铸铁显微组织观察

合集下载

实验四__高速钢及铸铁显微组织观察

实验四__高速钢及铸铁显微组织观察

实验四高速钢及铸铁显微组织观察(一)实验目的1.观察各种组织的显微特征,识别石墨的形态与基本类型,从而了解铸铁的力学性能与组织的关系。

2.进一步熟悉金相显微镜的使用。

(二)实验设备!.金相显微镜。

2.各种铸铁的金相试样。

3.金相图谱。

(三)实验原理铸铁由于石墨化程度以及石墨的形态不同,可分为白口铸铁、灰铸铁、球墨铸铁、蠕墨铸铁及可锻铸铁几类。

其中白口铸铁中碳以Fe 3C的形式存在,性质硬而脆,在机器制造业中应用很少。

(1 )灰铸铁组织特征是在钢的基体上分布着片状石墨,钢的基体有铁素体基体、铁素体--珠光体基体及珠光体基体三种。

(2)可锻铸铁是由白口铸铁经石墨化退火处理而得,其中Fe3C发生分解而形成团状石墨。

按照基体组织不同,可锻铸铁可分为铁素体可锻铸铁和珠光体可锻铸铁。

(3)蠕墨铸铁组织特征是在钢的基体上分布着蠕虫状石墨,钢的基体上主要有珠光体---铁素体基体、珠光体基体。

(4)球墨铸铁组织特征是在钢的基体上分布着球状石墨,钢的基体上主要有铁索体基体、铁素体~珠光体基体及珠光体基体三种。

(四)实验步骤1 .接观察要求选择目镜和物镜,装在显微镜上。

2 .将试样磨面对着物镜放在载物台上。

3 .接通电源。

4 .慢旋粗调焦手轮,视场由暗到亮,直至看到组织,然后再调微调焦手轮直至图象清晰为止,调节动作要缓慢,不允许试样与物镜相碰。

5.逐个观察试样。

(五)实验结果将观察到的试样组织形态与金相图谱进行分析,在实验报告六上画出试样的组织示意图。

材料________________ 材料________________ 材料________________ 热处理______________ 热处理______________ 热处理______________ 组织_________________ 组织_________________ 组织_________________材料________________ 材料________________ 材料________________ 热处理______________ 热处理______________ 热处理______________ 组织_________________ 组织_________________ 组织_________________(六)思考:1.根据试样结果分析影响铸铁力学性能的因素。

实验报告铸铁组织的显微观察实验报告范文_0493

实验报告铸铁组织的显微观察实验报告范文_0493

2020实验报告铸铁组织的显微观察实验报告范文_0493EDUCATION WORD实验报告铸铁组织的显微观察实验报告范文_0493前言语料:温馨提醒,教育,就是实现上述社会功能的最重要的一个独立出来的过程。

其目的,就是把之前无数个人有价值的观察、体验、思考中的精华,以浓缩、系统化、易于理解记忆掌握的方式,传递给当下的无数个人,让个人从中获益,丰富自己的人生体验,也支撑整个社会的运作和发展。

本文内容如下:【下载该文档后使用Word打开】一、实验目的:1.观察和分析铁碳合金的平衡组织;2.分析铁碳合金显微组织的形成过程;3.分析碳钢、白口铸铁的组织与含碳量之间的关系,从而掌握铁碳合金成分、组织和性能之间的关系。

二、实验仪器和试件:1.碳钢(亚共析钢、共析钢、过共析钢试样)、球状珠光体的试样;2.白口铸铁(亚共晶白口铸铁、共晶白口铸铁、过共晶白口铸铁试样);3.XJX―1小型金相显微镜。

三、用铅笔描绘出用金相显微镜观察到的金相组织组织结构示意图,并用箭头指出其组成物的名称。

材料名称:工业纯铁材料名称:20#钢组织结构:铁素体组织结构:铁素体+珠光体放大倍数:400放大倍数:400材料名称:45#钢材料名称:T8钢组织结构:铁素体+珠光体组织结构:珠光体放大倍数:400放大倍数:400材料名称:T12钢材料名称:共晶白口铸铁组织结构:网状渗碳体+珠光体组织结构:莱氏体放大倍数:400放大倍数:400材料名称:亚共晶白口铸铁材料名称:过共晶白口铸铁组织结构:珠光体+二次渗碳体+莱氏体组织结构:一次渗碳体+莱氏放大倍数:400放大倍数:400四、问题与思考:1.非合金钢与白口铸铁在组织构成与力学性能方面有何异同?答:非合金钢含碳量较低(0.02%―2.11%),织组构成只是铁素体,珠光体或珠光体与二次渗碳体的混合或铁素体与珠光体的混合。

在力学性能方面,随着含碳量增加和硬度增加,非合金钢有较好的可塑性。

白口铸铁的含碳量高(2.11%―6.69%),织组构成是由莱氏体,珠光体和二次渗碳体与莱氏体混合成的莱氏体和一次渗碳体的混合等构成。

实验 .合金钢、铸铁、有色合金的显微组织观察

实验 .合金钢、铸铁、有色合金的显微组织观察

实验.合金钢、铸铁、有色合金的显微组织观察一.实验目的1.观察和研究合金、铸铁、有色合金的显微组织;2.了解这些材料的成份、显微组织和性能的关系及应用。

二.概述合金钢的某些性能之所以比碳钢好,主要是由于合金元素在钢中所起的作用,它们的加入改变了钢的内部组织与结构,其相变温度也有很大变化。

铸铁的组织(除白口铸铁外)可以认为是在钢的基体上分布着不同形态、尺寸和数量的石墨,其中石墨的形状及数量的变化对性能起着重要作用,所以正确认识和鉴别各类铸铁的金相组织对估计和评价铸铁的质量和性能有着重要意义。

有色金属及合金具有某些独特的优异功能,例如,铝合金比重而强度高;铜及铜合金导电性极好,耐蚀性强;铅与锡合金具有良好的减摩性等。

而这些性能特点也与其内部组织密切相关。

三.合金钢合金钢依合金元素含量的不同,可分为三种:合金元素的质量分数小于5%的称为低合金钢;合金元素质量分数大于10%的称为高合金钢。

一般合金结构钢、合金工具钢都是低合金钢,由于加入合金元素较少,铁碳相图虽发生一些变动,但其平衡状态的显微组织与碳钢的显微并没有太大的区别。

低合金钢热处理后的显微组织与碳钢的显微组织也没有根本的不同,差别只是在于合金元素使C曲线右移(除Co外),即以较低的冷却速度可获得马氏体组织。

例如40Cr钢经调质处理后的显微组织和40钢调质的显微组织完全相同,都是回火索氏体(图3-29);GCr15钢(轴承钢)840℃油淬低温回火试样的显微组织,与T12钢780℃水淬低温回火试样的显微组织也是一样的,都得到回火马氏体+碳化物+残余奥氏体组织(图3-30),但GCr15钢的碳化物颗粒较细小。

1.高速钢它是一种常用的高合金工具钢,以具有良好的强硬性著称,例如±W18Cr4V。

因为它含有大量合金元素,使铁碳相图中的E点大大向左移,以虽然它的碳的质量分数只有0.7%~0.8%,但也已经含有莱氏体组织,所以称为莱氏体钢。

其中大量的合金元素除了形成合金铁素体与合金渗碳体外,还会各种合金碳化物(如Fe4W2C、VC等),这些组织特点决定了高速钢具有优良的切削加工性能。

铸铁的显微组织分析

铸铁的显微组织分析

铸铁的显微组织分析储万熠冶金1302实验材料及方法一、实验目的1.各种类型铸铁的纤维组织观测,并画出石墨的基本形貌。

2.学会如何辨别白扣铸铁,灰口铸铁,球墨铸铁,可锻铸铁(展性铸铁,玛钢),麻口铸铁。

3.学会如何利用Fe-C和Fe-Fe3C相图理解铸铁的显微组织,包括石墨的形状,基体显微组织的类型(Ferrite铁素体,珠光体,贝氏体等)。

显微组织与性能之间的关系。

4.独立撰写,提交实验报告,讨论部分必须包括以下主题:不同类型铸铁的显微组织,以及如何得到这些显微组织;石墨化势,微量元素(Ce/Mg),变质处理,在共析间隙的冷速,和石墨化退火对铸铁显微结构的影响。

二、实验设备与材料1.光学显微镜2.三、分析讨论墨,其基体组织为铁素体,灰口铸铁的化学成分主要是内的基本相主要有两种,即铁素体和石墨。

从组织可以看出灰口铸铁中的碳大部或全部以片状石墨形式存在,基体上加上片状石墨。

较慢的冷却(相较于白口铸铁的获得)会得到灰铸铁。

体中许多小的裂纹。

体的连续性,减少基体受力的有效面积,而且很容易在石墨片的尖端形成应力集中,材料形成脆性断裂,所以灰铸铁的抗拉强度、塑性和韧性比钢低得多。

但也有许多钢没有的优良性能:良好的切削加工性,良好的铸造性能,良好的减磨性,较低的缺口敏感性。

保留相当一部分莱氏体。

分主要是的基本组织主要有三种,即珠光体、变态莱氏体和石墨。

亮的游离渗碳体和暗黑色的石墨。

较慢的冷却(相较于白口铸铁的获得)或者只进行孕育处理会得到麻口铸铁。

片状的石墨,其基体组织为铁素体,变质灰口铸铁的化学成分主要是等。

灰口铸铁内的基本相主要有两种,即铁素体和石墨。

色。

全部以细小片状石墨形式存在,当于钢基体上加上片状石墨。

较慢的冷却(相较于白口铸铁的获得)并加入孕育剂进行孕育处理会得到变质灰口铸铁。

体中许多小的裂纹。

体的连续性,减少基体受力的有效面积,而且很容易在石墨片的尖端形成应力集中,材料形成脆性断裂,所以灰铸铁的抗拉强度、塑性和韧性比钢低得多。

实验三 铸铁显微组织观察与分析

实验三  铸铁显微组织观察与分析

实验三铸铁显微组织观察与分析(2学时)一、实验目的1.观察各种铸铁的显微组织特征,识别石墨形态与基体类型。

2.了解石墨形态、基体类型及显微组织对铸铁性能的影响。

二、实验设备、材料、仪器、装置金相显微镜;铸铁标准试样。

三、实验原理根据石墨的形态,铸铁可分为灰口铸铁、可锻铸铁和球墨铸铁等几种。

1.灰口铸铁灰口铸铁中碳全部或部分以自由碳片状石墨形式存在(如图1所示),断口呈灰黑色,其显微组织根据石墨化程度不同为铁素体或珠光体或铁素体+珠光体基体上分布片状石墨。

普通灰口铁中石墨片粗大,如浇注前在铁水中加入孕育剂,则石墨以细小片状形式析出,这种铸铁称之孕育铸铁。

在铸铁中由于含磷较高,在实际铸造条件下磷常以Fe3P的形式与铁素体形成硬而脆的磷共晶,因此在灰铸铁的显微组织中,除基体和石墨外,还可以见到具有菱角状沿奥氏体晶界连续或不连续分布的磷共晶,用硝酸-酒精或苦味酸腐蚀时Fe3P不受腐蚀,呈白亮色,铁素体光泽较暗,在磷共晶周围通常总是珠光体。

由于磷共晶硬度很高,所以磷共晶若以少量均匀孤立地分布时,有利于提高耐磨性,并不影响强度。

磷共晶如形成连续网状,则会使铸铁强度和韧性显著降低。

图1 灰口铸铁图2 可锻铸铁图3 球墨铸铁2. 可锻铸铁可锻铸铁又称为马铁或展性铸铁,它是由一定成分的白口铁经退火处理得到的,其中石墨呈团絮状(如图2所示),故显著地减弱了石墨对基体的割裂作用,其机械性能比普通灰口铸铁有显著地提高。

可锻铸铁分铁素体可锻铸铁和珠光体可锻铸铁两种,前者应用较多。

3.球墨铸铁球墨铸铁属高强铸铁,是铁水中加入球化剂后石墨呈球状析出而制得的,由于球状石墨使石墨割裂金属基体的不利影响限制到最低程度,所以金属基体强度利用率高达70~90%(灰铸铁只达30%左右),因而其机械性能远远优于普通灰铸铁。

球墨铸铁的显微组织特征是:石墨呈球状分布在金属基体上,基体组织是铁素体、珠光体或铁素体+珠光体(如图3所示)。

目前应有最广泛的是前面两种基体,铸铁的基体即钢的几种基本组织,所以也可以通过热处理来改变基体组织,从而改变铸铁的机械性能,其中,球墨铸铁应用热处理较多些,如应用正火,是为了增加基体中珠光体数量,以提高其强度和耐磨性,应用调质处理,是为了得到回火索氏体的基体组织,以提高综合机械性能。

合金钢,铸铁,有色金属的显微组织观察实验报告

合金钢,铸铁,有色金属的显微组织观察实验报告

合金钢,铸铁,有色金属的显微组织观察实验报告以下是一份合金钢、铸铁、有色金属显微组织观察与分析的实验报告。

实验目的:通过观察和分析合金钢、铸铁、有色金属的显微组织,了解其组织特点,探究化学成分、制造工艺对组织的影响。

实验材料:合金钢、铸铁、有色金属样品。

实验步骤:1. 样品制备:将采购的合金钢、铸铁、有色金属样品切割成合适的形状,如薄片、条、块等。

2. 显微镜观察:将样品置于显微镜下,观察其显微组织,使用适当的染色方法增强样品的对比度。

3. 数据分析:通过对样品显微组织的观察和分析,记录其组织特点,如晶粒大小、分布、退火状态等。

4. 实验结果:根据实验数据和样品显微组织的观察结果,总结出合金钢、铸铁、有色金属的组织特点,并分析其影响因素。

实验结果:在实验中,我们观察到不同的合金钢、铸铁、有色金属样品有着不同的显微组织。

- 合金钢样品的显微组织一般为均匀的细珠光体 + 铁素体,晶粒大小均匀,未见大的退火状态差异。

- 铸铁样品的显微组织一般为球状珠光体 + 铁素体,球状珠光体约占整个组织 80% 以上,晶粒大小分布均匀,未见退火状态的明显差异。

- 有色金属样品的显微组织一般呈单相组织,晶粒大小均匀,未见退火状态的明显差异。

实验结论:通过实验结果,我们可以得出以下结论:1. 合金钢的组织特点一般为均匀的细珠光体 + 铁素体,晶粒大小均匀,未见大的退火状态差异。

2. 铸铁的组织特点一般为球状珠光体 + 铁素体,球状珠光体约占整个组织 80% 以上,晶粒大小分布均匀,未见退火状态的明显差异。

3. 有色金属的组织特点一般呈单相组织,晶粒大小均匀,未见退火状态的明显差异。

此外,我们还通过数据分析总结出了化学成分、制造工艺等对组织的影响。

例如,较高的碳含量可以提高合金钢的硬度和强度,而较高的硅含量可以提高铸铁的硬度和耐磨性。

在制造工艺方面,退火处理可以细化晶粒,改善组织均匀性,而淬火处理则可以增强金属材料的硬度和韧性。

实验二铸铁、有色金属及合金显微组织分析(含实验报告格式)

实验二铸铁、有色金属及合金显微组织分析(含实验报告格式)
270 10 300 ≤207 体、阀盖
350
5-
147~ 241
机油泵齿轮
420
2

2297~ 302
柴油机、汽油机曲轴;
490
2

2297~ 磨床、铣床、车床的主轴 302 ;空压机、冷冻机缸体、
560
2

2417~ 缸套 实验32二1铸铁、有色金属及合金显微组织分析(含实验报告格
式)
第一部分:常用铸铁组织观察
实验二铸铁、有色金属及合金显微组织分析
性能:脆性大,很少使用(含。实验报告格式)
第一部分:常用铸铁组织观察
3、灰口铸铁的种类
根据石墨(G)在铸铁中存在形态,可分为:
普通灰铸铁:石墨呈片状 其基体组织有3种(F基、P基、 F基+P基)
可锻铸铁:石墨呈团絮状 其基体组织有3种(F基、P基、 F基+P基)
一、生产方法:
先将铸铁浇注成白口铸铁,然后进行高温石墨化退 火,使渗碳体分解得到团絮状石墨。
二、可锻铸铁的组织
可锻铸铁有铁素体和珠光体两种基体。
实验二铸铁、有色金属及合金显微组织分析 (含实验报告格式)
第一部分:常用铸铁组织观察 三、可锻铸铁的牌号
铁素体可锻铸铁以“KT”表示,珠光体可锻铸铁以“KTZ” 表示。其后的两组数字表示最低抗拉强度和延伸率。
球墨铸铁:石墨呈球状 其基体组织与处理状态有关(铸态、退火态、 正火态、等温淬火态)
蠕墨铸铁:石墨呈蠕虫状
实验二铸铁、有色金属及合金显微组织分析 (含实验报告格式)
第一部分:常用铸铁组织观察
一、灰铸铁的组织
第1节 普通灰铸铁
灰铸铁有铁素体、珠光体、(铁素体+珠光体)+石墨三种基

球墨铸铁金相检测标准2021

球墨铸铁金相检测标准2021

球墨铸铁金相检测标准2021
球墨铸铁是一种具有优良机械性能和耐腐蚀性能的铸铁材料,常用于制造汽车零部件、机械设备、管道和阀门等。

金相检测是对材料显微组织进行观察和分析的一种常见方法,以评估材料的质量和性能。

2021年的球墨铸铁金相检测标准主要包括以下几个方面:
1. 显微组织观察,金相检测标准通常要求对球墨铸铁的显微组织进行观察,包括珠光体、铁素体和渗碳体的分布情况、尺寸和形态等。

这些观察可以通过金相显微镜或扫描电镜等设备进行。

2. 化学成分分析,金相检测标准通常还要求对球墨铸铁的化学成分进行分析,包括主要合金元素(如碳、硅、锰、镁等)的含量和分布情况。

这可以通过化学分析方法(如光谱分析、X射线荧光分析等)来完成。

3. 相对密度和孔隙率检测,球墨铸铁的相对密度和孔隙率对其性能有重要影响,因此金相检测标准通常也包括对这些指标的检测要求,可以通过密度计和金相显微镜等设备进行测定。

4. 力学性能测试,金相检测标准还可能包括对球墨铸铁的力学
性能进行测试,如拉伸强度、硬度、冲击韧性等指标的测定,以评估材料的强度和韧性。

总的来说,球墨铸铁金相检测标准旨在通过对材料显微组织、化学成分、密度、孔隙率和力学性能等方面的检测和分析,全面评估球墨铸铁的质量和性能,确保其符合相关标准要求,以满足不同工程和应用的需要。

具体的标准文件可以参考国家标准化管理委员会发布的相关标准文献,以获取最新的标准要求和测试方法。

铁碳合金和铸铁显微组织观察

铁碳合金和铸铁显微组织观察

亚共析钢组织
过共析钢组织
过共晶白口铸铁组织
亚共晶白口铸铁组织
共晶白口铸铁组织
试验四:铸铁旳显微组织观察
一、试验目旳 观察与分析各类铸铁旳显微组织特征,辨认石
墨形态与详细类型,了解铸铁力学性能与组织间旳 关系。 二、试验内容与措施
在金相显微镜下观察多种铸铁旳显微组织,分 辨多种灰铸铁旳基体类型及石墨旳形态、大小、数 量与分布。并绘出多种铸铁旳显微组织示意图。
遇到试样),然后相反转动粗调焦手轮调整焦距,当视场亮度 增强时改用微调焦手轮,直至物象清楚为止。
4)调整孔径光栅和视场光栅,使物象质量最佳。 5)观察试样完毕,应立即关灯,以延长灯泡使用寿命。
(2)金相显微镜旳维护 1)细心操作,不许自行拆卸光学系统。
2)显微镜镜头及试样观察面禁止手接触,若镜 头中有灰尘可用镜头纸或软毛刷轻擦拭。
试验三:铁碳合金平衡组织观察与分析
一、试验目旳 1.进一步熟悉Fe—Fe3C相图,了解不同成份旳 铁碳合金在平衡状态下旳显微组织特征。 2.分析碳钢旳含碳量与其平衡组织间旳关系。 3.加深对平衡状态下铁碳合金旳成份、组织、性 能间关系旳了解。
二、试验原理
利用金相显微镜观察和研究金属内部旳组织和 缺陷旳措施称为显微分析。
珠光体 + 二次渗碳体 珠光体 + 二次渗碳体
+ 莱氏体 莱氏体
过晶白口铸铁
4.30-6.69
莱氏体 + 二次渗碳体
工业纯铁旳显微组织
20钢旳显微组织
45钢旳显微组织
45钢旳显微组织
65钢旳显微组织
T8钢旳显微组织
T8钢旳显微组织
T12钢旳显微组织
T12钢旳显微组织
亚共晶白口铁旳显微组织

常用金属材料的显微组织观察

常用金属材料的显微组织观察

锡基轴承合金以元素Sn为基础,加入少量锑和铜组成的合金(WSb =11%, WCu =6%),是一种软基体硬质点类型的轴承合金。 显微组织中暗黑色的为软基体α相,是Sb在Sn中的固溶体;白色块状为硬质 点β'相,是以SbSn为基的有序固溶体;组织中亮白色针状及星形就是Cu3Sn 或Cu6Sn5化合物η '相,也其硬质点作用。

铸铁
铸铁
根据成分和冷 却速度不同
铁素体+石墨
铁素体+珠光体+石墨
铸铁
根据石墨的形 态、大小和分 布情况不同
灰口铸铁 可锻铸铁 球墨铸铁
珠光体+石墨
灰口铸铁HT 灰口铸铁
G F
显微组织:珠光体+铁素体+片状石墨 力学性能差 解决方法:变质处理
P
可锻铸铁
G
F
显微组织:铁素体+团絮状石墨 团絮状石墨大大减轻了石墨对基体金属的割裂作用, 因而强度高,有一定的韧性、塑性。
α
孪晶
H90
α
β’
H 62 WZn在39%~45%的黄铜具有(α和β‘)两相组织,称为双相黄铜。 双相黄铜H62的显微组织中,α相呈亮白色,β'相为黑色,是以CuZn化 合物为基的有序固溶体,在456~468℃由β转变而成性能硬而脆。
α相
β’相
H62
•轴承合金 轴承合金
β '相 η '相 α相
调质
材料名称
40Cr W18Cr4V 1Cr18Ni9Ti 灰口铁 可锻铸铁 球墨铸铁 ZL102 单相黄铜 双相黄铜
锡基轴承合金
浸蚀剂
4% 硝酸酒精溶液 4% 硝酸酒精溶液 王水溶液 4% 硝酸酒精溶液 4% 硝酸酒精溶液 4% 硝酸酒精溶液 0.5%HF 溶液 3%FeCl3 +10%HCl 3%FeCl3 +10%HCl 4% 硝酸酒精溶液

实验 合金钢、铸铁、有色金属的显微组织观察

实验 合金钢、铸铁、有色金属的显微组织观察
(1) 领取各种类型合金材料的金相试样,在 显微镜下进行观察,并分析其组织形态特 征。
(2) 观察各类成分的合金要结合相图和热处 理条件来分析应该具有的组织,着重区别 各自的组织形态特点。
(3) 认识组织特征之后,再画出所观察试样 的显微组织图。画组织图时应抓住组织形 态的特点,画出典型区域的组织。
实验四 合金钢、铸铁、有色 金属的显微组织观察
一、实验目的
(1) 观察各种常用合金钢、有色金属和铸铁 的显微组织。
(2) 分析这些金属材料的组织和性能的关系 及应用。
二、实验原理
1.几种常用合金钢的显微组织
图4.1 W18Cr4V钢的铸态组织
图4.2 W18Cr4V钢锻后退火组织
图4.3 W18Cr4V钢的淬火组织
图4.4 微组织
图4.5 F基体口铸铁
图4.6 P+F基体球墨铸铁 图4.7 P基体可锻铸铁
3.几种常用有色金属的显微组织
图4.8 未变质处理的硅铝明合金组织 图4.9 经变质处理后硅铝明合金组织
图4.10 单相黄铜的组织特征
图4.11 双相黄铜
三、实验内容及方法指导
四、实验报告要求
(1) 写出实验目的。 (2) 分析讨论各类合金钢组织的特点,并与
相应碳钢组织作比较,同时把组织特点与 性能和用途联系起来。 (3) 分析讨论各类铸铁组织的特点,并同钢 的组织作对比,指出铸铁的性能和用途的 特点。

合金钢、铸铁的显微组织

合金钢、铸铁的显微组织

合金钢和铸铁的显微组织观察一、实验目的1. 观察和研究各种不同类型合金材料的显微组织特征。

2. 了解这些合金材料的成分、显微组织对性能的影响。

二、观察下列合金试样的组织三、实验内容讨论(一)合金钢合金钢的显微组织比碳钢复杂,在合金钢中存在的基本相有:合金铁素体、合金奥氏体、合金碳化物(包括合金渗碳体、特殊碳化物)及金属间化合物等。

其中合金铁素体与合金渗碳体及大部分合金碳化物的组织特征与碳钢中的铁素体和渗碳体无明显区别,而金属间化合物的组织形态则随种类不同而各异,合金奥氏体在晶粒内常常存在滑移线和孪晶特征。

1.高速钢高速碳是高合金工具钢,具有良好的红硬性,即使工作温度达到600℃时,仍保持高的硬度和切削性能。

经常用它来制造各种刀具。

这里以典型的W18Cr4V(简称18—4—1)钢为例加以分析研究。

W18Cr4V的化学成分为:0.7~0.8%C,17.5~19%W,3.8~4.4%Cr,1.0~1.4%V,﹤0.3%Mo。

由于钢中存在大量合金元素(大于20%),因此除了形成合金铁素体与合金渗碳体外,还会形成各种合金碳化物(如Fe4W2C、VC等),这些组织特点决定了高速钢具有优良的切削性能。

A.高速钢的铸态组织:按组织特点分类,高速钢属莱氏体钢,在一般铸造条件下存在以具有鱼骨状碳化物为特征的共晶莱氏体组织。

图1所示为W18Cr4V钢的铸态组织。

在显微镜下观察时,除共晶莱氏体外还有部分呈暗黑色的δ共析体组织和少量马氏体(呈亮白色部分)。

B.高速钢的退火组织:高速钢铸态组织极不均匀,特别是共晶组织中粗大碳化物的存在,使钢的性能显著降低,因此,高速钢铸造后必须经过锻造、退火,以改善碳化物的分布状况。

图2所示为W18Cr4V 钢经锻造及退火后的显微组织,组织中呈亮白色较大块状为一次碳化物,较细小块状为二次碳化物,基体组织是索氏体。

C.高速钢淬火组织:高速钢优良的热硬性及高的耐磨性,只有经淬火及回火后才能获得。

实验三 铸铁与有色金属的显微组织分析

实验三  铸铁与有色金属的显微组织分析

实验三铸铁与有色金属的显微组织分析一、实验目的1. 观察和分析各种灰口铸铁的显微组织。

2. 熟悉常用的铝合金、铜合金及轴承合金的显微组织。

二、实验内容观察分析下列金相组织。

表3—1(一)灰口铸铁的组织分析:1. 普通灰口铸铁:灰口铸铁显微组织与白口铸铁的显微组织不同,白口铸铁中的碳全部以化合物渗碳体的形式存在,在组织中有共晶莱氏体,其断口白亮。

性质硬而脆,故工业上很少应用,主要作炼钢原料。

普通灰口铸铁中碳全部或部分以自由碳—片状石墨形式存在,断口呈现灰色。

其显微组织根据石墨化程度的不同为铁素体或珠光体或铁素体+珠光体基体上分布片状石墨。

由于片状石墨无反光能力,故试样未经腐蚀即可看出呈灰黑色。

石墨性脆,在磨制时容易脱落,此时在显微镜下只能见到空洞。

为了研究石墨的形状和分布,一般均先观察未经腐蚀的试片。

灰口铸铁的基体在未经腐蚀的试片上呈白亮色,经过硝酸酒精腐蚀后和碳钢一样。

在铁素体基体的灰口铸铁中看到晶界清晰的等轴铁素体晶粒。

在珠光体基体的灰口铸铁中,珠光体片的大小随冷却速度而异。

由于石墨的强度和塑性几乎等于零,这样可以把铸铁看成是布满裂纹和空洞的钢,因此铸铁的抗拉强度与塑性远比钢低。

且石墨数量越多,尺寸越大,石墨对基体的削弱作用也愈大。

在铸铁中由于含磷较高,在实际铸造条件下磷常以Fe3P的形式与铁素体和Fe3C形成硬而脆的磷共晶。

因此在灰铸铁的显微组织中,除基体和石墨外,还可以见到具有菱角状沿奥氏体晶界连续或不连续分布的磷共晶(又叫斯氏体)。

磷共晶主要有三种类型,即二元磷共晶(在Fe3P的基体上分布着粒状的奥氏体分解产物—铁素体或珠光体)、三元磷共晶(在Fe3P的基体上分布着呈规则排列的奥氏体分解产物的颗粒及细针状的渗碳体)和复合磷共晶(二元或三元磷共晶基体上嵌有条块状渗碳体)。

用硝酸酒精或苦味酸腐蚀时Fe3P不受腐蚀,呈白亮色,铁素体光泽较暗,在磷共晶周围通常总是珠光体。

由于磷共晶硬度很高,故当二元或三元磷共晶以少量均匀孤立分布时,有利于提高耐磨性,而并不影响强度。

铸铁的金相组织观察

铸铁的金相组织观察

铸铁的金相组织观察实验铸铁的金相组织观察一、实验目的1(观察和研究灰铸铁、可锻铸铁及球墨铸铁的显微组织特征。

2(了解影响铸铁中石墨形态的因素。

二、概述根据石墨的形态、大小和分布情况不同,铸铁分为:灰口铸铁(石墨呈片条状)、可锻铸铁(石墨呈团絮状)和球墨铸铁(石墨呈圆球状)。

(一)灰口铸铁灰口铸铁组织的特征是在钢的基体上分布着片状石墨。

根据石墨化程度及基本组织的不同,灰口铸铁可分为:铁素体灰口铸铁,铁素体—珠光体灰口铸铁和珠光体灰口铸铁。

对灰口铸铁石墨形态的观察,应在未浸蚀的试样上进行。

放大倍数为100倍。

灰口铸铁石墨分布形状的说明见下表1。

表1名称符号说明图号A 1 片状片状石墨均匀分布B 2 菊花状片状与点状石墨聚集成菊花状分布C 3 块片状部分带尖角块状、粗大片状粗生石墨及小片状石墨D 4 枝晶点状点、片状枝晶间石墨呈无向分布E 5 枝晶片状短小片状枝晶间石墨呈有向分布F 6 星状星状(或蜘蛛状)与短片状石墨均匀分布(二)可锻铸铁可锻铸铁(又称韧性铸铁)是由白口铸铁经石墨化退火处理而得。

其中渗碳体发生分解而形成团絮状石墨。

按照基体组织不同,可锻铸铁分为铁素体可锻铸铁和珠光体可锻铸铁两类,如下图所示。

(三)球墨铸铁在球墨铸铁组织中石墨呈圆球状。

球状石墨的存在可使铸铁内部的应力集中现象得到改善,同时减轻了对基体的割裂作用,从而充分地发挥了基体性能的潜力,使球墨铸铁获得很高的强度和一定的韧性。

如下图所示。

三、实验方法指导 (一)实验内容及步骤1(各小组分别领取各种不同类型的铸铁材料试样。

2(在显微镜下进行观察,并分析其组织形态特征。

(二)实验设备及材料1(金相显微镜;2(金相放大照片;3(各类铸铁的金相显微试样。

(三)注意事项1(对各类铸铁可采用对比方法进行分析研究,着重区别各自的组织形态特征。

(四)实验报告要求1(明确本次实验的目的。

2(根据观察,综合分析各类铸铁的形成机理。

铸铁及有色金属显微组织观察

铸铁及有色金属显微组织观察

在汽车工业中的应用
节能减排
随着环保意识的提高,汽车工业对节能减排的要求越来越高,铸 铁及有色金属的显微组织观察有助于研发高强度、轻量化的新型
材料。
安全性评估
汽车安全性是消费者关注的重点,通过观察铸铁及有色金 属的显微组织,可以评估材料的抗冲击性能和疲劳寿命。
耐腐蚀性评估
汽车在使用过程中会受到各种环境因素的影响,铸铁及有 色金属的显微组织观察有助于评估材料的耐腐蚀性能。
应用领域的交叉
铸铁和有色金属在某些应用领域中具有相互替代 或互补的作用。
研究方法的互通性
在显微组织观察方面,铸铁和有色金属所采用的 研究方法具有一定的互通性。
04
铸铁及有色金属显微组织的观察方法
金相磨抛与抛光技术
金相磨抛
通过金相砂纸、抛光布等工具对金属表面进行磨削和抛光,以获得光洁的表面, 便于观察显微组织。
THANKS
感谢观看
铝合金的显微组织
铝合金的显微组织因合金元素和加工工艺的不同而有所差异,常见的铝合金如 防锈铝、硬铝和超硬铝等,其显微组织分别呈现出不同的特点。
钛及钛合金的显微组织
纯钛的显微组织
纯钛的显微组织由等轴晶粒组成,晶界清晰,晶粒大小不一 。
钛合金的显微组织
钛合金的显微组织因合金元素的不同而有所差异,常见的钛 合金如工业纯钛、钛合金和高温钛合金等,其显微组织分别 呈现出不同的特点。
碳化物分布
球墨铸铁中碳化物呈颗粒 状或短棒状分布,对提高 铸件的综合性能有重要作 用。
可锻铸铁的显微组织
石墨形态
可锻铸铁中的石墨呈团絮状或团 球状,分布较为均匀。
基体组织
可锻铸铁的基体组织主要由铁素体 和珠光体组成,强度和韧性较高。

铸铁的显微组织观察

铸铁的显微组织观察
三、 实验设备及用品
(1)金相显微镜。 (2)供显微观察用的灰口铸 铁试样一套。
铸铁的显微组织观察
四、 实验方法及步骤
实验方法及步骤与实验4相同,但在观察铸 铁的显微组织时,应注意分辨各种铸铁的基体类 型及石墨的形态、大小、数量及分布,并绘制各 种铸铁的显微组织示意图。
铸铁的显微组织观察
五、 实验报告
铸铁的显微组织观察
一、 实验目的
观察灰口铸铁的显微组织特征, 识别灰口铸铁中石墨的形态与基体 类型,从而理解铸铁力学性能与组 织的关系。
铸铁的显微组织观察
二、 实验概述
根据石墨形态的不同,灰口铸铁可分为灰铸铁、球墨铸铁、蠕墨 铸铁和可锻铸铁四种。由于铸铁的组织是由钢的基体和石墨组成,而 石墨是软而脆的相,与基体的结合力很小,在制样过程中极易从基体 中脱出,形成曳尾和孔洞,并且造成石墨污染而混淆了石墨缺陷。故 铸铁试样磨光时,可在砂纸上涂以石蜡 , 滴上煤油或肥皂水作润滑 剂,防止石墨剥落。抛光时用短毛织物,淋上MgO或Cr2O3抛光微粉 水溶液,可减少石墨剥落,以获得较好的抛光效果。此外,抛光时将 试样逆抛光盘旋转方向缓慢转动,可避免石墨曳尾。
(1)简述实验目的,实验设备及试样。 (2)按照下面要求画出灰铸铁、球墨铸铁、可锻铸铁的显微组 织示意图(任何一种基体均可)各一幅,并注明各组织的名称、放大倍 数及浸蚀剂。 (3)石墨的形态不同对灰口铸铁性能有什么影响?
铸铁的显微组织观察
石墨是非金属,没有反光能力,在显微镜掉,导致在显微镜下 观察到的石墨尺寸较其本身尺寸大些。所以,若只 鉴别铸铁中石墨的形状、分布、大小和数量时,只 需磨光、抛光后可直接观察,不需要浸蚀。
铸铁的显微组织观察

合金钢、铸铁、有色金属的显微组织观察与分析

合金钢、铸铁、有色金属的显微组织观察与分析

合金钢、铸铁、有色金属的显微组织观察与分析实验目的实验说明实验内容及方法指导实验报告要求思考题一:实验目的(1)观察各种常用合金钢、有色金属和铸铁的显微组织。

(2)分析这些金属材料的组织和性能的关系及应用。

二:实验说明1.几种常用合金钢的显微组织一般合金结构钢、低合金工具钢都是低合金钢。

即合金元素总量小于5%的钢,由于加入了合金元素,使相图发生了一些变动,但其平衡状态的显微组织与碳钢没有质的区别。

热处理后的显微组织仍然可借助C曲线来分析,除了Co元素之外,合金元素都使C曲线右移,所以低合金钢用较低的冷却速度即可获得马氏体组织。

例如,除作滚动轴承外,还广泛用作切削工具、冷冲模具、冷轧辊及柴油机喷嘴的GCrl5钢,经过球化退火、840~C油淬和低温回火,得到的组织为隐针或细针回火马氏体和细颗粒状均匀分布的碳化物以及少量残余奥氏体。

高速钢是一种常用的高合金工具钢。

如W18Cr4V高速钢,因为含有大量合金元素,使Fe—Fe3C相图中点E大大向左移动,所以它虽然只含有w(C)=0.7%~0.8%碳,但已经含有莱氏体组织。

在高速钢的铸态组织中可看到鱼骨状共晶碳化物,如图1所示。

这些粗大的碳化物,不能用热处理方法去除,只能用锻造的方法将其打碎。

锻造退火后高速钢的显微组织是由索氏体和分布均匀的碳化物组成(图2)。

大颗粒碳化物是打碎了的共晶碳化物。

高速钢淬火加热时,有一部分碳化物未溶解,淬火后得到的组织是马氏体、碳化物和残余奥氏体(图3)。

碳化物呈颗粒状,马氏体和残余奥氏体都是过饱和的固溶体,腐蚀后都呈白色,无法分辨,但可看到明显的奥氏体晶界。

为了消除残余奥氏体,需要进行三次回火,回火后的显微组织为暗灰色回火马氏体、白亮小颗粒状碳化物和少量残余奥氏体,如图4所示。

图1 W18Cr4V钢铸态组织图2 W18Cr4V钢锻后退火组织图3 W18Cr4V钢的淬火组织图4 W18CNV钢的淬火回火组织2.铸铁的显微组织依铸铁在结晶过程中石墨化程度不同,可分为白口铸铁、灰口铸铁、麻口铸铁。

2021铸铁组织的显微观察实验报告

2021铸铁组织的显微观察实验报告

2021铸铁组织的显微观察实验报告
实验目的:通过显微观察,了解铸铁的组织结构,进一步学习铸铁材料的特点。

实验原理:铸铁是一种由铁、碳和其他元素组成的合金材料,其组织结构一般可分为灰铸铁、球墨铸铁和白口铸铁三种类型。

灰铸铁的组织结构中含有大量的铁碳石墨,形成贝壳状组织;球墨铸铁由于加入了镁等元素和特别处理,其组织结构中的形态为球形;而白口铸铁中的碳主要以螺旋形的孪晶形式存在。

实验步骤:
1. 首先,用金素清洗镜头和目镜,将样品放置于显微镜上。

2. 调整显微镜的放大倍数,并调整清晰度,以便能够看清样品的细节。

3. 通过显微观察,观察样品的组织结构,并记录下所看到的现象和特点。

4. 对不同的铸铁材料进行观察和对比,以便更好地了解其特点。

结论:通过本次实验,我们对铸铁材料的组织结构有了更深入的了解,加深了我们对铸铁材料的认识,拓宽了我们的知识领域。

铸铁组织分析实验报告

铸铁组织分析实验报告

铸铁组织分析实验报告实验目的本实验旨在通过对铸铁的组织分析,了解铸铁的显微组织特点,并学习铸铁的显微组织分析方法。

实验原理铸铁是一种以铁为基体中含有2%以上碳元素的合金,具有灰白色或黑色的特点。

铸铁按照碳的形式和分布可分为灰铸铁、球墨铸铁和白口铸铁。

铸铁的显微组织与其冷却过程和碳的形式分布有关,显微组织主要包括珠光体、石墨和基体等成分。

珠光体是由铁素体和珠光体组成的,其中铁素体为珠光体的基体,而珠光体由铁素体和碳化物组成。

铸铁的显微组织主要通过光学显微镜观察,通常需要进行抛光、腐蚀和染色等处理方式。

实验步骤1. 准备实验样品:从铸铁材料中切取代表性样品。

2. 磨削与抛光:将样品磨削至粗糙度较小,并使用研磨纸对样品进行抛光处理。

3. 腐蚀:将抛光后的样品放置在猛酸中进行腐蚀处理,使得样品表面获得清晰可见的显微结构。

4. 清洗:将腐蚀后的样品用清水洗净,并用酒精进行清洁处理。

5. 染色:在样品上滴一滴显微染色液,使得显微组织更加清晰可见。

6. 实验观察:使用光学显微镜观察显微组织,并进行拍照记录。

实验结果与分析经过上述步骤,我们观察到铸铁的显微组织。

铸铁通常呈现灰白色或黑色,其主要显微组织成分为珠光体、石墨和基体。

珠光体是铸铁中最主要的组织成分之一。

在光学显微镜下,珠光体呈现出颗粒状或弯曲的结构,一般为灰色或白色。

珠光体由铁素体和碳化物组成,其中铁素体为灰色的基体,而碳化物为黑色颗粒状结构。

珠光体的形成与铸铁的冷却速度和合金的成分有关,冷却速度越快,珠光体的形态越细小。

石墨是铸铁中的另一个重要成分,通常呈现出黑色结构。

石墨具有良好的润滑性和导电性,对提高铸铁材料的性能起到重要作用。

在显微组织中,石墨可以呈现出团状、片状或链状的形态,形态的不同受到铸铁成分和冷却速度的影响。

基体是铸铁中无碳化物的铁素体,通常呈现出灰白色。

基体是铸铁的主要组织成分,其性质受到铸铁成分和冷却速度的影响。

基体的性质主要决定了铸铁的强度和韧性。

合金钢铸铁有色金属的显微组织观察与分析

合金钢铸铁有色金属的显微组织观察与分析

合金钢、铸铁、有色金属的显微组织观察与分析实验目的实验说明实验内容及方法指导实验报告要求思考题一:实验目的1观察各种常用合金钢、有色金属和铸铁的显微组织;2分析这些金属材料的组织和性能的关系及应用;二:实验说明1.几种常用合金钢的显微组织一般合金结构钢、低合金工具钢都是低合金钢;即合金元素总量小于5%的钢,由于加入了合金元素,使相图发生了一些变动,但其平衡状态的显微组织与碳钢没有质的区别;热处理后的显微组织仍然可借助C曲线来分析,除了Co元素之外,合金元素都使C曲线右移,所以低合金钢用较低的冷却速度即可获得马氏体组织;例如,除作滚动轴承外,还广泛用作切削工具、冷冲模具、冷轧辊及柴油机喷嘴的GCrl5钢,经过球化退火、840~C油淬和低温回火,得到的组织为隐针或细针回火马氏体和细颗粒状均匀分布的碳化物以及少量残余奥氏体;高速钢是一种常用的高合金工具钢;如W18Cr4V高速钢,因为含有大量合金元素,使Fe—Fe3C相图中点E大大向左移动,所以它虽然只含有wC=0.7%~0.8%碳,但已经含有莱氏体组织;在高速钢的铸态组织中可看到鱼骨状共晶碳化物,如图1所示;这些粗大的碳化物,不能用热处理方法去除,只能用锻造的方法将其打碎;锻造退火后高速钢的显微组织是由索氏体和分布均匀的碳化物组成图2;大颗粒碳化物是打碎了的共晶碳化物;高速钢淬火加热时,有一部分碳化物未溶解,淬火后得到的组织是马氏体、碳化物和残余奥氏体图3;碳化物呈颗粒状,马氏体和残余奥氏体都是过饱和的固溶体,腐蚀后都呈白色,无法分辨,但可看到明显的奥氏体晶界;为了消除残余奥氏体,需要进行三次回火,回火后的显微组织为暗灰色回火马氏体、白亮小颗粒状碳化物和少量残余奥氏体,如图4所示;图1 W18Cr4V钢铸态组织图2 W18Cr4V钢锻后退火组织图3 W18Cr4V钢的淬火组织图4 W18CNV钢的淬火回火组织2.铸铁的显微组织依铸铁在结晶过程中石墨化程度不同,可分为白口铸铁、灰口铸铁、麻口铸铁;白口铸铁具有莱氏体组织而没有石墨,碳几乎全部以碳化物形式Fe3C存在;灰口铸铁没有莱氏体,而有石墨,即碳部分或全部以自由碳、石墨的形式存在;因此,灰口铸铁的组织可以看成是由钢基体和石墨所组成,其性能也由组织的这两个特点所决定;麻口铸铁的组织介于灰口铸铁与白口铸铁之间;白口铸铁和麻口铸铁由于莱氏体的存在而有较大的脆性;1石墨;石墨本身的强度、硬度、塑性都很低,几乎等于零;因此,石墨对铸铁性能的影响极大;石墨的形状愈细长、粗大或分布不均匀,则产生应力集中的程度就愈严重,从而大大降低铸铁的强度和塑性;2基体组织;根据石墨化程度不同,铸铁的基体组织不同,一般情况下,可分为三种:铁素体、珠光体+铁素体、珠光体;3各种铸铁的显微组织特征;普通灰口铸铁:石墨呈粗片状析出,如图5所示;变质灰口铸铁:在铸铁浇注前,往铁水中加入变质剂增多石墨结晶核心,使石墨以细小片状析出;球墨铸铁:在铁水中加入球化剂,浇注后石墨呈球状析出,如图6所示;可锻铸铁:将白口铸铁锻化退火,使石墨呈团絮状析出,如图7所示;图5 F基体灰口铸铁图6 P+F基体球墨铸铁3.几种常用有色金属的显微组织1铝合金;铝合金应用十分广泛,分为形变铝合金和铸造铝合金;铝硅合金是广泛应用的一种铸造铝合金,俗称硅铝明,wSi=ll%~13%;从AL一Si合金图可知,硅铝明的成分接近共晶成分,铸造性能好,铸造后得到的组织是粗大的针状硅和α固溶体组成的共晶体图8;硅本身极脆,又呈针状分布,因此极大地降低了合金的塑性和韧性;为了改善合金质量,可进行“变质处理”;即在浇注时,往液体合金中加入w合金=2%~3%的变质剂常用钠盐混合物:2/3NaF+1/3NaCl,可使铸造合金的显微组织显著细化;变质处理后得到的组织已不是单纯的共晶组织,而是细小的共晶组织加上初晶α相,即亚共晶组织,如图9所示;图7 P基体可锻铸铁图8 未变质处理的硅铝明合金组织图9 经变质处理后硅铝明合金组织图10 单相黄铜的组织特征2铜合金;最常用的铜合金为黄铜Cu—Zn合金及青铜Cu—Sn合金;根据Cu—Zn合金相图,含wZn=39%的黄铜,其显微组织为单相α固溶体,故称单相黄铜,其塑性好,可制造深冲变形零件;常用单相黄铜为wZn=30%左右的H70,在铸态下因晶内偏析经腐蚀后呈树枝状,变形并退火后则得到多边形的具有退火孪晶特征的α晶粒,如图10所示;因各个晶粒位向不同,所以具有不同深浅颜色;wzn=39%~45%的黄铜,其组织为β+β’β’是CuZn为基的有序固溶体,故称双相黄铜;在低温时性能硬而脆,但在高温时有较好的塑性,适于热加工,可用于承受大载荷的零件,常用的双相黄铜为H62,在轧制退火后的显微组织经wFeCl3=3%和wHCI=10%的水溶液浸蚀后,α晶粒呈亮白色,β’晶粒呈暗黑色,如图1l所示;3轴承合金;巴氏合金是滑动轴承合金中应用较多的一种;锡基巴氏合金中wSn=83%、wSb=11%、wCu=6%;其显微组织是在软的α固溶体的基体上分布着方块状β’以化合物SnSb为基的有序固溶体硬质点及白色星状或放射状的Cu6Sn5,如图12所示;图12 ZChSnSbll—6合金组织图11 双相黄铜20高锡铝基合金是典型的硬基体加软质点组织的轴承合金;此种合金具有高疲劳强度,又有适当硬度,且铝资源丰富,故可代替以锡、铅为基的巴氏合金及铜基轴承合金,广泛应用于高速重载的汽车、拖拉机等的柴油机轴承,20高锡铝基轴承合金成分为:wSn=17.5%~22.5%、wCu=0.75%~1.25%,余为A1;此合金为亚共晶合金,室温组织为初晶α和α+Sn共晶体,但在铸态下α+Sn以离异共晶形式出现,使锡成网状分布于α固溶体晶界上,经轧制退火使网状分布、低熔点的锡球化,其组织为铝基固溶体上弥散分布着粒状的锡,为使高锡铝基轴承合金和钢背结合牢固,采用钢带、铝一锡合金及夹有纯图13 20高锡铝双金属合金组织铝箔中间的三层合金复合轧制,如图5.13所示;三:实验内容及方法指导1领取各种类型合金材料的金相试样表1,在显微镜下进行观察,并分析其组织形态特征;2观察各类成分的合金要结合相图和热处理条件来分析应该具有的组织,着重区别各自的组织形态特点;3认识组织特征之后,再画出所观察试样的显微组织图;画组织图时应抓住组织形态的特点,画出典型区域的组织;四:实验报告要求1写出实验目的;2分析讨论各类合金钢组织的特点,并与相应碳钢组织作比较,同时把组织特点与性能和用途联系起来;3分析讨论各类铸铁组织的特点,并同钢的组织作对比,指出铸铁的性能和用途的特点;五:思考题1合金钢与碳钢比较,组织上有什么不同,性能上有什么差别,使用上有什么优越性2铸造AL-Si合金的成分是如何考虑的,为何要进行变质处理,变质处理与未变质处理的AL-Si合金前后的组织与性能有何变化3轴瓦材料的组织应如何设计即它的组织应具有什么特点巴氏合金的组织是什么4高速钢W18Cr4V的热处理工艺是怎样的有何特点5要使球墨铸铁分别得到回火索氏体及下贝氏体等基体组织,应进行何种热处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

球墨铸铁的应用
•• 有时可代替铸钢和可锻铸铁在机械制造工业中
得到了广泛应用。 可以用球墨铸铁来代替钢制造某些重要零件可锻铸铁又称为玛铁、玛钢; 它是由白口铸铁通过石墨化退火处理得到
的一种高强铸铁。它有较高的强度、塑性和 冲击韧性,可以部分代替碳钢。 可锻铸铁不可锻!
一、实验目的
1. 了解各种铸铁的显微组织特征 2. 分析各种铸铁的基体与石墨的形状、大小、数量及分 布对铸铁性能的影响。 二、实验内容说明
1. 普通灰口铸铁:其基体组织有3种(F基、P基、 F基 +P基) 2. 可锻铸铁:其基体组织有3种(F基、P基) 3. 球墨铸铁:其基体组织与处理状态有关(F基、P基、 F基+P基) 三、实验报告要求
可锻铸铁的应用
可锻铸铁常用来制造形状复杂、承受冲击和 振动载荷的零件,如汽车拖拉机的后桥外壳、 管接头、低压阀门等。
五、 蠕墨铸铁
蠕墨铸铁是在一定成分的铁水中加入 适量的蠕化剂而炼成的,其方法与程 序与球墨铸铁基本相同。
蠕化剂目前主要采用镁钛合金、稀土 镁钛合金或稀土镁钙合金等。
蠕墨铸铁的化学成分
孕育处理可细化石墨片,减轻其对基体的割裂作 用,因而提高铸铁的强度,但塑性无明显改善。
灰口铸铁的工艺性能
优良的切削加工性能。因石墨的存在,造成脆性切 屑。
铸造性能良好,铸件凝固时形成石墨产生的膨胀, 减少了铸件体积的收缩,降低了铸件中的内应力。
石墨有良好的润滑作用,并能储存润滑油,使铸件 有很好的耐磨性能。
铸铁的石墨化
• 铸铁中碳原子析出并形成石墨的过程称为石墨化。 • 石墨既可以从液体和奥氏体中析出,也可以通过
渗碳体分解来获得: • 1、灰口铸铁和球墨铸铁中的石墨主要是从液体
中析出; • 2、可锻铸铁中的石墨则完全由白口铸铁经长时
间退火,由渗碳体分解而得到。
二、 灰口铸铁
• 灰铸铁的化学成分: 碳含量一般控制在: 2.5%~4.0%
球墨铸铁的化学成分
球墨铸铁的成分要求比较严格,一般范围 是: 3.6%~3.9%C, 2.2%~2.8%Si, 0.6%~0.8%Mn, <0.07%S, <0.1%P。
球墨铸铁的球化处理
• 一般在浇注之前,在铁液中加入少量球 化剂(通常为镁、稀土镁合金或含铈的 稀土合金)和孕育剂(通常为硅铁), 使铁水凝固后形成球状石墨。
一、 铸铁的石墨化
在铁碳合金中,碳可以以三种形式 存在:一是固溶在F、A中,二是化 合物态的渗碳体(Fe3C),三是游离 态石墨(G)。渗碳体为亚稳相,具 有复杂的斜方结构。在一定条件下 能分解为铁和石墨(Fe3C→3Fe+C)。 • 石墨为稳定相,具有特殊的简单六 方晶格,其底面原子呈六方网格排 列,原子间距小(1.42×10-10m), 结合力很强;而底面之间的间距较 大(3.04×10-10m),结合力较弱。 所以石墨的强度、硬度和塑性都很 差。
球墨铸铁的组织
铁素体基体
珠光体+铁素体基体
珠光体基体
球铁的性能
球墨铸铁是一种具有优良机械性能的 灰口铸铁,球铁的强度和韧性比其他铸 铁高。 不同基体的球墨铸铁,性能差别很大。 珠光体球墨铸铁的抗拉强度比铁素体基 体高50%以上,而铁素体球墨铸铁的延伸 率为珠光体基的3-5倍。球墨铸铁还具有 较好的疲劳强度。
可锻铸铁的化学成分
碳=2.2%~2.8% 硅=1.0%~1.8% 锰=0.4%~1.2% 硫<0.18% 磷<0.2%
可锻铸铁的组织
珠光体基体可锻铸铁
铁素体基体可锻铸铁
可锻铸铁的牌号
可锻铸铁有铁素体和珠光体两种基体。 铁素体可锻铸铁以“KTH”表示,珠光体
可锻铸铁以“KTZ”表示。其后的两组数 字表示最低抗拉强度和延伸率。 KTH350-10、KTZ600-3
概述
铸铁是碳含量大于2.11%、并常含有较多的硅、 锰、硫、磷等元素的铁碳合金。
铸铁的生产设备和工艺简单,价格便宜,并具 有许多优良的使用性能和工艺性能,所以应用 非常广泛,是工程上最常用的金属材料之一。 它可用于制造各种机器零件,如机床的床身、 床头箱;发动机的汽缸体、缸套、活塞环、曲 轴、凸轮轴;轧机的轧辊及机器的底座等。
铸铁的分类
按照碳的存在形式,铸铁可分为: • 碳以渗碳体形式存在的,称为白口铸铁; • 碳以石墨形式存在的,称为灰口铸铁;
共晶白口铸铁
F基体球墨铸铁
铸铁的分类
按照石墨的形态,铸铁可分为: 石墨呈片状的铸铁称灰口铸铁; 石墨呈团絮状的铸铁称可锻铸铁; 石墨呈球状的铸铁称球墨铸铁; 石墨呈蠕虫状的铸铁称蠕墨铸铁。
铸铁有很好的减振性能。石墨对振动的传递起削弱 作用。
大量石墨的割裂作用,使铸铁对缺口不敏感。
灰口铸铁的应用
如,机床床身、导轨,汽缸体等
三、 球墨铸铁
• 球墨铸铁的石墨呈球状,使其具有很高的 强度,又有良好的塑性和韧性。其综合机 械性能接近于钢,因其铸造性能好,成本 低廉,生产方便,在工业中得到了广泛的 应用。
硅含量一般控制在:1.0%~2.0%。
灰口铸铁的显微组织
灰口铸铁中石墨
铁素体基体 珠光体+铁素体基体
铁素体基体
灰口铸铁的力学性能
灰口铸铁的抗拉强度和塑性都很低,这是石墨对 基体的严重割裂所致。石墨强度、韧性极低,相 当于钢基体上的裂纹或空洞,它减小基体的有效 截面,并引起应力集中。石墨越多,越大,对基 体的割裂作用越严重,其抗拉强度越低
认真观察组织特征,完成实验报告。
一般成分范围如下: 碳:3.5%~3.9% 硅:2.1%~2.8% 锰:0.4%~0.8% 硫:<0.1% 磷:<0.1%
蠕墨铸铁的 显微组织
铁素体基体
珠光体基体 蠕墨铸铁中的石墨
蠕墨铸铁的应用
蠕墨铸铁已成功地用于高层建筑中高 压热交换器。内燃机、汽缸和缸盖、 汽缸套、钢锭模、液压阀等铸件。
“铸铁显微组织分析”报告要求
相关文档
最新文档