x -1≥ln x ,当且仅当x =1时等号成立.因此,当x ∈2 1,1,x -1>ln x ,则x ln -x 1<1,而此时x 2+43>1,所以x ln -x 1<x 2+43;另一方面,x ∈(1,+∞),由(1)可知ln x >1-x 1,对数放缩典例剖析学习札记因此x ln -x 1钻研数学钻研数学<x -1-x 11=x ,而x 2+4故x 2+43-x >0在(1,+∞)恒成立,3>x >x ln -x1成立.3在x >2综上,不等式x ln -x 1<x 2+4解法2:1,且x ≠1时恒成立.等价变形当x ∈ 21,1时, 即证x -2x +431>ln x ;当x ∈(1,+∞),即证x -31<ln x x 2+4;令F (x )=x -3x 2+41-ln x x >21,且x ≠1 ,x 2+则F (x )=43-2x (x -1) x 2+43 2-x 11=-x 4+x 3-22x -43x 9+1632x +4x 2,令G (x )=x 4+x 3-21x 2-43x +169,3则G (x )=4x 3+3x 2-x -4=4x 2 x +4 33- x +4= x +434x 2-1>0,故G (x )单调递增,G (x )>G 2 1=41>0,故F (x )<0,所以F (x )单调递减,而F (1)=0,故当x ∈ 2 1,1时,F (x )>0,即x -2x +431>ln x ;当x ∈(1,+∞)时,F (x )<0,即x -31<ln x x 2+4.综上,不等式x ln -x 1<x 2+43在x >21且x ≠1时成立.典例精练1.已知函数f (x )=a ln x +x 2,其中a ∈R .ⅰ讨论f (x )的单调性;ⅱ当a =1时,证明:f (x )≤x 2+x -1;ⅲ求证:对任意的n ∈N *且n ≥2,学习札记钻研数学钻研数学都有:2 1+2 2 1+3 1+4 2⋯ 1+n 2<e.(其中e ≈2.7183为自然对数的底数).解析:ⅰ函数f (x )的定义域为(0,+∞),f(x )=x a +2x =a +x2x 2,①当a ≥0时,f (x )>0,所以f (x )在(0,+∞)上单调递增,-②当a <0时,令f (x )=0,解得x =a 2.-当0<x <a 2时,a +2x 2<0,所以f (x )<0,0,-所以f (x )在a 2上单调递减;-当x >a 2时,a +2x 2>0,所以f (x )>0,-所以f (x )在a 2 ,+∞ 上单调递增.综上,当a ≥0时,函数f (x )在(0,+∞)上单调递增;0,-当a <0时,函数f (x )在a 2 上单调递减,-在a 2,+∞ 上单调递增.ⅱ当a =1时,f (x )=ln x +x 2,要证明f (x )≤x 2+x -1,即证ln x ≤x -1,即ln x -x +1≤0.即ln x -x +1≤0.设g (x )=ln x -x +1则g (x )=1-xx,令g ′(x )=0得,x =1.当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0.所以x =1为极大值点,也为最大值点所以g (x )≤g (1)=0,即ln x -x +1≤0.故f (x )≤x 2+x -1.ⅲ证明:由(2)ln x ≤x -1,(当且仅当x =1时等号成立)2,则ln 1+n 1 2<n 12,令x =1+n 1所以ln 1+21 2+ln 1+31 22+⋅⋅⋅+ln 1+n1<212+312+⋅⋅⋅+n 121<1×12+2×3+⋯+n (n 1-1)=11-21+21-31+⋯+n 1-11-n=1-n 1<1=ln e ,2 2 1+31 1+41 22⋯ 1+n 1 1+2即ln 1<ln e ,学习札记钻研数学钻研数学2所以 1+2 2 1+3 1+4 2⋯ 1+n 2<e.典例1. 已知函数f (x )=e x .ⅰ讨论函数g (x )=f (ax )-x -a 的单调性;ⅱ证明:f (x )+ln x +x 3>4x .解析:ⅰg (x )=f (ax )-x -a =e ax -x -a ,g (x )=ae ax -1,①若a ≤0时,g (x )<0,g (x )在R 上单调递减;②若a >0时,当x <-a 当x >-a1ln a 时,g (x )<0,g (x )单调递减;1ln a 时,g (x )>0,g (x )单调递增;综上若a ≤0时,g (x )在R 上单调递减;若a >0时,g (x )在 -∞,-a1ln a 上单调递减 ;在 -a1ln a ,+∞上单调递增;ⅱ证明:要证f (x )+ln x +x 3>4x,只需证x ln x +e x -4x +3>0,由(1)可知当a =1时,e x -x -1≥0,即e x ≥x +1,当x +1>0时,上式两边取以e 为底的对数,可得ln (x +1)≤x (x >-1),用x -1代替x 可得ln x ≤x -1(x >0),又可得ln x 1≤x所以ln x ≥1-x1-1(x >0),1(x >0),所以x ln x +e x -4x +3>x 1-x1+x +1-4x +3=x 2+2x +2-4x=(x +1)2-4x +1≥(2x )2-4x +1=(2x -1)2≥0,指对混合放缩典例剖析学习札记从而不等式f (x )+ln x +钻研数学钻研数学x 3>4x成立. 典例2. 已知函数f (x )=e x -ax 2,g (x )=x ln x -x 2+(e -1)x +1,且曲线y =f (x )在x =1处的切线方程为y =bx +1.ⅰ求a ,b 的值;ⅱ求函数f (x )在[0,1]上的最小值;ⅲ证明:当x >0时,g (x )≤f (x ).解析:ⅰa =1,b =e -2.ⅱf (x )min =1;ⅲ即证:e x +(1-e )x -x ln x -1≥0,因为f (0)=1,且曲线y =f (x )在x =1处的切线方程为y =(e -2)x +1,故可猜测:当x >0且x ≠1时,f (x )的图象恒在切线y =(e -2)x +1的上方.下面证明:当x >0时,f (x )≥(e -2)x +1.解法1:设φ(x )=f (x )-(e -2)x -1(x >0),则φ (x )=e x -2x -(e -2),令F (x )=φ (x ),F (x )=e x -2,当x ∈(0,ln2)时,F (x )<0,φ (x )单调递减;当x ∈(ln2,+∞)时,F (x )>0,φ (x )单调递增.又φ (0)=3-e >0,φ (1)=0,0<ln2<1,φ (ln2)<0所以,存在x 0∈(0,1),使得φ x 0=0.当x ∈ 0,x 0∪(1,+∞)时,φ (x )>0;当x ∈ x 0,1,φ (x )<0;故φ(x )在 0,x 0上单调递增,在 x 0,1上单调递减,在(1,+∞)上单调递增.又φ(0)=φ(1)=0,所以φ(x )=e x -x 2-(e -2)x -1≥0,当且仅当x =1 时取等号.e x +(2-e )x -故1x≥x (x >0).由(2)知,e x ≥x +1,故x ≥ln (x +1),所以x -1≥ln x ,当且仅当x =1时取等号.e x +(2-e )x -所以1x≥x ≥ln x +1,e x +(2-e )x -即1x第11/20页≥ln x +1.所以e x +(2-e )x -1≥x ln x +x ,即e x +(1-e )x -x ln x -1≥0成立(当x =1时等号成立).学习札记故当x >0时,g (x )≤f (x )钻研数学钻研数学.解法2:要证x ln x -x 2+(e -1)x +1≤e x -x 2,等价于证明x ln x +(e -1)x +1-e x ≤0,又x >0,可转化为证明ln x +e -1+x 1-e xx≤0,令F (x )=ln x +e -1+x 1-e xx ,则F(x )=x 1-x 1e x(2-x -1)x 2(x -1=)1-e x x 2,因为x >0,所以当x ∈(0,1)时,F (x )>0,F (x )单调递增;当x ∈(1,+∞)时,F (x )<0,F (x )单调递减;所以F (x )有最大值F (1)=0,故F (x )≤0恒成立,即当x >0时,g (x )≤f (x ).典例精练1.已知函数f (x )=ln x -a 2x 2+ax .ⅰ试讨论f (x )的单调性;ⅱ若a =1,求证:当x >0时,f (x )<e 2x -x 2-2.解析:f (x )的定义域为(0,+∞)ⅰ,当a =0时,当a >0f (x )=ln x 在(0,+∞)上单调递增;时,f ′(x )=x1-2a 2x +a=-2a 2x 2+ax +1x=-(ax -1)(2ax +1)x,当0<x <a 1时,f ′(x )>0,当x >a1时,f ′(x )<0,所以f (x )在 0,a 1上单调递增,在 a1,+∞上单调递减;f ′(x )=-(ax -1当a <0时,)(2ax +1)x,当0<x <-21a 时,f ′(x )>0,当x >-21a时,f ′(x )<0, 所以f (x )在 0,-21a 上单调递增,在 -21a,+∞上单调递减.ⅱ当a =1时,f (x )=ln x -x 2+x ,要证当x >0时,f (x )<e 2x -x 2-2,只需证ln x <e 2x -x -2.学习札记令g (x )=e 2x -2x -1,则g ′(x )=2e 2x -2=2(e 2x -1)钻研数学钻研数学,当x >0时,g ′(x )>0,所以g (x )在(0,+∞)上单调递增,所以g (x )>g (0)=0,所以,当x >0时,e 2x >2x +1,所以e 2x -x -2>x -1.令h (x )=x -1-ln x ,x >0,则h ′(x )=1-x1,当0<x <1时,h ′(x )<0,当x >1时,h ′(x )>0,所以h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以h (x )min =h (1)=0,所以当x >0时,h (x )≥h (1)=0,即当x >0时,x -1≥ln x ,所以,当x >0时,所以,当x >0时,e 2x -x -2>x -1≥ln x ,即ln x <e 2x -x -2,f (x )<e 2x -x 2-2.典例1. 设a >0,且a ≠1,函数f (x )=sin ax -a sin x .ⅰ若f (x )在区间(0,2π)上有唯一极值点x 0, 证明:f x 0<min {2a π,(1-a )π};ⅱ若f (x )在区间(0,2π)没有零点,求a 的取值范围.解析:f (x )=a cos ax -a cos ⅰx=a (cos ax -cos x )=-2a sin a +21x sin a -21x ,若a >1,则f (x )在区间(0,2π)至多有x 1=a 2π+1,x 2=a 4π+1两个变号零点,故0<a <1,令f (x )=0,得x m =a 2m +π1,x n =a 2n +π1,其中m ,n ∈Z ,仅当m =1时,x 1=a 2π+1∈(0,2π),且在x 1的左右两侧,导函数的值由正变负,故当0<a <1时,f (x )在区间(0,2π)有唯一极值点x 0=a 2π+1,此时f x 0=sin ax 0-a sin x 0.解法1:将x 0=a 2π +1代入得f x 0=sin a 2+a π1-a sin a 2π+1三角函数放缩典例剖析学习札记=sina 2+a 钻研数学钻研数学π1+a sin 2π-a 2π+1=(1+a )sin a 2+aπ1,①当a 2+a 1≤21,即0<a ≤31时,2a π≤(1-a )π,由不等式x >0,sin x <x 知:(1+a )sin a 2+a π1<(1+a )a 2+a π1=2a π;②当a 2+a 1>21,即当31<a <1时,(1-a )π<2a π,(1+a )sin a 2+a π1=(1+a )sin π-a 2+a π1=(1+a )sin (1a -+a 1)π,由不等式x >0,sin x <x知:(1+a )sin a 2+a π1<(1+a )(1a -+a 1)π=(1-a )π.由(1)(2)知f x 0<min {2a π,(1-a )π} .解法2:由x 0=a 2π+1⇒ax 0=2π-x 0,a =2π-1x 0,代入得f x 0=sin ax 0-a sin x 0=sin 2π-x 0- x 02π-1sin x 0 ,即f x 0=- 2πsin x 0x 0. 以下用分析法可证:f x 0<min {2a π,(1-a )π}.ⅱ①当a >1时,fa π-a sin a π=-a sin aπ<0,f 3π 2 2=sin 3a π=sin a ⋅a π+a >0,所以f a πf 3π2<0,π,3π由零点存在性定理知,f (x )在区间 a 2至少有一个零点;②当21<a <1时,π<a π<2π,π2<a π<π,π<2a π<2π,f a π=-a sin aπ>0,f (π)=sin a π>0,f (2π)=sin2a π<0,由零点存在定理可知,f (x )在区间(π,2π)至少有一个零点;③当0<a ≤21时,f (x )=a cos ax -a cos x =a (cos ax -cos x ),令g (x )=cos ax -cos x ,则g (x )=-a sin ax +sin x ,在区间(0,π)上,cos ax >cos x ,f (x )>0,f (x )是增函数;在区间(π,2π)上,g (x )<0,即g (x )递减,即f (x )递减,f (x )<f (2π)<0,故f (x )在(0,π)上递增,在(π,2π)上递减,学习札记又f (0)=0,f (π)=sin a π>0,f (2π)=sin2a π≥0,即在(π,2π)上,f (x )>0.所以f (x )在区间(0,2π)上没有零点,满足题意.综上所述,若f (x )在区间(0,2π)没有零点钻研数学钻研数学,则正数a 的取值范围是 0,21.典例1. 已知函数f (x )=e x -ax -cos x ,其中a ∈R .ⅰ求证:当a ≤-1时,f (x )无极值点;ⅱ若函数g (x )=f (x )+ln (x +1),是否存在a ,使得g (x )在x =0处取得极小值?并说明理由.解析:ⅰ证明:f (x )=e x -a +sin x ,显然e x >0,-1≤sin x ≤1,当a ≤-1时,e x -a +sin x >0-a -1≥0,即f (x )>0,所以函数f (x )在其定义域上为增函数,故f (x )无极值点;1ⅱg (x )=e x -ax -cos x +ln (x +1),g (x )=e x -a +sin x +x +1,显然x =0是g (x )的极小值点的必要条件,为g (0)=2-a =0,即a =2.1此时g (x )=e x +x +1+sin x -2,显然当x ∈ 0,π2时,1g (x )=e x +x +11+sin x -2>1+x +x +1+sin x -2>sin x >0,当x ∈ -4 1,0时,(1+x ) 1-x +3 2x 2=1+x 22(3x +1)>1,1故1+x <1-x +32x 2,2令m (x )= 1+x +x 2e -x ,则m (x )=-x 22e -x ≤0,故m (x )是减函数,故当x <0时,m (x )>m (0)=1,即e x<1+x +x 22,令ℎ(x )=sin x -21x ,则ℎ (x )=cos x -21,当-1<x <0时,ℎ (x )>cos1-21>0,故ℎ(x )在(-1,0)单调递增,故当-1<x <0时,ℎ(x )<ℎ(0)=0,即sin x <21x ,含三角函数的指对放缩典例剖析学习札记钻研数学钻研数学故当x ∈ -41,0时,g (x )=e x +x 1+1+sin x -22≤ 1+x +x 2+ 1-x + 32x 2-2+x2=2x 2+x2<0,因此,当a =2时,x =0是g (x )的极小值点,即充分性也成立.综上,存在a =2,使得g (x )在x =0处取得极小值.点评:本题第(2)问先由必要性探路可知a =2,再证明当a =2时,x =0是函数g (x )的极小值点,即证明其充分性,由此即可得出结论.典例2. 已知函数f (x )=2ln (x +1)+sin x +1,函数g (x )=ax -1-ln x (a ∈R ,且a ≠0).ⅰ讨论函数g (x )的单调性;ⅱ证明:当x ≥0时,f (x )≤3x +1;ⅲ证明:当x >-1时,f (x )< x 2+2x +2e sin x .解析:ⅰg (x )定义域为(0,+∞),g (x )=a -x 1=ax x-1.当a <0时,g (x )<0,则g (x )在(0,+∞)上单调递减;当a >0时,令g (x )>0,得x >a1,即g (x )在 a1,+∞上单调递增;令g (x )<0,得0<x <a 1,得g (x )在 0,a1上单调递减.综上所述,当a <0时,g (x )在(0,+∞)上单调递减;1,+∞上单调递增,在 0,a1上单调递减.当a >0时,g (x )在 a ⅱ解法1:作差法+直接求导2设函数ℎ(x )=f (x )-(3x +1),则ℎ (x )=x +1+cos x -3.2因为x ≥0,所以x +1∈(0,2],cos x ∈[-1,1],则ℎ (x )≤0,从而ℎ(x )在[0,+∞)上单调递减,所以ℎ(x )=f (x )-(3x -1)≤ℎ(0)=0,即f (x )≤3x +1.解法2:常用不等式+兵分两路当a =1时,g (x )=x -1-ln x ,由(1)知g (x )min =g (1)=0,学习札记钻研数学钻研数学所以ln x ≤x -1,所以2ln (x +1)≤2x .令φ(x )=x -sin x ,则φ(x )=1-cos x ≥0恒成立,又φ(0)=0,所以当x ≥0时,有φ(x )=x -sin x ≥0,即sin x ≤x .所以f (x )=2ln (x +1)+sin x +1≤2x +x +1=3x +1.ⅲ证明:当a =1时,g (x )=x -1-ln x ,由ⅰ知g (x )min =g (1)=0,所以x ≥ln x +1,当x >-1时,(x +1)2>0,(x +1)2e sin x >0,所以(x +1)2e sin x >ln (x +1)2e sin x +1=2ln (x +1)+sin x +1.从而 x 2+2x +2e sin x >(x +1)2e sin x>ln (x +1)2e sin x +1=2ln (x +1)+sin x +1=f (x ),所以f (x )< x 2+2x +2e sin x .典例精练1.已知函数f (x )=x e +xa(a ∈R )在x =0处取得极值.ⅰ求a ,并求f (x )的单调区间;ⅱ证明:当0<m ≤e ,x ∈(1,+∞)时,xe x -2-m (x -1)ln x >0.解析:f (x )=1-e ⅰx x-a,由题意可得,f (0)=1-a =0,故a =1,f (x )=1e +x x ,f (x )=-exx ,由f (x )>0可得x <0,故函数单调递增区间(-∞,0),由f (x )<0可得x >0,故函数单调递减区间(0,+∞),ⅱ证明:由(1)可知f (x )在(-∞,0)上单调递增,在(0,+∞)单调递减,故f (x )≤f (0)=1,即x e+x1≤1,故e x ≥x +1,所以e x -2≥x -1,当且仅当x =2时取等号,又因为x >0,所以xe x -2≥x (x -1),所以xe x -2-m (x -1)ln x≥x (x -1)-m (x -1)ln x =(x -1)(x -m ln x ),因为x >1,所以ln x >0,因为0<m ≤e ,所以x -m ln x ≥x -e ln x ,令g (x )=x -e ln x ,则g (x )=1-xe,学习札记由g (x )>0可得,x >e ,故g (x )在(e ,+∞)上单调递增,由g(x )<0可得,x <e ,故g (x )在(-∞,e )上单调递减,所以g (x )≥g (e )=0,即x -e ln x ≥0在x =e 处取得等号,所以xe x -2-m (x -1)ln 钻研数学钻研数学x≥(x -1)(x -m ln x )≥(x -1)(x -e ln x )≥0,由于取等条件不同,所以xe x -2-m (x -1)ln x >0.2.已知函数f (x )=ln x -x e.ⅰ若曲线y =f (x )存在一条切线与直线y =ax 垂直,求a 的取值范围.ⅱ证明:f (x )<x 2-ln x -43sin x .解析:f (x )=ⅰx 1-e 1.因为f (x )的定义域为(0,+∞),所以x 1-e 1>-e1.因为曲线y =f (x )存在一条切线与直线y =ax 垂直,所以-a 1>-e1,解得a <0或a >e ,则a 的取值范围为(-∞,0)∪(e ,+∞).ⅱf (x )=x 1-e 1=e xe-x.当x ∈(0,e )时,f (x )>0;当x ∈(e ,+∞)时,f (x )<0.所以f (x )max =f (e )=ln e -ee=0.设函数g (x )=x 2-ln x ,则g(x )=2x -x 1=2x x2-1.2当x ∈ 0,22时,g (x )<0;当x ∈ 2,+∞时,g(x )>0.2所以g (x )min =g 2=21-21ln 21=21+21ln2.因为ln2>ln e =21,g (x )min >43.因为43,43sin x ∈ -4 3,所以x 2-ln x -43sin x >0.又f (x )≤f (x )max =0,所以f (x )<x 2-ln x -43sin x .3.已知函数f (x )=x ln x +32x 2-(a +1)x +b .ⅰ当a =3时,求f (x )的单调区间;ⅱe 为自然对数的底数,若a ∈ e 3-1,3e +1时,f (x )≥0恒成立,学习札记证明:b -2a +6>0钻研数学钻研数学.解析:ⅰ当a =3时,f (x )=x ln x +32x 2-4x +b ,则f (x )=ln x +3x -3在(0,+∞)上单调递增,又f (1)=0,故当x ∈(0,1)时,f (x )<0,f (x )单调递减;当x ∈(1,+∞)时,f (x )>0,f (x )单调递增.综上,当a =3时,f (x )的单调咸区间为(0,1),单调增区间为(1,+∞).ⅱ解法1:对f (x )求导,得f (x )=ln x +3x -a ,知f (x )在(0,+∞)上单调递增.因为a ∈ e 3-1,3e +1 ,故f e 1= e3-1-a <0,f (e )=3e +1-a >0,故存在唯一x 0∈ e1,e ,使得f x 0=0 ,即ln x 0+3x 0-a =0,所以a =ln x 0+3x 0.当x ∈ 0,x 0时,f (x )<0,f (x )单调递减;当x ∈ x 0,+∞时,f (x )>0,f (x ) 单调递增.又f (x )≥0,故f (x )min =f x 0=x 0ln x 0+ 32-(a +1)x 0+b ≥02x 0,即x 0ln x 0+32x 0 2- ln x 0+3x 0+1x 0+b =-32-x 0+b ≥2x 00在x 0∈ e 1,e 上恒成立.令ℎ(x )=-32x 2-x +b ,则ℎ(x )在 e1,e 上单调递减,故只需ℎ(e )=-3故b -2a +6≥32e 2-e +b ≥0,即b ≥32e 2+e -6e -2+6=32e 2+e ,2e 2-5e +4>0,从而得证.解法2:转化为关于x 0的函数所以b ≥32+x 02x 0,则b -2a +6≥32x 0 2+x 0-2 ln x 0+3x 0+6=32-5x 0-2ln x 0+62x 0,令ℎ(x )=32x 2-5x -2ln x +6 e1<x <e ,则ℎ (x )=3x -5-x 2=3x 2-x (3x +5x -2=1)(x -2)x,令ℎ x 0=0,得x =2.学习札记钻研数学钻研数学当x ∈e1,2,ℎ (x )<0,ℎ(x )单调递减 ;当x ∈(2,e )时,ℎ (x )>0,ℎ(x )单调递增.故ℎ(x )min =ℎ(2)=32×4-10-2ln2+6=2(1-ln2)>0,即b -2a +6>0,从而不等式得证.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(高手必备)高考导数大题中最常用的放缩大法
相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论
⑴sin ,(0,)x x x π<∈,变形即为
sin 1x x
<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1.
⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>.
将这些不等式简单变形如下: ex
x ex e x e x x x x x 1ln ,,1,1ln 11-≥≥+≥-≤≤-那么很多问题将迎刃而解。

例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(⋅≤>++=若对任意的设恒成立,求a 的取值范围。

放缩法:由可得:1+≥x e x 2)1(ln 1ln 2)1(ln )1(ln 1ln ln 22=+-++≥+-=+-=+-+x x x x x x e x x xe x x e x x x x
高考中最常见的放缩法可总结如下,供大家参考。

第一组:对数放缩
(放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ⎛⎫<-> ⎪⎝⎭,()11ln 012x x x x ⎛⎫>-<< ⎪⎝⎭
, )
ln 1x x
<>,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102
x x x x +≤--<<,()()21ln 102
x x x x +≥-> (放缩成类反比例函数)1ln 1x x
≥-,()()21ln 11x x x x ->>+,()()21ln 011x x x x -<<<+, ()ln 11x x x +≥+,()()2ln 101x x x x +>>+,()()2ln 101x x x x +<<+
第二组:指数放缩
(放缩成一次函数)1x e x ≥+,x e x >,x e ex ≥, (放缩成类反比例函数)()101x e x x ≤
≤-,()10x e x x
<-<, (放缩成二次函数)()21102x e x x x ≥++>,2311126x e x x x ≥+++, 第三组:指对放缩
()()ln 112x e x x x -≥+--=
第四组:三角函数放缩
()sin tan 0x x x x <<>,21sin 2x x x ≥-,22111cos 1sin 22
x x x -≤≤-. 第五组:以直线1y x =-为切线的函数
ln y x =,11x y e -=-,2y x x =-,11y x =-
,ln y x x =. 拓展阅读:为何高考中总是考这些超越函数呢?和x e x ln 因为高考命题专家是大学老师,他们站在高观点下看高中数学,一览无遗。

作为学生没有多大必要去去了解大学的知识,但是作为老师却是有很大的必要去理解感悟高考题命题的背景。

超越函数本质上就是高等数学中的泰勒公式。

即从某个点0x 处,我们可以构建一个多项式来近似函数在这一点的邻域中的值,如果这个点是0,就是形式比较简单的麦克劳林级数。

简而言之,它的功能就是把超越式近似表示为幂函数。

常见的幂级数展示式有:
最新文件仅供参考已改成word文本。

方便更改。

相关文档
最新文档