集成运算放大器的单元电路
电子线路基础(梁明理)第3章
![电子线路基础(梁明理)第3章](https://img.taocdn.com/s3/m/0cba3b86b9d528ea81c779f1.png)
第3章 集成运算放大电路
3.4 基本运算电路 3. 积分电路
v1 i1 = = iC R1
iC = −C
dvo dt
1 1 vo =- ∫ iC dt = ∫ vi dt C R1C
第3章 集成运算放大电路
3.4 基本运算电路 4. 微分电路
vo =-iR = − RC dvi dt
第3章 集成运算放大电路
第3章 集成运算放大电路
3.1 集成运放的基本单元电路
集成运放是一个高放大倍数的多级直接耦合放大电路。 集成运放是一个高放大倍数的多级直接耦合放大电路。
vo = Avo (vP − vN )
第3章 集成运算放大电路
输入级
3.1 集成运放的基本单元电路
第3章 集成运算放大电路
中间级
3.1 集成运放的基本单元电路
第3章 集成运算放大电路
3.3 集成运放的基本电路 2. 同相放大电路
vP = vi
vn = R2 R1
R1 vo R1 + R2
Av = 1 +
第3章 集成运算放大电路
3.3 集成运放的基本电路 3. 差分输入放大电路
vi1 − vn vi1 − vo = R1 R2 R2 vp = vi2 R1 + R2
R p =R1 // R2 // R3 // R4 ≈ 1.3kΩ
R4 R4 =5 R1 = = 20kΩ R1 5 R4 R4 =0.2 R3 = = 500kΩ R3 0.2
第3章 集成运算放大电路
习题课
vI1 − vp R1 vI2 − vp R2 vI3 − vp R3
vI2 vI3 vp + + = + + R1 R2 R3 R1 R2 R3 令Rp = R1 // R2 // R3
第九章运算放大电路
![第九章运算放大电路](https://img.taocdn.com/s3/m/9864cb3c6edb6f1aff001f80.png)
类型:同相求和和反相求和。
方法:引入深度电压并联负反馈或电压串联 负反馈。这样输出电压与运放的开环 放大倍数无关,与输入电压和反馈系 数有关。
27
加法运算电路
1. 反相加法运算电路 ui2 ii2 R12 if RF
因虚断,i– = 0 所以 ii1+ ii2 = if
ro
+
Avo(vp-vN)
-
vo
开环电压放大倍数高(104-107); 输入电阻高(约几百KΩ); 输出电阻低(约几百Ω); 漂移小、可靠性高、体积小、重量轻、价格低 。
8
四 电压传输特性 uo= f (ui)
uo 近似特性 U+
-Uds
实际特性
O Uds up-un
-U-
分三个区域: ①线性工作区:
)u
ui1 u R21
ui2 u R22
i
0
ui1 ui2
u
R22 R21 R22
ui1
R21 R21 R22
ui 2
RF
R1
–
u+ + +
R21
+ uo –
R22 平衡电阻:
R21 // R22 = R1 // RF
uo
(1
RF R1
)( R22 R21 R22
ui1 ii1 R11
– +
+
+ R2
R2= R11 // R12 // RF
uo –
若 R11 = R12 = R1
则:uo
若 R1 =
LM324集成芯片内部电路分析
![LM324集成芯片内部电路分析](https://img.taocdn.com/s3/m/f6debc0e0740be1e650e9ae9.png)
LM324集成芯片内部电路分析与典型应用计科1207班 12281161 安容巧 12281164 陈福棉摘要:LM324集成芯片内部构造由四运放构成,其优点相较于标准运算放大器而言,电源电压工作范围更宽,静态功耗更小,因此在生活中有着极为广泛的应用。
LM324的四组运算放大器完全相同,除了共用工作电源外,四组器件完全独立。
以其中一组运算放大器为例分析,其内部电路共由两级电路构成,其耦合方式为电容耦合,这使得两级电路的直流工作状态相互独立,互不影响。
LM324的典型应用有信号发生器,所以采用带有差动输入的四运算放大器LM324为核心器件,通过RC桥式振荡电路产生正弦波,然后用过零比较器产生方波,再经过积分电路产生三角波就可以设计出信号发生器电路关键词:LM324集成芯片,单元电路,工作原理,应用,信号发生器1、外部结构与内部电路结构LM324系列集成芯片(如下图)为四个完全相同的运算放大器封装在一起的集成电路,该集成电路外部具有十四个管脚,分别包含八个输入端口、四个输出端口以及两个电压端口。
图2为LM324的管脚连接图。
除电源共用外,四组运放相互独立。
由图可知:第1、7、8、14号管脚为输出管脚,分别对应四个运算放大器的输出端。
第2、6、9、13号管脚为负输入端。
第4、11两管脚连接工作电压。
使用时,在4、11号管脚处分别接入正负工作电源(一般为12V或15V)将输入端高点平输入至正输入端,低电平输入至负输入端,此时在输出端便可得到经过同相放大的电压。
若将正负端反接,则可在输出端得到经过反响放大的电压。
与标准运算放大器相比,LM324这种差动输入方式的器件具有显著的优点。
它的优点在于电源电压范围宽、静态功耗小、可采用单(双)电源方式使用,价格低廉。
因此,LM324的应用在各种电路中。
2、单元电路分析LM324的1、2、3;5、6、7;8、9、10;12、13、14管脚分别组成四个运算放大器单元。
集成电路
![集成电路](https://img.taocdn.com/s3/m/1e1e97d126fff705cc170a39.png)
1.2 集成运放的基本构成和表示符号1.2.1集成运放的基本构成集成运放是以双端为输入,单端对地为输出的直接耦合型高增益放大器,是一种模拟集成电子器件。
集成运放内部电路包括四个基本组成环节,分别是:输入级、中间级、输出级和各级的偏置电路。
对于高性能、高精度等特殊集成运放,还要增加有关部分的单元电路。
例如:温度控制电路、温度补偿电路、内部补偿电路、过流或过热保护电路、限流电路、稳压电路等。
图1—2—l所示为集成运放内部电路方框图。
由于三极管容易制造,且它在硅片上占的面积小,所以集成运放内部电路大量采用三极管代替其他元件,如用三极管代替二极管,用有源负载代替电阻负载等。
由于三极管是在相同的工艺条件下同时制造的,同一硅片上的对管特性比较相近,易获得良好的对称特性,且在同一温度场,易获得良好的温度补偿,具有很好的温度稳定性。
在集成电路中,各元件易于集成的顺序是:三极管、二极管、小的电阻、小的电容等,对于大的电阻或大的电容、电感等难以集成,可采用外接的方法。
在集成电路中,不能直接集成电感元件,如在集成电路内部需要电感时,可用其他元件(如:三极管、电阻、电容等)模拟出电感元件1,输入级为了提高集成运放的输入电阻、减小失调电压和偏置电流、提高差模和共模输入电压范围等性能,集成运放的输入级的差动输入放大电路,常采用超揖管、达林顿复合管、串联互补复合管、场效应管等。
为了获得较高的增益,减少内部电路的补偿要求,在差动输入放大级中,还采用有源负载或恒流源负载。
输入级的保护电路也是不可缺少的。
2,中间级集成运放的中间级常采用电平位移电路,将电平移动到地电平,其电路多采用恒流源、横向PNP管、稳压管、正向二极管链、电阻降压电路等。
从双端变单端的变换,常采用并联电压负反馈、有源负载、电流负反馈、PNP管等方法。
为了提高共模抑制能力、提高差模增益和提供稳定的内部工作电流,实际电路中广泛采用各种恒流源电路,如稳压管恒流源、镜像恒流源、多集电极恒流源、场效应管恒流源等。
运算放大器的常见电路
![运算放大器的常见电路](https://img.taocdn.com/s3/m/70f8ed5371fe910ef02df867.png)
vi1 - vn vi2 - vn vn - vo
R1
R2
R3
- vo
R3 R1
vi1
R3 R2
vi2
若 R1 R2 R3 则有 - vo vi1 vi2
(该电路也称为加法电路)
2.4.4 积分电路和微分电路
1. 积分电路
根据“虚短”,得 vP vP 0
根据“虚断”,得
ii 0
因此
当Avo(vP-vN) V-时 vO= V-
电压传输特性 vO= f (vP-vN)
线性范围内 vO=Avo(vP-vN)
Avo——斜率
end
2.2 理想运算放大器
1. vo的饱和极限值等于运放的电源电压 V+和V-
2. 运放的开环电压增益很高 若(vP-vN)>0 则 vO= +Vom=V+ 若(vP-vN)<0 则 vO= –Vom=V-
2. 运算放大器的电路模型
通常: ▪ 开环电压增益
Avo的105 (很高)
▪ 输入电阻 ri 106Ω (很大)
▪ 输出电阻 ro 100Ω (很小)
图2.1.3 运算放大器的电路模型
vO=Avo(vP-vN)
( V-< vO <V+ )
注意输入输出的相位关系
2. 运算放大器的电路模型
当Avo(vP-vN) V+ 时 vO= V+
引入反馈后
vn 0,vp(vi)不变
→ (vp-vn)↓ → vo↓
使输出减小了,增益Av=vo/vi下降了,这时的反馈称为负反馈。
2.3.1 同相放大电路
3. 虚假短路 ▪ 图中输出通过负反馈的作用,使vn自动 地跟踪vp, 即vp≈vn,或vid=vp-vn≈0。这种现象 称为虚假短路,简称虚短
第三章 差动放大电路及集成运算放大器 第一节差动放大电路
![第三章 差动放大电路及集成运算放大器 第一节差动放大电路](https://img.taocdn.com/s3/m/6f84c4d5951ea76e58fafab069dc5022aaea46fb.png)
差动放大电路及集成运算放大器
3.1.1.1 差动放大电路的基本结构 差动放大电路如图3-1所示。
图3-2中可以算出差模输入电阻为: Rid=2(rbe+Rb) 输出电阻为: Rο=2RC
差动放大电路及集成运算放大器
3.1.3 共模输入信号与共模抑制比KCMR
在差动放大器两输入端同时输入一对极性相同、幅度相 同的信号称为共模输入方式。定义共模信号uic为两个输入信 号的算术平均值,即:
uic
ui1
差动放大电路及集成运算放大器
因此,其差模电压放大倍数为:
Aud
uo uid
Rc
Rb rbe
上式说明,该电压放大倍数与单管共射放大电路的电压
放大倍数相等。
这里我们用两套电路的元件实现的电压放大倍数和一套 电路相同。但该电路具有很好的超低频性能和很强的抑制零 点漂移的能力,这个问题下面还要详细讨论。
uo uo1 uo2 2uo1
差动放大电路及集成运算放大器
由图3-2可以计算出VT1、VT2的输出电压分别为:
VT1的输出电压:
uo1
Rcuid
2(Rb rbe )
VT2的输出电压:
uo 2
Rcuid
2(Rb rbe )
则差动放大电路的双端输出电压为:
uo
uo1
uo2
RCuid
Rb rbe
在一些超低频及直流放大电路中,级间耦合必须采用直 接耦合方式。直接耦合电路既能放大交流信号又能放大直流 信号,具有相当好的低频特性,所以又常称为直流放大器。 但由于其内部各级电路的静态工作点相互影响,给电路设计 和调整带来诸多不便。
电工 单元九 集成运放
![电工 单元九 集成运放](https://img.taocdn.com/s3/m/36023d47be1e650e52ea9902.png)
实际特性
饱和区
(l)开环电压放大倍数为无穷大,A0→∞ (2)运算放大器差模输入电阻,rid→∞ (3)输出电阻为零,r0几乎为零
(1) 线性区的特点
理想运放工作在线性区时有两个重要的特点:“虚短”
和“虚断”。即 u+≈u- i+= i-≈0 “虚短”表示集成运放的同相输入端与反相输入端的电 压近似相等,如同将该两点虚假短路一样。若运放其中一个 输入端接“地”,则有u+≈u-=0,这时称“虚地”。 “虚断”表示没有电流流入运放(因为理想运放的差模
集成运放开环时输出级的输出电阻,称为开环输出电阻。r0愈小, 集成运放带负载的能力就愈强。由于集成运放采用互补对称式 射极输出电路,其r0较低,一般为几十到几百欧。
(4)最大输出电压UOM
在标称电源电压和额定负载电阻的情况下,能使集成运放 输出电压和输入电压保持不失真关系的最大输出电压,称 为集成运放的最大输出电压。一般为电源电压的70%左右
对于单级运放电路,反馈元件(例如Rf)接到同相输入端是正反馈,接到 反相输入端是负反馈。
反馈的其他分类
1.直流反馈和交流反馈——反馈的信号 直流反馈:反馈信号是直流分量的称为直流反馈,直流反馈 用于稳定静态工作点。 交流反馈:反馈信号是交流分量的称为交流反馈。 有时反馈信号中既含有直流分量又含有交流分量。
一、开环、闭环、反馈ห้องสมุดไป่ตู้概念
1、定义
集成运放有两个输入端,一个输出端。当输出端和输入端之间 不外接电路,即两者之间在外部是断开的,这称为开环状态 当用一定形式的网络(如R、C等)在外部将它们连接起来,这称 为闭环状态,又称为反馈状态。
反馈在电和非电领域都得到了广泛的应用。通常自动控制和自动调节 系统都是基于反馈原理构成的;在放大电路中适当引入反馈、可以改善放 大电路的性能
集成运算放大器全篇
![集成运算放大器全篇](https://img.taocdn.com/s3/m/b9721e00302b3169a45177232f60ddccdb38e652.png)
习题判16
七、 微分器
iF R
i1 C ui
R2
– +
+
u–= u+= 0
uo
若输入: ui sin t
ui
则:uo RC cost RC sin(t 90 ) 0 uo
0
iF
uo R
i1
C
dui dt
i1 iF
uo
RC
dui dt
t t 习题判19
微分是积分的逆运算。因此,只要将积分运算电路 中R和C的位置互换,就能形成微分器基本电路。如果 说,积分电路能够延缓信号的传输,那么微分电路则能 加快信号的传输过程,微分器又称D调节器。
(2)无调零引出端的运放调零。有些运放是不设调零引出端 的,特别是四运放或双运放等因引脚有限,一般都省掉调零端。 用作电压比较器的运放,无需调零;用作弱信号处理的线性电 路,需要通过一个附加电路,引入一个补偿电压,抵消失调参 数的影响,几种附加的调零电路如图1-14所示。 调零电路的接人对信号的传输关系应无影响,故图l-14a和图l14b加入了限流电阻R3,R3的阻值要求比R1大数十倍,若R1 =10 kΩ, R3可取200 kΩ。图l-14c和图l-14d为不用调零电源 (+U和-U)的调零电路,通过调节电位器RP,可以改变输入偏置 电流的大小,以调整电消振措施 1)区分内外补偿。从产品手册或产品说明书上可查到补偿方法, 如F007型运放往往把消振用的RC元件制作在运放内部。大部分 没有外接相位补偿(校正)端子的运放,均列出补偿用RC元件 的参考数值,按厂家提供的参数,一般均能消除自激。 2)补偿电容与带宽的关系。有时按厂家提供的RC参数不能完全 消除自激。此时若加大补偿电容的容量,可以消除自激。对于 交流放大器,则必须注意补偿元件对频带的影响,不应取过大 的电容值,要选取适当的电容值,使之既能消除振荡,又能保 持一定的频带宽度。此外,对应不同的闭环增益,所需的补偿 电容和补偿电阻也不同。在选取补偿元件时,可以按以下原则 掌握:在消除自激的前提下,尽可能使用容量小的补偿电容和 阻值大的补偿电阻。
模电第02章 运算放大器(康华光)
![模电第02章 运算放大器(康华光)](https://img.taocdn.com/s3/m/45c0248b680203d8ce2f242c.png)
vp
vn
- ri ro + 传输特性(vo~vi关系) 例如反相比例器:
vo
+Vom
传输特性
vo
Rf R1
vi
-vim
-Vom
vim
vi
vo 变化范围:
- Vom
~ + Vom
线性工作区
当vo = Vom时: vim = - +Vom R1/Rf 可见:加入负反馈(闭环使用时)使线性工作区变宽。
vn
in
ro
ri +
vp ip +
vo
- A(vp-vn)
可见: 当vp-vn> 0 时, vo=+Vom 运放工作在正向饱和区 当vp-vn<0时, vo=-Vom 运放工作在反向饱和区
∵实际运算放大器≈理想运算放大器 ∴分析实际运算放大器≈分析理想运算放大器
(5-11)
五.含理想运算放大器电路的分析依据
RL
+ vo -
2.指标计算 虚地 (1)电压增益 “虚短”: vn≈vp =0 “虚断”: ip=in≈0 ∴i1 = i2+in≈ i2
1.结构特点 负反馈引到反相输入端, 信号从反相端输入。
v i v n v n vo R1 R2 v i vo R1 R2
vo R2 Av vi R1
当(vp- vn)<0时, vo=-Vom ——负饱和值
饱和值Vom的绝对值略低于正负电源的绝对值。
(5-13)
§2.3 §2.4 线性运放电路
运放外部接若干元件(R、C 等),即可组成多种线 性运放电路。线性运放电路工作在闭环状态。
简单的集成电路运算放大器
![简单的集成电路运算放大器](https://img.taocdn.com/s3/m/e578ab1c4028915f814dc225.png)
第21讲6.3 简单的集成电路运算放大器主要内容:本节主要介绍了集成电路运算放大器。
基本要求:了解集成运放的内部结构及各部分功能、特点。
教学要点:1.集成电路运算放大器的组成集成电路运算放大器是一种高电压增益、高输入电阻和低输出电阻的多级直接耦合放大电路,它的类型很多,电路也不一样,但结构具有共同之处,一般由四部分组成。
(1)输入级一般是由BJT、JFET或MOSFET组成的差分式放大电路,利用它的对称特性可以提高整个电路的共模抑制比和其他方面的性能,它的两个输入端构成整个电路的反相输入端和同相输入端。
(2).电压放大级的主要作用是提高电压增益,它可由一级或多级放大电路组成(3).输出级一般由电压跟随器或互补电压跟随器所组成,以降低输出电阻,提高带负载能力。
(4)偏置电路是为各级提供合适的工作电流。
此外还有一些辅助环节,如电平移动电路、过载保护电路以及高频补偿环节等2.简单的运算放大器简单运算放大器的原理电路如图所示。
(1)T1,T2对管组成差分式放大电路,信号双端输入、单端输出。
(2)复合管T3,T4组成共射极电路,形成电压放大级,以提高整个电路的电压增益。
(3)T5,T6组成两级电压跟随器,构成电路的输出级,它不仅可以提高带负载的能力,而且可进一步使直流电位下降,以达到输入信号电压v id=v i1-v i2为零时,输出电压v O=0的目的。
(4)R7和D组成低电压稳压电路以供给的基准电压,它与T9一起构成电流源电路以提高T5的电压跟随能力。
(5)电路符号:由此可见,运算放大器有两个输入端(即反相输入端1和同相输入端2),与一个输出端3。
在运算放大器的代表符号中,反相输入端用"-"号表示,同相输入端用"+"表示。
器件外端输入、输出相应地用N,P和O表示。
(6)输入和输出的相位:利用瞬时极性法分析可知,当输入信号电压v i1从反相输入端输入时(v i2=0),如v i1的瞬时变化极性为(+)时,各级输出端的瞬时电位极性为:v C2(+)→v O2(–)→v B6(–)→v O(–)则输出信号电压v o 与v i1反相;同时,当输入信号电压从同相端输入v i2(v i1=0)时,可以检验,输出电压v o与v i2同相。
集成运算放大电路
![集成运算放大电路](https://img.taocdn.com/s3/m/73031ecb370cba1aa8114431b90d6c85ec3a88c0.png)
电极经RC接VCC,发射极经电阻RE接VEE。电路中两管集电极负载电
阻的阻值相等,两基极电阻阻值相等,输入信号ui1和ui2分别加在两
管的基极上,输出电压u0从两管的集电极输出。这种连接方式称为
双端输入、双端输出方式。
下一页 返回
4.2 差分放大电路
2. 抑制零点漂移的原理
(1)依靠电路的对称性
上一页 下一页 返回
第一节 心脏除颤仪
2. 病人准备 ①卧硬板床,解开衣领、裤带,去除身上
的金属物品。 ②择期电复律者术晨禁食,术前排空大小
便。 ③给予吸氧,建立静脉通路。 3. 护士准备 衣帽整洁,仪表端庄,熟练
操作除颤仪。 4. 物品准备 除颤仪、导电糊(或浸湿生
理盐水的纱布)、治疗碗(清洁上一纱页布下1一页 返回
1
u i1 u i2 2 u id
或
uid 2ui1
图4-4电路中,在输入差模信号uid时,由于电路的对称性,使
得V1和V2两管的集电极电流为一增一减的状态,而且增减的幅度相
同。如果V1的集电极电流增大,则V2的集电极电流减小,即iC1=-iC2。
显然,此时RE上的电流没有变化,说明RE对差模信号没有作用,在RE
4.1.1 前级、后级静态工作点相互影响
前级的集电极电位恒等于后级的基极电位,前级的集电极电阻
RC1同时又是后级的偏流电阻,前、后级的静态工作点就互相影响,
互相牵制。
下一页 返回
4.1 直接耦合放大电路及问题
因此,在直接耦合放大电路中必须采取一定的措施,必须全面 考虑各级的静态工作点的合理配置,当放大电路的级数增多时,这 个问题显得更加复杂。常用的办法之一是提高后级的发射极电位。 在图4-1中是利用V2的发射极电阻RE2上的压降来提高发射极的电位。 这一方面能提高V1的集电极电位,增大其输出电压的幅度,另一方 面又能使V2获得合适的工作点。在工程中还有其他方法可以实现前、 后级静态工作点的配合。
集成运算放大器
![集成运算放大器](https://img.taocdn.com/s3/m/86a03b5077232f60ddcca1ce.png)
管脚排列规则: 对于双列直插式封装,将器件正放(看顶部),将 切口或圆形标记放在左边,由左下角开始按逆时钟 方向排列序号。如图13-1所示 。
若 R1 = R 2 = R3 = R F ,则: u o = u i 2 − u i1 由此可见,输出电压与两个输入电压之 差成正比,实现了减法运算。该电路又称为 差动输入运算电路或差动放大电路。
二、加法运算电路
根据运放工作在线性区的两条分析依据可知: i f = i1 + i 2 u u u ui 1 R1 i1 if i1 = i1 , i 2 = i 2 , i f = − o R1 R2 RF 由此可得:
1.开环电压放大倍数(差模电压放大倍数) Ad 它是指运放在没有外接反馈的情况下,输入端加一个小信号, 测得的电压放大倍数。它是决定运放精度的主要参数,其值越 大,精度越高。F007开环电压放大倍数约为105倍(100dB)。 2.共模抑制比KCMRR 表征的是运放对干扰信号的抑制能力,KCMRR 越大,共模抑制 性能真好。用差模电压放大倍数Ad与共模电压放大倍数Ac之比 的绝对值来表示。若用分贝为单位,则表示为: F007的KCMRR约为80dB
if
RF
-
∞
uo +
Δ
式中的负号表示输出电压与输 入电压的相位相反。
闭环电压放大倍数为: uo RF =− Auf = ui R1 当 R F = R1 时, u o = −u i , 即 Auf = −1 ,该电路就成了反 相器。 图中电阻 Rp 称为平衡 电 阻, 通 常取 R p = R1 // R F , 以 保证其输入端的电阻平衡,从 而提高差动电路的对称性。
集成运放内部电路原理
![集成运放内部电路原理](https://img.taocdn.com/s3/m/c1761356cd7931b765ce0508763231126edb7707.png)
集成运放内部电路原理
集成运算放大器(简称集成运放)是一种将多个电子器件集成在一块单晶硅芯片上的电子器件。
其内部电路原理如下:
1. 输入级:由差分式放大电路组成,利用其对称性可提高电路性能。
2. 中间电压放大级:主要作用是提高电压增益,由多级放大电路组成。
3. 输出级电压增益为1,但为负载提供功率。
此外,集成运放的电路中还包括偏置电路,用于提供偏置电压以及对输入信号交流成分进行放大。
输入信号首先经过隔直电容过滤其直流成分,然后通过直流偏置信号进行放大。
反馈电阻和反向端电阻用于确定放大倍数。
整个电路具有同相输入端P、反相输入端N和输出端O。
当P端加入电压信号时,O端输出同相的电压信号;N端加入电压信号时,O端输出反相的电压信号。
此外,该电路还可以抑制共模信号,当输入信号中含有共模噪声时,将被抑制。
以上信息仅供参考,如需了解更多信息,建议查阅集成运放相关书籍或咨询专业人士。
23124-第4单元-集成运算放大器
![23124-第4单元-集成运算放大器](https://img.taocdn.com/s3/m/c6a7cf2be2bd960590c67757.png)
• 由于运算放大器的输入级是差分放大电路, 而它的中间级和末级只是把差分放大电路 输出的信号进行放大,故它的输入、输出 电压的关系和差分放大电路相同,即 uo=K(u2−u1)
• 式中,u2——运算放大器同相信号输入端 电压。 • u1——运算放大器反相信号输入端电压。
• 由此可见,输出电压uo和同相输入端电压 u2及反相输入端电压u1之差成正比。 • K为比例系数,就是电压放大倍数。
② 通用Ⅱ型中增益运放。
• dIos约为5~20nA/℃。
③ 低漂移运放。
• dIos约为100pA/℃。
6.输入失调电压温漂dUos
• 在规定的工作温度范围内,Uos随温度的 平均变化率,即dUos=Uos/T,一般为1~ 50V/℃,高质量的低于0.5V /℃。
• 由于该指标不像Uos可以通过调零进行补 偿,因此更为重要。
图4-3 集成运算放大器的典型电路
1.输入级
• 集成运算放大器的输入级,一般采用恒流 源的差分放大电路,有2个输入端。
(1)同相输入端
• 信号若从这一端输入,在输出端可得到与 输入端极性相同的同相信号。
(2)反相输入端
• 信号若从这一端输入,在输出端可得到与 输入端极性相反的反相信号。
• 信号可根据需要从某一端输入,也可同时 从2个端子作差分输入。
• 再根据使用特点确定运算放大器的指标 (差模电压放大倍数、输入电阻,共模抑 制比、失调电压温漂、失调电流温漂、最 大共模电压及最大差模电压等),根据主 要指标,从IC手册中选取相应的型号。
4.2 集成运算放大器的主要参数
4.2.1 开环特性参数
• 集成运算放大器的开环特性参数主要有以 下几个方面。
7.输入偏置电流IB
集成运算放大器
![集成运算放大器](https://img.taocdn.com/s3/m/efa57b0cba68a98271fe910ef12d2af90242a831.png)
31
一、 镜像电流源电路
1、基本镜像电流源
设T1、T2的参数完全相同。
UBE1 = UBE2 = UBE,
IB1= IB2、IC1= IC2
基准电流
I REF
VCC
UBE R
IREF IC1 2IB IC(1 1 2 )
IC2= IC1≈ IREF
1 >>2 /β
1)输出电流IC2与基准电流 IREF相等。把IC2看作是 IREF的镜像——镜像电流源。
2) IC2的大小仅取决于VCC和R,与温度无关。 32
2、精密镜象电流源
精密镜象电流源和普通镜象电流源相比,其
精度提高了 倍。
由于有T3存在,IB3将 比镜象电流源的2IB小β3倍。 因此IC2和IREF更加接近。
ro Rc 10k
uo与ui同相位。
2)求KCMR 10 0.5 2 5.1
KCMR
Aud Auc
50 100 0.5
28
3)改接后,电路由单端输 入变成任意输入。
uid uA uB 8 2 sint mV
uic 12(uA uB)
504 2 sin t mV
Chapter 3 集成运算放大器
集成运放简介 集成运放的单元电路 通用型集成运算放大器 集成运放的主要参数 集成运算放大器的电压传输特性
和理想模型 专用型集成运算放大器
1
3.1 集成运放简介
3.1.1 简介
集成电路是60年代初期发展起来的。 采用半导体制造工艺,在一小块硅单晶片上制作 具有特定功能的电子线路。 集成电路分为:模拟集成电路与数字集成电路。 在模拟集成电路中,运算放大器(早期用于模 拟计算机的数学运算)发展最早,应用最广泛。随 着集成技术与集成工艺的迅速发展,其他类型的模 拟集成电路也取得了非常大的进展,如混频器、调 制器、宽带放大器、高频放大器、功率放大器、电 压比较器、A/D或D/A转换器等
第三章 集成运算放大器
![第三章 集成运算放大器](https://img.taocdn.com/s3/m/3b537d735acfa1c7aa00cc2c.png)
阻RP为vi=0时反相输入端的等 效电阻: RP= R1// RF,称为补
偿电阻或平衡电阻。
反相放大器的特点:
运放的反相输入端虚地,其共模输入电压可视为零,因此, 电路对运放的共模抑制比要求不高。 由于并联负反馈的作用,使反相放大器的输入电阻减小。 虽然实际运放的输出电阻不为零,但由于电压负反馈的作 用,使反相放大器的输出电阻很小,近似为零。因此,反 相放大器的带负载能力很强。
vo AV 0 (v v )
而AV 0 , vo为有限值, 所以, v ) 0, (v 故 v v
v+ v-
i+
+ -
vo A
i-
“虚短”:运放的同相输入端和反相输入端的电位“无 穷”接近,好象短路一样,但却不是真正的短路。
因为rid , vi v v为有限值, 所以,i i 0
本节主要内容: 理想运放的特性; 理想运放工作于线性区的“两虚”的现象; 三种基本放大器。
3.4 基本运算电路
3.4.1 加、减法电路
一、加法电路 类似反相放大器,电路处于 深度负反馈条件下,虚短(虚 地)和虚断成立。
iF i1 i2 i3
反相加法电路
vO iF RF (
结论: • 三运放电路是差动放大 器,放大倍数可变。 • 由于输入均在同相端, 此电路的输入电阻高。
2 R RW (vi 2 vi1 ) RW
R2 vo ( vo 2 vo1 ) R1
R2 2 R RW vo (vi 2 vi1 ) R1 RW
3.4.2积分和微分运算电路
A2组成差分输入放大器,有
华南理工大学 模拟电子技术基础 5集成运算放大器单元电路PPT
![华南理工大学 模拟电子技术基础 5集成运算放大器单元电路PPT](https://img.taocdn.com/s3/m/988f81f202020740bf1e9ba4.png)
VCC
Rc
Rc
uC1
+
uC2
iC1
RL uO
iC2
+ uI
Rb +
uI1 -
iB1
V1
iE1 iEE
-
V2
e
iE2 Re
Rb iB2
uI2 -+
VEE
Aud1
Uod1 Uid
Uod1 2Uid1
RL
2(Rb rbe )
RL Rc // RL
Rid 2(Rb rbe ) ,Rod Rc
5.2.3-- 1.双端输入单端输出差放电路
单端输入
单端输出
双端输入
双端输出
1)差模信号 uI1 uI2
V1、V2管相对应极电流或电 压的变化量也是差模信号。
长尾式差分 放大电路
2)共模信号uI1 uI2
V1、V2管相对应极电流或电 压的变化量也是共模信号。
5.2.1 差分放大电路的组成及特点
2.基本特点 3)一般信号uI1 uI2
差模分量 uId uI1 uI2
由于输入回路没有变 化,所以IEQ、IBQ、ICQ 与双端输出时一样。但 是UCEQ1≠ UCEQ2。
VCC
RL Rc RL
VCC
Rc Rc // RL
UCQ1 VCC ICQ Rc UCQ2 VCC ICQ Rc
5.2.3-- 1.双端输入单端输出差放电路
(2)动态分析 1)对差模信号的作用
5.1.2 有源负载放大电路
5.1.1 基本电流源电路
电流源电路:提供恒定输出电流 1) 作为各级电路的偏置电路,以提供合适的静态电流; 2) 作为放大电路的有源负载,提高电路的增益。
电子技术复习集成运算放大器解读
![电子技术复习集成运算放大器解读](https://img.taocdn.com/s3/m/013e824e77232f60ddcca173.png)
vO
vO
(2)、集成电路按功能分为: 数字电路: 模拟电路:集成运放、集成功放、集成稳压电源电路
(3)、集成电路按晶体管性质分为: 晶体管-晶体管-逻辑电路((Transistor—Transistor Logic), 简称TTL电路)获双极型晶体管集成电路。 金属-氧化物-半导体场效应管集成电路(即MOS电路)或单极 型场效应管集成电路。
vN vP
vO
理想集成运放工作在线性区的 必要条件是引入深度负反馈。
3、理想集成运放的非线性工作区 当集成运放工作在开环状态(即没有引入负反馈)或只引入了 正反馈时,集成运放工作在非线性区。 其特点:输出电压只有两种状态,不是正 饱和电压+VOM,就是负饱和电压-VOM,一般 比电源电压低1~2伏。 (1)当同相端电压大于反相端电压,即 vP> vN时,vo=+VoM;当反相端电压大于同相 端电压,即vP < vN时,vo=-VoM。 (2)由于理想运放的差模输入电阻无穷 vi= vP-vN 大rid→∞ ,所以净输入电流为0,iP=iN=0。
第三章 集成运算放大电路 由晶体管、场效应管、二极管、电阻、电容等元器件根据不同 连接方式组成的电路,称为分立元件电路。 3.1集成运算放大电路概述
一、集成电路(Itegrated Circiut简称IC )定义 -----采用专门的半导体制造工艺,将大量的晶体管、场效应管、 二极管、电阻、电容等元件及它们间的连线所组成的完整电路制 作在一小块单晶硅片上,形成具有特定功能的单元电路。 集成放大电路是一种高电压放大倍数、高输入电阻、低输出电 阻的多极直接耦合放大电路,最初多用于各种模拟信号的运算(如 比例、求和、求差、积分、微分…),故被称为集成运算放大器, 简称集成运放。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
uo ui T Au T
3 直接耦合放大电路的电位移动
+VCC Rb Rs Rc1 VT1 Re R c2 VT 2 RL
+VCC
us
uo
ui
IO
R1 u o
直接耦合放大电路
R b1 Rs
R c1
R e2
+VCC
电流源电位移动电路
us
R b2
R e1
R c2
双端输出时共模放大倍数 单端输出时共模放大倍数
uOc Auc = 0 uIc
Auc1 =Auc2 uOc1 R L =- uIc Rs rbe (1 )2Re
Rc // RL RL
( Rs rbe ) 2(1 ) Re
Auc1
RL 2 Re
双端输出的共模电压放大倍数 单端输出时共模抑制比的表达式
。
K CMR
Aud 2( Rs rbe ) R e RL Auc Rs rbe 2 Re
' RL
恒流源差分放大电路
VCC + R Rc
Rc uO
VT1 Rs
uO1
uO2
VT2 Rs
uI1
i e2
uo
4 复合管
VT 1
VT 2
VT 1
VT 2
(a)
(b)
VT 2 VT 1 VT 1
VT 2
(c)
(d)
图 四种类型的复合管
5.7 集成运算放大器的参数和种类
集成运算放大器的参数
静态参数 动态参数
集成运算放大器的种类及选择
通用型 专用型
5.8 运算放大器的使用注意事项
VCC
uI
+VCC R VD 1 ui VD 2 VT2 R -VCC VT1 R1 VT4 RL uo ui R2 VT3 VT1 RC1 VT2
+VCC
RL
uo
-VCC
(a) 用二极管提供偏置 (b)UBE倍增电路 甲乙类互补功率放大电路
参数计算 输出功率计算 功率管的功率损耗
Pomax
2 U om max
uo 0
U CQ1 C1
u i1
uo
U CQ2 C2
u i2
差分放大电路的输入和输出方式
VCC
VCC
Rc1 Rs1 uI1
uO
Rc2 Rs2
VT2
RC1
RS1
uI2
RC2
uO
VT2
R
RS2
RS1
uI2 uI1
VT1
uI1
VT1
VT
Re
VEE
Ri Ro
Rc
+
uO RL
Rc Rs VT 2
Rs
+
uI
-
uI1 uI2
+
+
VT 1 Re -V EE
uId
uId 2
Rs
iB
rb e
rbe Rs
iB
Rc Rc
uId 2
iB
uOd 2 R L uOd 2 2
RL 2
u Od
iB
双端输入双端输出差分放大电路
Rc
uOd1
RL VT2 Re V E E Rs
+
u Od2
uI1 uI2
-
+
uId
-
uI1 uI2
+
+
Rs
+
+
Rs
RL
VT1
uId
VT1 Re V EE
VT2
Rs
(a) 从C1输出
(b) 从C2输出
双端输入单端输出差分放大电路
(c)单端输入双端输出差模电压放大倍数
VCC
+VCC
Rc
t
uI 2
u +U I2om
O
t
差模信号
uI 1
交直流信号
+U uI1om
O
直流信号
t
uI 2
O
t
-U om u I2
差模和共模信号混合
uI 1
uI1 uIc
O
t
uI 2
uIc uI2
O
t
差模输入时集电极的输出
交流0
U CQ1 C1
U CQ2 C2
u i1
uo
u i2
共模输入时集电极的输出
(2)共模抑制比
为了衡量差放抑制共模信号的能力(抑制零漂的能力),制定了一项技术指标,
称为共模抑制比KCMR。共模抑制比定义为差模电压放大倍数Aud与共模电压放大倍数
Auc之比的绝对值,即
K CMR
Aud Auc
或用分贝数表示
K CMR 20 lg
Auc=0, KCMR=
Aud dB Auc
uP uN
输入级
中间级
输出级
uo
偏置电流源
集成运算放大器结构图
2 集成运放的符号和电压传输特性
uP uN
uO
UoM
A
常用符号
uO
uP uN
A
国标符号
uO
uO
UoM
O
ui
UoM
非线性区
O
ui
UoM
非线性区
线性区
理想电压传输特性
实际电压传输特性
5.3 多级放大电路
1 多级放大电路的耦合方式
多级放大电路的级与级之间、信号源与放大电路之间、放大电 阻容耦合、变压器耦合和光电耦合。
双入双出差分放大电路的 差模微变等效电路
(b)双端输入单端输出差模电压放大倍数
' uOd1 RL Aud1 uId 2( Rs rbe )
Aud2
' uOd2 RL uId 2( Rs rbe )
' RL RC // RL
+VCC Rc
+VCC
Rc
Rc
路与负载之间的连接均称为耦合。常见的耦合方式有:直接耦合、
直接耦合
VCC
Rb RS ui
阻容耦合
VCC
Rb1 RC1
VT1 VT2 VT1
RC1
RC2
Rb2 RC2
C3 VT 2
C2 Re
Re
RL uO
ui
C1
RL uO
变压器耦合
VCC
RL
RL
I 1 U 1
2 模拟集成电路的特点
易于制造相对精度高的器件,容易保证电路中元件的对称性; 电路中的电阻元件由半导体的体电阻构成; 在一些场合用有源器件代替无源器件; 级间采用直接耦合方式。
5.2 集成运算放大器概述
1 集成运放的组成
集成运算放大器(简称运放)是一个直接耦合高增益的多级放大电 路。它是模拟集成电路中最重要的品种,广泛应用于各种电子电路中。
uO
RL
Rc Rs
Rc Rs
Rs
uO
Rc
uI
VT 1 Re VEE
VT 2
uI
2
RL
VT1 VT 2
Rs
uI
2
uI
2
Re
V EE
(a) 单端输入双端输出差分电路
(b) 对输入信号进行等效变换
单端输入双端输出差分放大电路
uIc
uI1 uI2 uI 2 2
(c)单端输入单端输出 单端输入单端输出
差分放大电路的静态分析
VCC
I CQ I BQ
RS 1
VT1
RC1 RC2
I CQ I BQ
VT2
I BQ1 I BQ2 =
VEE U BEQ Rs 2(1 ) Re
I CQ1 = I CQ2 = I BQ1
RS2
U CQ1 = U CQ2 = VCC I CQ1 Rc
第5章 集成运算放大器的单元电路
5.1 引言 5.2 集成运算放大器概述
5.3 多级放大电路
5.4 集成运算放大器中的电流源
5.5 差分放大电路
5.6 互补功率放大电路
5.7 集成运算放大器的参数和种类
5.1 引言
1 什么是集成电路?
利用集成电路的制造工艺,将电子元器件(双极型晶体管、场效应 管、二极管和电阻等)和连线制作在同一片半导体芯片上,构成具有
UZ
VDz
u I2
Re VEE
5.6 互补功率放大电路
1 晶体管的工作状态
iC iC I B5 Q (a)
O
I B4 I B3 I B2 I B1 uCE
I CQ
t
O
iC
iC I B5 I B4 Q I B3 I B2 I B1 uCE
(b)
O
I CQ
t
O
iC
iC I B5 I B4 I B3 I B2
R VD1 VD2
uO
uI