实验 介质损耗角正切的测量
静电容量和介质损耗角正切的测量
关于片状独石陶瓷电容器的 静电容量和介质损耗角正切的测量1.前言 (2)2.片状独石陶瓷电容器的特性 (2)2-1.温度特性 (2)2-2.电压特性 (3)2-3.频率特性 (5)2-4.总结 (6)3.LCR仪表和测试夹具 (6)3-1.LCR仪表 (6)3-2.测试夹具 (7)4.LCR仪表的测量原理 (7)4-1.测量原理 (8)4-2.测量电压 (8)4-3.静电容量的测量电路模式 (9)5.根据LCR仪表4284A的静电容量的测量方法 (10)5-1.接通LCR仪表的电源 (10)5-2.已安装测试夹具的状态 (10)5-3.测量器的设定 (10)5-4.校正 (14)5-5.测量 (15)6.根据LCR仪表4278A的静电容量的测量方法 (15)6-1.LCR仪表的电源接通 (15)6-2.已安装测试夹具的状态 (15)6-3.测量器的设定 (15)6-4.校正 (16)6-5.测量 (17)7.后记 (18)TD.No.C101.前言用LCR仪表测量高诱电率型(B特性,F特性)的片状独石陶瓷电容器时,有时不能获得与标称静电容量值一样的值。
其主要原因是,第一:片状独石陶瓷电容器的B、F特性的静电容量和介质损耗角正切,虽然随温度、电压(AC、DC)及频率而改变,但却无法按照规定的条件而测量。
第二:测量装置的设定不符合或测量装置的功能不能满足规定条件。
其解决方法是,第一:理解片状独石陶瓷电容器的特性,要规定温度、电压(AC、DC)、频率3种条件以后测量。
实际上,已经规定在国家标准JISC5101-1-1998的静电容量(4.7项)及介质损耗角正切(4.8项)上,其高诱电率型电容器的静电容量和介质损耗角正切的测量条件如表1所示。
此时的测量温度为20℃。
表1测量条件标称静电容量 测量频率 测量电压C≤10μF(10V以上) 1±0.1kHz 1.0±0.2VrmsC≤10μF(6.3V以下) 1±0.1kHz 0.5±0.1VrmsC>10μF 120±24Hz 0.5±0.1Vrms第二:要充分理解测量装置的功能,确认是否满足表1的测量条件以后请使用测量装置。
物理实验技术中的电介质性能测量方法与技巧
物理实验技术中的电介质性能测量方法与技巧电介质是电子学和电力系统中不可或缺的一部分。
电介质的性能测量是衡量其质量和可靠性的重要手段。
本文将介绍电介质性能测量的一些常用方法与技巧。
一、介电常数的测量方法与技巧介电常数是电介质性能的重要参数之一。
可通过多种方法测量。
其中,频率法是最常用的方法之一。
该方法通过改变测试信号的频率,测量电介质对电磁场的响应,确定介电常数。
测量时应注意以下技巧:1.1 利用阻抗测量方法,在不同的频率下测量电容与电阻值。
根据电容与电阻值的变化规律,可得到电介质的介电常数。
1.2 注意测试环境的稳定性,控制温度和湿度的影响。
温度和湿度的变化会影响电介质的性能,因此应在相对恒定的环境中进行测量。
1.3 使用合适的测量装置,如网络分析仪或LCR仪。
这些仪器能够提供准确的频率和阻抗测量结果。
二、介质损耗角正切的测量方法与技巧介质损耗角正切是衡量电介质功率损耗的重要指标。
常用的测量方法有如下几种:2.1 电桥法是一种常见的测量方法。
通过比较正弦波电桥的平衡与不平衡情况,可得到介质的耗散功率和相位差。
在实验中应注意调节电桥平衡,保持稳定的测量信号。
2.2 利用微小信号测量法,测量介电损耗角正切。
通过施加微小幅度的正弦信号,测量被测介质的电流响应,进而得到介质的损耗角正切。
在实验过程中应关注信号的幅度和频率选择,以避免测量误差。
2.3 进行频率扫描测量。
通过改变信号频率,观察介质损耗角正切与频率的关系,以确定其频率响应特性。
三、电介质的击穿强度测量方法与技巧击穿强度是电介质耐电能力的重要指标。
以下是常用的测量方法和技巧:3.1 空气间隙法是一种常见的测量方法。
通过在两个金属电极之间形成空气间隙,施加逐渐增加的电压,测量电介质的击穿电压。
在实验中应避免电极和电介质的不均匀性,以确保测量的准确性。
3.2 液体浸入法也是一种常用的方法。
这种方法适用于液体介质的击穿强度测量。
实验时应注意液体介质的温度、纯度和浸润性对测量结果的影响。
高电压实验报告三介质损耗角正切值的测量
高电压技术实验报告
介质损耗角正切值的测量
lenovo
一、 实验名称
介质损耗角正切值的测量
二、 实验目的
学习使用 QS1 型西林电桥测量介质损耗正切值的方法
三、 实验仪器
50/5 试验装置一套 水阻一只 电压表一只 QS1 电桥一套 220Kv 脉冲电容器(被试品)一只 四、 实验接线
式中,Cn ------标准电容的容量(50pf 或100pf) n ------分流器电阻值(对应于分流器挡位,如表2-1 所列) 13.按图2-4 所示的反接线法接好试验线路 (选做) ; 并按2.~12.
操作步骤调节电桥,测出被试品的tgδ 值和Cx 值。 注意:反接线法桥体内为高压,电桥箱体必须良好接地,电桥 引出线应架空与地绝缘。 操作时注意安全。
五、 实验步骤
1. 首先按图 2-3 所示的正接线法接好试验线路; 2. 将R 3 、 C4 以及灵敏度旋钮旋至零位, 极性切换开关放在中间断 开位置; 3. 根据被试品电容量确定分流器挡位; 4. 检查接线无误后,合上光偏式检流计的光照电源,这时刻度板 上应出现一条窄光带,调节零位旋钮,使窄光带处在刻度板零
六、 实验结果
Tanδ为 2.00%
Байду номын сангаас
位上; 5. 合上试验电源,升至所需试验电压; 6. 把极性切换开关转至“+ tgδ ”位置的“接通Ⅰ”上; 7. 把灵敏度旋钮旋至 1 或2 位置,调节检流计的合频旋钮,找 到检流计的谐振点,光带达到最宽度,即检流计单挡灵敏度达 到最大; 8. 调节检流计灵敏度旋钮, 使光带达到满刻度的 1/3~2/3 为止; 9. 先调节R 3 使光带收缩至最窄,然后调节C4 使光带再缩至最窄, 当观察不便时, 应增大灵敏度旋钮挡 (注意在整个调节过程中, 光带不能超过满刻度),最后,反复调节ρ 和C4 并在灵敏度旋 钮增至10 挡(最大挡)时,将光带收缩至最窄(一般不超过 4mm),这时电桥达到平衡; 10.电桥平衡后,记录tgδ 、R 3 、ρ 值,以及分流器挡位和所对应 的分流器电阻n,还有所用标准电容的容量Cn ; 11.将检流计灵敏度降至零,把极性旋钮旋至关断,把试验电压降 至零并关断试验电源,关断灯光电源开关,最后将试验变压器 及被试品高压端接地。 12.计算被试品电容量: Cx = Cn ∙ R4 R3 + ρ ∙ 100 + R 3 n
变压器试验之绕组介质损耗试验
变压器试验之绕组介质损耗试验变压器之绕组介质损耗试验绕组介质损耗试验试验目的测试变压器绕组连同套管的介质损耗角正切值的目的主要是检查变压器整体是否受潮、绝缘油及纸是否劣化、绕组上是否附着油泥及存在严重局部缺陷等。
它是判断变压器绝缘状态的一种较有效的手段,近年来随着变压器绕组变形测试的开展,测量变压器绕组的及电容量可以作为绕组变形判断的辅助手段之一。
试验仪器选择全自动抗干扰介质损耗测试仪。
试验试验步骤及接线图(1)变压器绕组连同套管tgδ和电容量的测量1) 首先将介损测试仪接地。
2) 将高压侧A、B、C三绕组短接起来。
3) 将其他非被试绕组三相及中性点短接起来,并接地(2#)。
4) 将红色高压线一端芯线插入测试仪“高压输出”插座上,注意要将红色高压线的外端接地屏蔽线接地。
5) 红色高压线另一端接高压绕组的短接线(1#)。
6) 连接好电源输入线。
7) 检查试验接线正确,操作人员征得试验负责人许可后方可加压试验。
8) 打开电源,仪器进入自检。
9) 自检完毕后选择反接线测量方式。
10) 预置试验电压为10KV。
11) 接通高压允许开关。
12) 按下启动键开始测量。
注意:加压过程中试验负责人履行监护制度。
13) 测试完成后自动降压到零测量结束。
14) 关闭高压允许开关后,记录所测量电容器及介损值。
15) 打印完实验数据后,关闭总电源。
16) 用专用放电棒将被试绕组接地并充分放电,变更试验接线,同理的方法测量变压器低压绕组连同套管tgδ值和电容量。
17) 首先断开仪器总电源。
18) 在高压端短接线上挂接地线。
19) 拆除高压测试线。
20) 拆除高压套管短接线。
21) 拆除其他非被试绕组的接地线及短接线。
22) 最后拆除仪器其它试验线及地线。
23) 试验完毕后,填写试验表格。
(2)变压器电容型套管tgδ和电容量的测量1) 首先将介损测试仪接地。
2) 将高压侧A、B、C三绕组短接起来。
3) 将非测试的其他绕组中压侧三相及中性点短接起来,并接地。
电容与介质损耗角正切的测量(下)分析课件
电容的单位是法拉,国际单位制 中的基本单位。
电容的数值等于电容器两极板间 的电势差与流过电容器的电流之
比。
介质损耗角正切的基本概念
介质损耗角正切是衡量电介质材料在 交流电压作用下能量损耗的物理量, 用tanδ表示。
介质损耗角正切的大小与电介质材料 的性质、温度、湿度等因素有关。
介质损耗角正切反映了电介质在交流 电场中的能量损耗程度,其值越大, 表示电介质中的能量损耗越大。
电容与介质损耗角正切的关系
电容与介质损耗角正切之间存在一定的 关系,通过测量介质损耗角正切可以推
算出电容值,反之亦然。
在交流电压作用下,电容器中的电介质 会因为极化效应产生能量损耗,这种能 量损耗与电介质材料的性质、温度、湿 度等因素有关,可以通过介质损耗角正
切来衡量。
电容和介质损耗角正切之间的关系可以 用数学公式表示,对于不同的电容器和
电介质材料,其关系式有所不同。
02
电容与介质损耗角正切的测量方 法
电容的测量方法
01
02
03
直接法
通过测量电容器两端的电 压和电流,利用公式 C=Q/V计算电容值。
电桥法
利用电桥平衡原理,将待 测电容与标准电容进行比 较,从而确定待测电容的 容量。
谐振法
利用电路谐振时电感器和 电容器的电压或电流之间 的比例关系,计算电容值 。
超声波测量技术
利用超声波的传播特性进行测量,具有穿透性强、检测深度大等优 点,在无损检测、流体测量等领域有广泛应用前景。
磁测量技术
利用磁场的特性进行测量,具有非接触、无损、高精度等优点,在 磁场分布、磁性材料等领域有广泛应用前景。
未来研究方向与展望
交叉学科研究
通过计算说明测量介质损耗角正切的原理
通过计算说明测量介质损耗角正切的
原理
介质损耗角正切值的测量原理如下:
当交流电压施加在介质上时,介质中的电压与电流之间存在相位角差,残余角称为介质损耗角,切线tg称为介质损耗角正切。
一般采用两种方法测量介质损耗角正切值:谐振法和电流激波法。
谐振法主要针对交流电介质的介电损耗进行测量,通过建立介质中的谐振回路来测量损耗值。
而电流激波法则通过在绝缘体中引入高强度的电流激波,测量在电流激波作用下的介质损耗。
通过测量介质损耗角正切值,可以反映绝缘介质在交流电压作用下的有功电流分量和无功电流分量的比值,是衡量交流有功损耗大小的特征参数。
其值越小,意味着绝缘的介质损耗越小。
通过测量tgδ可以反映出绝缘的分布性缺陷,如果缺陷是集中性的,有时测tgδ就不灵敏。
物理实验技术中的电介质材料性质测量方法
物理实验技术中的电介质材料性质测量方法在物理实验中,电介质材料性质的测量是非常重要的。
电介质材料是一类常见的材料,具有绝缘性能,在电路中起到隔离和储能的作用。
为了研究电介质材料的特性和性能,科研人员需要进行各种电介质材料性质的测量。
接下来,我们将介绍几种常见的电介质材料性质测量方法。
第一种测量方法是介电强度的测定。
介电强度是电介质材料能够承受的电场强度的最大值。
为了测量介电强度,一种常见的方法是使用高电压发生器和电介质材料之间建立一个带有电极的测试装置。
通过改变电极间距和施加不同的电压,可以逐渐增加电场强度,直到电介质发生击穿,记录击穿的电压和电场强度。
这样可以确定电介质的介电强度。
第二种测量方法是介电常数的测定。
介电常数是描述电介质材料相对于真空而言的电场响应能力的物理量。
测量介电常数的方法有很多种,其中一种常见的方法是使用电容测量法。
通过在电容器中放入电介质材料,测量出不同电介质材料的电容值,然后再测量空气或真空中的电容值,两者之比即为电介质材料的相对介电常数。
第三种测量方法是介质损耗角正切的测定。
介质损耗角正切是指在交流电场下,电介质材料吸收和耗散电能的能力。
为了测量介质损耗角正切,可以使用交流电桥或示波器等设备,测量电介质材料中电场的相位差以及振幅,通过计算得到介质损耗角正切的值。
第四种测量方法是漏电流的测定。
漏电流是指电介质材料在电场作用下出现的微小电流。
漏电流的测定可以通过数显电压电流表或电阻电流计等设备进行。
首先,将电介质材料放在电极之间,施加电场,然后测量到的电流即为漏电流。
通过测量和比较不同电介质材料的漏电流值,可以了解电介质材料的绝缘性能。
除了以上几种常见的电介质材料性质测量方法外,还有一些其他方法,如电介质材料的电阻率测定、极化现象的测定等。
这些方法不仅可以帮助我们了解电介质材料的特性和性能,而且在实际应用中也有广泛的用途。
例如,了解电介质材料的介电强度可以帮助我们设计和选择合适的绝缘材料以确保电路的安全性;了解电介质材料的介电常数可以帮助我们设计和优化电容器的性能等。
电容与介质损耗角正切的测量(下)
AE、EC、AF、 FC间的杂散电容 对电容测量无影响, 对损耗角的影响可 以估计出来。
E,F分布电容采用 替代法可以减弱
B,D接地,不存在 对地分布电容
2.双T电桥用于高频测试且能获得高精度的原因:
(2).结构上可以作得很对称,可以抵消一些影响。
(3).仪器结构紧凑,连接导线短,接头采用 同轴型连接器等,使这种电桥不需要特殊 屏蔽措施。
Q表法
将高频信号源、指示部分、测量回路、电源部分 做到一起,就形成了Q表。
Q表的用途
Q表可以用来测量高频电感或谐振回路的Q值、电 感器的电感量及其分布电容量、电容器的电容量 及其损耗角、电工材料的高频介质损耗、高频回 路的有效并联电阻及串联电阻、传输线特性阻抗 等。 Q表虽然型号不少。但是它们除频率范围、测量 范围、测量精度等不完全一样外,基本使用方法 是相同的。
LOGO
第二章 电容与介质损耗角正切的测量
低频下 高频下
极低频下 超高频下
相对介电系数和介质损角正切的测量
电容器高频参数及频率特性的测量
高频下相对介电系数和介质损耗角 正切的测量
LOGO
高频下相对介电系数和介质损耗角正切的测量
电阻臂电 感、电容 频率增 高 桥臂间杂 散电容 影响严重
普通电 桥测试 误差加 大甚至 不能测 试
Q表法
(2)变Q值法的测量原理 刻度成倍率 UC
线路的品质因数Q定义为: Q=UC/E0 Q的倒数定义为线路的损耗因数tgδ : 回路电流 I0=E0/(R0+RL) Uc=I0/ωC =E0/ ωC(R0+RL) =E0/ tgδ =E0Q Q=UC/E0=kUC
tgδ=1/ Q=E0/UC
电容与介质损耗角正切的测量(下)课件
测量中的影响因素
电容的测量受到多种因素的影响,如温度、湿度、频率等。温度和湿度会影响电容器的介质材料和结构,从而影响电容的大小。频率也会影响电容的大小,因为电容器的电容量会随着频率的变化而变化。
介质损耗角正切的定义:介质损耗角正切是衡量电介质材料在交流电场下能量损耗的一个物理量,用tanδ表示。它是指电介质在单位时间内每单位体积中消耗的能量与相同时间内流过电介质的能量的比值。
环境监测
生物医学
THANKS
感谢观看
电容的计算
电容的大小可以通过电容器两端的电压和流过的电流来计算,公式为$C = frac{Q}{V}$,其中$Q$为电容器所带电荷量,$V$为电容器两端的电压。
介质损耗角正切的定义
介质损耗角正切是衡量电介质材料在交流电场作用下能量损耗的物理量,其大小等于介质中的有功功率与无功功率之比。
介质损耗角正切的物理意义
环境因素如温度、湿度、气压等对介质的介电常数和电导率都有影响,从而影响介质损耗角正切的测量结果。因此,在测量时需要控制环境因素的变化。
环境因素
样品的形状、尺寸、杂质等也会影响介质的介电常数和电导率,从而影响介质损耗角正切的测量结果。因此,在测量时需要选择合适的样品和制备方法。
样品因素
仪器的精度和稳定性也会影响介质损耗角正切的测量结果。因此,在测量时需要选择高精度和高稳定性的仪器。
振荡器
电容在耦合器中起到信号传递的作用,使信号在不同电路之间传输。
耦合器
绝缘材料检测
介质损耗角正切可以反映绝缘材料的性能,通过测量其值可以判断材料的绝缘性能是否良好。
在生物医学领域,电容与介质损耗角正切可用于研究生物组织的电学特性,如生物电位的测量和细胞膜电位的分析。
在环境监测领域,电容与介质损耗角正切可用于测量土壤湿度、水质电导率等参数,以评估环境质量。
高电压技术:4.2 介质损耗角正切的测量
4.2.1 西林电桥测量法的基本原理
1.普通电桥原理
Rx
电桥平衡时: U AB 0
•
••
•
即:U CA U CB U AD U BD
U CA U CB
U U
AD BD
I1Z1 I1Z3
I2Z2 I2Z4
U
Z1Z4 Z2Z3
Z1 Z4 Z2 Z3
1 4 2 3
2
Cx
Z1 A
R3
• 答:
• 西林电桥是利用电桥平衡的原理,当流过电桥的电流相 等时,电流检流计指向零点,即没有电流通过电流检流 计,此时电桥相对桥臂上的阻抗乘积值相等,通过改变 R3和C4来确定电桥的平衡以最终计算出Cx和tanδ。
• 采用标准电容器是因为计算被试品的电容需要多个值来 确定,如果定下桥臂的电容值,在计算出tanδ的情况下 仅仅调节电阻值就可以最终确定被试品电容值的大小。
C4
Z1
1 Rx
1
jCx
Z2
1
jCN
Z3 R3
1
Z4
1 R4
jC4
当电桥平衡时,IG=0,应满足: Z X Z4 ZnZ3
整理得:
(1 R4 RX
2C4CX )
j(C4
RX
CX
R4
)
j Cn
R3
左边实部显然等于零,整理可得:
1
RX CX
R4C4
故有:
tan
1
RX CX
R4C4
2fR4C4
3. 试品电容量的影响
对于电容量较小的试品(例如套管、互感器 等),测量tanδ能有效地发现局部集中性缺陷和整 体分布性缺陷。但对电容量较大的试品(例如大 中型发电机、变压器、电力电缆、电力电容器等) 测量tanδ只能发现整体分布性缺陷
高电压技术介质损耗角正切值(tanδ)的测量实验报告
实验报告
实验项目:介质损耗角正切值(tanδ)的测量
备注:序号(一)、(二)、(三)为实验预习填写项
五、程序调试及实验总结
实验过程:
正接法:反接法:
实验总结:
通过这次实验,我收获了很多知识和技能。
我认识到了介质损耗角正切值(tanδ)的重要性,它可以反映电介质的绝缘状况和缺陷,对于电气设备的预防性试验和故障诊断有着重要的作用。
我学习了使用西林电桥测量tanδ的方法,包括正接法和反接法,它们各有优缺点,需要根据被试品和电桥的绝缘情况选择合适的接线方式。
通过这次实验,我不仅掌握了一种实用的测量技术,而且培养了我的动手能力和观察能力,增强了我的实验兴趣和创新意识。
我感受到了理论与实践相结合的重要性,也发现了自己在实验中存在的不足和问题,对一些概念和现象的理解不够深刻,对电桥的结构和工作原理的掌握不够熟练,对实验数据的分析和处理的能力不够强等。
我希望在今后的学习中,我能够不断地充实自己的理论知识,加强自己的实验技能,提高自己的科学素养,为成为一名优秀的电气工程师打下坚实的基础。
介质损耗角正切值的测量
精品课件
15
❖如果绝缘缺陷是集中性的(非贯穿性的),或缺陷 部分在整个绝缘中占很小的体积,则该方法不很有 效.
用于对套管、电力变压器、互感器和某些电容器的 测量.
精品课件
3
试验方法
• 仪器:西林电桥或 介质损耗测量仪
• 西林电桥 • 电桥的四个臂: • CN—标准电容器 • ZX—被试品 • C4—可调电容 • R3— 可调电阻
• 2、根据试验条件确定采用正接线或反接线。
• 3、按图正确接线,高压试验线须从垂直方向 拉出,使其对试品的分布电容最小,并且须用
粗导线防止电晕,保护接地应牢固可靠。
• 4、检查接线确保正确,检查微安表指零,将 R3,tanσ调零,灵敏度档位及调压器置零位, 根据试品容量选择分流器于正确档位。
精品课件
基本原理
• 电介质在电场作用下产生能量。
P= U2ωCtgσ
• 当外加电压及频率一定时,电介质的损耗P 与tgσ及C成正比;而对于一定结构的试品 来说,C为定值,故可直接由tgσ的大小来 判断试品绝缘的优劣。
• 测量tgδ值是判断电气设备绝缘状态的一项 灵敏有效的方法。
精品课件
1
介质损失角正切值tgδ的测量
Ir Ix
Ic
Rx体性能下降,如普遍受潮、脏污 或老化,以及绝缘中有间隙发生局部放电时,流过 绝缘的有功电流分量IRx将增大,tgδ也增大.
❖ 通过测量tgδ值可以发现绝缘的分布性缺陷.
❖ 若 缺 陷 部 分 在 整 个 绝 缘 中 的 体 积 较 大 , 则 测 量 tg 容易发现绝缘的缺陷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当检流计反接时测得:
tg 2 C 4 C 4 R 4
C x 2 C 0R 4 /R 3 R 3
因无磁场干扰时:
tg C 4R 4 C x C 0R 4 / R 3
故可得:
tg tg1 tg 2 / 2
实验
介质损耗角正切的测量
测试无线电材料:常采用高频施压法,所加的电压不高 电工界:最常用的是西林电桥法 在线监测:采用微机对 tgδ 进行测量 1. 西林电桥的基本原理 西林电桥: 高压臂:代表试品的 Z1;无损耗的标准电容 CN,它以阻抗 Z2 作为 代表。 低压臂:处在桥箱体内的可调无感电阻 R3,以 Z3 来代表;无感电 阻 R4 和可调电容 C4 的并联,以 Z4 来代表 保护:放电管 P 电桥平衡:检流计 G 检零 屏蔽:消除杂散电容的影响 电桥的平衡条件: Z1/Z3 = Z2/Z4 串联等值回路 tgδ=ωR4 C4 Cx = R4CN/R3 并联等值回路 tgδ=ωR4 C4 Cx = R4CN/[R3 (1+tg2δ)]
C x 2C x1C x 2 / C x1 C x 2
3. 测试功效 • 有效 受潮 穿透性导电通道 气泡电离、绝缘分层、脱壳 绝缘老化劣化 绝缘油脏污、劣化 • 无效 局部损坏
小部分绝缘的老化劣化 个别绝缘弱点 4. 注意事项 • 分部测试 • 与温度的关系 • 与试验电压的关系 • 护环和屏蔽
Cx:因为 tg2 极小,故两种等值电路的 Cx 相等
西林电桥的基本回路
屏蔽: 杂散电容:高压引线与低压臂之间有电场的影响,可看作其间有杂散 电容 Cs。由于低压臂的电位很低,Cx 和 CN 的电容量很小,如 CN 一 般只有 50100pF,杂散电容 Cs 的引入,会产生测量误差。若附近另 有高压源,其间的杂散电容 Cs1 会引入干扰电流 iS,也会造成测量误 差。 需要屏蔽,消除杂散电容的影响
磁场干扰时介损的测量 检流计正反接抗磁场干扰的原理:设无磁干扰时,两个测量臂的数值 分别为 R3 和 C4;设存在磁干扰时,两个测量臂的数值分别为(R3+R3) 和(C4+C4);把检流计和电桥两臂相接的两端倒换一下,两个测量臂 的数值将分别为 (R3-R3)和(C4- C4) 当检流计正接时测得: tg1 C 4 C 4 R 4
2. 存在外界电磁场干扰时的测量 现场试品:难以实现屏蔽,干扰较严重 两次测量法:第一次测得 tg1 和 Cx,然后倒换试验变压器原边电 源线的两头(试验电压 U 的相位转 180),测得第二次的数值 tg2 和 Cx,可用下式计算得准确的 tg和 Cx 值:
tg1 C x Cx tg C x tg 2 /C x Cx