《19.1 变量与函数》课件(含习题)
合集下载
《19.1 变量与函数》课件(含习题)
这里有变化的量吗?如 果有,是什么?它们之 间有什么关系?
讲授新课
一 函数的相关概念
情景一
想一想,如果你坐 在摩天轮上,随着 时间的变化,你离 开地面的高度是如 何变化的?
下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.
(1)根据左图填表:
t/分 0 1 2 3 4 5 … h/米 3 10 37 45 37 11 … (2)对于给定的时间t ,相 应的高度h能确定吗?
方法 区分常量与变量,就是看在某个变化过程中,该 量的值是否可以改变,即是否可以取不同的值.
二 确定两个变量之间的关系
例3 弹簧的长度与所挂重物有关.如果弹簧原长为10cm, 每1千克重物使弹簧伸长0.5cm,试填下表:
重物的质量 1 2 3 4 5 (kg)
弹簧长度 (cm)
10.5 11
11.5 12 12.5
4x 8 0 x 2
(3) y x 3
x 3 0 x 3
(4) y x 1 1 1 x
x 1且 x 1
x 1 0
1 x 0
即 xx
1 1
... -1 0 1
5.我市白天乘坐出租车收费标准如下:乘坐里程不超过3公 里,一律收费8元;超过3公里时,超过3公里的部分,每公里 加收1.8元;设乘坐出租车的里程为x(公里)(x为整数), 相对应的收费为y(元).
4.收音机上的刻度盘的波长和频率分别是用米(m)和 千赫兹(kHz)为单位标刻的.下面是一些对应的数:
波长l(m) 300 500 600 1000 1500 频率 1000 600 500 300 200 f(khz)
你能发现每一组l,f 的值之间的关系吗?并指出变量与 常量.
讲授新课
一 函数的相关概念
情景一
想一想,如果你坐 在摩天轮上,随着 时间的变化,你离 开地面的高度是如 何变化的?
下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.
(1)根据左图填表:
t/分 0 1 2 3 4 5 … h/米 3 10 37 45 37 11 … (2)对于给定的时间t ,相 应的高度h能确定吗?
方法 区分常量与变量,就是看在某个变化过程中,该 量的值是否可以改变,即是否可以取不同的值.
二 确定两个变量之间的关系
例3 弹簧的长度与所挂重物有关.如果弹簧原长为10cm, 每1千克重物使弹簧伸长0.5cm,试填下表:
重物的质量 1 2 3 4 5 (kg)
弹簧长度 (cm)
10.5 11
11.5 12 12.5
4x 8 0 x 2
(3) y x 3
x 3 0 x 3
(4) y x 1 1 1 x
x 1且 x 1
x 1 0
1 x 0
即 xx
1 1
... -1 0 1
5.我市白天乘坐出租车收费标准如下:乘坐里程不超过3公 里,一律收费8元;超过3公里时,超过3公里的部分,每公里 加收1.8元;设乘坐出租车的里程为x(公里)(x为整数), 相对应的收费为y(元).
4.收音机上的刻度盘的波长和频率分别是用米(m)和 千赫兹(kHz)为单位标刻的.下面是一些对应的数:
波长l(m) 300 500 600 1000 1500 频率 1000 600 500 300 200 f(khz)
你能发现每一组l,f 的值之间的关系吗?并指出变量与 常量.
人教版数学八年级下册19.1.1《变量与函数》课件
在一个变化过程中,数值发 生变化的量为变量;数值始终 不变的量为常量。
闯关吧!少年!
第一关:简单!
指出下列问题中的变量和常量 1,某市的自来水价为4元/立方米。现要抽取若干户居民调查水费支出 情况,记某户月用水量为x立方米,月应交水费为y元。
变量是:月用水量为x、月应交水费为y;常量是:自来 水价为4元/立方米
2,某地手机通话费为0.2元/分钟。李明的手机通话时间为t分钟,话 费卡中的余额为m元(在这个过程中,李明没有充话费,也没有欠费 停机)。 变量:时间t、余额m;常量:通话费为0.2元/分钟
3,你有一本读物,是可以在学校合法看的,所以你每天读10页,已 经读了x天,还剩下y页未读。
变量:时间x天、读物剩余页数y;常量:每天的读书量10.
4,有10本书,我带走x本,还剩下y本。 变量:x、y;常量:10
第一关战后总结 你觉得,判断变量与常量的关键是什么?
数值变还是不变是判断变量与常 量的关键!
第二关:学校那点事儿
1,你有一本读物,是私下里跟其他同学借的,读的时候不能被 老师发现,你同学只给了你5天的时间,每天读得多少取决于自 习的多少以及课下我过来的多少,设你每天读x页,还剩余y页
(1)试分别写出长度变和不变的线段,面积变和不变的三角形。
长度不变的线段:AB、BC、CD、AD; 长度变的线段:AP、PD、PB、PC; 面积不变的三角形是:△PBC; 面积变的三角形是:△ABP、△PDC。
(2)若AP=x,BC=8,AB=4,求 S P C D 和 SPBC
SPCD
1 4(8 2
80
160
240
320 ...
请用时间t表示路程s:_s_=_8_0_t
第二关战后总结
19.1.1 变量与函数(第3课时)课件 (新版)新人教版八年级上
时间t/s 油温w/℃ 0 10 10 25 20 40 30 55
请你按下面的问题进行思考: (1)在这个测量过程中,锅中油的温度w 是加热时 间t 的函数吗?
做一做
例2 小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
时间t/s 油温w/℃ 0 10 10 25 20 40 30 55
他测量出把油烧沸腾所需要的时间是160 s,这样就 可以确定该食用油的沸点温度.他是怎样计算的呢? 列表法、解析法
做一做
例2 小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
根据刚才问题的思考,你认为函数的自变量可以取 任意值吗? 在实际问题中,函数的自变量取值范围往往是有限 制的,在限制的范围内,函数才有实际意义;超出这个 范围,函数没有实际意义,我们把这种自变量可以取的 数值范围叫函数的自变量取值范围.
问题2 你能用含自变量的式子表示下列函数,并 说出自变量的取值范围吗? (1)等腰三角形的面积为12,底边长为 x,底边上 的高为 y,y 随着 x 的变化而变化;
时间t/s 油温w/℃ 0 10 10 25 20 40 30 55
请你按下面的问题进行思考: (2)能写出w 与t 的函数解析式吗?
做一做
例2 小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
请你按下面的问题进行思考: (1)在这个测量过程中,锅中油的温度w 是加热时 间t 的函数吗?
做一做
例2 小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
时间t/s 油温w/℃ 0 10 10 25 20 40 30 55
他测量出把油烧沸腾所需要的时间是160 s,这样就 可以确定该食用油的沸点温度.他是怎样计算的呢? 列表法、解析法
做一做
例2 小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
根据刚才问题的思考,你认为函数的自变量可以取 任意值吗? 在实际问题中,函数的自变量取值范围往往是有限 制的,在限制的范围内,函数才有实际意义;超出这个 范围,函数没有实际意义,我们把这种自变量可以取的 数值范围叫函数的自变量取值范围.
问题2 你能用含自变量的式子表示下列函数,并 说出自变量的取值范围吗? (1)等腰三角形的面积为12,底边长为 x,底边上 的高为 y,y 随着 x 的变化而变化;
时间t/s 油温w/℃ 0 10 10 25 20 40 30 55
请你按下面的问题进行思考: (2)能写出w 与t 的函数解析式吗?
做一做
例2 小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
八年级下册数学19.1.1 变量与函数(第1课时)课件
其中变化的量是—x—,——y—;不变化的量是———1—0————.
探究新知
上述运动变化过程中出现的量,你认为可 以怎样分类?
数值发生 变化的量
数值始终 不变的量
变量 常量
探究新知
s = 60t y = 10x S=πr2 2(x+y)=10 变量:在一个变化过程中,数值发生变化的量为变量. 常量:在一个变化过程中,数值始终不变的量为常量.
人教版 数学 八年级 下册
19.1 函数 19.1.1 变量与函数(第1课时)
导入新知
万物皆变
行星在宇宙中的位置随时间而变化
导入新知 气温随海拔而变化
导入新知 汽车行驶里程随行驶时间而变化
导入新知
为了更深刻地认识千变万化的世界,在这一章里, 我们将学习有关一种量随另一种量变化的知识,共同 见证事物变化的规律.
s /km 60 120 180 240 300
((12))请在同以学上们这根个据过题程意中填,写变上化表的:量是_时__间__t_,__路__程__s__, 不变化的 量是速__度___. (3)试用含t的式子表示s 是__s=__6_0_t _.
探究新知
2.每张电影票的售价为10元,如果第一场售出150张票,第
课堂检测
4.如图1,正方形的周长C与边长x的关系式为: C= 4x 变量是: C、x 常量是: 4 ;
5.如图2,正方体的棱长为a,表面积S= 6a2,体积V= a3.
x
a
图1
图2
课堂检测能力提升题表格列出了一项实验的统计数据,表示小球从高度x(单位:m)
落下时弹跳高度y(单位:m)与下落高度x的关系,据表可以
探究新知 素养考点 2 关系式中常量与变量的识别
探究新知
上述运动变化过程中出现的量,你认为可 以怎样分类?
数值发生 变化的量
数值始终 不变的量
变量 常量
探究新知
s = 60t y = 10x S=πr2 2(x+y)=10 变量:在一个变化过程中,数值发生变化的量为变量. 常量:在一个变化过程中,数值始终不变的量为常量.
人教版 数学 八年级 下册
19.1 函数 19.1.1 变量与函数(第1课时)
导入新知
万物皆变
行星在宇宙中的位置随时间而变化
导入新知 气温随海拔而变化
导入新知 汽车行驶里程随行驶时间而变化
导入新知
为了更深刻地认识千变万化的世界,在这一章里, 我们将学习有关一种量随另一种量变化的知识,共同 见证事物变化的规律.
s /km 60 120 180 240 300
((12))请在同以学上们这根个据过题程意中填,写变上化表的:量是_时__间__t_,__路__程__s__, 不变化的 量是速__度___. (3)试用含t的式子表示s 是__s=__6_0_t _.
探究新知
2.每张电影票的售价为10元,如果第一场售出150张票,第
课堂检测
4.如图1,正方形的周长C与边长x的关系式为: C= 4x 变量是: C、x 常量是: 4 ;
5.如图2,正方体的棱长为a,表面积S= 6a2,体积V= a3.
x
a
图1
图2
课堂检测能力提升题表格列出了一项实验的统计数据,表示小球从高度x(单位:m)
落下时弹跳高度y(单位:m)与下落高度x的关系,据表可以
探究新知 素养考点 2 关系式中常量与变量的识别
19.1.1变量与函数.1.1常量与变量ppt公开课课件
(注:变量和常量是相对的)
2.若1吨民用自来水的价格为3.2元,则所交水费金额y(元)
与使用自来水的数量x(吨)之间的关系为_y__=__3_._2_x__,其 中变量是__y_,__x___,常量是__3_._2___.
知识点1:常量与变量判别
1、在面积S一定的ABC,若它的底边是a, 底边上的高是h,则在三角形的面积公式
a和h S 1 ah中,变量是 2
,常量是 1 和s 2
2、圆的周长公式C 2r(其中C为周长,r为半径)中,变量是
常量是 2和
r和c,
3、常量和变量是在“某一过程中”来研究、确定的,以S vt为例,若速度v固定,
v 则常量是
,变量是 s和h
想一想: 常量和变量是对某一变化过程来说的,
所挂重物
1
2
(kg)
受力后的弹
簧长度L 10.5 11
(cm)
3
4
5
11.5 12 12.5
m
10+0.5m
2.试用含m的式子表示L: L=_1__0_+_0__.5__m___
1.某市的自来水价为4元/t,现要抽取若干户居民调查水费支出 情况,记某户每月用水量为X t,月应交水费为y元。
y=4x
V 400h 高h(单位:cm)之间关系式__________
4.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用 含x的式子表示y.
份数/份 1
2
3
4…
总价/元 0.4 0.8 1.2 1.6 …
x与y之间的关系式为__y_=___0__._4_x__.这个问题中,_0__._4是常量,x__,___y__是变量.
2.若1吨民用自来水的价格为3.2元,则所交水费金额y(元)
与使用自来水的数量x(吨)之间的关系为_y__=__3_._2_x__,其 中变量是__y_,__x___,常量是__3_._2___.
知识点1:常量与变量判别
1、在面积S一定的ABC,若它的底边是a, 底边上的高是h,则在三角形的面积公式
a和h S 1 ah中,变量是 2
,常量是 1 和s 2
2、圆的周长公式C 2r(其中C为周长,r为半径)中,变量是
常量是 2和
r和c,
3、常量和变量是在“某一过程中”来研究、确定的,以S vt为例,若速度v固定,
v 则常量是
,变量是 s和h
想一想: 常量和变量是对某一变化过程来说的,
所挂重物
1
2
(kg)
受力后的弹
簧长度L 10.5 11
(cm)
3
4
5
11.5 12 12.5
m
10+0.5m
2.试用含m的式子表示L: L=_1__0_+_0__.5__m___
1.某市的自来水价为4元/t,现要抽取若干户居民调查水费支出 情况,记某户每月用水量为X t,月应交水费为y元。
y=4x
V 400h 高h(单位:cm)之间关系式__________
4.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用 含x的式子表示y.
份数/份 1
2
3
4…
总价/元 0.4 0.8 1.2 1.6 …
x与y之间的关系式为__y_=___0__._4_x__.这个问题中,_0__._4是常量,x__,___y__是变量.
19.1.1 变量与函数 课件(共16张PPT) 人教版初中数学八年级下册
(2)用关系式表示你猜想的变化规律,并指出关系式中的常量. 变化规律满足:y=280-x,关系式中的常量是:数字280.
当堂检测
指出下列问题中的变量和常量: (1)购买一些铅笔,单价为0.2元/支,记某同学购买铅笔 的数量为x支,应付的总价为y元;关系式为 y=0.2x 。 其中的变量是 x、y ,常量是 0.2 。
例3、根据销售记录,某型号的服装每天的售价x(元/件 )与当日的销售量y(件)的变化关系如下表:
每天的销售价 x(元/件) 200 190 180 170 160 150 140 …
每天的销售量 y(件) 80 90 100 110 120 130 140 …
(1)在这个变化过程中,有哪些变量?是哪一个量随 哪一个量的变化而变化?并指出其中的常量. 变量有:服装每天的售价x(元/件)和当日的销售量y(件), 当日的销售量y随服装每天的售价x的变化而变化.
t/h s/km
1 2345 60 120 180 240 300
在这个变化的过程中,行驶的 速度 60km/h 是固
定不变的,行驶的 路程s和时间t
是不断变化的.
路程s 着 时间t 的变化而变化.
试用含t的式子表示s 是__s_=6_0_t____
探究 (2)电影票售价为10元/张,第一场售出150张票,第二场售出205 张票,第三场售出310张票,三场电影的票房收入各多少元?设一场 电影售出x张票,票房收入y元. y的值随x的值的变化而变化吗?
x
a
图1
图2
瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数 y与层数x之间的关系式.
x1 2 3 …
x
y 1 1+2 1+2+3 … 1+2+3+ …+x
当堂检测
指出下列问题中的变量和常量: (1)购买一些铅笔,单价为0.2元/支,记某同学购买铅笔 的数量为x支,应付的总价为y元;关系式为 y=0.2x 。 其中的变量是 x、y ,常量是 0.2 。
例3、根据销售记录,某型号的服装每天的售价x(元/件 )与当日的销售量y(件)的变化关系如下表:
每天的销售价 x(元/件) 200 190 180 170 160 150 140 …
每天的销售量 y(件) 80 90 100 110 120 130 140 …
(1)在这个变化过程中,有哪些变量?是哪一个量随 哪一个量的变化而变化?并指出其中的常量. 变量有:服装每天的售价x(元/件)和当日的销售量y(件), 当日的销售量y随服装每天的售价x的变化而变化.
t/h s/km
1 2345 60 120 180 240 300
在这个变化的过程中,行驶的 速度 60km/h 是固
定不变的,行驶的 路程s和时间t
是不断变化的.
路程s 着 时间t 的变化而变化.
试用含t的式子表示s 是__s_=6_0_t____
探究 (2)电影票售价为10元/张,第一场售出150张票,第二场售出205 张票,第三场售出310张票,三场电影的票房收入各多少元?设一场 电影售出x张票,票房收入y元. y的值随x的值的变化而变化吗?
x
a
图1
图2
瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数 y与层数x之间的关系式.
x1 2 3 …
x
y 1 1+2 1+2+3 … 1+2+3+ …+x
人教版八年级下册数学第十九章《 19.1变量与函数》优课件(共28张PPT)
在问题三中,是否各有两个变量?同一 个问题中的变量之 间有什么联系?
问题三
在一根弹簧的下端挂重物,改变并记录重物的质量, 观察并记录弹簧长度的变化,探索它们的变化规律。如 果弹簧长原长为10cm,每1千克重物使弹簧伸长0.5cm,
怎样用含重物质量x(单位:kg)的式子表示受力后的
弹簧长度 L(单位:cm)?
八年级 数学
第十九章 一次函数
19.1.1变量与函数
解:∵花盆图案形如三角形,每边花有n个,总共有3n个, 其中重复了算3个。
∴ s 与 n 的函数关系式为: s = 3n-3
八年级 数学
第十九章 一次函数
19.1.1变量与函数 课堂练习(备用)
4、节约资源是当前最热门的话题,我市居民每月用电 不超过100度时,按0.57元/度计算;超过100度电时,其中不 超过100度部分按0.57元/度计算,超过部分按0.8元/度计算.
常量:在一个变化过程中,数值始终不变的量为常量。
请指出上面各个变化过程中的常量、变量。
八年级 数学
第十九章 一次函数
19.1 .1 变量与函数
探究:指出下列关系式中的变量与常量:
(1) y = 5x -6
6
(2) y= x
(3) y= 4x2+5x-7 (4) S = Лr2
巩固练习
• 填空:
• 1、计划购买50元的乒乓球,所能购买的总数
2.圆的周长公式C2r,这里的变量是 r和C ,常量
是 2 。
3.下列表格是王辉从4岁到10岁的体重情况
年龄(岁) 4 5 6 7 8 9
10 …
体重(千克)15.4 16.7 18.0 19.6 21.5 23.2 25.2 …
数学人教版八年级下册19.1.1变量与函数的课件
情景引入
下图反应的是心脏生物电流与时间的函数 关系,这种函数关系很难列式表示,但可 以用图来直观的反映.
1.正方形的边长为x和面积为s,面积s是不是边长 x的函数,它们的函数关系式怎样表示? 其中自变量x的取值范围是:
面积s与边长x的函数关系式为: S = x2(x>0)
2.计算并填写下表
9 …
2.请同学们找出这些函数的常量、变量、自变量 和函数: (1) y =3000-300x (2) y=x (3) S= πr2
解:(1)常量:3000,-300; 变量:x,y;
自变量:x;
y是x的函数。 (2)常量:1; 变量:x,y; 自变量:x; y是x的函数。
(3)常量:π; 变量:r,s; 自变量:r; s是r的函数。
3
看课本76页思考图回答:
1、什么时候温度最低?什么时候温度最高?
2、什么时候温度呈上升状态?什么时候呈下降状态 3、一天中任意时刻的气温大约是多少? T/℃
8
0
4
14
24
t/时
例2 如图,小明家、食堂、图书馆在同一条直线上,小明从家 去食堂吃早餐,接着去图书馆读报,然后回家.下图反映了这 个过程中,小明离他家的距离y与时间x之间的对应关系.
对称性 便于计算
-1 0
1
2
3
y=x+0.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5
试一试
画出函数y=x+0.5的图像:
y 3 2 1
2、描点:
3、连线:
你能从所 画的图象 中获取哪 些信息?
1、列表:
x
-3 -2 -1
o
-1
1
人教版变量与函数免费课件
展
1.阅读课本71页.找出下面问题中的常量和变量: (1)汽油的价格是7.4元/升,加油 x L,车主加油付油费 y 元. (2)小明看一本200 页的小说,看完这本小说需要t 天,平均每天所看的页数 为 n页. (3)用长为40 cm 的绳子围矩形,围成的矩形一边长为 x cm,其面积为 S cm2 . (4)圆形水波慢慢地扩大,在这一过程中,当圆的半径r,圆的面积S cm2 .
•
2.该 类 题 目 考 察学 生对文 本的理 解,在 一定程 度上是 在考察 学生对 这类题 型答题 思路。 因此一 定要将 这些答 题技巧 熟记于 心,才 能自如 运用。
•
3. 结 合 实 际 , 结合 原文, 根据知 识库存 ,发散 思维, 大胆想 象。由 文章内 容延伸 到现实 生活, 对现实 生活中 相关现 象进行 解释。 对人类 关注的 环境问 题等提 出解决 的方法 ,这种 题考查 的是学 生的综 合能力 ,考查 的是学 生对生 活的关 注情况 。
感谢观看,欢迎指导!
•
6.另 外 , 木 质 材料 受温度 、湿度 的影响 比较大 ,榫卯 同质同 构的链 接方式 使得连 接的两 端共同 收缩或 舒张, 整体结 构更加 牢固。 而铁钉 等金属 构件与 木质材 料在同 样的热 力感应 下,因 膨胀系 数的不 同,从 而在连 接处引 起松动 ,影响 整体的 使用寿 命。
•
4.做 好 这 类 题 首先 要让学 生对所 给材料 有准确 的把握 ,然后 充分调 动已有 的知识 和经验 再迁移 到文段 中来。 开放性 试题, 虽然没 有规定 唯一的 答案, 可以各 抒已见 ,但在 答题时 要就材 料内容 来回答 问题。
•
5.木 质 材 料 由 纵向 纤维构 成,只 在纵向 上具备 强度和 韧性, 横向容 易折断 。榫卯 通过变 换其受 力方式 ,使受 力点作 用于纵 向,避 弱就强 。
人教版数学八年级下册 19.1.1变量与函数(1)(共41张PPT)
同时还有一种量,它的数值始终保持不变。
如问题1中的60km/h; 问题2中的10元/张。
常量与变量
在研究事物的变化过程中:
数值发生变化的量叫做变量.
数值始终保持不变的量叫做常量.
动动脑 我们知道:路程=速度×时间,即S=vt.
(1)若汽车以50千米/小时的速度行驶,则其中常量、 变量分别是什么?
常量 0.53 变量 y ,x
2.圆的周长C与半径 r 的关系式是_C____2_,r
常量是__2____,变量是__C_,_r__.
3.判别下面问题中,字母表示的是变量还是常量
(1)下图是某城市的海滨浴场波浪的浪高与时间的变 化曲线图。
h , t表示的是变量
4.下表是某段河道某天的水位记录,t表示时刻, h表示水位(以警戒线为基准,高出为正)
第二题
第三题
第四题
1.某人要在规定的时间内加工100个 零件,则工作效率w与时间t之间的 关系中,下列说法正确的是( c ). (A)数100和,w,t都是变量 (B)数100和w都是常量 (C)w和t是变量
(D)数100和t都是常量
2.长方形相邻两边长分别为x、 •y•,面积为30•,•则用含x• 的式子表示y•为:y=__30_/x____, 则这个问题中,____3_0 ______ 常量;___x_,y_____是变量.
你的收获与平时的付出是成正比的, 一份耕耘,一份收获。相信自己,只要 付出,你一定会有收获!
1.必做题:作业本P71(1、2、3、4)
2.选做题: 请你举出个日常生活中遇到的常量与变量关系 的例子。
回乡偶书 少小离家老大回, 乡音无改鬓Байду номын сангаас衰; 儿童相见不相识, 笑问客从何处来。
如问题1中的60km/h; 问题2中的10元/张。
常量与变量
在研究事物的变化过程中:
数值发生变化的量叫做变量.
数值始终保持不变的量叫做常量.
动动脑 我们知道:路程=速度×时间,即S=vt.
(1)若汽车以50千米/小时的速度行驶,则其中常量、 变量分别是什么?
常量 0.53 变量 y ,x
2.圆的周长C与半径 r 的关系式是_C____2_,r
常量是__2____,变量是__C_,_r__.
3.判别下面问题中,字母表示的是变量还是常量
(1)下图是某城市的海滨浴场波浪的浪高与时间的变 化曲线图。
h , t表示的是变量
4.下表是某段河道某天的水位记录,t表示时刻, h表示水位(以警戒线为基准,高出为正)
第二题
第三题
第四题
1.某人要在规定的时间内加工100个 零件,则工作效率w与时间t之间的 关系中,下列说法正确的是( c ). (A)数100和,w,t都是变量 (B)数100和w都是常量 (C)w和t是变量
(D)数100和t都是常量
2.长方形相邻两边长分别为x、 •y•,面积为30•,•则用含x• 的式子表示y•为:y=__30_/x____, 则这个问题中,____3_0 ______ 常量;___x_,y_____是变量.
你的收获与平时的付出是成正比的, 一份耕耘,一份收获。相信自己,只要 付出,你一定会有收获!
1.必做题:作业本P71(1、2、3、4)
2.选做题: 请你举出个日常生活中遇到的常量与变量关系 的例子。
回乡偶书 少小离家老大回, 乡音无改鬓Байду номын сангаас衰; 儿童相见不相识, 笑问客从何处来。
《变量与函数》ppt完美课件
2
自变量x的取值范围 2<x≤5
《变量与函数》完美实用课件(PPT优 秀课件 )
解:时间T是自变量,水量V是T的函数 函数解析式为 V=10-0.05T
《变量与函数》完美实用课件(PPT优 秀课件 )
《变量与函数》完美实用课件(PPT优 秀课件 )
归纳
小结
1、一般地,在一个变化过程中,如果有两__个__
变量x和y,并且对于x
的
每一个确定的值
,y都有
_唯__一__确__定__的__值__与其对应,那么我们就说x
新课讲解
下列问题中哪些量是自变量?哪些量是自变量的 函数?试写出函数的解析式. (1)改变正方形的边长x,正方形的面积s随之 改变。
解:边长x是自变量 ,面积S是x的函数 函数解析式为 s=x2
(2)每分向一水池注水0.1m3,注水量y(单位: m3)随注水时间x(单位:min)的变化而变化。
解:时间x是自变量, 水量y是x的函数 函数解析式为 y=0.1x
(3) 汽车行驶200㎞时,油箱中还有多少汽油?
解:(1)y与x的函数关系式为y=_5_0_-_0_._1_x__
(2)因为x代表的实际意义为行驶路程,所以x不能
取 负数 .且行驶中的耗油量为 0.1x ,它不能超过油
箱中现有汽油量的值50,即
0.1x≤50
因此,自变量x
的取值范围是___0_≤___x__≤___5_0__
是
自变量
,y是x的 函数 。
2、如果当x=a时,y=b,那么 a 叫做当自变
量的值为 b 时的函数值.
3、用关于
自变量的式子 表示_变__量_____
之间的关系,这种式子叫做函数的解析式.
19.1.1《变量与函数(1)》【课件】
知识应用
6、指出下列问题中的变量和常量,及它们之间的关系式
(2)瓶子或罐头盒等物体常如下图那样堆放。
层数x 1 2
瓶子总数y 1 3
3…
x
6 … 1+2+3+ …y 1 x( x 1) 2
知识小结
1. 常量和变量的概念 2. 常量与变量不是绝对的,而是对于一个
4、章引言中的一张图表和图象反映了什么量随什么量变化而变化? 分别是用什么方式反映它们的变化规律的?
问题1:在事物的运动变化中,一个量随另一个量的变化而变化的现 象大量存在,请你再举出一个具有这种特征的相关例子加以说明。
行星在宇宙中的位置随时间而变化
问题1:在事物的运动变化中,一个量随另一个量的变化而变化的现 象大量存在,请你再举出一个具有这种特征的相关例子加以说明。
问题引入
4、用10m长绳子围成一个矩形,当矩形的一边长x为3m,3.5m,4m,4.5m 时,它的相邻的边长y分别为 2 、 1.5 、 1 、 0.5 m。
(1)这个过程中,变化的量是_________,不变化
的量是_____ .
(2)试用含x的式子表示y,y= __________.
(3)这个问题反映了矩形的
变量:服装每天的售价x(元/件)和当日的销售量y(件) 当日的销售量y随服装每天的售价x的变化而变化。
知识应用
6、指出下列问题中的变量和常量,及它们之间的关系式 (1)在计算器上按照下面的程序进行操作:
输入x(任意一个数)
按键 × 2 显示y(计算结果)
+ 5=
x 1 3 -4 0 101
y
7
11 -3 5 207
形的一边长x,矩形的邻边长y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当x=3时,y= 5; 2
当x=-3时,y=7;
把自变量x的值带 入关系式中,即 可求出函数的值.
(2)令
4x 2 x 1
=0,解得x=
1 2
即当x= 1 时,y=0.
2
二 确定自变量的取值范围
问题:请用含自变量的式子表示下列问题中的函 数关系:
(1)汽车以60 km/h 的速度匀速行驶,行驶的时间 为 t(单位:h),行驶的路程为 s(单位:km);
例2 阅读并完成下面一段叙述: ⒈某人持续以a米/分的速度用t分钟时间跑了s米,其中 常量是 a ,变量是 t,s .
⒉s米的路程不同的人以不同的速度a米/分各需跑的时间 为t分,其中常量是 s ,变量是 a,t .
3.根据上面的叙述,写出一句关于常量与变量的结论: 在不同的条件下,常量与变量是相对的 .
19.1.1 变量与函数 第2课时 函数
学习目标
情境引入
1.了解函数的相关概念,会判断两个变量是否具有函数
关系.
2.能根据简单的实际问题写出函数解析式,并确定自变
量的取值范围.(重点、难点)
3.会根据函数解析式求函数值.
导入新课
观察与思考
游戏:数青蛙 一只青蛙一张嘴,两只眼睛四条腿; 两只青蛙两张嘴,四只眼睛八条腿; 三只青蛙三张嘴,六只眼睛十二条腿. 1.青蛙的眼睛数和只数有关系吗?能用数学式子表达吗? 2.青蛙的腿数和只数有关系吗?能用数学式子表达吗?
如果当x=a时y=b,那么b叫做当自变量的值为a时 的函数值.
练一练
下列问题中,一个变量是否是另一个变量的函数?如
果是,请指出自变量.
(1)改变正方形的边长 x,正方形的面积 S 随之变化;
(2)秀水村的耕地面积是106 m2,这个村人均占有耕
地面积 y (单位:m2)随这个村人数 n 的变化而变化;
情景二
唯一一个y值
对于给定瓶任子一或层罐数头n,盒相等应圆的柱物形体的总物数体y,确常定常吗如?下有图几那个样y值堆 放 和.它随对着应层?数的增加,物体的总数是如何变化的?
填写下表:
层数 n
1
2
3
4
5…
物体总数y
1
3
6 10 15 …
情景三
一定质量的气体在体积不变时,假若温度降低到-273℃, 则气体的压强为零.因此,物理学把-273℃作为热力学温度 的零度.热力学温度T(K)与摄氏温度t(℃)之间有如下数量关 系:T=t+273,T≥0.
(3)P是数轴上的一个动点,它到原点的距离记为 x,
它对应的实数为 y,y 随 x 的变化而变化.
解:(1)S 是x的函数,其中x是自变量.
(2)y 是n的函数,其中n是自变量. (3)y 不是x的函数.
例如,到原点的 距离为1的点对 应实数1或-1,
典例精析
例1 下列关于变量x ,y 的关系式:y =2x+3;y =x2+3;y =2|x|;④ y x ;⑤y2-3x=10,其中表示y 是x 的函数关系的是 .
想一想:下列函数中自变量x的取值范围是什么?
(1)y 3x 1
(2)y 1 x2
(3)y x 5
x取全体实数
x 2 0 x -2 x50 x5
使函数解析式 有意义的自变 量的全体.
(4) y 3 2x 1
x取全体实数
(5) y x 2 x 1
x 2且x 1
x 1 0
x20
怎样用含重物质量m(kg)的式子表示受力后的弹簧长 度 L(cm)? 解:由题意可知m每增加1,L增加0.5,所以L=10+0.5m.
练一练
如果弹簧原长为12cm,每1千克重物使弹簧压缩0.5cm,
则用含重物质量m(kg)的式子表示受力后的弹簧长度 L(cm)为 L=10-0.5m .
当堂练习
1.若球体体积为V,半径为R,则V= 4πR3 其中变量
(1)当t分别等于-43,-27,0,18时,相应的热力学温度T是 多少?解:当t=-43时,
T=-43+273 230K、246K 、273K、291K =230(K)
(2)给定任一个大于-273 ℃的摄氏温度t值,相应的热力
学温度T确定吗?有几个T值和它对应?
唯一一个T值
思考:上面的三个问题中,各变量之间有 什么共同特点?
这里有变化的量吗?如 果有,是什么?它们之 间有什么关系?
讲授新课
一 函数的相关概念
情景一
想一想,如果你坐 在摩天轮上,随着 时间的变化,你离 开地面的高度是如 何变化的?
下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.
(1)根据左图填表:
t/分 0 1 2 3 4 5 … h/米 3 10 37 45 37 11 … (2)对于给定的时间t ,相 应的高度h能确定吗?
一个x值有两个y 值与它对应
方法 判断一个变量是否是另一个变量的函数,关键是看 当一个变量确定时,另一个变量有唯一确定的值与它对应.
例2
已知函数y 4x 2 .
x 1
(1)求当x=2,3,-3时,函数的值;
(2)求当x取什么值时,函数的值为0.
解:(1)当x=2时,y= 4 2-2 =2;
2+1
(1)请分别写出当0<x≤3和x>3时,表示y与x的关系式, 并直接写出当x=2和x=6时对应的y值;
(2)当0<x≤3和x>3时,y都是x的函数吗?为什么? 解:(1)当0<x≤3时,y=8;
当x>3时,y=8+1.8(x-3)=1.8x+2.6.
当x=2时,y=8;x=6时,y=1.8×6+2.6=13.4.
①时间 t 、相应的高度 h ; ②层数n、物体总数y; ③摄氏温度t 、热力学温度T.
共同特点:都有两个变量,给定其中某一个变量的值, 相应地就确定了另一个变量的值.
要点归纳
一般地,在某个变化过程中,如果有两个变量x与 y,并且对于x的每一个确定的值,y都有唯一确定的 值与它对应,那么我们就说x是自变量,y是x的函数.
5.瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子 总数y与层数x之间的关系式.
x1 2
3
…
y 1 1+2 1+2+3 …
瓶子总数y 与层数x之间的关系式:
x 1+2+3+ …+x
课堂小结
常量:数值始终不变的量
常量与变量的概念
常量与变量
变量:数值发生变化的量
列出变量之间的关系式
第十九章 一次函数
(3)用10 m长的绳子围一个矩形,当矩形的一边长 x 分别为3 m,3.5 m,4 m,4.5 m 时,它的邻边长y 分 别为多少?在矩形改变形状的变化过程中,哪些量是变 化的?哪些量是固定不变的?
D
C
y
A
x
B
要点归纳
上述运动变化过程中出现的数量,你认为 可以怎样分类?
数值发生 变化的量
变量
数值始终 不变的量
第十九章 一次函数
19.1.1 变量与函数 第1课时 常量与变量
学习目标
情境引入
1.了解变量与常量的意义,会区分常量与变量.(重点)
2.在实际问题中,能够建立变量之间的关系式.(难点)
导入新课
情境引入
万物皆变
行星在宇宙中的位置随时间而变化
气温随海拔而变化
汽车行驶里程随行驶时间而变化
为了更深刻地认识千变万化的世界,在这一章里, 我们将学习有关一种量随另一种量变化的知识,共 同见证事物变化的规律.
4x 8 0 x 2
(3) y x 3
x 3 0 x 3
(4) y x 1 1 1 x
x 1且 x 1
x 1 0
1 x 0
即 xx
1 1
... -1 0 1
5.我市白天乘坐出租车收费标准如下:乘坐里程不超过3公 里,一律收费8元;超过3公里时,超过3公里的部分,每公里 加收1.8元;设乘坐出租车的里程为x(公里)(x为整数), 相对应的收费为y(元).
例3 汽车的油箱中有汽油50L,如果不再加油,那么油箱中 的油量y(单位:L)随行驶里程x(单位:km)的增加而减 少,平均耗油量为0.1L/km.
(1)写出表示y与x的函数关系的式子. 叫做函数的解析式
解:(1) 函数关系式为: y = 50-0.1x
0.1x表示的意义是 什么?
(2)指出自变量x的取值范围;
是
Q 30 1 t 2
,自变量t的取值范围是 0 t 60.
3.下列各表达式不是表示y是x的函数的是( C )
A. y 3x2
B. y 1
x
C. y x(x 0)
D. y 18x
4.求下列函数中自变量x的取值范围:
(1) y x2 x 2
x取全体实数
(2) y 3 4x 8
(2) 由x≥0及50-0.1x ≥0
得 0 ≤ x ≤ 500 ∴自变量的取值范围是
0 ≤ x ≤ 500
汽车行驶里程,油 箱中的油量均不能
为负数!
归纳 确定自变量的取值范围时,不仅要考虑使函数解析 式有意义,而且还要注意各变量所代表的实际意义.
(3)汽车行驶200 km时,油箱中还有多少油? (3)当 x = 200时,函数 y 的值为y=50-0.1×200=30. 因此,当汽车行驶200 km时,油箱中还有油30L
即
x x
1 2
... -2 -1 0
当堂练习
1.设路程为s,时间为t,速度为v,当v=60时,路程和时间 的关系式为 s=60t ,这个关系式中, 60 是常量, t和s 是 变量, s 是 t 的函数.
2.油箱中有油30kg,油从管道中匀速流出,1h流完,则油箱
当x=-3时,y=7;
把自变量x的值带 入关系式中,即 可求出函数的值.
(2)令
4x 2 x 1
=0,解得x=
1 2
即当x= 1 时,y=0.
2
二 确定自变量的取值范围
问题:请用含自变量的式子表示下列问题中的函 数关系:
(1)汽车以60 km/h 的速度匀速行驶,行驶的时间 为 t(单位:h),行驶的路程为 s(单位:km);
例2 阅读并完成下面一段叙述: ⒈某人持续以a米/分的速度用t分钟时间跑了s米,其中 常量是 a ,变量是 t,s .
⒉s米的路程不同的人以不同的速度a米/分各需跑的时间 为t分,其中常量是 s ,变量是 a,t .
3.根据上面的叙述,写出一句关于常量与变量的结论: 在不同的条件下,常量与变量是相对的 .
19.1.1 变量与函数 第2课时 函数
学习目标
情境引入
1.了解函数的相关概念,会判断两个变量是否具有函数
关系.
2.能根据简单的实际问题写出函数解析式,并确定自变
量的取值范围.(重点、难点)
3.会根据函数解析式求函数值.
导入新课
观察与思考
游戏:数青蛙 一只青蛙一张嘴,两只眼睛四条腿; 两只青蛙两张嘴,四只眼睛八条腿; 三只青蛙三张嘴,六只眼睛十二条腿. 1.青蛙的眼睛数和只数有关系吗?能用数学式子表达吗? 2.青蛙的腿数和只数有关系吗?能用数学式子表达吗?
如果当x=a时y=b,那么b叫做当自变量的值为a时 的函数值.
练一练
下列问题中,一个变量是否是另一个变量的函数?如
果是,请指出自变量.
(1)改变正方形的边长 x,正方形的面积 S 随之变化;
(2)秀水村的耕地面积是106 m2,这个村人均占有耕
地面积 y (单位:m2)随这个村人数 n 的变化而变化;
情景二
唯一一个y值
对于给定瓶任子一或层罐数头n,盒相等应圆的柱物形体的总物数体y,确常定常吗如?下有图几那个样y值堆 放 和.它随对着应层?数的增加,物体的总数是如何变化的?
填写下表:
层数 n
1
2
3
4
5…
物体总数y
1
3
6 10 15 …
情景三
一定质量的气体在体积不变时,假若温度降低到-273℃, 则气体的压强为零.因此,物理学把-273℃作为热力学温度 的零度.热力学温度T(K)与摄氏温度t(℃)之间有如下数量关 系:T=t+273,T≥0.
(3)P是数轴上的一个动点,它到原点的距离记为 x,
它对应的实数为 y,y 随 x 的变化而变化.
解:(1)S 是x的函数,其中x是自变量.
(2)y 是n的函数,其中n是自变量. (3)y 不是x的函数.
例如,到原点的 距离为1的点对 应实数1或-1,
典例精析
例1 下列关于变量x ,y 的关系式:y =2x+3;y =x2+3;y =2|x|;④ y x ;⑤y2-3x=10,其中表示y 是x 的函数关系的是 .
想一想:下列函数中自变量x的取值范围是什么?
(1)y 3x 1
(2)y 1 x2
(3)y x 5
x取全体实数
x 2 0 x -2 x50 x5
使函数解析式 有意义的自变 量的全体.
(4) y 3 2x 1
x取全体实数
(5) y x 2 x 1
x 2且x 1
x 1 0
x20
怎样用含重物质量m(kg)的式子表示受力后的弹簧长 度 L(cm)? 解:由题意可知m每增加1,L增加0.5,所以L=10+0.5m.
练一练
如果弹簧原长为12cm,每1千克重物使弹簧压缩0.5cm,
则用含重物质量m(kg)的式子表示受力后的弹簧长度 L(cm)为 L=10-0.5m .
当堂练习
1.若球体体积为V,半径为R,则V= 4πR3 其中变量
(1)当t分别等于-43,-27,0,18时,相应的热力学温度T是 多少?解:当t=-43时,
T=-43+273 230K、246K 、273K、291K =230(K)
(2)给定任一个大于-273 ℃的摄氏温度t值,相应的热力
学温度T确定吗?有几个T值和它对应?
唯一一个T值
思考:上面的三个问题中,各变量之间有 什么共同特点?
这里有变化的量吗?如 果有,是什么?它们之 间有什么关系?
讲授新课
一 函数的相关概念
情景一
想一想,如果你坐 在摩天轮上,随着 时间的变化,你离 开地面的高度是如 何变化的?
下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.
(1)根据左图填表:
t/分 0 1 2 3 4 5 … h/米 3 10 37 45 37 11 … (2)对于给定的时间t ,相 应的高度h能确定吗?
一个x值有两个y 值与它对应
方法 判断一个变量是否是另一个变量的函数,关键是看 当一个变量确定时,另一个变量有唯一确定的值与它对应.
例2
已知函数y 4x 2 .
x 1
(1)求当x=2,3,-3时,函数的值;
(2)求当x取什么值时,函数的值为0.
解:(1)当x=2时,y= 4 2-2 =2;
2+1
(1)请分别写出当0<x≤3和x>3时,表示y与x的关系式, 并直接写出当x=2和x=6时对应的y值;
(2)当0<x≤3和x>3时,y都是x的函数吗?为什么? 解:(1)当0<x≤3时,y=8;
当x>3时,y=8+1.8(x-3)=1.8x+2.6.
当x=2时,y=8;x=6时,y=1.8×6+2.6=13.4.
①时间 t 、相应的高度 h ; ②层数n、物体总数y; ③摄氏温度t 、热力学温度T.
共同特点:都有两个变量,给定其中某一个变量的值, 相应地就确定了另一个变量的值.
要点归纳
一般地,在某个变化过程中,如果有两个变量x与 y,并且对于x的每一个确定的值,y都有唯一确定的 值与它对应,那么我们就说x是自变量,y是x的函数.
5.瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子 总数y与层数x之间的关系式.
x1 2
3
…
y 1 1+2 1+2+3 …
瓶子总数y 与层数x之间的关系式:
x 1+2+3+ …+x
课堂小结
常量:数值始终不变的量
常量与变量的概念
常量与变量
变量:数值发生变化的量
列出变量之间的关系式
第十九章 一次函数
(3)用10 m长的绳子围一个矩形,当矩形的一边长 x 分别为3 m,3.5 m,4 m,4.5 m 时,它的邻边长y 分 别为多少?在矩形改变形状的变化过程中,哪些量是变 化的?哪些量是固定不变的?
D
C
y
A
x
B
要点归纳
上述运动变化过程中出现的数量,你认为 可以怎样分类?
数值发生 变化的量
变量
数值始终 不变的量
第十九章 一次函数
19.1.1 变量与函数 第1课时 常量与变量
学习目标
情境引入
1.了解变量与常量的意义,会区分常量与变量.(重点)
2.在实际问题中,能够建立变量之间的关系式.(难点)
导入新课
情境引入
万物皆变
行星在宇宙中的位置随时间而变化
气温随海拔而变化
汽车行驶里程随行驶时间而变化
为了更深刻地认识千变万化的世界,在这一章里, 我们将学习有关一种量随另一种量变化的知识,共 同见证事物变化的规律.
4x 8 0 x 2
(3) y x 3
x 3 0 x 3
(4) y x 1 1 1 x
x 1且 x 1
x 1 0
1 x 0
即 xx
1 1
... -1 0 1
5.我市白天乘坐出租车收费标准如下:乘坐里程不超过3公 里,一律收费8元;超过3公里时,超过3公里的部分,每公里 加收1.8元;设乘坐出租车的里程为x(公里)(x为整数), 相对应的收费为y(元).
例3 汽车的油箱中有汽油50L,如果不再加油,那么油箱中 的油量y(单位:L)随行驶里程x(单位:km)的增加而减 少,平均耗油量为0.1L/km.
(1)写出表示y与x的函数关系的式子. 叫做函数的解析式
解:(1) 函数关系式为: y = 50-0.1x
0.1x表示的意义是 什么?
(2)指出自变量x的取值范围;
是
Q 30 1 t 2
,自变量t的取值范围是 0 t 60.
3.下列各表达式不是表示y是x的函数的是( C )
A. y 3x2
B. y 1
x
C. y x(x 0)
D. y 18x
4.求下列函数中自变量x的取值范围:
(1) y x2 x 2
x取全体实数
(2) y 3 4x 8
(2) 由x≥0及50-0.1x ≥0
得 0 ≤ x ≤ 500 ∴自变量的取值范围是
0 ≤ x ≤ 500
汽车行驶里程,油 箱中的油量均不能
为负数!
归纳 确定自变量的取值范围时,不仅要考虑使函数解析 式有意义,而且还要注意各变量所代表的实际意义.
(3)汽车行驶200 km时,油箱中还有多少油? (3)当 x = 200时,函数 y 的值为y=50-0.1×200=30. 因此,当汽车行驶200 km时,油箱中还有油30L
即
x x
1 2
... -2 -1 0
当堂练习
1.设路程为s,时间为t,速度为v,当v=60时,路程和时间 的关系式为 s=60t ,这个关系式中, 60 是常量, t和s 是 变量, s 是 t 的函数.
2.油箱中有油30kg,油从管道中匀速流出,1h流完,则油箱