尺规作图典型例题
初二数学尺规作图典型例题归纳
初二数学尺规作图典型例题归纳典型例题一例已知线段a、b,画一条线段,使其等于.分析所要画的线段等于,实质上就是.画法:1.画线段.2.在AB的延长线上截取.线段AC就是所画的线段.说明1.尺规作图要保留画图痕迹,画图时画出的所有点和线不可随意擦去.2.其它作图都可以通过画基本作图来完成,写画法时,只需用一句话来概括叙述基本作图.典型例题二例如下图,已知线段a和b,求作一条线段AD使它的长度等于2a-b.图(2)正解如图(2),(1)作射线AM;(2)在射线AM上,顺次截取AB=BC=a;(3)在线段CA上截取CD=b,则线段AD就是所求作的线段.典型例题三例求作一个角等于已知角∠MON(如图1).图(1)图(2)正解如图(2),(1)作射线;(2)在图(1)上,以O为圆心,任意长为半径作弧,交OM于点A,交ON于点B;(3)以为圆心,OA的长为半径作弧,交于点C;(4)以C为圆心,以AB的长为半径作弧,交前弧于点D;(5)过点D作射线.则∠就是所要求作的角.典型例题四例如下图,已知∠α及线段a,求作等腰三角形,使它的底角为α,底边为a.分析先假设等腰三角形已经作好,根据等腰三角形的性质,知两底角∠B=∠C=∠α,底边BC=a,故可以先作∠B=∠α,或先作底边BC=a.作法如下图(1)∠MBN=∠α;(2)在射线BM上截取BC=a;(3)以C为顶点作∠PCB=∠α,射线CP交BN于点A.△ABC就是所要求作的等腰三角形.说明画复杂的图形时,如一时找不到作法,一般是先画出一个符合条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.典型例题五例如图(1),已知直线AB及直线AB外一点C,过点C作CD∥AB(写出作法,画出图形).分析根据两直线平行的性质,同位角相等或错角相等,故作一个角∠ECD=∠EFB即可.作法如图(2).图(1)图(2)(1)过点C作直线EF,交AB于点F;(2)以点F为圆心,以任意长为半径作弧,交FB于点P,交EF于点Q;(3)以点C为圆心,以FP为半径作弧,交CE于M点;(4)以点M为圆心,以PQ为半径作弧,交前弧于点D;(5)过点D作直线CD,CD就是所求的直线.说明作图题都应给出证明,但按照教科书的要求,一般不用写出,但要知道作图的原由.典型例题六例如下图,△ABC中,a=5cm,b=3cm,c=3.5cm,∠B=,∠C=,请你从中选择适当的数据,画出与△ABC全等的三角形(把你能画的三角形全部画出来,不写画法但要在所画的三角形中标出用到的数据).分析本题实质上是利用原题中的5个数据,列出所有与△AB C全等的各种情况,依据是SSS、SAS、AAS、ASA.解与△ABC全等的三角形如下图所示.典型例题七例正在修建的北路有一形状如下图所示的三角形空地需要绿化.拟从点A出发,将△ABC分成面积相等的三个三角形,以便种上三种不同的花草,请你帮助规划出图案(保留作图痕迹,不写作法).(2003年,)分析这是尺规作图在生活中的具体应用.要把△ABC分成面积相等的三个三角形,且都是从A点出发,说明这三个三角形的高是相等的,因而只需这三个三角形的底边也相等,所以只要作出BC边的三等分点即可.作法如下图,找三等分点的依据是平行线等分线段定理.典型例题八例已知∠AOB,求作∠AOB的平分线OC.错解如图(1)作法(1)以O为圆心,任意长为半径作弧,分别交OA、OB于D、E两点;(2)分别以D、E为圆心,以大于DE的长为半径作弧,两弧相交于C点;(3)连结OC,则OC就是∠AOB的平分线.错解分析对角平分线的概念理解不够准确而致误.作法(3)中连结OC,则OC是一条线段,而角平分线应是一条射线.图(1)图(2)正解如图(2)(1)以点O为圆心,任意长为半径作弧,分别交OA、OB于D、E两点;(2)分别以D、E为圆心,以大于DE的长为半径作弧,两弧交于C点;(3)作射线OC,则OC为∠AOB的平分线.典型例题九例如图(1)所示,已知线段a、b、h(h<b).求作△ABC,使BC=a,AB=b, BC边上的高AD=h.图(1)错解如图(2),(1)作线段BC=a;(2)作线段BA=b,使AD⊥BC且AD=h.则△ABC就是所求作的三角形.错解分析①不能先作BC;②第2步不能同时满足几个条件,完全凭感觉毫无根据;③未考虑到本题有两种情况.对于这种作图题往往都是按照由里到外的顺序依次作图,如本题先作高AD,再作AB,最后确定BC.图(2)图(3)正解如图(3).(1)作直线PQ,在直线PQ上任取一点D,作DM⊥PQ;(2)在DM上截取线段DA=h;(3)以A为圆心,以b为半径画弧交射线DP于B;(4)以B为圆心,以a为半径画弧,分别交射线BP和射线BQ于和;(5)连结、,则△(或△)都是所求作的三角形.典型例题十例如下图,已知线段a,b,求作Rt△ABC,使∠ACB=90°,BC=a,AC=b (用直尺和圆规作图,保留作图痕迹).分析本题解答的关键在于作出∠ACB=90°,然后确定A、B两点的位置,作出△ABC.作法如下图(1)作直线MN:(2)在MN上任取一点C,过点C作CE⊥MN;(3)在CE上截取CA=b,在CM上截取CB=a;(4)连结AB,△ABC就是所求作的直角三角形.说明利用基本作图画出所求作的几何图形的关键是要先分析清楚作图的顺序.若把握不好作图顺序,要先画出假设图形.典型例题十一例如下图,已知钝角△ABC,∠B是钝角.求作:(1)BC边上的高;(2)BC边上的中线(写出作法,画出图形).分析(1)作BC边上的高,就是过已知点A作BC边所在直线的垂线;(2)作BC边上的中线,要先确定出BC边的中点,即作出BC边的垂直平分线.作法如下图(1)①在直线CB外取一点P,使A、P在直线CB的两旁;②以点A为圆心,AP为半径画弧,交直线CB于G、H两点;③分别以G、H为圆心,以大于GH的长为半径画弧,两弧交于E点;④作射线AE,交直线CB于D点,则线段AD就是所要求作的△ABC中BC边上的高.(2)①分别以B、C为圆心,以大于BC的长为半径画弧,两弧分别交于M、N两点;②作直线MN,交BC于点F;③连结AF,则线段AF就是所要求作的△ABC中边BC上的中线.说明在已知三角形中求作一边上的高线、中线、角平分线时,首先要把握好高线、中线、角平分钱是三条线段;其次,高线、中线的一个端点必须是三角形中这边所对的顶点,而关键是找出另一个端点.典型例题十二例如图(1)所示,在图中作出点C,使得C是∠MON平分线上的点,且AC=OC.图(1)图(2)分析由题意知,点C不仅要在∠MON的平分线上,且点C到O、A两点的距离要相等,所以点C应是∠MON的平分线与线段OA的垂直平分线的交点.作法如图(2)所示(1)作∠MON的平分线OP;(2)作线段OA的垂直平分线EF,交OP于点C,则点C就是所要求作的点.说明(1)根据题意弄清要求作的点的特征是到各直线距离相等,还是到各端点距离相等.(2)两条直线交于一点.典型例题十三例如下图,已知线段a、b、∠α、∠β.求作梯形ABCD,使AD=a,BC=b,AD∥BC,∠B=∠α;∠C=∠β.分析假定梯形已经作出,作AE∥DC交BC于E,则AE将梯形分割为两部分,一部分是△ABE,另一部分是AECD.在△ABE中,已知∠B=∠α,∠AEB=∠β,BE=b-a,所以,可以首先把它作出来,而后作出AECD.作法如下图.(1)作线段BC=b;(2)在BC上截取BE=b-a ;(3)分别以B、E为顶点,在BE同侧作∠EBA=∠α,∠AEB=∠β,BA、EA 交于A;(4)以EA、EC为邻边作AECD.四边形ABCD就是所求作的梯形.说明基本作图是作出较简单图形的基础,三角形是最简单的多边形,它是许多复杂图形的基础.因此,要作一个复杂的图形,常常先作一个比较容易作出的三角形,然后以此为基础,再作出所求作的图形.典型例题十四例如下图,在一次军事演习中,红方侦察员发现蓝方指挥部在A区,到铁路与公路的距离相等,且离铁路与公路交叉处B点700米,如果你是红方的指挥员,请你在图示的作战图上标出蓝方指挥部的位置.(2002年,)分析依据角平分线的性质可以知道,蓝方指挥部必在A区两条路所夹角的平分线上,然后由蓝方指挥部距B点的距离,依据比例尺,计算出图上的距离为3.5cm,就可以确定出蓝方指挥部的位置.解如下图,图中C点就是蓝方指挥部的位置.典型例题十五例如图(1),已知有公共端点的线段AB、BC.求作⊙O,使它经过点A、B、C(要求:尺规作图,不写作法,保留作图痕迹).(2002年,)图(1)图(2)分析因为A、B、C三点在⊙O上,所以OA=OB=OC=R.根据到线段AB、BC 各端点距离相等的点在线段的垂直平分线上,故分别作线段AB、BC垂直平分线即可.解如图(2)说明角平分线的性质、线段垂直平分线的性质在作图题中的应用是近几年中考中的又一道风景,它往往与实际问题紧密联系在一起.典型例题十六例如图,是一块直角三角形余料,.工人师傅要把它加工成一个正方形零件,使C为正方形的一个顶点,其余三个顶点分别在AB、BC、AC边上.试协助工人师傅用尺规画出裁割线.分析要作出符合条件的正方形,可先作出有三个角为90°的四边形,并设法让相邻的一组边相等即可.作法如图.1 作的角平分线CD,交AB于点G;②过G点分别作AC、BC的垂线,垂足为E、F.则四边形ECFG就是所要求作的正方形.。
第二十三讲尺规作图(原卷版)
第二十三讲尺规作图命题点1 五种基本尺规作图类型一判定作图结果1.(2022•德州)在△ABC中,根据下列尺规作图的痕迹,不能判断AB与AC 大小关系的是()A.B.C.D.2.(2022•益阳)如图,在△ABC中,BD平分∠ABC,以点A为圆心,以任意长为半径画弧交射线AB,AC于两点,分别以这两点为圆心,以适当的定长为半径画弧,两弧交于点E,作射线AE,交BD于点I,连接CI,以下说法错误的是()A.I到AB,AC边的距离相等B.CI平分∠ACBC.I是△ABC的内心D.I到A,B,C三点的距离相等3.(2022•盘锦)如图,线段AB是半圆O的直径.分别以点A和点O为圆心,大于的长为半径作弧,两弧交于M,N两点,作直线MN,交半圆O于点C,交AB于点E,连接AC,BC,若AE=1,则BC的长是()A.B.4C.6D.4.(2022•长春)如图,在△ABC中,根据尺规作图痕迹,下列说法不一定正确的是()A.AF=BF B.AE=ACC.∠DBF+∠DFB=90°D.∠BAF=∠EBC 5.(2022•威海)过直线l外一点P作直线l的垂线PQ.下列尺规作图错误的是()A.B.C.D.6.(2022•舟山)用尺规作一个角的角平分线,下列作法中错误的是()A.B.C.D.类型二根据作图步骤进行计算、证明或结论判断7.(2022•淄博)如图,在△ABC中,AB=AC,∠A=120°.分别以点A和C 为圆心,以大于AC的长度为半径作弧,两弧相交于点P和点Q,作直线PQ 分别交BC,AC于点D和点E.若CD=3,则BD的长为()A.4B.5C.6D.7 8.(2022•黄石)如图,在△ABC中,分别以A,C为圆心,大于AC长为半径作弧,两弧分别相交于M,N两点,作直线MN,分别交线段BC,AC于点D,E,若AE=2cm,△ABD的周长为11cm,则△ABC的周长为()A.13cm B.14cm C.15cm D.16cm 9.(2022•资阳)如图所示,在△ABC中,按下列步骤作图:第一步:在AB、AC上分别截取AD、AE,使AD=AE;第二步:分别以点D和点E为圆心、适当长(大于DE的一半)为半径作圆弧,两弧交于点F;第三步:作射线AF交BC于点M;第四步:过点M作MN⊥AB于点N.下列结论一定成立的是()A.CM=MN B.AC=AN C.∠CAM=∠BAM D.∠CMA=∠NMA 10.(2022•锦州)如图,在矩形ABCD中,AB=6,BC=8,分别以点A和C为圆心,以大于的长为半径作弧,两弧相交于点M和N,作直线MN分别交AD,BC于点E,F,则AE的长为()A.B.C.D.11.(2022•聊城)如图,△ABC中,若∠BAC=80°,∠ACB=70°,根据图中尺规作图的痕迹推断,以下结论错误的是()A.∠BAQ=40°B.DE=BD C.AF=AC D.∠EQF=25°12.(2022•百色)如图,是求作线段AB中点的作图痕迹,则下列结论不一定成立的是()A.∠B=45°B.AE=EB C.AC=BC D.AB⊥CD 13.(2022•营口)如图,在△ABC中,AB=AC,∠A=36°,由图中的尺规作图得到的射线与AC交于点D,则以下推断错误的是()A.BD=BC B.AD=BD C.∠ADB=108°D.CD=AD 14.(2022•鄂州)如图,直线l1∥l2,点C、A分别在l1、l2上,以点C为圆心,CA长为半径画弧,交l1于点B,连接AB.若∠BCA=150°,则∠1的度数为()A.10°B.15°C.20°D.30°15.(2022•枣庄)如图,在矩形ABCD中,按以下步骤作图:①分别以点B和D 为圆心,以大于BD的长为半径作弧,两弧相交于点E和F;②作直线EF 分别与DC,DB,AB交于点M,O,N.若DM=5,CM=3,则MN=.16.(2022•辽宁)如图,在△ABC中,AB=AC,∠B=54°,以点C为圆心,CA长为半径作弧交AB于点D,分别以点A和点D为圆心,大于AD长为半径作弧,两弧相交于点E,作直线CE,交AB于点F,则∠ACF的度数是.类型三依据要求直接作图17.(2022•淮安)如图,已知线段AC和线段a.(1)用直尺和圆规按下列要求作图.(请保留作图痕迹,并标明相应的字母,不写作法)①作线段AC的垂直平分线l,交线段AC于点O;②以线段AC为对角线,作矩形ABCD,使得AB=a,并且点B在线段AC的上方.(2)当AC=4,a=2时,求(1)中所作矩形ABCD的面积.18.(2022•襄阳)如图,在△ABC中,AB=AC,BD是△ABC的角平分线.(1)作∠ACB的角平分线,交AB于点E(尺规作图,不写作法,保留作图痕迹);(2)求证:AD=AE.19.(2022•宁夏)如图,四边形ABCD中,AB∥DC,AB=BC,AD⊥DC于点D.(1)用尺规作∠ABC的角平分线,交CD于点E;(不写作法,保留作图痕迹)(2)连接AE.求证:四边形ABCE是菱形.20.(2022•赤峰)如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.类型四转化类作图21.(2022•陕西)如图,已知△ABC,CA=CB,∠ACD是△ABC的一个外角.请用尺规作图法,求作射线CP,使CP∥AB.(保留作图痕迹,不写作法)命题点2无刻度直尺作图类型一网格中作图22.(2022•长春)图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.23.(2022•江西)如图是4×4的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作∠ABC的角平分线;(2)在图2中过点C作一条直线l,使点A,B到直线l的距离相等.类型二根据图形性质作图24.(2022•湖北)已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.25.(2022•无锡)如图,△ABC为锐角三角形.(1)请在图1中用无刻度的直尺和圆规作图:在AC右上方确定点D,使∠DAC=∠ACB,且CD⊥AD;(不写作法,保留作图痕迹)(2)在(1)的条件下,若∠B=60°,AB=2,BC=3,则四边形ABCD的面积为.26.(2022•绥化)已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.27.(2022•扬州)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O 作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)。
中考数学试题分类汇总《尺规作图》练习题
中考数学试题分类汇总《尺规作图》练习题(含答案)作角平分线1.如图,在△ABC中,∠B=30°,∠C=50°,通过观察尺规作图的痕迹,∠DAE的度数是35°.【分析】由线段垂直平分线的性质和等腰三角形的性质求得∠BAD=30°,结合三角形内角和定理求出∠CAD,根据角平分线的定义即可求出∠DAE的度数.【解答】解:∵DF垂直平分线段AB,∴DA=DB,∴∠BAD=∠B=30°,∵∠B=30°,∠C=50°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣30°﹣50°=100°,∴∠CAD=∠BAC﹣∠BAD=100°﹣30°=70°,∵AE平分∠CAD,∴∠DAE=∠CAD=×70°=35°,2.如图,在△ABC中,∠ABC>∠ACB.(1)尺规作图:在∠ABC的内部作射线BD,交AC于E,使得∠ABE=∠ACB;(不写作法,保留作图痕迹)(2)若(1)中AB=7,AC=13,求AE的长.【解答】解:(1)如图,射线BE即为所求作.(2)∵∠A=∠A,∠ABE=∠C,∴△ABE∽△ACB,∴=,∴=,∴AE=.3.如图,在△ABC中,∠C=90°.(1)求作:射线AD,使它平分∠BAC交BC于点D(请用尺规作图,保留作图痕迹,不写作法);(2)若BD:DC=2:1,BC=7.8cm,求点D到AB的距离.【分析】(1)是基本作图,利用直尺和圆规即可作出;(2)过点D作DE⊥AB于E.根据BD:DC=2:1,BC=7.8cm,可得DC,进而即可求点D到边AB的距离.【解答】解:(1)如图所示:(2)过点D作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴CD=DE,∵BD:DC=2:1,BC=7.8cm,∴DC=7.8÷(2+1)=7.8÷3=2.6cm.∴DE=DC=2.6cm.∴点D到AB的距离为2.6cm.4.如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连接EF,BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,AC=2.判断△BEF的形状,并说明理由,再求出其面积.【解答】解:(1)如图所示:∠CAD的平分线AF即为所求;(2)△BEF是等边三角形;理由如下:∵∠BAD=45°,且∠CAD=2∠BAC,∴∠BAC=∠F AC=∠DAF=15°,∴∠BAF=30°,∵AC=AD,AF是∠CAD的平分线,∴AF⊥CD,∵点E是AC的中点,∴EF=AC=1,∵∠ABC=90°,∴BE=AC=1,∴BE=EF,∠BEC=∠BAE+∠ABE=2∠BAE=30°,∠FEC=∠F AE+∠AFE=2∠F AE=30°,∴∠BEF=60°,∴△BEF是等边三角形;S△BEF=×12=.5.如图,在Rt△ABC中,∠C=90°.(1)尺规作图:作∠A的角平分线AP交BC于点P;(保留作图痕迹,不写作法)(2)在(1)所作的图中,若AC=5,BC=12,求CP的长.【解答】解:(1)如图,AP即为所求;(2)在Rt△ABC中,∠C=90°.∵AC=5,BC=12,∴AB==13,过点P作PD⊥AB于点D,∵AP是∠CAB的平分线,PC⊥AC,PD⊥AB,∴PC=PD,在Rt△APC和Rt△APD中,,∴Rt△APC≌Rt△APD(HL),∴AC=AD=5,∴BD=AB﹣AD=13﹣5=8,∵BP=BC﹣CP=12﹣CP,在Rt△PBD中,根据勾股定理得PB2=PD2+BD2,∴(12﹣CP)2=CP2+82,∴CP=.作一个角等于另一个角6.如图,在△ABC中,∠ABC>∠C.(1)用直尺和圆规在∠ABC的内部作射线BM,使∠ABM=∠ACB(不要求写作法,保留作图痕迹);(2)若(1)中的射线BM交AC于D,AB=4,AC=6,求CD长.【分析】(1)利用基本作图(作一个角等于已知角)作∠ABM=∠ACB即可;(2)先证明△ABD∽△ACB,利用相似比求出AD,然后计算AC﹣AD即可.【解答】解:(1)如图,BM为所作;(2)∵∠ABD=∠C,∠BAD=∠CAB,∴△ABD∽△ACB,∴AB:AC=AD:AB,即4:6=AD:4,∴AD=,∴CD=AC﹣AD=6﹣=.7.观察用直尺和圆规作一个角等于已知角的示意图,能得出∠CPD=∠AOB的依据是()A.由“等边对等角”可得∠CPD=∠AOBB.由SSS可得△OGH≌△PMN,进而可证∠CPD=∠AOBC.由SAS可得△OGH≌△PMN,进而可证∠CPD=∠AOBD.由ASA可得△OGH≌△PMN,进而可证∠CPD=∠AOB【解答】解:由作法得OG=OH=PM=PN,GH=MN,根据“SSS”可判断△OGH≌△PMN,所以∠CPD=∠AOB.尺规作高、作垂线8.如图,已知钝角△ABC.(1)过钝角顶点B作BD⊥AC,交AC于点D(使用直尺和圆规,不写作法,保留作图痕迹);(2)若BC=8,∠C=30°,,求AB的长.【分析】(1)利用尺规作出BD⊥AC,垂足为D即可.(2)在Rt△BCD中求出BD,再在Rt△ABD中,求出AB即可.【解答】解:(1)如图,线段BD即为所求.(2)解:在Rt△BCD中,∵BC=8,∠C=30°∴BD=BC•sin30°=4,在Rt△ABD中,AB===10.作线段的垂直平分线9.如图,在▱ABCD中,AD>AB.(1)尺规作图:作DC边的中垂线MN,交AD边于点E(要求:保留作图痕迹,不写作法);(2)连接EC,若∠BAD=130°,求∠AEC的度数.【解答】解:(1)如图,直线MN,点E即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A+∠D=180°,∵∠A=130°,∴∠D=50°∵MN垂直平分线段CD,∴ED=EC,∴∠D=∠ECD=50°,∴∠AEC=∠D+∠ECD=100°.10.(2022·广州从化区一摸)已知,如图,在Rt△ABC中,∠C=90°,AD平分∠CAB.(1)按要求尺规作图:作AD的垂直平分线(保留作图痕迹);【解答】解:(1)如图:分别以A、D为圆心,大于AD的长为半径作弧,两弧交于M、N,作直线MN,则直线MN即为AD的垂直平分线;11.如图,在△ABC中,AB=9,BC=6.(1)在AB上求作点E,使得EA=EC;(不写作法,保留作图痕迹)(2)若∠ACB=2∠A,求AE的长.【分析】(1)作线段AC的垂直平分线交AB于点E,连接EC即可;(2)证明△BCE∽△BAC,推出BC2=BE•BA,求出BE,可得结论.【解答】解:(1)如图,点E即为所求;(2)∵EA=EC,∴∠A=∠ECA,∵∠ACB=2∠A,∴∠BCE=∠A,∵∠B=∠B,∴△BCE∽△BAC,∴BC2=BE•BA,∴BE==4,∴AE=AB=EB=9﹣4=5.12.如图,在△ABC中,按以下步骤作图:①分别以点A,B为圆心,大于AB长为半径作弧,两弧交于M,N两点;②作直线MN交AC于点D,连接BD.若BD=BC,∠A=36°,则∠C的度数为()A.72°B.68°C.75°D.80°【解答】解:由作法可得MN垂直平分AB,∴DA=DB,∴∠DBA=∠A=36°,∵∠BDC=∠A+∠DBC,∴∠BDC=72°,∵BD=BC,∴∠C=∠BDC=72°,即∠C的度数为72°.13.如图,在△ABC中,分别以A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点,直线PQ 交BC于点D,连接AD;再分别以A、C为圆心,大于AC的长为半径画弧,两弧交于M,N两点,直线MN交BC于点E,连接AE.若CD=11,△ADE的周长为17,则BD的长为6.【解答】解:由作法得PQ垂直平分AB,MN垂直平分AC,∴DA=DB,EA=EC,∵△ADE的周长为17,∴DA+EA+DE=17,∴DB+DE+EC=17,即BC=17,∴BD=BC﹣CD=17﹣11=6.14.如图,已知∠BAC=60°,AD是角平分线且AD=10,作AD的垂直平分线交AC于点F,作DE⊥AC,则△DEF周长为5+5.【解答】解:∵AD的垂直平分线交AC于点F,∴F A=FD,∵AD平分∠BAC,∠BAC=60°,∴∠DAE=30°,∴DE=AD=5,∴AE===5,∴△DEF周长=DE+DF+EF=DE+F A+EF=DE+AE=5+5,复杂作图15.如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC.求证:PD∥AB.【分析】(1)尺规作图作出∠APD=∠ABP,即可得到∠DPC=∠P AB,从而得到△PCD∽△ABP;(2)根据题意得到∠DPC=∠ABC,根据平行线的判定即可证得结论.【解答】解:(1)如图:作出∠APD=∠ABP,即可得到△PCD∽△ABP;(2)证明:如图,∵∠APC=2∠ABC,∠APD=∠ABC,∴∠DPC=∠ABC,∴PD∥AB.16.如图1,在△ABC中,D是AB边上的一点,小明用尺规作图,做法如下:如图2,①以B为圆心,任意长为半径作弧,交BA于F、交BC于G;②以D为圆心,BF为半径作弧,交DA于M;③以M为圆心,FG为半径作弧,两弧相交于N;④过点D作射线DN交AC于点E.若∠ADE=52°,∠C=78°,则∠A 的度数是50度.【解答】解:由作图可知DE∥BC,∴∠AED=∠C=78°,∴∠A=180°﹣∠ADE﹣∠AED=180°﹣52°﹣78°=50°,。
中考尺规作图练习(包含作角平分线、垂直平分线、高、已知角、内切圆、外接圆)
尺规作图一、作图题(共6小题,每小题7分,共42分)1.如图,点为的边上的一点,过点作直线.(要求用尺规作图,不写作法,保留作图痕迹)(7分)2.已知,用直尺和圆规作的角平分线和高.(不写画法,保留作图痕迹)(7分)3.按要求作图:(1)如图,过点分别画出,的垂线段,;(2)如图,画出三角形中,边,的高.(7分)4. 如图,已知是锐角三角形.(1)利用直尺与圆规画出的外接圆;(保留作图痕迹)(2)利用直尺与圆规画出⑴中经过点的的切线.(保留作图痕迹)(7分)5.回答以下问题:(1)如图:、是两个蓄水池,都在河流的同侧,为了方便灌溉作物,要在河边建一个抽水站, 将河水送到、两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点(保留作图痕迹);(2)如图:某地有两所大学、和两条相交叉的公路、,现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等,你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案.(7分)6.在直线上找到一点使它到、两点的距离相等(尺规作图,保留作图痕迹).(7分)二、解答题(共28小题,每小题7分,共196分)7.(1)如图,点是射线上一点,以点为顶点,射线为一边,在的内部,作.(要求:用尺规作图,不写作法)(2)在所画图中,与平行吗?为什么?(7分)8. 如图,中,.(1)用直尺和圆规在的内部作射线,使(不要求写作法,保留作图痕迹);(2)若⑴中的射线交于点,,,求的长.(7分)9. 如图,、、在一条直线上.(1)尺规作图,以为顶点,以射线为一边,作;(不写作法,保留作图痕迹)(2)若,判断与的位置关系,并说明理由.(7分)10.如图,利用尺规,在的边上方作,在射线上截取,连接,并证明:(尺规作图要求保留作图痕迹,不写作法).(7分)11.如图,两条公路、相交于点,现要建一个车站,使得到村和村的距离相等,并且到公路、的距离相等,试画出车站的位置图.(7分)12.如图,中,,,.(1)用尺规作图法在内求作一点,使点到两点、的距离相等,又到边,的距离相等(保留作图痕迹,不写作法);(2)若的周长为,求的面积.(7分)13. 如图中,(1)用尺规作图法在上找到一点.使得点到边, 的距离相等(保留作图痕迹,不用写作法)(2)在条件下,若,.求的长.(7分)14. 如图,点和点在内部.(1)请你作出点,使点到点和点的距离相等,且到两边的距离也相等(保留作图痕迹,不写作法);(2)请说明作图理由.(7分)15. 作图题:在下图所在平面中.(1)作到三边距离相等的点;(2)作距三个顶点距离相等的点.(7分)16.已知:四边形.求作:点,使,且点到边和的距离相等. (7分)17.如题图,已知锐角.过点作边的垂线,交于点(用尺规作图法,保留作图痕迹,不要求写作法).(7分)18. 如图,已知锐角.(1)过点作边的垂线,交于点(用尺规作图法,保留作图痕迹,不要求写作法);(2)在⑴条件下,若,,,求的长.(7分)19. 如图,在中,,,是上的一点,且.(1)尺规作图:过点作的垂线,交于点;(2)连接,求证:是的角平分线.(7分)20. 如图,已知钝角;(1)过点作边的垂线,交的延长线于点;(尺规作图,保留作图痕迹,不要求写作法)(2)在⑴的条件下,若,,,求的长.(结果保留到,参考数据:,,.)(7分)21.中,,为上一点(不与,重合).(1)用直尺和圆规作于,延长交的延长线于点;(保留作图痕迹,不写画法)(2)判断的形状并加以证明.(7分)22.已知:如图,及上一点.求作:点,使得,且点到两边的距离相等.(7分)23.如图,已知中,.(1)用直尺和圆规在所在的平面内找一点,使;(2)如果,为中点,,求的面积.(7分)24.尺规作图:(1)要在河边修建一个水泵站,使,水泵站要建在什么位置?(2)要在河边修建一个水泵站,向,两个村子送水,使所用的水管最短即最小,水泵站要建在什么位置?(7分)25.如图,在中,是钝角,请按下列要求画图:(1)的平分线.(2)边上的中线;(3)边上的高.(7分)26. 如图,在中,用直尺和圆规分别作: (1)边上的高; (2)上的中线; (3)的垂直平分线交于点,垂足为.(7分)27. 如图,已知等边,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作的外心;(2)设是上的三等分点,在图中作出一个正六边形,使点,点分别在边和上.(7分)28.如图,中,,,,是内部的一个动点,且满足,则线段长的最小值为多少?(7分)29. 已知:在中,.(1)求作:的外接圆;(要求:尺规作图,保留作图痕迹,不写作法) (2)若的外接圆的圆心到边的距离为,,求的面积.(7分)30. 已知,如图.(1)用直尺和圆规作的外接圆;(2)设的外接圆的圆心为,求的度数.(7分)31.确定已知弧所在圆的圆心.(7分)32.用尺规作图的方法找出如图所示的破残瓷片的圆心.(保留作图痕迹)(7分)33.用直尺和圆规作一个角等于已知角,如图,能得出的依据是() A .B .C .D .(7分)34.如图,用直尺和圆规作的平分线的示意图如图所示,则下列选项中,能说明图中所作出的射线是的平分线的依据是()A .B .C .D .角平分线是哪个的点到这个角两边的距离相等(7分)。
重庆中考数学20题典型的尺规作图+简单几何证明
20题典型的尺规作图+简单几何证明(一)编辑:天道酬勤尺规作图专题复习【知识回顾】1尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。
最基本,最常用的尺规作图。
通常称基本作图。
一些复杂的尺规作图都是由基本作图组成。
2、五种基本作图:①作一条线段等于已知线段;②作一个角等于已知角;③作已知线段的垂直平分线;④作已知角的角平分线;⑤过一点作已知直线的垂线;一.题目一:作一条线段等于已知线段已知:如图,线段a求作:线段AB,使AB=a作法:(1)作射线AP;(2)在射线AP上截取AB=a则线段AB就是所求作的图形。
二.题目二:作已知线段的中点。
已知:如图,线段MN求作:点O,使MO=NO(即O是MN的中点)作法:(1)分别以M、N为圆心,大于MN的相同线段为半径画弧,两弧相交于P,Q (2)连接PQ交MN于O,则点O就是所求作的MN的中点.三.题目三:作已知角的角平分线。
已知:如图,∠AOB,求作:射线OP,使∠AOP=∠BOP(即OP平分∠AOB)。
作法:(1)以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N;(2)分别以M、N为圆心,大于1MN的线段长为半径画弧,两弧交∠AOB内于P;2(3)作射线OP.则射线OP就是∠AOB的角平分线。
四.题目四:作一个角等于已知角。
已知:如图,∠AOB。
求作;∠A'O'B',使∠A'O'B'=∠AOB作法:(1)作射线O'A'(2)以O为圆心,任意长度为半径画弧,交OA于M,交OB于N(3)以O'为圆心,以OM的长为半径画弧,交O'A'于M';(4)以M'为圆心,以MN的长为半径画弧,交前弧于N'(5)连接O'N'并延长到B'。
则∠A'O'B'就是所求作的角。
五.题目五:经过直线上一点做已知直线的垂线。
已知:如图,P是直线AB上一点求作:直线CD,是CD经过点P,且CD⊥AB。
作法:(1)以P为圆心,任意长为半径画弧,交AB于M、NMN的长为半径画弧,两弧交于点Q (2)分别以M、N为圆心,大于12(3)过D、Q作直线CD.则直线CD是求作的直线。
初中数学尺规作图经典练习题
初中数学尺规作图经典练习题班级:XXX 姓名:XXX尺规作图练题尺规作图是指在几何中,用无刻度的直尺和圆规来画图。
以下是几个练题:1.画一条与已知线段等长的线段;解答:假设已知线段为AB,用圆规在任意一点O处画一个圆,使得圆的半径等于AB的长度。
然后再用直尺连接A和B,就得到了一条与AB等长的线段。
2.画一个与已知角相等的角;解答:假设已知角为∠ABC,用圆规在顶点B处画一个圆,使得圆的半径与BC的长度相等。
然后再用直尺连接A和圆上的某一点D,就得到了一个与∠XXX相等的角。
3.画一个角的平分线;解答:假设要平分的角为∠ABC,用圆规在顶点B处画一个圆,使得圆的半径与BC的长度相等。
然后用圆规在A点和C点上分别画一个圆弧,使得两个圆弧相交于点D。
最后用直尺连接B和D,就得到了∠ABC的平分线。
4.画线段的垂直平分线;解答:假设要垂直平分的线段为AB,用圆规在A点和B点上分别画一个圆弧,使得两个圆弧相交于点C。
然后用圆规以C为圆心,AB的长度为半径画一个圆。
最后用直尺连接C和圆上的某一点D,就得到了AB的垂直平分线。
5.已知线段AB和CD,如图,求作一条线段,使它的长度等于AB+2CD。
解答:用圆规在A点和B点上分别画一个圆弧,使得两个圆弧相交于点E。
然后用圆规在E点和D点上分别画一个圆弧,使得两个圆弧相交于点F。
最后用直尺连接A和F,就得到了一条长度为AB+2CD的线段。
6.如图,已知∠A、∠B,求作一个角,使它等于∠A-∠B。
解答:用圆规在顶点B处画一个圆,使得圆的半径与BC的长度相等。
然后用圆规在顶点A处画一个圆,使得圆的半径与AB的长度相等。
最后用直尺连接圆上的两个交点C和D,就得到了一个角,它的度数等于∠A-∠B。
7.如图,已知∠AOB及M、N两点,求作:点P,使点P到∠AOB的两边距离相等,且到M、N的两点也距离相等。
解答:用圆规在顶点O处画一个圆,使得圆的半径与OM的长度相等。
然后用圆规在顶点B处画一个圆,使得圆的半径与BN的长度相等。
尺规作图类型题目 副本
尺规作图类型讲解题目一:作一条线段等于已知线段。
已知:如图,线段a .求作:线段AB,使AB = a .作法:(1)作射线AP;(2)在射线AP上截取AB=a .则线段AB就是所求作的图形。
题目二:作已知线段的中点。
已知:如图,线段MN.求作:点O,使MO=NO(即O是MN的中点).作法:(1)分别以M、N为圆心,大于的相同线段为半径画弧,两弧相交于P,Q;(2)连接PQ交MN于O.则点O就是所求作的MN的中点。
(试问:PQ与MN有何关系?)(怎样作线段的垂直平分线?)题目三:作已知角的角平分线。
已知:如图,∠AOB,求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。
作法:(1)以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N;(2)分别以M、N为圆心,大于的相同线段为半径画弧,两弧交∠AOB内于P;(3)作射线OP。
则射线OP就是∠AOB的角平分线。
题目四:作一个角等于已知角。
已知:如图,∠AOB,求作:∠A′O′B′=∠AOB,作法:(1)作射线O′A′(2)以O为圆心,任意长为半径画弧,交OA于C,交OB于D(3)以O′为圆心,以OC长为半径画弧,交O′A′于C′(4)以点C′为圆心,以CD长为半径画弧,交前弧于点D′(5)过D′作射线O′B′则∠A′O′B′就是所求作的角题目五:已知三边作三角形。
已知:如图,线段a,b,c.求作:△ABC,使AB = c,AC = b,BC = a. 作法:(1)作线段AB = c;(2)以A为圆心b为半径作弧,以B为圆心a为半径作弧与前弧相交于C;(3)连接AC,BC。
则△ABC就是所求作的三角形。
题目六:已知两边及夹角作三角形。
已知:如图,线段m,n, ∠α.求作:△ABC,使∠A=∠α,AB=m,AC=n.作法:(1)作∠A=∠α;(2)在AB上截取AB=m ,AC=n;(3)连接BC。
则△ABC就是所求作的三角形。
题目七:已知两角及夹边作三角形。
初三中考数学尺规作图含答案
尺规作图一、作图题(共14题;共133分)1.如图,AD是△ABC的角平分线(1)作线段AD的垂直平分线EF,分别交AB、AC于点E、F;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.)(2)连接DE、DF,四边形AEDF是________形.(直接写出答案)2.如图,中,,,.(1)用直尺和圆规作的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交于点,求的长.3.如图,已知等腰△ABC顶角∠A=36°.(1)在AC上作一点D,使AD=BD(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:△BCD是等腰三角形.4.如图,AB为⊙O的直径,点C在⊙O上.(1)尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.5.在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).6.如图,在中,,,,D、E分别是斜边AB、直角边BC上的点,把沿着直线DE折叠.(1)如图1,当折叠后点B和点A重合时,用直尺和圆规作出直线DE;不写作法和证明,保留作图痕迹(2)如图2,当折叠后点B落在AC边上点P处,且四边形PEBD是菱形时,求折痕DE的长.7.如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.8.如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.9.如图,在中,.(1)作的平分线交边于点,再以点为圆心,的长为半径作;(要求:不写作法,保留作图痕迹)(2)判断(1)中与的位置关系,直接写出结果.10.如图,在中.①利用尺规作图,在BC边上求作一点P,使得点P到AB的距离的长等于PC的长;②利用尺规作图,作出(1)中的线段PD.要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑11.如图,在△ABC中(1)作图,作BC边的垂直平分线分别交于AC,BC于点D,E(用尺规作图法,保留作图痕迹,不要求写作法)(2)在(1)条件下,连接BD,若BD=9,BC=12,求∠C的余弦值.12.如图,点D在△ABC的AB边上,且∠ACD=∠A。
尺规作图典型例题
作者:日期: 2典型例题例1、求作等腰直角三角形,使它的斜边等于已知线段已知:线段工求作:二4-,使/ A= 90°,B = AC , BC 分析:由于等腰直角三角形比较特殊,内角依次为45°, 45°, 90°,故有如下几种作法:作法一:1、作线段2、分别过点B、C作BD、CE垂直于BC3、分别作/ DBG / ECB的平分线,交于A点—-r,- 即为所求作法二:作线段BC =2、作/ MBC= 45°3、作/ NCB=Z MBC CN 与BM 交于A 点—--即为所求作法三:1、作线段BC ="3 / 102、作/ MBC= 453、过C作CE± BM于A即为所求作法四:1、作线段BC =-<2、作BC的中垂线,交BC于0点3、在0M上截取0A = 0B,连结AB , AC说明:几种作法中都是以五种基本作图为基础,不要求写岀基本作图的作法和证明。
例2、已知三角形的两边和其中一边上的中线长,求作这个三角形已知:线段a、b为两边,m为边长b的中线求作:,使BC=a,AC=b,且AM=MC,BM=m.分析:先画草图,假定」上」为所求的三角形,则有BC=a ,AC=b,设M为AC边的中点,则MB=m,二_ 0 I |L ,而2,故丄二丄的三边为已知作岀,然后再作岀匚丄沐.MC = -b作法:(1)作’,使BC=a,亠,MB=m ;(2 )延长线段CM至A,使MA=CM;4 / 10小结:本题的突破口是找U与所求的二二匚的关系.由于的三边已知,故」出J 即可顺利作岀.例3、如图,A、B、C三点表示三个村庄,为解决村民就近入学问题,计划新建一所小学,要使学校到这三个村庄的距离相等,请你在图中用尺规确定学校的位置P.分析:分两步:先作到A、B两点距离相等的点的图形,再作到B、C两点等距离的点的图形,两图形的交点,这就是所求作的点.作法:(1)连结AB,做线段AB的垂直平分线DE ;(2)连结BC,作线段BC的垂直平分线FG,交DE与点P.则点P为所求作的学校位置.小结:由于不能直接确定到三点距离相等的点的位置,可以分解为先求到A,B相等的所有点,再求作到B,C相等的所有点,交点即所求.扩展资料三大几何作图问题三大几何作图问题是:倍立方、化圆为方和三等分任意角。
尺规作图(练习题解析版)
1.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中不正确的是()A.AD是∠BAC的平分线B.∠ADC=60°C.点D在AB的中垂线上D.S△DAC:S△ABD=1:3【答案】D【解析】①根据作图的过程可以判定AD是∠BAC的角平分线;②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上;@④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.解:根据作图方法可得AD是∠BAC的平分线,故①正确;∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD是∠BAC的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,故②正确;∵∠B=30°,∠DAB=30°,∴AD=DB,∴点D在AB的中垂线上,故③正确;∵∠CAD=30°,∴CD=AD,∵AD=DB,∴CD=DB,∴CD=CB,S△ACD=CD•AC,S△ACB=CB•AC,∴S△ACD:S△ACB=1:3,∴S△DAC:S△ABD≠1:3,故④错误,故选:D.2.尺规作图的工具是()A.刻度尺、量角器B.三角板、量角器C.直尺、量角器D.没有刻度的直尺、圆规【答案】D(【解析】试题分析:尺规作图的工具是指没有刻度的直尺、圆规.故选:D考点: 尺规作图的定义.3.如图,已知E是平行四边形ABCD对角线AC上的点,连接DE.(1)过点B在平行四边形内部作射线BF交AC于点F,且使∠CBF=∠ADE(要求:用尺规作图,保留作图痕迹,不写作法与证明)/(2)连接BE,DF,判断四边形BFDE的形状并证明.【答案】(1)见解析(2)见解析【解析】解:(1)如图所示:(2)四边形BFDE的形状是平行四边形,理由如下:∵在平行四边形ABCD中,∴∠DAC=∠ACB,AD=BC,在△ADE和△CBF 中,、∴△ADE≌△CBF(ASA),∴DE=BF,∠AED=∠BFC,∵∠DEF=180°﹣∠AED,∠BFE=180°﹣∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴四边形DEBF是平行四边形.(1)作∠CBM=∠ADE,其中BM交CD于F即可;(2)四边形BFDE的形状是平行四边形,连BE、DF,由于△ADE≌△CBF,根据全等三角形的性质得到DE=BF,∠AED=∠BFC,根据等角的补角相等可得∠DEF=∠BFE,则DE∥BF,根据平行四边形的判定即可得到结论.4.如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法).]①作∠DAC的平分线AM.②连接BE并延长交AM于点F.(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由.【答案】(1)见解析(2)AF=BC 证明过程见解析【解析】解:(1)如下图所示;(2)AF∥BC,且AF=BC.理由如下:∵AB=AC,∴∠ABC=∠ACB,/∴∠DAC=∠ABC+∠ACB=2∠ACB,由作图可得∠DAC=2∠FAC,∴∠ACB=∠FAC ∴AF∥BC,∵E为AC中点,∴AE=EC,在△AEF和△CEB 中,,∴△AEF≌△CEB(ASA).∴AF=BC.(1)根据题意画出图形即可;(2)首先根据等腰三角形的性质与三角形内角与外角的性质证明∠ACB=∠FAC,进而可得AF∥BC;然后再证明△AEF≌△CEB,即可得到AF=BC.>5.已知△ABC,求作△DEF,使△DEF≌△ABC(尺规作图,保留作图痕迹)。
《尺规作图》
《尺规作图》典型例题一例 已知线段a 、b ,画一条线段,使其等于b a 2+.分析 所要画的线段等于b a 2+,实质上就是b b a ++.画法:1.画线段a AB =.2.在AB 的延长线上截取bBC 2=.线段AC 就是所画的线段.说明1.尺规作图要保留画图痕迹,画图时画出的所有点和线不可随意擦去.2.其它作图都可以通过画基本作图来完成,写画法时,只需用一句话来概括叙述基本作图.《尺规作图》典型例题二例 如下图,已知线段a 和b ,求作一条线段AD 使它的长度等于2a -b .错解 如图(1),(1)作射线AM ;(2)在射线AM 上截取AB =BC =a ,CD =b ,则线段AD 即为所求. 错解分析 主要是作图语言不严密,当在射线上两次截取时,要写清是否顺次,而在求线段差时,要交待截取的方向.图(1) 图(2)正解 如图(2),(1)作射线AM ;(2)在射线AM 上,顺次截取AB =BC =a ;(3)在线段CA 上截取CD =b ,则线段AD 就是所求作的线段.《尺规作图》典型例题三例 求作一个角等于已知角∠MON (如图1).图(1) 图(2)正解 如图(2),(1)作射线11M O ;(2)在图(1)上,以O 为圆心,任意长为半径作弧,交OM 于点A ,交ON 于点B ;(3)以1O 为圆心,OA 的长为半径作弧,交11M O 于点C ;(4)以C 为圆心,以AB 的长为半径作弧,交前弧于点D ;(5)过点D 作射线D O 1.则∠D CO 1就是所要求作的角.《尺规作图》典型例题四例 如下图,已知∠α及线段a ,求作等腰三角形,使它的底角为α,底边为a .分析 先假设等腰三角形已经作好,根据等腰三角形的性质,知两底角∠B =∠C =∠α,底边BC =a ,故可以先作∠B =∠α,或先作底边BC =a .作法 如下图(1)∠MBN =∠α;(2)在射线BM 上截取BC =a ;(3)以C 为顶点作∠PCB =∠α,射线CP 交BN 于点A .△ABC 就是所要求作的等腰三角形.说明 画复杂的图形时,如一时找不到作法,一般是先画出一个符合条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.尺规作图》典型例题五例 如图(1),已知直线AB 及直线AB 外一点C ,过点C 作CD ∥AB (写出作法,画出图形).分析 根据两直线平行的性质,同位角相等或内错角相等,故作一个角∠ECD =∠EFB 即可.作法 如图(2).图(1) 图(2)(1)过点C 作直线EF ,交AB 于点F ;(2)以点F 为圆心,以任意长为半径作弧,交FB 于点P ,交EF 于点Q ;(3)以点C 为圆心,以FP 为半径作弧,交CE 于M 点;(4)以点M 为圆心,以PQ 为半径作弧,交前弧于点D ;(5)过点D 作直线CD ,CD 就是所求的直线.说明 作图题都应给出证明,但按照教科书的要求,一般不用写出,但要知道作图的原由.《尺规作图》典型例题六例 如下图,△ABC 中,a =5cm ,b =3cm ,c =3.5cm ,∠B =︒36,∠C =︒44,请你从中选择适当的数据,画出与△ABC 全等的三角形(把你能画的三角形全部画出来,不写画法但要在所画的三角形中标出用到的数据).分析 本题实质上是利用原题中的5个数据,列出所有与△ABC 全等的各种情况,依据是SSS 、SAS 、AAS 、ASA .解 与△ABC 全等的三角形如下图所示.《尺规作图》典型例题七例 正在修建的中山北路有一形状如下图所示的三角形空地需要绿化.拟从点A 出发,将△ABC 分成面积相等的三个三角形,以便种上三种不同的花草,请你帮助规划出图案(保留作图痕迹,不写作法).(2003年,桂林)分析 这是尺规作图在生活中的具体应用.要把△ABC 分成面积相等的三个三角形,且都是从A 点出发,说明这三个三角形的高是相等的,因而只需这三个三角形的底边也相等,所以只要作出BC 边的三等分点即可.作法 如下图,找三等分点的依据是平行线等分线段定理.《尺规作图》典型例题八例 已知∠AOB ,求作∠AOB 的平分线OC .错解 如图(1)作法 (1)以O 为圆心,任意长为半径作弧,分别交OA 、OB 于D 、E 两点;(2)分别以D 、E 为圆心,以大于21DE 的长为半径作弧,两弧相交于C 点; (3)连结OC ,则OC 就是∠AOB 的平分线.错解分析 对角平分线的概念理解不够准确而致误.作法(3)中连结OC ,则OC 是一条线段,而角平分线应是一条射线.图(1) 图(2)正解 如图(2)(1)以点O 为圆心,任意长为半径作弧,分别交OA 、OB 于D 、E 两点;(2)分别以D 、E 为圆心,以大于21DE 的长为半径作弧,两弧交于C 点; (3)作射线OC ,则OC 为∠AOB 的平分线.《尺规作图》典型例题九例 如图(1)所示,已知线段a 、b 、h (h <b ).求作△ABC ,使BC =a ,AB =b , BC 边上的高AD =h .图(1)图(2) 图(3)正解 如图(3).(1)作直线PQ ,在直线PQ 上任取一点D ,作DM ⊥PQ ;(2)在DM 上截取线段DA =h ;(3)以A 为圆心,以b 为半径画弧交射线DP 于B ;(4)以B 为圆心,以a 为半径画弧,分别交射线BP 和射线BQ 于1C 和2C ;(5)连结1AC 、2AC ,则△1ABC (或△2ABC )都是所求作的三角形.《尺规作图》典型例题十例 如下图,已知线段a ,b ,求作Rt △ABC ,使∠ACB =90°,BC =a ,AC =b (用直尺和圆规作图,保留作图痕迹).分析 本题解答的关键在于作出∠ACB =90°,然后确定A 、B 两点的位置,作出△ABC .作法 如下图(1)作直线MN :(2)在MN 上任取一点C ,过点C 作CE ⊥MN ;(3)在CE 上截取CA =b ,在CM 上截取CB =a ;(4)连结AB ,△ABC 就是所求作的直角三角形.说明 利用基本作图画出所求作的几何图形的关键是要先分析清楚作图的顺序.若把握不好作图顺序,要先画出假设图形.《尺规作图》典型例题十一例 如下图,已知钝角△ABC ,∠B 是钝角.求作:(1)BC 边上的高;(2)BC 边上的中线(写出作法,画出图形).分析 (1)作BC 边上的高,就是过已知点A 作BC 边所在直线的垂线;(2)作BC 边上的中线,要先确定出BC 边的中点,即作出BC 边的垂直平分线. 作法 如下图(1)①在直线CB 外取一点P ,使A 、P 在直线CB 的两旁;②以点A 为圆心,AP 为半径画弧,交直线CB 于G 、H 两点;③分别以G 、H 为圆心,以大于21GH 的长为半径画弧,两弧交于E 点; ④作射线AE ,交直线CB 于D 点,则线段AD 就是所要求作的△ABC 中BC 边上的高. (2)①分别以B 、C 为圆心,以大于21BC 的长为半径画弧,两弧分别交于M 、N 两点; ②作直线MN ,交BC 于点F ;③连结AF ,则线段AF 就是所要求作的△ABC 中边BC 上的中线.说明 在已知三角形中求作一边上的高线、中线、角平分线时,首先要把握好高线、中线、角平分钱是三条线段;其次,高线、中线的一个端点必须是三角形中这边所对的顶点,而关键是找出另一个端点.《尺规作图》典型例题十二例 如图(1)所示,在图中作出点C ,使得C 是∠MON 平分线上的点,且AC =OC .图(1) 图(2)分析 由题意知,点C 不仅要在∠MON 的平分线上,且点C 到O 、A 两点的距离要相等,所以点C 应是∠MON 的平分线与线段OA 的垂直平分线的交点.作法 如图(2)所示(1)作∠MON 的平分线OP ;(2)作线段OA 的垂直平分线EF ,交OP 于点C ,则点C 就是所要求作的点.说明(1)根据题意弄清要求作的点的特征是到各直线距离相等,还是到各端点距离相等.(2)两条直线交于一点.《尺规作图》典型例题十三例如下图,已知线段a、b、∠α、∠β.求作梯形ABCD,使AD=a,BC=b,AD∥BC,∠B=∠α;∠C=∠β.分析假定梯形已经作出,作AE∥DC交BC于E,则AE将梯形分割为两部分,一部分是△ABE,另一部分是AECD.在△ABE中,已知∠B=∠α,∠AEB=∠β,BE=b-a,所以,可以首先把它作出来,而后作出AECD.作法如下图.(1)作线段BC=b;(2)在BC上截取BE=b-a;(3)分别以B、E为顶点,在BE同侧作∠EBA=∠α,∠AEB=∠β,BA、EA交于A;(4)以EA、EC为邻边作AECD.四边形ABCD就是所求作的梯形.说明基本作图是作出较简单图形的基础,三角形是最简单的多边形,它是许多复杂图形的基础.因此,要作一个复杂的图形,常常先作一个比较容易作出的三角形,然后以此为基础,再作出所求作的图形.《尺规作图》典型例题十四例如下图,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与公路的距离相等,且离铁路与公路交叉处B点700米,如果你是红方的指挥员,请你在图示的作战图上标出蓝方指挥部的位置.(2002年,青岛)分析依据角平分线的性质可以知道,蓝方指挥部必在A区内两条路所夹角的平分线上,然后由蓝方指挥部距B点的距离,依据比例尺,计算出图上的距离为3.5cm,就可以确定出蓝方指挥部的位置.解如下图,图中C点就是蓝方指挥部的位置.《尺规作图》典型例题十五例 如图(1),已知有公共端点的线段AB 、BC .求作⊙O ,使它经过点A 、B 、C (要求:尺规作图,不写作法,保留作图痕迹).(2002年,大连)图(1) 图(2)分析 因为A 、B 、C 三点在⊙O 上,所以OA =OB =OC =R .根据到线段AB 、BC 各端点距离相等的点在线段的垂直平分线上,故分别作线段AB 、BC 垂直平分线即可.《尺规作图》典型例题十六例 如图,是一块直角三角形余料,︒=∠90C .工人师傅要把它加工成一个正方形零件,使C 为正方形的一个顶点,其余三个顶点分别在AB 、BC 、AC 边上.试协助工人师傅用尺规画出裁割线.分析 要作出符合条件的正方形,可先作出有三个角为90°的四边形,并设法让相邻的一组边相等即可.作法 如图.① 作ACB∠的角平分线CD ,交AB 于点G ; ②过G 点分别作AC 、BC 的垂线,垂足为E 、F .则四边形ECFG 就是所要求作的正方形.。
初中尺规作图技巧+数学尺规典型案例复习+历年中考尺规例题
初中尺规作图+数学尺规典型案例复习+历年中考尺规例题基本作图示范:1、作一条线段,等于已知线段;已知线段MN。
求作:一条线段等于已知线段.作法:图先画射线AB,然后用圆规在射线AB上截取AC= MN.线段AC就是所要作的线段.2、作一个角等于已知角。
(其理论依据为“SSS”理);作法:①作射线0'A‘;②以点0为圆心,以任意长为半径作弧,交OA于C,交OB于D;③以点0'为圆心,以OC长为半径作弧,交0'A'于C‘;④以点C'为圆心,以CD为半径作弧,交前弧于D‘;⑤经过点D'作射线0'B',∠A' 0'B'就是所求的角. 连结CD、C'D',由作法可知△C'O'D≌△COD(SSS)∴∠C'O'D'=∠COD(全等三角形对应角相等).即∠A'O'B'=∠AOB.3、作已知角的平分线(其理论依据为“SSS”公理);已知∠AOB,求作:射线OC,使∠AOC= ∠BOC.作法:①在OA和OB上,分别截取OD. OE.②分别以D.E为圆心,大于DE 的长为半径作弧,在∠AOB内,两弧交于点C;③作射线OC.OC就是所求的射线.连结CD、CE,由作法可知△ODC≌△OEC(SSS)∴∠COD=∠COE(全等三角形的对应角相等).即∠AOC=∠BOC.4、经过一点(点在直线上或点在直线外)作已知直线的垂线;a.经过已知直线上的一点作这条直线的垂线.已知:直线AB和AB上一点C,求作:AB的垂线,使它经过点C.第一步:作平角ACB的平分线CD;第二步:反向延长射线CD.作法:作平角ACB的平分线CF,直线CF就是所求的垂线.b.经过已知直线外一点作这条直线的垂线.作法:①任意取一点K,使K和C在AB的两旁;②以C为圆心,CK长为半径作弧,交AB于点D和E;③分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F.④作直线CF.直线CF就是所求的垂线,注意:经过已知直线上的一点,作这条直线的垂线转化成画线段垂直平分线的方法解决.典型例题分析历年中考好题精选题目练习。
(完整版)初中尺规作图典型例题归纳总结
初中尺规作图典型例题归纳典型例题一例 已知线段a 、b ,画一条线段,使其等于b a 2+.分析 所要画的线段等于b a 2+,实质上就是b b a ++.画法:1.画线段a AB =.2.在AB 的延长线上截取b BC 2=.线段AC 就是所画的线段.说明1.尺规作图要保留画图痕迹,画图时画出的所有点和线不可随意擦去.2.其它作图都可以通过画基本作图来完成,写画法时,只需用一句话来概括叙述基本作图.典型例题二例 如下图,已知线段a 和b ,求作一条线段AD 使它的长度等于2a -b .错解 如图(1),(1)作射线AM ;(2)在射线AM 上截取AB =BC =a ,CD =b ,则线段AD 即为所求. 错解分析 主要是作图语言不严密,当在射线上两次截取时,要写清是否顺次,而在求线段差时,要交待截取的方向.图(1) 图(2)正解 如图(2),(1)作射线AM ;(2)在射线AM 上,顺次截取AB =BC =a ;(3)在线段CA 上截取CD =b ,则线段AD 就是所求作的线段.典型例题三例 求作一个角等于已知角∠MON (如图1).图(1) 图(2)错解 如图(2),(1)作射线11M O ;(2)在图(1),以O 为圆心作弧,交OM 于点A ,交ON 于点B ;(3)以1O 为圆心作弧,交11M O 于C ;(4)以C 为圆心作弧,交于点D ;(5)作射线D O 1.则∠D CO 1即为所求的角.错解分析 作图过程中出现了不准确的作图语言,在作出一条弧时,应表达为:以某点为圆心,以其长为半径作弧.正解 如图(2),(1)作射线11M O ;(2)在图(1)上,以O 为圆心,任意长为半径作弧,交OM 于点A ,交ON 于点B ;(3)以1O 为圆心,OA 的长为半径作弧,交11M O 于点C ;(4)以C 为圆心,以AB 的长为半径作弧,交前弧于点D ;(5)过点D 作射线D O 1. 则∠D CO 1就是所要求作的角.典型例题四例 如下图,已知∠α及线段a ,求作等腰三角形,使它的底角为α,底边为a .分析 先假设等腰三角形已经作好,根据等腰三角形的性质,知两底角∠B =∠C =∠α,底边BC =a ,故可以先作∠B =∠α,或先作底边BC =a .作法 如下图(1)∠MBN =∠α;(2)在射线BM 上截取BC =a ;(3)以C 为顶点作∠PCB =∠α,射线CP 交BN 于点A .△ABC 就是所要求作的等腰三角形.说明 画复杂的图形时,如一时找不到作法,一般是先画出一个符合条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.典型例题五例 如图(1),已知直线AB 及直线AB 外一点C ,过点C 作CD ∥AB (写出作法,画出图形).分析 根据两直线平行的性质,同位角相等或内错角相等,故作一个角∠ECD =∠EFB 即可.作法 如图(2).图(1) 图(2)(1)过点C 作直线EF ,交AB 于点F ;(2)以点F 为圆心,以任意长为半径作弧,交FB 于点P ,交EF 于点Q ;(3)以点C 为圆心,以FP 为半径作弧,交CE 于M 点;(4)以点M 为圆心,以PQ 为半径作弧,交前弧于点D ;(5)过点D 作直线CD ,CD 就是所求的直线.说明 作图题都应给出证明,但按照教科书的要求,一般不用写出,但要知道作图的原由.典型例题六例 如下图,△ABC 中,a =5cm ,b =3cm ,c =3.5cm ,∠B =︒36,∠C =︒44,请你从中选择适当的数据,画出与△ABC 全等的三角形(把你能画的三角形全部画出来,不写画法但要在所画的三角形中标出用到的数据).分析 本题实质上是利用原题中的5个数据,列出所有与△ABC 全等的各种情况,依据是SSS 、SAS 、AAS 、ASA .解 与△ABC 全等的三角形如下图所示.典型例题七例 正在修建的中山北路有一形状如下图所示的三角形空地需要绿化.拟从点A 出发,将△ABC 分成面积相等的三个三角形,以便种上三种不同的花草,请你帮助规划出图案(保留作图痕迹,不写作法).(2003年,桂林)分析 这是尺规作图在生活中的具体应用.要把△ABC 分成面积相等的三个三角形,且都是从A 点出发,说明这三个三角形的高是相等的,因而只需这三个三角形的底边也相等,所以只要作出BC 边的三等分点即可.作法 如下图,找三等分点的依据是平行线等分线段定理.典型例题八例 已知∠AOB ,求作∠AOB 的平分线OC .错解 如图(1)作法 (1)以O 为圆心,任意长为半径作弧,分别交OA 、OB 于D 、E 两点;(2)分别以D 、E 为圆心,以大于21DE 的长为半径作弧,两弧相交于C 点; (3)连结OC ,则OC 就是∠AOB 的平分线.错解分析 对角平分线的概念理解不够准确而致误.作法(3)中连结OC ,则OC 是一条线段,而角平分线应是一条射线.图(1) 图(2)正解 如图(2)(1)以点O 为圆心,任意长为半径作弧,分别交OA 、OB 于D 、E 两点;(2)分别以D 、E 为圆心,以大于21DE 的长为半径作弧,两弧交于C 点; (3)作射线OC ,则OC 为∠AOB 的平分线.典型例题九例 如图(1)所示,已知线段a 、b 、h (h <b ).求作△ABC ,使BC =a ,AB =b , BC 边上的高AD =h .图(1)错解 如图(2),(1)作线段BC =a ;(2)作线段BA =b ,使AD ⊥BC 且AD =h .则△ABC 就是所求作的三角形.错解分析 ①不能先作BC ;②第2步不能同时满足几个条件,完全凭感觉毫无根据;③未考虑到本题有两种情况.对于这种作图题往往都是按照由里到外的顺序依次作图,如本题先作高AD ,再作AB ,最后确定BC .图(2) 图(3)正解 如图(3).(1)作直线PQ ,在直线PQ 上任取一点D ,作DM ⊥PQ ;(2)在DM 上截取线段DA =h ;(3)以A 为圆心,以b 为半径画弧交射线DP 于B ;(4)以B 为圆心,以a 为半径画弧,分别交射线BP 和射线BQ 于1C 和2C ;(5)连结1AC 、2AC ,则△1ABC (或△2ABC )都是所求作的三角形.典型例题十例 如下图,已知线段a ,b ,求作Rt △ABC ,使∠ACB =90°,BC =a ,AC =b (用直尺和圆规作图,保留作图痕迹).分析 本题解答的关键在于作出∠ACB =90°,然后确定A 、B 两点的位置,作出△ABC .作法 如下图(1)作直线MN :(2)在MN 上任取一点C ,过点C 作CE ⊥MN ;(3)在CE 上截取CA =b ,在CM 上截取CB =a ;(4)连结AB ,△ABC 就是所求作的直角三角形.说明 利用基本作图画出所求作的几何图形的关键是要先分析清楚作图的顺序.若把握不好作图顺序,要先画出假设图形.典型例题十一例 如下图,已知钝角△ABC ,∠B 是钝角.求作:(1)BC 边上的高;(2)BC 边上的中线(写出作法,画出图形).分析 (1)作BC 边上的高,就是过已知点A 作BC 边所在直线的垂线;(2)作BC 边上的中线,要先确定出BC 边的中点,即作出BC 边的垂直平分线. 作法 如下图(1)①在直线CB 外取一点P ,使A 、P 在直线CB 的两旁;②以点A 为圆心,AP 为半径画弧,交直线CB 于G 、H 两点;③分别以G 、H 为圆心,以大于21GH 的长为半径画弧,两弧交于E 点; ④作射线AE ,交直线CB 于D 点,则线段AD 就是所要求作的△ABC 中BC 边上的高. (2)①分别以B 、C 为圆心,以大于21BC 的长为半径画弧,两弧分别交于M 、N 两点; ②作直线MN ,交BC 于点F ;③连结AF ,则线段AF 就是所要求作的△ABC 中边BC 上的中线.说明 在已知三角形中求作一边上的高线、中线、角平分线时,首先要把握好高线、中线、角平分钱是三条线段;其次,高线、中线的一个端点必须是三角形中这边所对的顶点,而关键是找出另一个端点.典型例题十二例 如图(1)所示,在图中作出点C ,使得C 是∠MON 平分线上的点,且AC =OC .图(1) 图(2)分析 由题意知,点C 不仅要在∠MON 的平分线上,且点C 到O 、A 两点的距离要相等,所以点C 应是∠MON 的平分线与线段OA 的垂直平分线的交点.作法 如图(2)所示(1)作∠MON 的平分线OP ;(2)作线段OA 的垂直平分线EF ,交OP 于点C ,则点C 就是所要求作的点.说明(1)根据题意弄清要求作的点的特征是到各直线距离相等,还是到各端点距离相等.(2)两条直线交于一点.典型例题十三例 如下图,已知线段a 、b 、∠α、∠β.求作梯形ABCD ,使AD =a ,BC =b ,AD ∥BC ,∠B =∠α;∠C =∠β.分析 假定梯形已经作出,作AE ∥DC 交BC 于E ,则AE 将梯形分割为两部分,一部分是△ABE ,另一部分是AECD .在△ABE 中,已知∠B =∠α,∠AEB =∠β,BE =b -a ,所以,可以首先把它作出来,而后作出AECD .作法 如下图.(1)作线段BC=b;(2)在BC上截取BE=b-a;(3)分别以B、E为顶点,在BE同侧作∠EBA=∠α,∠AEB=∠β,BA、EA交于A;(4)以EA、EC为邻边作AECD.四边形ABCD就是所求作的梯形.说明基本作图是作出较简单图形的基础,三角形是最简单的多边形,它是许多复杂图形的基础.因此,要作一个复杂的图形,常常先作一个比较容易作出的三角形,然后以此为基础,再作出所求作的图形.典型例题十四例如下图,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与公路的距离相等,且离铁路与公路交叉处B点700米,如果你是红方的指挥员,请你在图示的作战图上标出蓝方指挥部的位置.(2002年,青岛)分析依据角平分线的性质可以知道,蓝方指挥部必在A区内两条路所夹角的平分线上,然后由蓝方指挥部距B点的距离,依据比例尺,计算出图上的距离为3.5cm,就可以确定出蓝方指挥部的位置.解如下图,图中C点就是蓝方指挥部的位置.典型例题十五例如图(1),已知有公共端点的线段AB、BC.求作⊙O,使它经过点A、B、C(要求:尺规作图,不写作法,保留作图痕迹).(2002年,大连)图(1) 图(2)分析 因为A 、B 、C 三点在⊙O 上,所以OA =OB =OC =R .根据到线段AB 、BC 各端点距离相等的点在线段的垂直平分线上,故分别作线段AB 、BC 垂直平分线即可.解 如图(2)说明 角平分线的性质、线段垂直平分线的性质在作图题中的应用是近几年中考中的又一道风景,它往往与实际问题紧密联系在一起.典型例题十六例 如图,是一块直角三角形余料,︒=∠90C .工人师傅要把它加工成一个正方形零件,使C 为正方形的一个顶点,其余三个顶点分别在AB 、BC 、AC 边上.试协助工人师傅用尺规画出裁割线.分析 要作出符合条件的正方形,可先作出有三个角为90°的四边形,并设法让相邻的一组边相等即可.作法 如图.① 作ACB ∠的角平分线CD ,交AB 于点G ;②过G 点分别作AC 、BC 的垂线,垂足为E 、F .则四边形ECFG 就是所要求作的正方形.。
完整版)中考数学尺规作图专题复习(含答案)
完整版)中考数学尺规作图专题复习(含答案)尺规作图是用无刻度的直尺和圆规画图的方法,常见的作图包括线段的垂线、垂直平分线、角平分线、等长线段和等角。
以下是各种作图的具体方法:1.直线垂线的画法:以点C为圆心,任意长为半径画弧交直线与A、B两点,再以点A、B为圆心,大于AB的长为半径画圆弧,分别交直线l两侧于点M、N,连接MN,即可得到所求的垂线。
2.线段垂直平分线的画法:以点A、B为圆心,大于AB的长为半径画圆弧,分别交直线AB两侧于点C、D,连接CD,即可得到线段AB的垂直平分线。
3.角平分线的画法:以角顶点O为圆心,任意长为半径画圆,分别交角两边A、B点,再以A、B为圆心,大于AB的长为半径画圆弧,交点为H,连接OH并延长,即可得到所求的角平分线。
4.等长的线段的画法:直接用圆规量取即可。
5.等角的画法:以O为圆心,任意长为半径画圆,交原角的两边为A、B两点,连接AB;画一条射线l,以上面的半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求。
需要注意的是,直尺主要用于画直线和射线,圆规主要用于截取相等线段和画弧。
在作图时,如果有多个要求,应逐个满足并取公共部分。
例如,对于要求作一个三角形的问题,可以根据三角形全等的基本事实或判定定理来进行作图。
以下是例题解析:例题1:已知线段a,求作△ABC,使AB=BC=AC=a。
作法如下:1.作线段BC=a;2.分别以B、C为圆心,以a半径画弧,两弧交于点A;3.连接AB、AC。
例题2:已知线段a和∠α,求作△ABC,使AB=AC=a,∠A=∠α。
作法如下:1.作∠XXX∠α;2.以点A为圆心,a为半径画弧,分别交射线AM、AN 于点B、C;3.连接B、C。
例题3:已知△ABC,AB<BC,用尺规作图的方法在BC 上取一点P,使得PA+PC=BC。
作法如下:作出AB的垂直平分线,与BC交于点P。
陕西中考题尺规作图题(含答案)
尺规作图尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。
五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线;题目一:作一条线段等于已知线段。
已知:如图,线段 a .求作:线段AB ,使 AB = a .作法:①作射线 AP;②在射线 AP 上截取 AB=a .则线段 AB 就是所求作的图形。
题目二:作已知线段的中点。
已知:如图,线段MN.求作:点O ,使 MO=NO(即O是MN的中点).作法:①分别以 M、 N 为圆心,大于1/2MN的相同线段为半径画弧,两弧相交于P,Q ;②连接PQ交MN于O.则点 O 就是所求作的MN的中点。
(试问: PQ 与MN有何关系?)题目三:作已知角的角平分线。
已知:如图,∠AOB ,求作:射线OP,使∠ AOP=∠ BOP(即OP平分∠ AOB)。
作法:①以 O 为圆心,任意长度为半径画弧,分别交 OA,OB 于 M,N;②分别以 M、N为圆心,大于1/2MN的相同线段为半径画弧,两弧交∠AOB 内于P;③作射线 OP。
则射线OP 就是∠ AOB 的角平分线。
题目四:作一个角等于已知角。
(请自己写出“已知”“求作”并作出图形,不写作法)题目五:已知三边作三角形。
已知:如图,线段a, b ,c.求作:△ ABC ,使 AB = c,AC = b,BC = a.作法:①作线段 AB = c;②以 A 为圆心 b 为半径作弧,以 B 为圆心a 为半径作弧与前弧相交于C;③连接 AC ,BC。
则△ ABC 就是所求作的三角形。
题目六:已知两边及夹角作三角形。
已知:如图,线段m , n, ∠.求作:△ ABC ,使∠ A= ∠,AB=m,AC=n.作法:①作∠A=∠;②在 AB 上截取 AB=m ,AC=n;③连接 BC。
则△ ABC 就是所求作的三角形。
题目七:已知两角及夹边作三角形。
初三尺规作图练习题
初三尺规作图练习题尺规作图是初中数学中的基础内容,通过使用尺子和圆规来进行几何图形的绘制和构造。
这是一项重要的技能,它能够培养学生的空间想象力、观察力和创造力。
以下是几个初三尺规作图练习题,帮助学生巩固和提高这一技能。
练习一:画等边三角形1. 用尺子和圆规画一个等边三角形。
2. 以线段AB为边,以A为圆心,画一个以线段AB为半径的圆弧。
3. 以线段BA为边,以B为圆心,画一个以线段BA为半径的圆弧。
4. 这两个圆弧相交于点C。
5. 连接AC和BC,得到一个等边三角形。
练习二:画正四边形1. 画一个边长为5cm的正四边形。
2. 以点A为圆心,以5cm为半径,画一个圆弧。
3. 以点B为圆心,以5cm为半径,画一个圆弧。
4. 这两个圆弧相交于点C。
5. 连接AC和BC,得到一个正四边形。
练习三:画正六边形1. 画一个边长为4cm的正六边形。
2. 以点A为圆心,以4cm为半径,画一个圆弧。
3. 连接圆弧上的点与圆心A,得到一条线段。
4. 以线段AB为边,以点B为圆心,以4cm为半径,画一个圆弧。
5. 连接圆弧上的点与线段AB的端点,得到一条线段。
6. 以线段AC为边,以点C为圆心,以4cm为半径,画一个圆弧。
7. 连接圆弧上的点与线段AC的端点,得到一个正六边形。
练习四:画平行线1. 画一条任意长度的线段AB。
2. 以点A为圆心,以任意半径,画一个圆弧。
3. 以点B为圆心,以相同的半径,画一个圆弧。
4. 这两个圆弧相交于点C和D。
5. 连接CD,得到一条平行于线段AB的线段。
以上是初三尺规作图练习题,通过这些练习,可以提高学生的尺规作图能力,加深对几何图形的理解,培养学生的观察和推理能力。
这些技能对于初中数学以及将来的学习和职业发展都具有重要意义。
希望同学们能够认真练习,掌握这一基本技能。
初二数学尺规作图典型例题归纳
初二数学尺规作图典型例题归纳典型例题一例已知线段a、b,画一条线段,使其等于.分析所要画的线段等于,实质上就是.画法:1.画线段.2.在AB的延长线上截取.线段AC就是所画的线段.说明1.尺规作图要保留画图痕迹,画图时画出的所有点和线不可随意擦去.2.其它作图都可以通过画基本作图来完成,写画法时,只需用一句话来概括叙述基本作图.典型例题二例如下图,已知线段a和b,求作一条线段AD使它的长度等于2a-b.图(2)正解如图(2),(1)作射线AM;(2)在射线AM上,顺次截取AB=BC=a;(3)在线段CA上截取CD=b,则线段AD就是所求作的线段.典型例题三例求作一个角等于已知角∠MON(如图1).图(1)图(2)正解如图(2),(1)作射线;(2)在图(1)上,以O为圆心,任意长为半径作弧,交OM于点A,交ON于点B;(3)以为圆心,OA的长为半径作弧,交于点C;(4)以C为圆心,以AB的长为半径作弧,交前弧于点D;(5)过点D作射线.则∠就是所要求作的角.典型例题四例如下图,已知∠α及线段a,求作等腰三角形,使它的底角为α,底边为a.分析先假设等腰三角形已经作好,根据等腰三角形的性质,知两底角∠B=∠C=∠α,底边BC=a,故可以先作∠B=∠α,或先作底边BC=a.作法如下图(1)∠MBN=∠α;(2)在射线BM上截取BC=a;(3)以C为顶点作∠PCB=∠α,射线CP交BN于点A.△ABC就是所要求作的等腰三角形.说明画复杂的图形时,如一时找不到作法,一般是先画出一个符合条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.典型例题五例如图(1),已知直线AB及直线AB外一点C,过点C作CD∥AB(写出作法,画出图形).分析根据两直线平行的性质,同位角相等或内错角相等,故作一个角∠ECD=∠EFB即可.作法如图(2).图(1)图(2)(1)过点C作直线EF,交AB于点F;(2)以点F为圆心,以任意长为半径作弧,交FB于点P,交EF于点Q;(3)以点C为圆心,以FP为半径作弧,交CE于M点;(4)以点M为圆心,以PQ为半径作弧,交前弧于点D;(5)过点D作直线CD,CD就是所求的直线.说明作图题都应给出证明,但按照教科书的要求,一般不用写出,但要知道作图的原由.典型例题六例如下图,△ABC中,a=5cm,b=3cm,c=3.5cm,∠B=,∠C=,请你从中选择适当的数据,画出与△ABC全等的三角形(把你能画的三角形全部画出来,不写画法但要在所画的三角形中标出用到的数据).分析本题实质上是利用原题中的5个数据,列出所有与△A BC全等的各种情况,依据是SSS、SAS、AAS、ASA.解与△ABC全等的三角形如下图所示.典型例题七例正在修建的中山北路有一形状如下图所示的三角形空地需要绿化.拟从点A出发,将△ABC分成面积相等的三个三角形,以便种上三种不同的花草,请你帮助规划出图案(保留作图痕迹,不写作法).(2003年,桂林)分析这是尺规作图在生活中的具体应用.要把△ABC分成面积相等的三个三角形,且都是从A点出发,说明这三个三角形的高是相等的,因而只需这三个三角形的底边也相等,所以只要作出BC边的三等分点即可.作法如下图,找三等分点的依据是平行线等分线段定理.典型例题八例已知∠AOB,求作∠AOB的平分线OC.错解如图(1)作法(1)以O为圆心,任意长为半径作弧,分别交OA、OB于D、E两点;(2)分别以D、E为圆心,以大于DE的长为半径作弧,两弧相交于C点;(3)连结OC,则OC就是∠AOB的平分线.错解分析对角平分线的概念理解不够准确而致误.作法(3)中连结OC,则OC是一条线段,而角平分线应是一条射线.图(1)图(2)正解如图(2)(1)以点O为圆心,任意长为半径作弧,分别交OA、OB于D、E两点;(2)分别以D、E为圆心,以大于DE的长为半径作弧,两弧交于C点;(3)作射线OC,则OC为∠AOB的平分线.典型例题九例如图(1)所示,已知线段a、b、h(h<b).求作△ABC,使BC=a,AB=b, BC边上的高AD=h.图(1)错解如图(2),(1)作线段BC=a;(2)作线段BA=b,使AD⊥BC且AD=h.则△ABC就是所求作的三角形.错解分析①不能先作BC;②第2步不能同时满足几个条件,完全凭感觉毫无根据;③未考虑到本题有两种情况.对于这种作图题往往都是按照由里到外的顺序依次作图,如本题先作高AD,再作AB,最后确定BC.图(2)图(3)正解如图(3).(1)作直线PQ,在直线PQ上任取一点D,作DM⊥PQ;(2)在DM上截取线段DA=h;(3)以A为圆心,以b为半径画弧交射线DP于B;(4)以B为圆心,以a为半径画弧,分别交射线BP和射线BQ于和;(5)连结、,则△(或△)都是所求作的三角形.典型例题十例如下图,已知线段a,b,求作Rt△ABC,使∠ACB=90°,BC=a,AC=b (用直尺和圆规作图,保留作图痕迹).分析本题解答的关键在于作出∠ACB=90°,然后确定A、B两点的位置,作出△ABC.作法如下图(1)作直线MN:(2)在MN上任取一点C,过点C作CE⊥MN;(3)在CE上截取CA=b,在CM上截取CB=a;(4)连结AB,△ABC就是所求作的直角三角形.说明利用基本作图画出所求作的几何图形的关键是要先分析清楚作图的顺序.若把握不好作图顺序,要先画出假设图形.典型例题十一例如下图,已知钝角△ABC,∠B是钝角.求作:(1)BC边上的高;(2)BC边上的中线(写出作法,画出图形).分析(1)作BC边上的高,就是过已知点A作BC边所在直线的垂线;(2)作BC边上的中线,要先确定出BC边的中点,即作出BC边的垂直平分线.作法如下图(1)①在直线CB外取一点P,使A、P在直线CB的两旁;②以点A为圆心,AP为半径画弧,交直线CB于G、H两点;③分别以G、H为圆心,以大于GH的长为半径画弧,两弧交于E点;④作射线AE,交直线CB于D点,则线段AD就是所要求作的△ABC中BC边上的高.(2)①分别以B、C为圆心,以大于BC的长为半径画弧,两弧分别交于M、N两点;②作直线MN,交BC于点F;③连结AF,则线段AF就是所要求作的△ABC中边BC上的中线.说明在已知三角形中求作一边上的高线、中线、角平分线时,首先要把握好高线、中线、角平分钱是三条线段;其次,高线、中线的一个端点必须是三角形中这边所对的顶点,而关键是找出另一个端点.典型例题十二例如图(1)所示,在图中作出点C,使得C是∠MON平分线上的点,且AC=OC.图(1)图(2)分析由题意知,点C不仅要在∠MON的平分线上,且点C到O、A两点的距离要相等,所以点C应是∠MON的平分线与线段OA的垂直平分线的交点.作法如图(2)所示(1)作∠MON的平分线OP;(2)作线段OA的垂直平分线EF,交OP于点C,则点C就是所要求作的点.说明(1)根据题意弄清要求作的点的特征是到各直线距离相等,还是到各端点距离相等.(2)两条直线交于一点.典型例题十三例如下图,已知线段a、b、∠α、∠β.求作梯形ABCD,使AD=a,BC=b,AD∥BC,∠B=∠α;∠C=∠β.分析假定梯形已经作出,作AE∥DC交BC于E,则AE将梯形分割为两部分,一部分是△ABE,另一部分是AECD.在△ABE中,已知∠B=∠α,∠AEB=∠β,BE=b-a,所以,可以首先把它作出来,而后作出AECD.作法如下图.(1)作线段BC=b;(2)在BC上截取BE=b-a ;(3)分别以B、E为顶点,在BE同侧作∠EBA=∠α,∠AEB=∠β,BA、EA 交于A;(4)以EA、EC为邻边作AECD.四边形ABCD就是所求作的梯形.说明基本作图是作出较简单图形的基础,三角形是最简单的多边形,它是许多复杂图形的基础.因此,要作一个复杂的图形,常常先作一个比较容易作出的三角形,然后以此为基础,再作出所求作的图形.典型例题十四例如下图,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与公路的距离相等,且离铁路与公路交叉处B点700米,如果你是红方的指挥员,请你在图示的作战图上标出蓝方指挥部的位置.(2002年,青岛)分析依据角平分线的性质可以知道,蓝方指挥部必在A区内两条路所夹角的平分线上,然后由蓝方指挥部距B点的距离,依据比例尺,计算出图上的距离为3.5cm,就可以确定出蓝方指挥部的位置.解如下图,图中C点就是蓝方指挥部的位置.典型例题十五例如图(1),已知有公共端点的线段AB、BC.求作⊙O,使它经过点A、B、C(要求:尺规作图,不写作法,保留作图痕迹).(2002年,大连)图(1)图(2)分析因为A、B、C三点在⊙O上,所以OA=OB=OC=R.根据到线段AB、BC 各端点距离相等的点在线段的垂直平分线上,故分别作线段AB、BC垂直平分线即可.解如图(2)说明角平分线的性质、线段垂直平分线的性质在作图题中的应用是近几年中考中的又一道风景,它往往与实际问题紧密联系在一起.典型例题十六例如图,是一块直角三角形余料,.工人师傅要把它加工成一个正方形零件,使C为正方形的一个顶点,其余三个顶点分别在AB、BC、AC边上.试协助工人师傅用尺规画出裁割线.分析要作出符合条件的正方形,可先作出有三个角为90°的四边形,并设法让相邻的一组边相等即可.作法如图.1 作的角平分线CD,交AB于点G;②过G点分别作AC、BC的垂线,垂足为E、F.则四边形ECFG就是所要求作的正方形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尺规作图典型例题————————————————————————————————作者:————————————————————————————————日期:典型例题例1 、求作等腰直角三角形,使它的斜边等于已知线段已知:线段求作:,使∠A=90°,AB=AC,BC=分析:由于等腰直角三角形比较特殊,内角依次为45°,45°,90°,故有如下几种作法:作法一:1、作线段BC=2、分别过点B、C作BD、CE垂直于BC3、分别作∠DBC、∠ECB的平分线,交于A点即为所求作法二:作线段BC=2、作∠MBC=45°3、作∠NCB=∠MBC,CN与BM交于A点即为所求作法三:1、作线段BC=2、作∠MBC=45°3、过C作CE⊥BM于A即为所求作法四:1、作线段BC=2、作BC的中垂线,交BC于O点3、在OM上截取OA=OB,连结AB,AC即为所求说明:几种作法中都是以五种基本作图为基础,不要求写出基本作图的作法和证明。
例2、已知三角形的两边和其中一边上的中线长,求作这个三角形.已知:线段a、b为两边,m为边长b的中线求作:,使BC=a,AC=b,且AM=MC,BM=m.分析:先画草图,假定为所求的三角形,则有BC=a,AC=b,设M为AC边的中点,则MB=m,而,故的三边为已知作出,然后再作出 .作法:(1)作,使BC=a,,MB=m;(2)延长线段CM至A,使MA=CM;(3)连接BA,则为所求作的三角形.小结:本题的突破口是找与所求的的关系.由于的三边已知,故即可顺利作出.例3、如图,A、B、C三点表示三个村庄,为解决村民就近入学问题,计划新建一所小学,要使学校到这三个村庄的距离相等,请你在图中用尺规确定学校的位置P.分析:分两步:先作到A、B两点距离相等的点的图形,再作到B、C两点等距离的点的图形,两图形的交点,这就是所求作的点.作法:(1)连结AB,做线段AB的垂直平分线DE;(2)连结BC,作线段BC的垂直平分线FG,交DE与点P.则点P为所求作的学校位置.小结:由于不能直接确定到三点距离相等的点的位置,可以分解为先求到A,B相等的所有点,再求作到B,C相等的所有点,交点即所求.扩展资料三大几何作图问题三大几何作图问题是:倍立方、化圆为方和三等分任意角。
由于限制了只能使用直尺和圆规,使问题变得难以解决并富有理论魁力,刺激了许多学者投身研究。
早期对化圆为方作出贡献的有安纳萨戈拉斯(Anaxagoras,约500B.C.~428B.C.),希波克拉底(Hippocrates of chios,前5世纪下半叶)、安蒂丰(Antiphon,约480B.C.~411B.C.)和希比亚斯(Hippias of Elis,400B.C.左右)等人;从事倍立方问题研究的学者也很多,欧托基奥斯(Eutocius,约480~?)曾记载了柏拉图、埃拉托塞尼(Eratosthenes,约276B.C.~195B.C.)、阿波罗尼奥斯(Apollonius,约262B.C.~190B.C.)和帕波斯(Pappus,约300~350)等人共12种作图方法:尼科米迪斯(Nicomedes,约250B.C.左右)、帕波斯等人则给出了三等分角的方法。
当然所有这些研究都无法严格遵守尺规作图的限制,但它们却引出了大量的新发现(如圆锥曲线、许多三、四次曲线和某些超越曲线等),对整个希腊几何产生巨大影响。
三大作图问题自智人学派提出之时起,历经二千余年,最终被证明不可能只用直尺、圆规求解(1837年旺策尔「P.L.Wantze1」首先证明了倍立方和三等分任意角不可能只用尺规作图;1882年林德曼[C.L.F.Lindemann]证明了π的超越性,从而确立了尺规化圆为方的不可能)。
关于三大几何作图问题的起源和古代探讨,在智人学派之后一些希腊学者的著述中留有记载,这些分散片断的记载,成为了解早期希腊数学的珍贵资料。
以下选录部分内容,各节作者与出处将随文注明。
倍立方A。
赛翁论倍立方问题的可能起源0埃拉托塞尼在其题为《柏拉图》的著作中写道:当先知得到神的谕示向提洛岛的人们宣布,为了止息瘟疫,他们必须建造一个祭坛,体积是现有那个祭坛的两倍时,工匠们试图弄清怎样才能造成一个立体,使其体积为另一个立体的两倍,为此他们陷入深深的困惑之中,于是他们就这个问题去请教柏拉图。
柏拉图告诉他们,先知发布这个谕示,并不是因为他想得到一个体积加倍的祭坛,而是因为他希望通过派给他们这项工作,来责罚希腊人对于数学的忽视和对几何学的轻视。
B。
普罗克洛斯论希波克拉底对这一问题的筒化。
O“简化”是将一个问题或定理转化成另一个已知的或已构造出的问题或定理,使得原命题清晰明了。
例如,为解决倍立方问题,几何学家们转而探究另一问题,即依赖于找到两个比例中项。
从那以后,他们致力于如何找到两条已知线段间连比例中的两个中项的探索。
据说最先有效地简化这些困难作图的是希俄斯的希波克拉底民他还化月牙形为方,并作出许多几何学上的其他发现。
说到作图,如果曾经有过这方面的天才的话,这个人就是希波克拉底。
历史上传说,古代的一位悲剧诗人描述了弥诺斯为格劳科斯修坟,当弥诺斯发现坟墓的每一边都是一百尺时,他说:“你们设计显然这是一个错误。
因为如果边长加倍,表面积变成原来的四倍,体积变成八倍。
当今的几何学家们也在探索将已知立方体的体积加倍而不改变其形状的途径。
这个问题以二倍立方体著称,即已知一个立方体,他们想办法将其力”倍。
当长期以来所有的探索都徒劳无功时,希俄斯的希波克拉底最先发现,如果能找到一个方法,作出已知的两条线段间连比例中的两个比例中项,其中长线段是短线段的两倍,立体就被,。
倍。
这样他的难点被分解成另一个不太复杂的问题。
“后来传说,某些提洛岛的人为遵循先知的谕示,想办法将一个祭坛加倍,他们陷入了同样的困境。
于是他们派代表去请求学园中柏拉图学派的几何学家帮他们找到解法。
这些几何学家们积极地着手解决这个问题,求两条已知线段间顺个比例中项。
据说塔林敦的阿尔希塔斯应用半圆柱体得到一种解法,而欧多克索斯用了所谓的“曲线”所有解决这一问题的人在寻找演绎的证明方面是成功的,但除门奈赫莫斯①(尽管他只是很勉强地做到),他们都不能用行之有效的方法证明这个作图小现在我发现了一种简单方法,通过应用一种器具,不仅能得到两线段问的两个比例中项,而且能得到所需要的许多比例中项。
应用这一发现,我们能够将任何表面是平行四边形的已知立体化成立方体,或者将其从一种形状变成另一种形状,而且也可以作出一个与已知立体形状相同,但体积大一些的立体,也就是保持相似性。
……化圆为方A。
安蒂丰化圆为方安蒂丰画了一个圆,并作一个能够内接于它的多边形。
我们假设这个内接图形是正方形。
然后他将正方形的每边分成两部分,从分点向圆周作垂线,显然这些垂线平分圆周上的相应弧段。
接着他从垂线与圆周的交点向正方形边的端点连线,于是得到四个以线段(即正方形的边)为底的三角形,整个内接的图形现在成为八边形。
他以同样的方法重复这一过程,得到的内接图形为十六边形。
他一再地重复这一过程,随着圆面积的逐渐穷竭,一个多边形将内接于圆,由于其边极微小,将与圆重合。
正如我们从《原本》中所知,既然通常我们能够作出一个等于任何已知多边形的正方形,那么注意到与圆重合的多边形与圆相等,事实上我们就作出了等于一个圆的正方形。
B。
布里松化圆为方他作一个正方形外切于圆,作另一个正方形内接于圆,在这两个正方形之间作第三个正方形。
然后他说这两个正方形(即内接和外切正方形)之间的圆及中间的正方形都小于外部的正方形且大于内部的正方形,他认为分别比相同的量大和小的两个量相等。
因此他说圆被化成正方形。
三等分角帕波斯论三等分一个角的方法当早期的几何学家们用平面方法探究上述关于角的问题时民他们无法解决它,因为这个问题从性质来看是一个立体问题,由于他们还不熟悉圆锥曲线,因此陷于困惑由于他们还不熟悉圆锥曲线,因此陷于困惑。
但是他们后来借助于圆锥曲线用以下描述的斜伸法将角三等分。
用斜伸法解已知一个直角平行四边形ABΓΔ,延长BΓ,使之满足作出AE,使得线段EZ等于已知线段。
假设已经作出这些,并作ΔH,HZ平行于EZ,EΔ。
由于ZE已知且等于ΔH,所以ΔH也已知.Δ已知,所以H位于在适当位置给定的圆周上。
由于BΓ,ΓΔ包含的矩形已知且等于BZ,EΔ包含的矩形已知,即BZ,ZH包含的矩形已知,故H位于一双曲线上。
但它也位于在适当位置给定的圆周上,所以H已知。
证明了这一点后,用下述方法三等分已知直线角。
首先设ABΓ是一个锐角,从直线AB上任一点作垂线AΓ,并作平行四边形ΓZ,延长ZA至E,由于Γz 是一个直角的平行四边形,在EA,AΓ间作线段EΔ,使之趋于B且等于AB的两倍——上面已经证明这是可能的,我认为EBΓ是已知角ABΓ的三分之一。
因为设EΔ被H平分,连接AH,则三条线段ΔH,HA,HE相等,所以ΔE是AH的两倍。
但它也是AB的两倍,所以BA等于AH,角ABΔ等于角AHΔ。
由于AHΔ等于AEΔ,即ΓBΔ的两倍,所以ABΔ等于ΔBΓ的两倍。
如果我们平分角ABΔ,那么就三等分了角ABΓ。
用圆锥曲线的直接解法这种立体轨迹提供了另一种三分已知弧的方法,不必用到斜线。
设过A,Γ的直线在适当的位置给定,从已知点A,Γ作折线ABΓ,使得角AΓB是角ΓAB的2倍,我认为B位于一双曲线上。
因为设BΔ垂直于AΓ并且截取ΔE等于ΓΔ,当连接BE时,它将与AE相等。
设EZ等于ΔE,所以ΓZ=3ΓΔ.现在置ΓH等于AF/3,所以点H将给定,剩下部分AZ等于3*HΔ.由于BE*BE-EZ*EZ=BΔ*BΔ,且BE*BE一EZ*EZ=ΔA*AZ,所以ΔA*AZ=BΔ*BΔ,即3*AΔ*ΔH=BΔ*BΔ,所以B位于以AH为横轴,AH为共轭轴的双曲线上。
显然Γ点在圆锥曲线顶点H 截取的线段ΓH是横轴AH的二分之一。
综合也是清晰的。
因为要求分割AΓ使得AH是HΓ的2倍,就要过H以AH为轴画共轭轴为AH 的双曲线,并且证明它将使我们作出上面提到的具有2倍之比的角度。
如果A,Γ两点是弧的端点,那么以这种方法画的双曲线截得已知圆上的一段弧的三分之一就易于理解了。