无人机各模块详解与技术分析

合集下载

无人机自主控制系统的能力需求、结构组成及关键技术分析

无人机自主控制系统的能力需求、结构组成及关键技术分析

无人机自主控制系统的能力需求、结构组成及关键技术分析得益于机械、材料、控制、通信、光学、软件、算法等相关技术的进步,近年来,无人机系统的能力和关键技术成熟度得以不断提升。

且在技术推动和市场拉动的双重作用下,无人机系统正逐步进入一种良性循环的迭代发展模式:一方面,无人机系统在各种传统的经典任务场景中表现得越来越熟练和出色,逐渐实现了“能飞到能用”的跨越;另一方面,无人机系统能力的提升拓展了其应用领域,在原有需求之外不断涌现出更多新的和潜在的应用场景,且来自新需求的牵引反过来促进了相关技术的发展。

在上述发展过程中,面向自主性/自主能力要求的自主控制系统作为无人机最为重要的子系统之一,其研究和应用无疑是无人机系统不断成熟和走向实际应用的重要推动力量,对其理解和认识也在不断深化与完善。

完全意义上的自主控制是无人机未来发展的必然方向和典型特征,其首要目标是支撑无人机实现自主飞行和自主完成特定任务的能力。

而且,近年来人工智能技术的发展与进步也为自主控制系统智能化的“认知”和“决策”能力实现提供了新的思路和动力。

1对自主控制系统的认识一般而言,用于实现自主性或自主能力的控制过程都可以称为自主控制,自主控制本质上属于智能控制范畴,系统自主性的强弱取决于智能水平的高低。

作为自主性实现的重要手段,智能控制学科在基础理论方面取得了长足的进步,其应用领域不断拓展。

但时至今日,客观地说,智能控制仍然不成熟,这在很大程度上归因于关于“智能”的研究本身,智能科学这一充满挑战性的领域至今尚未取得根本性突破,仍有大量的关键问题需要探索和研究。

无人系统是智能控制技术最为重要的应用载体和研究方向,随着电子技术、计算机技术和控制技术的发展,以无人机为代表的无人系统自20世纪90年代起出现了爆炸式的发展。

无人系统与生俱来固有的自主性需求,结合智能控制等先进控制技术发展,催生了自主控制相关概念的出现。

自那时起,关于无人系统自主控制的研究在英美等发达国家开始逐渐得到重视,自主控制系统及相关技术也成为无人系统自主性实现最为重要的支撑。

无人机操控与维护中的技术要点解析

无人机操控与维护中的技术要点解析

无人机操控与维护中的技术要点解析随着科技的不断进步,无人机作为一种重要的航空器,已经在各个领域得到广泛应用。

无人机的操控与维护是确保其安全运行和有效使用的关键。

本文将从无人机的操控技术、维护要点以及未来发展方向等方面进行分析和探讨。

一、无人机操控技术1. 遥控技术:无人机的操控主要依赖于遥控技术。

遥控器作为操控的核心设备,通过无线信号与无人机建立连接,实现对其飞行、拍摄、悬停等功能的控制。

遥控技术的稳定性和精准度对于无人机的操控至关重要。

2. 自动化技术:随着人工智能和自动化技术的发展,无人机的自主飞行能力越来越强。

通过搭载各种传感器和算法,无人机可以实现自主避障、自动起降、路径规划等功能。

这些自动化技术的应用,不仅提高了无人机的飞行安全性,还提高了操作的便捷性和效率。

3. 数据传输技术:在无人机的操控过程中,数据的传输是至关重要的。

无人机需要将传感器采集到的数据及时传回地面控制中心,以便操作员进行实时监控和决策。

因此,高效可靠的数据传输技术是无人机操控的关键之一。

二、无人机维护要点1. 机身检查:无人机的机身是其运行的基础,因此定期进行机身检查是非常重要的。

包括检查机身结构是否完好、螺旋桨是否松动、电池是否正常等。

机身检查的目的是确保无人机在飞行过程中不出现意外情况,保证飞行安全。

2. 电池维护:无人机的电池是其动力来源,因此电池的维护也是非常重要的。

定期检查电池的充电状态、电池温度、电池容量等,并根据使用情况合理充放电,以延长电池的寿命。

3. 摄像设备维护:无人机常常搭载摄像设备,用于拍摄照片或录制视频。

因此,定期检查和清洁摄像设备是必要的,以确保图像质量和拍摄效果。

此外,还需要注意保护摄像设备,避免碰撞或损坏。

4. 软件更新:无人机的软件系统也需要定期更新,以保持其功能的完善和稳定。

软件更新通常包括系统补丁、新功能的添加以及性能的优化等。

及时进行软件更新可以提升无人机的操控性和安全性。

三、无人机操控与维护的未来发展1. 自主化:随着人工智能和自动化技术的不断发展,无人机的操控和维护将更加自主化。

无人机零部件及其功能介绍

无人机零部件及其功能介绍

无人机零部件及其功能介绍1. 无人机概述无人机(Unmanned Aerial Vehicle, UAV)是一种无人驾驶的飞行器,利用先进的导航和控制系统,可以自主飞行、执行任务并完成任务。

无人机在军事、民用和商业领域都有广泛的应用,如侦察、目标跟踪、环境监测、农业植保等。

2. 无人机主要部件2.1 飞行器平台无人机的基础结构,包括机体、机翼、起落架等部分,提供飞行器的整体支撑和操控。

根据不同任务需求,可以选择不同类型的飞行器平台,如固定翼、旋翼或飞艇等。

2.2 动力系统为无人机提供飞行动力,包括发动机、电动机、电池等部件。

根据飞行器平台的不同,动力系统的类型和功率也会有所不同。

2.3 导航控制系统用于无人机的自主飞行和操控,包括GPS、惯性测量单元(IMU)、控制单元等部件。

导航控制系统能够根据预设的航线或实时指令,实现精准的航行和姿态控制。

2.4 任务载荷安装在无人机上的设备,用于执行特定的任务,如摄像头、传感器、通信设备等。

任务载荷的类型和数量取决于无人机的应用领域和任务需求。

3. 无人机次要部件3.1 通信系统实现无人机与地面控制站之间的数据传输和指令接收,包括无线电、卫星通信等设备。

通信系统需要具备稳定、可靠的性能,以保证无人机在复杂环境中的正常工作。

3.2 传感器系统用于感知周围环境,为无人机提供导航和任务执行所需的信息,如高度计、气压计、温度传感器等。

传感器系统的种类和数量取决于无人机的应用领域和任务需求。

3.3 防护系统保护无人机及其主要部件不受外部环境的影响,如防水、防尘、防雷等设备。

防护系统的设计和配置取决于无人机的应用环境和任务需求。

4. 无人机功能介绍4.1 侦察与监视无人机可以利用搭载的摄像头和其他传感器进行侦察与监视任务。

它们可以飞行到目标区域上空,获取高分辨率的图像和视频资料,实时传输给地面控制站。

这种技术广泛应用于军事领域,为指挥员提供实时情报支持。

4.2 目标跟踪与打击无人机可以跟踪并锁定目标,进行打击或摧毁。

无人机零部件及其功能介绍 ppt课件

无人机零部件及其功能介绍  ppt课件

显示端 接收天线
显示端:可以配置iPad、安卓机和苹果手机等,或者大疆精灵
4Pro V2.0版本自带的高亮显示屏
ppt课件
11
遥控器
显示器托架
电源键
天线 摇杆
遥控器是用来对无人机飞行动作进行控制的部件,主要包 括电源键、摇杆、天线和几个快捷键
ppt课件
12
无人机分类
飞行器分类 稳定性
固定翼 自稳定
续航时间

直升机
不稳定,完整驱 动
多旋翼
不稳定,欠驱 动


飞行效率 荷载 其他


起飞助跑,降 落滑行


可垂直起降, 机械结构复杂


可垂直起降, 机械结构简单
ppt课件
13
无人机分类
无人机 重量分 类(按 民航法 规)
微型:0kg-7 kg 轻型:7 kg-116 kg 小型:116 kg -5700 kg 重型(大型):5700kg以上
无人机零部件及其功能介绍
总体结构介绍 动力系统 机身系统 机载系统 图传系统 遥控器
无人机分类
多旋翼无人机历史
无人机应用
无人区使用注意 事项
ppt课件
禁飞区
3
总体结构介绍
飞控系统
螺旋桨
图传系统
电机 机架
起落架
电调
相机
云台
智能电池
ppt课件
遥控器
4
动力系统
螺旋桨:无人机产生推力的最主要部件,
四旋翼无人机一般搭配4个螺旋桨,其中两 个正方向,两个反方向
ppt课件
Hale Waihona Puke 5电机:多旋翼无人机的电机多采用无刷直流电动机,

无人机中的数据处理与分析技术研究

无人机中的数据处理与分析技术研究

无人机中的数据处理与分析技术研究随着科技的不断进步和人类对技术的不断追求,无人机这个词汇越来越频繁地出现在我们的日常生活中。

随着其广泛应用,气象、农业、航空、安防领域等等对无人机的需求也越来越大,使得无人机技术不断得到探索和发展。

但是,无人机的数据处理与分析技术也变得越来越重要,因为有了高效的数据处理与分析技术,无人机的应用场景才得以广泛拓展。

一、无人机的数据处理技术无人机在飞行过程中会搜集大量的数据,如图像、声音、温度、气压等等数据。

因为这些数据是分散和不完整的,对于数据处理和分析的技术提出了高要求。

在过去,当人们需要对这些数据进行处理时显得困难,但是在现代技术的助力下,针对无人机数据处理,大量的数据处理技术得以应用。

其中一些常用的数据处理技术有以下几种:1. 机器学习算法机器学习算法是指一种能够自我学习的算法,无需进行显式编程,通过分析和理解数据,能够自动的提高自身。

通过使用这些算法,无人机不仅可以自动地获取95%以上的图像识别正确率,而且可以不断的、自我修正,提高精度。

2. 深度学习网络深度学习网络是一种基于人工神经网络的学习,可以用于自然语言处理、语音识别、图像处理等领域。

将深度学习网络用于无人机数据处理时,它们可以学习对图像的语义感知,分析无人机画面中的物体和场景,并自动识别目标。

3. 神经网络算法神经网络是一种反馈系统,重点解决模式识别、有限状态识别、生物信号处理等问题,在无人机应用中,可以用于无人机图像数据的处理与分析。

二、无人机的数据分析技术无人机的数据分析技术主要是为了分析野外数据采集和处理过程中所产生的大量数据,使数据成为有用的信息,以便进行进一步的决策和分析。

无人机的数据分析技术常用于以下领域:1. 农业无人机在农业领域的应用已经成为当今农业生产中的一个重要发展方向。

数据分析技术可以收集关于农田作物、土地和气候的信息,探讨如何优化农业生产。

2. 气象无人机技术在气象领域已被广泛应用,无人机可以搜集需要的气象数据,并且可以实时发送数据到中央控制台和气象站,以帮助研究员更好地处理数据,并监控天气变化。

无人机应用知识:无人机的控制系统及算法介绍

无人机应用知识:无人机的控制系统及算法介绍

无人机应用知识:无人机的控制系统及算法介绍无人机是一种无人驾驶的飞行器,大幅提升了人类的观察、勘察和采集能力。

无人机的控制系统和算法是无人机成功运作的关键,本文将为大家介绍无人机控制系统的工作原理和常用的算法。

一、无人机控制系统的工作原理无人机控制系统的核心是飞行控制器(Flight Controller,FC)。

飞行控制器主要包括传感器、CPU、调制解调器和电源系统等组成,其中传感器和CPU是最为重要的部分。

1.传感器飞行控制器的传感器主要包括以下几种:(1)加速度计(Accelerometer):用于测量飞行器的加速度,确定其加速度的大小和方向。

(2)陀螺仪(Gyroscope):用于测量飞行器的角速度,确定其旋转速度和方向。

(3)磁力计(Magnetometer):用于测量飞行器所处的磁场,确定其所在的方向。

(4)气压计(Barometer):用于测量飞行器所处的高度,确定其海拔高度。

2. CPU飞行控制器中的CPU负责运算和控制,其主要功能包括数据采集、信号处理、控制计算和控制输出等。

通过分析传感器采集的数据,CPU可以得到飞行器的实时状态信息,从而根据预设的控制算法进行计算,输出给各个执行机构控制指令,从而调整飞行器的运动状态。

3.调制解调器调制解调器是飞行控制器与地面站进行通信的设备,主要负责接收地面站发送的指令,并将飞行器状态信息上传到地面站。

4.电源系统飞行控制器需要电源供电,无人机通常使用锂电池作为主要电源。

电源系统设计不当会对飞行控制器的性能产生影响,例如电源电压波动会导致飞行控制器输出的控制指令不稳定。

二、常用的无人机控制算法无人机的控制算法是控制系统重要的组成部分,其好坏直接决定着飞行器飞行的稳定性和精度。

以下是几种常用的无人机控制算法。

1. PID控制算法PID控制算法是一种常见的飞行器控制算法,其作用是通过将飞行器的状态与期望状态之间的误差作为控制量,不断调整飞行器的姿态以尽可能减小误差。

植保无人机操控技术课件:植保无人机故障分析及检修

植保无人机操控技术课件:植保无人机故障分析及检修

植保无人机故障分析及检修
学习任务三 植保无人机动力系统故障分析及维 修
植保无人机故障分析及检修
知识目标
掌握电机电调故障分析及维修。 掌握电池与小电故障分析及维修
知识点1:电机电调故障与维修
植保无人机的拆装
1.电机异响、堵转、转速异常 处理方法:检查电机是否进异物、电机变形、电机轴承松动。 2.提示起飞异常 处理方法: (1)检查对应的问题电机与电调的连接情况(如接触不良)。 (2)必要时,可拆除全部桨叶检查四个电机是否可以正常工作(注意必须按拆换桨叶流程操作)。 (3)如果故障持续存在,请更换电调。 3.提示打桨失败 处理方法: (1)飞机重新上电,手动打桨或者让飞机再次自动起飞,如果飞机打桨成功,就可以确认问题解决。 (2)如果故障持续出现(飞机打桨失败),根据飞控指示灯提示去检查动力连线或重新校正磁罗盘。 4.电机不能连续转动 处理方法:检查电机电调连接,包括相关电机电调线束。 5.发出滴滴响声
知识点1:飞控模块故障与维修
(3)飞控 GPS 无定位、信号弱、无通讯 处理方法: 1)观察起飞点旁边是否有树木或建筑物等物体遮挡。 2)是否有高压线、变电站、信号塔、军事基地及机场等外界干扰。 3)重新上电飞机。 4)检查飞控 GPS 和飞控模块的连接是否正常。 5)更换飞控 GPS 模块。
植保无人机故障分析及检修
植保无人机故障分析及检修
知识点2:传感器模块故障与维修
植保无人机的拆装
1.高度传感器无通信 处理方法:检查相关线束,更换距离传感器。 2.高度传感器读数过低 处理方法: (1)检查高度传感器是否松动,确保高度传感器圆锥里的金属面清洁,无腐蚀,内壁无凸起杂物粘附。 (2)检查是否有电源线或其他配件离传感器太近,这些将影响传感器感知区域。 (3)如果故障依然存在,请更换距离传感器。 3.高度传感器接口断连 处理方法:请检查高度传感器和距离传感器模块之间的连接,如果连接没问题但故障持续,请更换高度传感器 。 4.异常升高、不防地 处理方法:请检查高度传感器(圆锥里的金属面清洁,无腐蚀,内壁无凸起杂物粘附以及附近是否有松动的线 )和距离传感器(圆环面是否清洁)。

《无人机工作系统实用技术》PPT课件模块3 无人机航电系统

《无人机工作系统实用技术》PPT课件模块3  无人机航电系统
电器的输入输出接口: 充电器输出的接口,一般是XT60和
XT30,再配上平衡头的接口。一般还有 5V的输出,甚至是无线充电的输出,可 以给到手机充电,也有type-C的输出, 给笔记本电脑供电。
无人机动力系统
无人机动力系统
相关知识点1:认识无人机动力电池充电器
充电器的输入接口一般有两种,一种是充电器内置了直流电 源,可以直接接到家里的220V的市电,另一种就需要有额外 的直流电源把220V的市电转换成直流电或者是使用大的电池 包,给到充电器,然后再给电池充电。
分电板本质上就是一块电路板,其主要功能是 使各种电子元器组件通过电路进行连接,起到 导通和传输的作用,是电子产品的关键电子互 连件。几乎每种电子设备都离不开印制电路板 ,因为其提供各种电子元器件固定装配的机械 支撑、实现其间的布线和电气连接或电绝缘、 提供所要求的电气特性,其制造品质直接影响 无人机的稳定性和使用寿命。
② 节能环保的再生放电功能。
③ 超快平衡电池单片电芯的能力。
④ 提供智能电源管理系统,可设置放电电流、电压限制和放电量告警,避免过度放电。
⑤ 支持并联充电,在并联充电板的支持下,可同时给多块电池充电。
相关知识点1:认识无人机动力电池充电器
无人机动力电池充电器通常被成为平衡 充电器。这是因为无人机所用的动力电 池是由多片锂电池串联而成,为了能让 串联的锂电池组每一块锂电池都能平衡 电压,同时充满电池,就需要专用的平 衡充电器。
1.电线
电线是指传输电能的导线。分裸线、电磁线和绝缘线。裸线没有绝缘层,包括铜、铝平线、架空绞线以及各种型材(如型 线、母线、铜 排、铝排等)。它主要用于户外架空及室内汇流排和开关箱。电磁线是通电后产生磁场或在磁场中感应产生 电流的绝缘导线。它主要用于电动机和变压器绕圈以及其他有关电磁设备。其导体主要是铜线,应有薄的绝缘层和良好的 电气机械性能,以及耐热、防潮、耐溶剂等性能。选用不同的绝缘材料可获得不同的特性。

多旋翼无人机动力系统各器件的功能

多旋翼无人机动力系统各器件的功能

多旋翼无人机动力系统各器件的功能多旋翼无人机动力系统是无人机的核心部分,由多个器件组成,各具不同功能。

下面将分别介绍多旋翼无人机动力系统中各个器件的功能。

1. 电机(Motor)电机是多旋翼无人机动力系统的关键组件之一,主要负责提供动力。

电机通过转动螺旋桨产生的推力,使无人机能够在空中飞行。

根据无人机的大小和载重要求,电机的功率和转速可以有所不同。

2. 螺旋桨(Propeller)螺旋桨是将电机的动力转化为推力的装置。

它通过旋转产生气流,从而推动无人机向前飞行或保持平衡。

螺旋桨的形状和材料也会影响无人机的性能和稳定性。

3. 电调(Electronic Speed Controller,ESC)电调是无人机动力系统中的控制装置,用于调节电机的转速和功率。

通过接收飞控系统发送的指令,电调可以控制电机的转速,从而控制无人机的飞行姿态和速度。

4. 电池(Battery)电池是无人机动力系统的能量来源,提供给电机和其他电子设备所需的电能。

电池的容量和电压决定了无人机的续航能力和飞行时间。

不同类型的电池(如锂电池、聚合物电池等)具有不同的特性和适用场景。

5. 电源管理系统(Power Distribution Board,PDB)电源管理系统用于管理和分配电能,将电池的电能供给给各个部件。

它通常包括电源输入接口、分配电路和电源输出接口等。

通过电源管理系统,可以确保各个部件能够正常工作,并提供电流和电压保护功能。

6. 电源滤波器(Power Filter)电源滤波器用于过滤电源中的干扰和噪音,保证无人机系统能够正常运行。

它可以减少电源波动对其他电子设备的影响,并提高系统的稳定性和可靠性。

7. 传感器(Sensors)传感器在无人机动力系统中起到感知和监测的作用。

常见的传感器包括加速度计、陀螺仪、罗盘等。

它们可以测量无人机的姿态、速度、方向等参数,并将这些信息传输给飞控系统,从而实现无人机的自动控制和稳定飞行。

无人机飞控技术最详细解读

无人机飞控技术最详细解读

无人机飞控技术最详细解读以前,搞无人机的十个人有八个是航空、气动、机械出身,更多考虑的是如何让飞机稳定飞起来、飞得更快、飞得更高。

如今,随着芯片、人工智能、大数据技术的发展,无人机开始了智能化、终端化、集群化的趋势,大批自动化、机械电子、信息工程、微电子的专业人才投入到了无人机研发大潮中,几年的时间让无人机从远离人们视野的军事应用飞入了寻常百姓家、让门外汉可以短暂的学习也能稳定可靠的飞行娱乐。

不可否认,飞控技术的发展是这十年无人机变化的最大推手。

无人机飞控是什么?飞行控制系统(Flight control system)简称飞控,可以看作飞行器的大脑。

多轴飞行器的飞行、悬停,姿态变化等等都是由多种传感器将飞行器本身的姿态数据传回飞控,再由飞控通过运算和判断下达指令,由执行机构完成动作和飞行姿态调整。

控可以理解成无人机的CPU系统,是无人机的核心部件,其功能主要是发送各种指令,并且处理各部件传回的数据。

类似于人体的大脑,对身体各个部位发送指令,并且接收各部件传回的信息,运算后发出新的指令。

例如,大脑指挥手去拿一杯水,手触碰到杯壁后,因为水太烫而缩回,并且将此信息传回给大脑,大脑会根据实际情况重新发送新的指令。

无人机的飞行原理及控制方法(以四旋翼无人机为例)四旋翼无人机一般是由检测模块,控制模块,执行模块以及供电模块组成。

检测模块实现对当前姿态进行量测;执行模块则是对当前姿态进行解算,优化控制,并对执行模块产生相对应的控制量;供电模块对整个系统进行供电。

悟四旋翼无人机机身是由对称的十字形刚体结构构成,材料多采用质量轻、强度高的碳素纤维;在十字形结构的四个端点分别安装一个由两片桨叶组成的旋翼为飞行器提供飞行动力,每个旋翼均安装在一个电机转子上,通过控制电机的转动状态控制每个旋翼的转速,来提供不同的升力以实现各种姿态;每个电机均又与电机驱动部件、中央控制单元相连接,通过中央控制单元提供的控制信号来调节转速大小;IMU惯性测量单元为中央控制单元提供姿态解算的数据,机身上的检测模块为无人机提供了解自身位姿情况最直接的数据,为四旋翼无人机最终实现复杂环境下的自主飞行提供了保障。

无人机操控与维护的关键技术与难点剖析

无人机操控与维护的关键技术与难点剖析

无人机操控与维护的关键技术与难点剖析无人机作为一种新兴的航空器,正逐渐成为各个领域的热门工具。

无人机的操控与维护是其正常运行的关键,然而,这其中存在着一些技术与难点,需要我们深入剖析。

一、操控技术的关键问题1. 遥控与自主的平衡无人机的操控技术主要有两种方式,一种是通过遥控器进行远程操控,另一种是通过自主飞行系统实现自主飞行。

这两种方式各有优劣,遥控操控可以实现更精确的操作,但受限于遥控距离和信号干扰;而自主飞行系统可以实现更复杂的任务,但在复杂环境下的应对能力有限。

因此,如何在遥控和自主之间找到平衡点,是一个关键问题。

2. 动态环境感知与避障无人机在飞行过程中需要对环境进行感知,并及时做出相应的避障动作。

这需要搭载高精度的传感器,如雷达、摄像头等,以实时获取周围环境的信息。

然而,由于环境的复杂性和无人机自身的限制,如何准确地感知环境并做出正确的避障决策,仍然是一个技术难点。

3. 高精度的姿态控制无人机的姿态控制是指控制无人机在空中的姿态,包括俯仰、横滚和偏航等方向上的变化。

姿态控制的精度直接影响无人机的飞行稳定性和任务完成能力。

目前,姿态控制技术已经相当成熟,但在复杂环境和极端天气条件下的精度仍然需要进一步提高。

二、维护技术的关键问题1. 故障诊断与修复无人机在使用过程中可能会遇到各种故障,如电池故障、电路故障等。

及时准确地诊断故障并进行修复,是维护技术的关键问题之一。

为了实现故障诊断与修复,需要搭载相应的传感器和故障检测系统,并进行故障代码的分析和修复方案的制定。

2. 高效的电池管理无人机的电池管理是维护工作中的重要环节。

电池容量的充足与否直接影响无人机的续航能力和任务执行时间。

因此,如何合理地管理电池,延长其使用寿命,提高电池的充电效率,是一个需要解决的问题。

3. 高可靠性的通信系统无人机的通信系统是实现操控和数据传输的关键。

在复杂的环境中,通信系统可能会受到干扰或中断,导致无人机失去操控或数据传输。

无人机飞控系统的原理、组成及作用详解

无人机飞控系统的原理、组成及作用详解

无人机飞控系统的原理、组成及作用详解
无人机已经广泛应用于警力、城市管理、农业、地质、气象、电力等领域,无人机的飞控系统、云台、图像传输系统都是关键部分。

无人机飞控系统作为其大脑具体的作用是什么?由哪些部分组成?在设计时应该注意哪些问题?
无人机飞控的作用无人机飞行控制系统是指能够稳定无人机飞行姿态,并能
控制无人机自主或半自主飞行的控制系统,是无人机的大脑,也是区别于航模的最主要标志,简称飞控。

固定翼无人机飞行的控制通常包括方向、副翼、升降、油门、襟翼等控制舵面,通过舵机改变飞机的翼面,产生相应的扭矩,控制飞机转弯、爬升、俯冲、横滚等动作。

不过随着智能化的发展,无人机已经涌现出四轴、六轴、单轴、矢量控制等多种形式。

传统直升机形式的无人机通过控制直升机的倾斜盘、油门、尾舵等,控制飞
机转弯、爬升、俯冲、横滚等动作。

多轴形式的无人机一般通过控制各轴桨叶的转速来控制无人机的姿态,以实现转弯、爬升、俯冲、横滚等动作。

飞控的作用就是通过飞控板上的陀螺仪对无人机进行控制,具体来说,要对四轴飞行状态进行快速调整,如发现右边力量大,向左倾斜,那么就减弱右边电流输出,电机变慢、升力变小,自然就不再向左倾斜。

如果没有飞控系统,四轴飞行器就会因为安装、外界干扰、零件之间的不一致等原因形成飞行力量不平衡,后果就是左右、上下地胡乱翻滚,根本无法飞行。

无人机飞控的工作过程飞控系统实时采集各传感器测量的飞行状态数据、接
收无线电测控终端传输的由地面测控站上行信道送来的控制命令及数据,经计算处理,输出控制指令给执行机构,实现对无人机中各种飞行模态的控制和对任务设备的管理与控制;同时将无人机的状态数据及发动机、机载电源系统、任。

无人机的构造和飞行原理及其应用

无人机的构造和飞行原理及其应用

无人机的构造和飞行原理及其应用随着科技的不断发展,无人机已经成为了现在比较热门的话题。

作为一种新型的航空器,无人机具有许多新奇的特点,它被广泛应用于军事、民用、政府监管等领域,成为了军队和民间用户的热门选择。

本文将会从无人机的构造和飞行原理开始,较为详细地讲述无人机的基本知识点,并介绍其应用领域。

一、无人机的构造无人机是一种复杂的机器,其构造由多个部件组成。

无人机包括飞行控制器、电子飞机航空电子设备、飞行系统控制软件、机身、机翼、电池组、摄像头、传感器及机载设备等。

1.1 电机和电子舵机无人机舵机的作用是通过接受发出的信号来进行转动。

在已经实行自动化和遥控的情况下,再次尽力向特定方向上的电机提供电力,能够实现更精细化地控制。

1.2 飞行控制器飞行控制器是无人机内最关键的一部分中的一部分。

它的作用是将用户通过网络或遥控器传达的指令转化为飞行控制信号,并控制无人机的飞行姿态、稳定、加速和减速,从而赋予飞行方向和能量。

1.3 电池组电池组的类型和性能具有重要意义。

根据用户对无人机数据的需求,不同的电池的种类、功率、能量密度以及使用方式都会产生显著不同的性能表现。

1.4 机翼和机身无人机的机翼和机身是其飞行原理的重要组成部分。

机身由机身骨架、上盖板、下盖板组成。

机翼是一个提供升力的部件,它在无人机飞行过程中起到重要作用。

1.5 感应器无人机上的感应器可以为无人机提供方向、速度、重量、温度等信息。

这些信息可以帮助无人机进行控制及纠正其飞行过程中的偏差。

二、无人机的飞行原理2.1 重力和升力无人机的飞行要解决的一大问题就是如何克服地心引力而自由地在空中飞行。

无人机在空气中的飞行是靠机翼的升力来支撑。

当机翼受到空气的力时,会产生一个向上的升力,这可以使无人机在空中飞行。

2.2 前进力无人机飞行需要前进力,而前进力是通过螺旋桨驱动的,螺旋桨的旋转会产生向前的推力。

2.3 保存平衡无人机在飞行时需要保持平衡,否则就会失去控制甚至坠落。

无人机零部件及其功能介绍 ppt课件

无人机零部件及其功能介绍  ppt课件
/cn/flysafe/no-fly
ppt课件
19
ppt课件
20
全高清图传、4K相机和初级视觉悬 停辅助系统三大核心技术,并增加 如GPS跟随等辅助功能
具备坏境感知、视觉跟随、自主避
障和精确视觉悬停辅助系统等核心
ppt课件 技术
15
无人机应用
航拍 航摄
航测
赛事直播 灾区搜救
工程监测
警察执法
ppt课件
16
ppt课件
17
无人机使用注意事项
1、螺旋桨的安装要检查安装的牢固性,精灵3和精灵4安装方法不同,注 意电机上的颜色和螺旋桨的颜色要对应,否则容易发生桨叶飞出的情况, 非常危险
无人机零部件及其功能介绍
福州毅锋腾智能科技有限公司
ppt课件
1
总体结构介绍 动力系统 机身系统 机载系统 图传系统 遥控器
无人机分类
多旋翼无人机历史
无人机应用
无人区使用注意 事项
ppt课件
禁飞区
3
总体结构介绍
飞控系统
螺旋桨
图传系统
电机 机架
起落架
电调
相机
云台
智能电池
ppt课件
遥控器
4
动力系统
2、电池的安装要确保听见“咔”的声音,检查两次,否则在飞行过程中 会DJIGo中电池会呈红色
3、确保云台卡扣摘除,否则会严重损害相机,飞行完后扣卡扣时,卡扣 与相机之间要保留一定缝隙,否则会对相机造成磨损
4、先开遥控器后开无人机,先关无人机后关遥控器,否则容易导致无 人机的失控
ppt课件
18
禁飞区
无人机 系统按 续航时 间分
短续航,续由时间60 min以内

多旋翼无人机动力系统各器件的功能

多旋翼无人机动力系统各器件的功能

多旋翼无人机动力系统各器件的功能1.电机:电机是多旋翼无人机动力系统的核心部件,其作用是为无人机提供动力。

多旋翼无人机一般采用无刷直流电机,具有高转速、高效率、低噪音等优点。

电机一般根据不同的尺寸和功率需求选择,常用的规格有2204、2205、2206等。

2.电调:电调是控制电机转速和转向的器件,将无人机飞控系统输出的信号转化为电流控制电机。

电调能够精确地调节电机转速,从而实现多旋翼无人机的准确悬停、平稳飞行和快速操控等功能。

常用的电调有电调模块和电调驱动集成在一起的四合一电调模块。

3.螺旋桨:螺旋桨是将电机输出的动力转化为提供升力和推力的旋转力量。

多旋翼无人机通常采用两个或更多旋翼(通常为三个、四个或六个)配备相应数量的螺旋桨。

螺旋桨按照尺寸、材质和型号等进行分类,常见的有5030、5040、5045等。

4.电池:电池是为无人机提供电能的装置。

多旋翼无人机一般使用锂聚合物电池(LiPo)作为动力供应,具有高能量密度、较轻的重量和大容量等优势。

电池容量的大小对无人机飞行时间和续航能力有重要影响。

5.电源管理模块:电源管理模块用于控制电池的充放电,保证无人机动力系统的稳定运行。

它通常包括电压检测、过流保护、过热保护等功能,能够监测电池电压和温度等参数,保护电池免受过度放电和过充电等损害。

6.其他配件:除了上述核心器件外,多旋翼无人机的动力系统还包括一些其他配件。

例如,电机座、螺旋桨保护罩、散热风扇等,它们的功能分别是提供电机的固定支撑、保护螺旋桨不受碰撞和提供散热等。

总结起来,多旋翼无人机的动力系统由电机、电调、螺旋桨、电池和电源管理模块等组成,它们各自发挥着重要的功能,共同保证了无人机的动力供给、飞行稳定性和操控性能。

无人机遥控器多功能拓展模块介绍

无人机遥控器多功能拓展模块介绍

无人机遥控器多功能拓展模块是一款专为无人机爱好者设计的模块,它能够为遥控器增加多种实用的功能,让您的无人机更加智能化、便捷化。

本文将对无人机遥控器多功能拓展模块进行详细介绍,包括其特点、功能、应用场景、使用方法以及注意事项。

一、模块特点1. 高度集成:该模块将多种功能集于一身,无需额外添加其他配件,方便用户使用。

2. 兼容性强:该模块支持市面上大部分主流的无人机品牌和遥控器型号,兼容性强。

3. 扩展性强:该模块支持自定义功能,用户可以根据自己的需求进行拓展,实现更多实用功能。

4. 操作简单:该模块采用人性化设计,操作简单方便,无需专业培训即可上手。

二、模块功能1. 摄像头控制:通过该模块,用户可以控制无人机上的摄像头,实现拍摄、缩放、旋转等操作,提高拍摄质量。

2. 语音控制:用户可以通过遥控器上的语音控制按钮,对无人机进行语音指令操控,更加便捷。

3. 遥感探测:该模块支持遥感探测功能,能够检测周围环境中的物体,为无人机提供更加智能化的飞行辅助。

4. 自动跟随:用户可以通过该模块设置无人机的自动跟随模式,让无人机自动跟随用户指定的物体飞行。

5. 自定义功能:用户可以根据自己的需求,通过该模块自定义添加其他功能,实现更多实用效果。

三、应用场景1. 影视拍摄:该模块可以用于影视拍摄中,提高拍摄质量,节省人力成本。

2. 应急救援:在应急救援场景下,该模块的自动跟随和遥感探测功能可以发挥重要作用,帮助救援人员快速定位被困人员或物资。

3. 农业植保:在农业植保领域,该模块可以提高喷洒效率,减少农药浪费,同时也能为农民提供更加智能化的植保服务。

4. 空中巡查:该模块适用于需要进行空中巡查的场景,如环保监测、地形勘察等,能够提供更加全面的视野。

四、使用方法1. 将多功能拓展模块安装到无人机遥控器上,确保连接稳定。

2. 打开多功能拓展模块的软件界面,进行相关功能的设置和调试。

3. 根据自己的需求,选择相应的功能进行操作。

无人机操控技术课件:飞行部分

无人机操控技术课件:飞行部分
学习目标
1. 能够完成单通道的四个位置的悬停。 2. 能够完成带油门通道的八位悬停。
学习安排:
四个舵面的含义,对于我们此次安排练习的多旋翼 模型为例:
1)副翼控制飞行器的左右平移,机头不偏转,飞行 器绕自身纵轴旋转。
2)升降控制飞行器的前后平移,飞行器绕自身横轴 旋转。
3)油门控制飞行器的上下移动,飞行器沿立轴移动。 4)方向控制飞行器的偏航旋转,飞行器绕自身立轴 旋转。
小提示
1.对尾状态下,副翼的修正方向与飞机漂移方向相反,对头状态 下,副翼的修正方向与飞机漂移方向相同。
2.不管什么状态下,推升降舵,飞机是低头,拉升降舵,飞机是 仰头。
3.这是操作的第一步,一定要去体会操作的两大原则:细腻和提 前。
4.一旦飞机偏离中心位置,不要着急一把把飞机拉回来,而是偏 到哪就先在哪稳定住,之后再慢慢拉回来。
1.1.2 八位悬停的含义
学习目标
1. 熟悉八位悬停的基本含义。 2. 理解同一姿态在不同位置的视图。 3. 飞机飞行八字航线的过程中,飞机姿态在各个点的变化
过程。
1.1.2 八位悬停的含义
学习安排
1.用模型飞机分别演示对尾,对头,左右侧位悬停的 状态。
2.用模型飞机分别演示45°悬停的四种状态,每个姿 态均是以机头朝向的位置来判断的。
1.2.7 水平8字航点练习
学习目标
将飞机沿1-2-3-4-1-5-6-7-1轨迹连续运动,中间不停 留,速度越慢越好 。如图所示。
目录
01 模拟器练习
P04
02 VR模拟练习
P30
03 室外飞行训练
P34
2.1 VR模拟悬停训练
通过了第一阶段的模拟器练习,就可以进入更加真实 的VR模拟练习了。VR模拟是由自主开发的一款仿真模拟软 件,应用此款软件进行无人机训练,既可以达到与外场飞 行手感一致的目的,又可以避免因为天气原因和设备原因 影响训练进度。

无人机导航定位技术简介与分析

无人机导航定位技术简介与分析

无人机导航定位技巧简介与剖析无人机导航定位工作重要由组合定位定领导航体系完成,组合导航体系及时闭环输出地位和姿势信息,为飞机供给准确的偏向基准和地位坐标,同时及时根据姿势信息对飞机飞翔状况进行猜测.组合导航体系由激光陀螺捷联惯性导航.卫星定位体系吸收机.组合导航盘算机.里程计.高度表和基站雷达体系等构成.联合了SAR 图像导航的定位精度.自立性和星迟钝器的星光导航体系的姿势测定精度,从而包管了无人飞机的自立飞翔.无人机导航是按照请求的精度,沿着预定的航路在指定的时光内准确地引诱无人机至目标地.要使无人机成功完成预定的航行义务,除了肇端点和目标的地位之外,还必须知道无人机的及时地位.航行速度.航向等导航参数.今朝在无人机上采取的导航技巧重要包含惯性导航.卫星导航.多普勒导航.地形帮助导航以及地磁导航等.这些导航技巧都有各自的优缺陷,是以,在无人机导航中,要根据无人机担负的不合义务来选择合适的导航定位技巧至关重要.一.单一导航技巧1 惯性导航惯性导航是以牛顿力学定律为基本,依附装配在载体(飞机.舰船.火箭等)内部的加快度计测量载体在三个轴向活动加快度,经积分运算得出载体的瞬时速度和位置,以及测量载体姿势的一种导航方法.惯性导航体系平日由惯性测量装配.盘算机.掌握显示器等构成.惯性测量装配包含加快度计和陀螺仪.三自由度陀螺仪用来测量飞翔器的三个迁移转变活动;三个加快度计用来测量飞翔器的三个平移活动的加快度.盘算机根据测得的加快度旌旗灯号盘算出飞翔器的速度和地位数据.掌握显示器显示各类导航参数.惯性导航完全依附机载装备自立完成导航义务,工作时不依附外界信息,也不向外界辐射能量,不轻易受到干扰,不受气候前提限制,是一种自立式的导航体系,具有完全自立.抗干扰.隐藏性好.全天候工作.输出导航信息多.数据更新率高级长处.现实的惯性导航可以完成空间的三维导航或地面上的二维导航.2 定位卫星导航定位卫星导航是经由过程不竭对目标物体进行定位从而实现导航功效的.今朝,全球规模内有影响的卫星定位体系有美国的GPS,欧洲的伽利略,俄罗斯的格拉纳斯.这里重要介绍现阶段运用较为普遍的GPS全球定位体系导航.GPS全球定位体系导航的基起源基本理:当GPS卫星正常工作时,会不竭地用1和0二进制码元构成的伪随机码(简称伪码)发射导航电文.导航电文包含卫星星历.工作状况.时钟纠正.电离层时延修改.大气折射修改等信息.当用户吸收到导航电文时,提掏出卫星时光并将其与本身的时钟做比较即可得知卫星与用户的伪距R,再运用导航电文中的卫星星历数据推算出卫星发射电文时所处地位,因为用户吸收机运用的时钟与卫星星载时钟不成能老是同步,引进一个Δt即卫星与吸收机之间的时光差作为未知数.为了求出吸收机的地位x.y.z,只要吸收机测出四颗卫星的伪距,运用公式(1)即可得到四个方程,联立起来即可求出四个未知数x. y.z和Δt.(1)3 多普勒导航多普勒导航是飞翔器经常运用的一种自立式导航,多普勒导航体系由磁罗盘或陀螺内心.多普勒雷达和导航盘算机构成.它的工作道理是多普勒效应,机上的多普勒导航雷达不竭向地面发射电磁波,因飞机与电磁波照耀的地面之间消失相对活动,雷达吸收到地面回波的频率与发射电磁波的频率ft相差一个多普勒频率fd.从而根据公式(2)盘算出无人机相对于地面的飞翔速度(地速),以及偏流角(即地速与无人机纵轴之间的夹角).因为气流的感化,偏流角的大小反应了地速.风速和空速之间的关系.磁罗盘或陀螺仪可以测出无人机的航天向角,即无人机纵轴偏向与正南偏向之间的夹角.根据多普勒雷达供给的地速和偏流角数据,以及磁罗盘或陀螺内心供给的航向数据,导航盘算机就可以不竭地盘算出无人机飞过的路线.式中V为飞机的飞翔速度,为空速和风速的合成速度;γ为速度V 与雷达波束轴线之间的夹角.4 地形帮助导航地形帮助导航是指飞翔器在飞翔进程中,运用预先储存的飞翔路线中某些地区的特点数据,与现实飞翔进程中测量到的相干数据进行不竭比较来实行导航修改的一种办法.地形帮助导航可分为地形匹配.景像匹配和桑地亚惯性地形帮助导航.1)地形匹配地形匹配也称为地形高度相干.其道理是:地球陆地概况上任何地点的地理坐标,都可以根据其四周地域的等高线或地貌来单值肯定.地形匹配是经由过程获取沿途航路上的地形地貌谍报,并据此作出专门的数字地图并存入盘算机,当飞机飞越某块已数字化的地形时,机载无线电高度表测出相对高度,气压/惯性分解测绝对高度,两者相减即得地形标高.飞翔一段时光后,即可得到真航迹的一串地形标高.将测得的数据与预先存储的数字地图进行相干剖析,肯定飞机航迹对应的网格地位.因为事先肯定了网格各点对应的经纬值,如许即可以用数字地图校订惯导.2)影像匹配又称影像相干.与地形匹配的差别是,预先输入到盘算机的信息不知是高度参数,而是经由过程摄像等手腕获取的预定飞翔路径的景像信息,将这些气候数字化后储消失机载的相干盘算装备中,这些信息具有很好的可不雅测性.飞翔中,经由过程机载的摄像装备获取飞翔路径中的气候.然后运用机载数字气候匹配相干器将其所测与预存的气候进行相干比较以肯定飞机的地位.3)桑地亚惯性地形帮助导航桑地亚惯性地形帮助导航采取了推广的递推卡尔曼滤波算法,具有更好的及时性.其道理是:根据惯导体系输出的地位在数字地图上找到地形高程.而惯导体系输出的绝对高度与地形高程之差为飞翔器相对高度的估量值.它与无线电高度表实测相对高度之差就是卡尔曼滤波的测量值.地形的非线性导致了测量方程的非线性.采取地形随机线性化算法可以及时获得地形斜率,得到线性化的测量方程,联合惯导体系的误差状况方程,经递推卡尔曼滤波算法可得到导航误差状况的最佳估量.运用输出校订可修改惯导体系的导航误差,从而获得最佳导航状况.5 地磁导航地磁场为矢量场,在地球近地空间内随意率性一点的地磁矢量都不合于其它地点的矢量,且与该地点的经纬度消失一一对应的关系.是以,理论上只要肯定该点的地磁场矢量即可实现全球定位.按照地磁数据处理方法的不合,地磁导航分为地磁匹配与地磁滤波两种方法.今朝地磁匹配在导航运用研讨中更为普遍,它是把预先计划好的航迹某段区域某些点的地磁场特点量绘制成参考图(或称基准图)存贮在载体盘算机中,当载体飞越这些地区时,由地磁匹配测量仪器及时测量出飞越这些点地磁场特点量,以构成及时图. 在载体上的盘算机中,对及时图与参考图进行相干匹配,盘算出载体的及时坐标地位,供导航盘算机解算导航信息.地磁匹配相似地形匹配体系,差别在于地磁匹配可有多个特点量.单一导航技巧优缺陷剖析1)惯性导航.长处是不依附外界任何信息实现完全自立的导航,隐藏性好,不受外界干扰,不受地形影响,可以或许全天候工作.缺陷是定位误差是随时光积聚的累积误差,精度受到惯导体系的影响. 2)GPS导航.长处是全球性.全天候.持续周详导航与定位才能,及时性较一般.缺陷是易受电磁干扰;GPS体系吸收机的工作受飞翔器灵活的影响,比方GPS的旌旗灯号更新频率一般在1 Hz~2 Hz,假如飞翔器须要快速更新导航信息,单独搭载GPS体系就不克不及知足飞翔器更新信息的须要.3)多普勒导航.长处是自立性好,反响快,抗干扰性强,测速精度高,能用于各类气候前提和地形前提.缺陷是工作时必须发射电波,是以其隐藏性不好;体系工作受地形影响,机能与反射面的外形有关,如在程度面或戈壁上空工作时,因为反射性不好就会下降机能;精度受天线姿势的影响;测量有积聚误差,体系会随飞翔距离的增长而使误差增大.4)地形帮助导航.长处是没有累积误差,隐藏性好,抗干扰机能较强.缺陷是盘算量较大,及时性受到制约;工作机能受地形影响,合适升沉变更大的地形,不合适于在平原或者海面运用;同时还受气象影响,在大雾和多云等气象前提下导航后果不佳;请求飞翔器按照划定的路线飞翔,晦气于飞翔器的灵活性.5)地磁导航.地磁导航具有无源.无辐射.隐藏性强,不受敌方干扰.全天时.全天候.全地域.能耗低的优秀特点,导航不消失误差积聚,在跨海制导方面有必定的优势.缺陷是地磁匹配须要存储大量的地磁数据;及时性与盘算机处理数据的才能有关.二.组合导航组合导航是指把两种或两种以上的导航体系以恰当的方法组合在一路,运用其机能上的互补特点,可以获得比单独运用任一体系时更高的导航机能. 除了可以将以上介绍的导航技巧进行组合之外,还可以运用一些相干技巧定位进步精度,比方大气数据体系.航迹推算技巧等.1)INS/GPS组合导航体系组合的长处表示在:对惯导体系可以实现惯性传感器的校准.惯导体系的空中瞄准.惯导体系高度通道的稳固等,从而可以有用地进步惯导体系的机能和精度;对GPS体系来说,惯导体系的帮助可以进步其跟踪卫星的才能,进步吸收灵活态特点和抗干扰性.别的,INS/GPS分解还可以实现GPS完全性的检测,从而进步靠得住性.别的,INS/GPS组合可以实现一体化,把GPS吸收机放入惯导部件中,以进一步削减体系的体积.质量和成本,便于实现惯导和GPS 同步,减小非同步误差.INS/GPS组合导航体系是今朝多半无人飞翔器所采取的主流自立导航技巧.美国的全球鹰和捕食者无人机都是采取这种组合导航方法.2)惯导/多普勒组合导航体系这种组合方法既解决了多普勒导航受到地形身分的影响,又可以解决惯导自身的累积误差,同时在隐藏性上二者实现了较好的互补.3)惯导/地磁组合导航体系运用地磁匹配技巧的长期稳固性填补惯体系误差随时光累积的缺陷,运用惯导体系的短期高精度填补地磁匹配体系易受干扰等缺少,则可实现惯性/地磁导航,具备自立性强.隐藏性好.成本低.可用规模广等长处,是当前导航研讨范畴的一个热门.4)惯导/地形匹配组合导航体系因为地形匹配定位的精度很高,是以可以运用这种准确的地位信息来清除惯性导航体系长时光工作的累计误差,进步惯性导航体系的定位精度.因为地形匹配帮助导航体系具有自立性和高精度的凸起长处,将其运用于装载有多种图像传感器的无人机导航体系,构成惯性/地形匹配组合导航体系,将是地形匹配帮助导航技巧成长和运用的将来趋向.5)GPS/航迹推算组合导航体系航迹推算的基起源基本理:在GPS掉效情形下,根据大气数据盘算机测得的空速.磁航向测得的真北航向以及当地风速风向,推算出地速及航迹角.当GPS定位旌旗灯号中止或质量较差时,由航迹推算体系肯定无人机的地位和速度;当GPS定位旌旗灯号质量较好时,运用GPS高精度的定位信息对航迹推算体系进行校订,从而构成了高精度.高靠得住性的无人机导航定位体系,在以较高质量包管了飞翔安然和品德的同时,有用下降了体系的成本,使无人机摆脱对雷达.测控站等地面体系的依附.三.无人机导航技巧成长趋向1)研制新型惯导体系,进步组合导航体系精度新型惯导体系今朝已经研制出光纤惯导.激光惯导.微固态惯性内心等多种方法的惯导体系.跟着现代微机电体系的飞速成长,硅微陀螺和硅加快度计的研制进展敏捷,其成本低.功耗低.体积小及质量轻的特色很适于战术运用.跟着先辈的周详加工工艺的晋升和症结理论.技巧的冲破,会有多种类型的高精度惯导装配消失,组合制导的精度也会随之进步.2)增长组合因子,进步导航稳固机能将来无人机导航将对组合导航的稳固性和靠得住性提出更高的请求,组合导航因子将会有足够的冗余,不再依附于组合导航体系中的某一项或者某几项技巧,当个中的一项或者几项因子因为突发状况不克不及正常工作时,不会影响到无人机的正常导航需求.3)研发数据融会新技巧,进一步进步组合导航体系机能组合导航体系的症结器件是卡尔曼滤波器,它是各导航体系之间的接口,并进行着数据融会处理.今朝研讨人员正在研讨新的数据融会技巧,例如采取自顺应滤波技巧,在进行滤波的同时,运用不雅测数据带来的信息,不竭地在线估量和修改模子参数.噪声统计特点和状况增益矩阵,以进步滤波精度,从而得到对象状况的最优估量值. 此外,若何将神经收集人工智能.小波变换等各类信息处理办法引入以组合制导为焦点的信息融会技巧中正在引起人们的高度看重,这些新技巧一旦研制成功,势必进一步进步组合制导的分解机能.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无人机各模块详解与技术分析
如今无人机成为了展会最大的热点之一,大疆(DJI)、Parrot、3D Robotics、AirDog 等知名无人机公司都有展示他们的最新产品。

甚至是英特尔、高通的展位上展出了通信功能强大、能够自动避开障碍物的飞行器。

无人机在2015年已经迅速地成为现象级的热门产品,甚至我们之前都没有来得及细细研究它。

与固定翼无人机相比,多轴飞行器的飞行更加稳定,能在空中悬停。

主机的硬件结构及标准的遥控器的结构图如下图。

四轴飞行器系统解析图
遥控器系统解析图
以上只是标准产品的解剖图,有些更加高级的如针对航模发烧友和航拍用户们的无人机系统,还会要求有云台、摄像头、视频传输系统以及视频接收等更多模块。

飞控的大脑:微控制器
在四轴飞行器的飞控主板上,需要用到的芯片并不多。

目前的玩具级飞行器还只是简单地在空中飞行或停留,只要能够接收到遥控器发送过来的指令,控制四个马达带动桨翼,基本上就可以实现飞行或悬停的功能。

意法半导体高级市场工程师介绍,无人机/多轴飞行器主要部件包括飞行控制以及遥控器两部分。

其中飞行控制包括电调/马达控制、飞机姿态控制以及云台控制等。

目前主流的电调控制方式主要分成BLDC方波控制以及FOC正弦波控制。

新唐的MCU负责人表示:多轴飞行器由遥控,飞控,动力系统,航拍等不同模块构成,根据不同等级产品的需求,会采用到不同CPU内核。

例如小四轴的飞行主控,因功能单纯,体积小,必须同时整合遥控接收,飞行控制及动力驱动功能;中高阶多轴飞行器则采用内建DSP 及浮点运算单元的,负责飞行主控功能,驱动无刷电机的电调(ESC)板则采用MINI5($1.0889)系列设计。

低阶遥控器使用SOP20 封装的4T 8051 N79E814;中高阶遥控器则采用Cortex-M0 M051系列。

另外,内建ARM9及H.264视频边译码器的N329系列SOC则应用于2.4G 及5.8G的航拍系统。

在飞控主板上,目前控制和处理用得最多的还是MCU而不是CPU。

由于对于飞行控制方面主要都是浮点运算,简单的ARM Cortex-M4内核32位MCU都可以很
好的满足。

有的传感器MEMS芯片中已经集成了DSP,与之搭配的话,更加简单的8位单片机也可以做到。

高通和英特尔推的飞控主芯片
CES上我们看到了高通和英特尔展示了功能更为丰富的多轴飞行器,他们采用了比微控制器(MCU)更为强大的CPU或是ARM Cortex-A系列处理器作为飞控主芯片。

例如,高通CES上展示的Snapdragon Cargo无人机是基于高通Snapdragon 芯片开发出来的飞行控制器,它有无线通信、传感器集成和空间定位等功能。

Intel CEO Brian Krzanich也亲自在CES上演示了他们的无人机。

这款无人机采用了“RealSense”技术,能够建起3D地图和感知周围环境,它可以像一只蝙蝠一样飞行,能主动避免障碍物。

英特尔的无人机是与一家德国工业无人机厂商Ascending Technologies合作开发,内置了高达6个英特尔的“RealSense”3D摄像头,以及采用了四核的英特尔凌动(Atom)处理器的PCI-express定制卡,来处理距离远近与传感器的实时信息,以及如何避免近距离的障碍物。

这两家公司在CES展示如此强大功能的无人机,一是看好无人机的市场,二是美国即将推出相关法规,对无人机的飞行将有严格的管控。

此外,活跃在在机器人市场的欧洲处理器厂商XMOS也表示已经进入到无人机领域。

XMOS公司市场营销和业务拓展副总裁Paul Neil博士表示,XMOS的xCORE
多核微控制器系列已被一些无人机/多轴飞行器的OEM客户采用。

在这些系统中,XMOS多核微控制器既用于飞行控制也用于MCU内部通信。

Paul Neil说:xCORE多核微控制器拥有数量在8到32个之间的、频率高达500MHz 的32位RISC内核。

xCORE器件也带有Hardware Response I/O接口,它们可提供卓越的硬件实时I/O性能,同时伴随很低的延迟。

“这种多核解决方案支持完全独立地执行系统控制与通信任务,不产生任何实时操作系统(RTOS)开销。

xCORE 微控制器的硬件实时性能使得我们的客户能够实现非常精确的控制算法,同时在系统内无抖动。

xCORE多核微控制器的这些优点,正是吸引诸如无人机/多轴飞行器这样的高可靠性、高实时性应用用户的关键之处。


多轴飞行器需要用到四至六颗无刷电机(马达),用来驱动无人机的旋翼。

而马达驱动控制器就是用来控制无人机的速度与方向。

原则上一颗马达需要配置一颗8位MCU来做控制,但也有一颗MCU控制多个BLDC马达的方案。

多轴无人机的EMS/传感器
某无人机方案商总经理认为,目前业内的玩具级飞行器,虽然大部分从三轴升级到了六轴MEMS,但通常采用的都是消费类产品如平板或手机上较常用的价格敏
感型型号。

在专业航拍以及专为航模发烧友开发的中高端无人机上,则会用到质量更为价格更高的传感器,以保障无人机更为稳定、安全的飞行。

这些MEMS传感器主要用来实现飞行器的平稳控制和辅助导航。

飞行器之所以能悬停,可以做航拍,是因为MEMS传感器可以检测飞行器在飞行过程中的俯仰角和滚转角变化,在检测到角度变化后,就可以控制电机向相反的方向转动,进而达到稳定的效果。

这是一个典型的闭环控制系统。

至于用MEMS传感器测量角度变化,一般要选择组合传感器,既不能单纯依赖加速度计,也不能单纯依赖陀螺仪,这是因为每种传感器都有一定的局限性。

比如说陀螺仪输出的是角速度,要通过积分才能获得角度,但是即使在零输入状态时,陀螺依然是有输出的,它的输出是白噪声和慢变随机函数的叠加,受此影响,在积分的过程中,必然会引进累计误差,积分时间越长,误差就越大。

这就需要加速度计来校正陀螺仪,因为加速度计可以利用力的分解原理,通过重力加速度在不同轴向上的分量来判断倾角。

由于没有积分误差,所以加速度计在相对静止的条件下可以校正陀螺仪的误差。

但在运动状态下,加速度计输出的可信度就要下降,因为它测量的是重力和外力的合力。

较常见的算法就是利用互补滤波,结合加速度计和陀螺仪的输出来算出角度变化。

ADI亚太区微机电产品市场和应用经理表示,ADI产品主要的优势就是在各种恶
劣条件下,均可获得高精度的输出。

以陀螺仪为例,它的理想输出是只响应角速度变化,但实际上受设计和工艺的限制,陀螺对加速度也是敏感的,就是我们在陀螺仪数据手册上常见的deg/sec/g的指标。

对于多轴飞行器的应用来说,这个指标尤为重要,因为飞行器中的马达一般会带来较强烈的振动,一旦减震控制不好,就会在飞行过程中产生很大的加速度,那势必会带来陀螺输出的变化,进而引起角度变化,马达就会误动作,最后给终端用户的直观感觉就是飞行器并不平稳。

除此之外,在某些情况下,如果飞行器突然转弯,可能会造成输入转速超过陀螺仪的测试量程,理想情况下,陀螺仪的输出应该是饱和输出,待转速恢复到陀螺仪量程范围后,陀螺仪再正确反应实时的角速度变化,但有些陀螺仪确不是这样,一旦输入超过量程,陀螺便会产生震荡输出,给出完全错误的角速度。

还有某些情况下,飞行器会受到较大的加速度冲击,理想情况陀螺仪要尽量抑制这种冲击,ADI的陀螺仪在设计的时候,也充分考虑到这种情况,利用双核和四核的机械结构,采用差分输出的原理来抑制这种“共模”的冲击,准确测量“差模”的角速度变化。

但某些陀螺仪在这种情况下会产生非常大错误输出,甚至是产生震荡输出。

“对于飞行器来说,最重要的一点就是安全,无论它的硬件设计还是软件设计,都要首先保证安全,而后才是极致的用户体验。


“未来飞行器上的MEMS产品也会向集成化方向发展,比如3轴加速度加上3
轴陀螺仪的集成产品,甚至是SOC,把处理器也集成进去,直接提供角度输出供后端处理器调用。

由于飞行器的应用场景一般都是户外,客户势必会做全温范围内的温度补偿,而在出厂前就对MEMS产品做好了全温范围内的温补,或者是设计超级低温漂的传感器,都会是MEMS产品在这一领域的发展方向。

当然可靠性依然是最重要的指标。

”他认为。

随着无人机的功能不断增加,GPS传感器、红外传感器、气压传感器、超声波传感器越来越多地被用到无人机上。

方案商已经在利用红外和超声波传感器来开发出可自动避撞的无人机,以满足将来相关法规的要求。

集成了GPS传感器的无人机则可以实现一键返航功能,防止无人机飞行丢失。

而内置了GPS功能的无人机,可以在软件中设置接近机场或航空限制的敏感地点,不让飞机起飞。

相关文档
最新文档