学习有限元ANSYS总结
Ansys有限元分析
![Ansys有限元分析](https://img.taocdn.com/s3/m/0ba4a1fc941ea76e58fa0464.png)
Ansys的静力分析即研究刚体在X,Y,Z方向上的变形度,动态分析:模态分析(固有频率和模态振型—其与刚度有关,前者越大,后者越大)有限元法与有限元软件基本理论有限元法的基本思想最早出现于20世纪40年代初期,但是直到1960年,美国的克拉夫在一篇论文中刁‘首次使用“有限元法”这个名词。
在20世纪60年代末70年代初,有限单元法在理论上已基本成熟,并开始陆续出现商业化的有限元分析软件。
有限元法的出现与发展有着深刻的工程背景。
20世纪40至50年代,美、英等国的飞机制造业有了大幅度的发展,随着飞机结构的逐步变化,准确地了解飞机的静态特性和动态特性越来越显得迫切,但是传统的设计分析方法己经不能满足设计的需要,因此工程设计人员便开始寻找一种更加适合的分析方法,于是出现了有限单元法的思想。
有限单元法的基本思想是将连续的结构离散成有限个单元,并在每一个单元中设定有限个节点,将连续体看作是只在节点处相互连接的一组单元的集合体;同时选定场函数的节点值作为基本未知量,并在每一单元中假设一近似插值函数以表示单元中场函数的分布规律,进而利用力学中的某些变分原理去建立用以求解节点未知量的有限元方程,从而将一个连续域中的无限自由度问题转化为离散域中的有限自由度问题。
一经求解就可以利用解得的节点值和设定的插值函数确定单元上以至整个集合体上的场函数。
由于单元可以设计成不同的几何形状,因而可灵活地模拟和逼近复杂的求解域。
显然,如果插值函数满足一定要求,随着单元数目的增加,解的精度会不断提高而最终收敛于问题的精确解。
虽然从理论上说,无限制地增加单元数目可以使数值分析解最终收敛于问题的精确解,但是这却增加了计算机计算所耗费的时间。
在实际工程应用中,只要所得的数据能够满足工程需要就足够了。
因此,有限元分析方法的基本策略就是在分析的精度和分析的时间上找到一个最佳平衡点。
有限元求解程序的内部过程可从图4.中看出。
1 结构离散化,输入或生成有限元网络络2 计算单元刚度矩阵形成总刚度矩阵阵阵3 形成节点载荷向量量4 引入约束条件件5 解线性代数方程组组6 输出节点位移移7 计算并输出单元的应力力图4.1有限元求解流程图有限元分析软件一ANSYS简介:以ANSYS为代表的工程数值模拟软件,即有限元分析软件,不断吸取计算方法和计算机技术的最新进展,将有限元分析、计算机图形学和优化技术相结合,己成为解决现代工程问题的有力工具。
ANSYS有限元分析法
![ANSYS有限元分析法](https://img.taocdn.com/s3/m/158b410c581b6bd97f19ea62.png)
ANSYS中如何处理奇异性方法在有限元分析中(FEA)中,必须适当地简化实体,我们很少分析包含所有细节的实体。
由于计算条件限制了模型的规模,权宜之下,通常简化螺纹孔、倒角、安装凸台和其它一些并不重要的部分。
因为简化一些无关紧要的细节能使分析求解尽可能地高效,减少占用的RAM、硬盘空间和CPU时间。
但问题是,随着倒角和其它一些细节被简化,在它们邻近区域内计算出的应力值可能不准确。
比如用一个尖角代替倒角,尖角处产生奇异,导致该处有无限大的应力集中因子。
虽然奇异并不防碍ANSYS在该处的应力计算,但计算的结果却不能反映真实应力,由于单元密度的疏密不同,计算的结果可能比实际值过高或过低。
虽然计算的应力值是不准确的,若位移值仍然是好的,且奇异产生的区域并不特别重要,该应力值则可以忽略,分析员可以放心的关注模型的其他部分。
有时,一些模型细节明显可以被简化,有时细节刚开始并不显得重要,但后来结果分析显示该细节是至关重要的,这也是应力分析学科的一个特点。
分析员必须运用他们的经验和直觉来判断设计细节的相关性能,确定它们能否被简化而不产生错误的结果。
我发现经验能使分析员的直觉灵敏,尽管如此,但仍可能出错,有时分析员并不能掌握细节的重要性,当他检查结果时才发现,简化了的细节其实是非常重要的。
象这样的情况,我们有几种选择方案。
一种是在模型中添加该细节重新计算,该方法适应于具有简单边界条件和相对比较简单的几何实体,并且重新分析所需要的时间也不太多。
如果第一次计算需要70个小时,且任务紧迫,那么修改并重新计算整个模型并非是很好的方式,此时应该应用已有的结果来得出精确的应力。
完成该任务的方法之一是子模型法,在包含细节的相关区域建立子模型来计算精确的应力。
在ANSYS在线文档中可获得子模型法,分析向导的“高级分析技术”章节中包含了ANSYS可以完成的各种类型子模型例子,包括“shell-shell”、“shell-solid”和“solid-solid”。
学会使用AnsysWorkbench进行有限元分析和结构优化
![学会使用AnsysWorkbench进行有限元分析和结构优化](https://img.taocdn.com/s3/m/5d2ea9152f3f5727a5e9856a561252d380eb2023.png)
学会使用AnsysWorkbench进行有限元分析和结构优化Chapter 1: Introduction to Ansys WorkbenchAnsys Workbench是一款广泛应用于工程领域的有限元分析和结构优化软件。
它的功能强大,能够帮助工程师在设计过程中进行力学性能预测、应力分析以及结构优化等工作。
本章节将介绍Ansys Workbench的基本概念和工作流程。
1.1 Ansys Workbench的概述Ansys Workbench是由Ansys公司开发的一套工程分析软件,主要用于有限元分析和结构优化。
它集成了各种各样的工具和模块,使得用户可以在一个平台上进行多种分析任务,如结构分析、热分析、电磁分析等。
1.2 Ansys Workbench的工作流程Ansys Workbench的工作流程通常包括几个基本步骤:(1)几何建模:通过Ansys的几何建模功能,用户可以创建出需要分析的结构的几何模型。
(2)加载和边界条件:在这一步骤中,用户需要为结构定义外部加载和边界条件,如施加的力、约束和材料特性等。
(3)网格生成:网格生成是有限元分析的一个关键步骤。
在这一步骤中,Ansys Workbench会将几何模型离散化为有限元网格,以便进行分析计算。
(4)材料属性和模型:用户需要为分析定义合适的材料属性,如弹性模量、泊松比等。
此外,用户还可以选择适合的分析模型,如静力学、动力学等。
(5)求解器设置:在这一步骤中,用户需要选择适当的求解器和设置求解参数,以便进行分析计算。
(6)结果后处理:在完成分析计算后,用户可以对计算结果进行后处理,如产生应力、位移和变形等结果图表。
Chapter 2: Finite Element Analysis with Ansys Workbench本章将介绍如何使用Ansys Workbench进行有限元分析。
我们将通过一个简单的示例,演示有限元分析的基本步骤和方法。
ANSYS Workbench 17·0有限元分析:第5章-线性静态结构分析
![ANSYS Workbench 17·0有限元分析:第5章-线性静态结构分析](https://img.taocdn.com/s3/m/72e4b75602020740bf1e9b1b.png)
第5章 线性静态结构分析 在工程应用中,经常会遇到计算在固定不变的载荷作用下的结构效应,主要有平面应力、平面应变、轴对称、梁及桁架分析、壳分析、接触分析等问题的求解,这些问题均是线性静态结构问题,线性静态结构分析是有限元(★ 掌握线性静态结构分析的基本过程。
5.1 线性静态结构分析概述线性静态结构分析(Lines Static Structural Analysis )用于计算在固定不变的载荷作用下结构的效应,它不考虑惯性和阻尼的影响,如结构随时间变化载荷等情况。
静力分析可以计算固定不变的惯性载荷对结构的影响(如重力和离心力),以及可以近似为等价静力作用的随时间变化载荷(如通常在许多建筑规范中所定义的等价静力风载和地震载荷)。
在经典力学理论中,物体的动力学通用方程为:[]()[]()[]{}(){}M x C x K x F t ++=&&&其中[]M 为质量矩阵,[]C 为阻尼矩阵,[]K 为刚度系数矩阵,{}x 为位移矢量,{}F 为力矢量。
在线性静态结构分析中,力与时间无关,因此位移{}x 可以由下面的矩阵方程解出:[]{}{}K x F =在线性静态结构分析中,假设[]K 为一常量矩阵且必须是连续的,材料必须满足线弹性、小变形理论,边界条件允许包含非线性的边界条件,{}F 为静态加载到模型上的力,该力不随时间变化,不包括惯性影响因素(质量、阻尼等)。
静力分析用于计算由不包括惯性和阻尼效应的载荷作用于结构或部件上引起的位移、应力、应变和力等。
假定载荷和响应是固定不变的,即假定载荷和结构的响应随时间的变化而缓慢变化。
静力分析所施加的载荷包括:ANSYS Workbench 17.0有限元分析从入门到精通外部施加的作用力和压力。
稳态的惯性力(如中力和离心力)。
位移载荷。
温度载荷。
5.2 线性静态结构的分析流程在ANSYS Workbench 左侧工具箱中Analysis Systems 下的Static Structural 上按住鼠标左键拖动到项目管理区,或双击Static Structural 选项,即可创建静态结构分析项目,如图5-1所示。
ansys有限元分析报告
![ansys有限元分析报告](https://img.taocdn.com/s3/m/6cbade2ea55177232f60ddccda38376baf1fe088.png)
ANSYS有限元分析报告1. 简介在工程设计领域,有限元分析是一种常用的数值分析方法,通过将复杂的结构划分为有限数量的单元,然后对每个单元进行力学和物理特性的计算,最终得出整个结构的响应。
ANSYS是一款流行的有限元分析软件,提供了丰富的工具和功能,可用于解决各种工程问题。
本文将介绍ANSYS有限元分析的基本步骤和流程,并以一个实际案例为例进行说明。
2. 步骤2.1 确定分析目标首先要确定分析的目标。
这可以是结构的强度分析、振动分析、热传导分析等。
根据目标的不同,还需确定所需的加载条件和边界条件。
2.2 几何建模在进行有限元分析之前,需要进行几何建模。
在ANSYS中,可以使用几何建模工具创建和编辑结构模型。
这包括定义几何形状、尺寸和位置等。
2.3 网格划分网格划分是有限元分析的关键步骤。
通过将结构划分为多个单元,可以将结构分解为有限数量的离散部分,从而进行数值计算。
在ANSYS中,可以使用网格划分工具进行自动或手动划分。
2.4 材料属性定义在进行有限元分析之前,需要定义材料的物理和力学属性。
这包括弹性模量、泊松比、密度等。
ANSYS提供了一个材料库,可以选择常见材料的预定义属性,也可以手动定义。
2.5 加载和边界条件定义在进行有限元分析之前,需要定义加载和边界条件。
加载条件可以是力、压力、温度等。
边界条件可以是支撑、固定或自由。
2.6 求解和结果分析完成前面的步骤后,可以开始求解分析模型。
ANSYS将应用数值方法来解决有限元方程组,并计算结构的响应。
一旦求解完成,可以进行结果分析,包括位移、应力、应变等。
2.7 结果验证和后处理在对结果进行分析之前,需要对结果进行验证。
可以使用已知的理论结果或实验数据进行比较,以确保分析结果的准确性。
完成验证后,可以进行后处理,生成报告或结果图表。
3. 案例分析在本案例中,将针对一个简单的悬臂梁进行有限元分析。
3.1 确定分析目标本次分析的目标是确定悬臂梁在给定加载条件下的应力分布和变形。
ansys有限元分析实用教程2篇
![ansys有限元分析实用教程2篇](https://img.taocdn.com/s3/m/a59be29ad05abe23482fb4daa58da0116c171f0c.png)
ansys有限元分析实用教程2篇第一篇:ansys有限元分析实用教程(上)有限元分析是一种广泛应用的数值分析方法,可用于模拟和分析各种结构和系统的受力、变形及其他物理行为。
在ansys软件平台下,有限元分析功能十分强大,能够对各种工程问题进行有效的分析和解决。
本文将介绍ansys有限元分析的基础操作和实用技巧。
一、建立模型在进行有限元分析前,首先需要建立准确的模型。
在ansys中,可以通过多种方式进行几何建模,包括手工绘制、导入CAD文件、复制现有模型等。
为了确保模型的准确性,需要注意以下几个方面:1.确定模型的几何形状,包括尺寸、几何特征等。
2.选择适当的单元类型,不同形状的单元适用于不同的工程问题。
3.注意建模过程中的单位一致性,确保模型的尺寸和材料参数等单位一致。
4.检查模型建立后的性质,包括质量、连接性和几何适应性等。
二、设置材料参数和加载条件建立模型后,需要设置材料的弹性参数和加载条件。
在ansys中,可以设置各种材料属性,包括弹性模量、泊松比、密度等。
此外,还需要设置加载条件,包括加速度、力、位移等。
在设置过程中,需要注意以下几个方面:1.根据实际情况选择材料参数和加载条件。
2.确保材料参数和加载条件设置正确。
3.考虑到不同工况下的加载条件,进行多组加载条件的设置。
三、网格划分网格划分是有限元分析中的关键步骤,它将模型分割成许多小单元进行计算。
在ansys中,可以通过手动划分、自动划分或导入外部网格等方式进行网格划分。
在进行网格划分时,需要注意以下几个方面:1.选择适当的单元类型和网格密度,确保模型计算结果的准确性。
2.考虑网格划分的效率和计算量,采用合理的网格划分策略。
3.对于复杂模型,可以采用自适应网格技术,提高计算效率和计算精度。
四、求解模型建立模型、设置材料参数和加载条件、网格划分之后,即可进行模型求解。
在ansys中,可以进行静态分析、动态分析、热分析、流体分析等多种分析类型。
ansys有限元分析原理
![ansys有限元分析原理](https://img.taocdn.com/s3/m/3c0ec9cced3a87c24028915f804d2b160b4e861c.png)
ansys有限元分析原理
ANSYS有限元分析原理是一种数值分析方法,广泛应用于工
程领域。
其核心思想是将复杂的物体或结构划分为许多小的几何单元,称为有限元。
每个有限元由节点和单元组成,其中节点为有限元的角点或自由度,而单元则定义了节点之间的连接关系。
在有限元分析中,首先需要建立物体或结构的有限元模型。
这涉及到将物体或结构的几何形状进行离散化,并定义节点和单元。
通常情况下,物体或结构的复杂性越高,所需要的有限元模型就越精细,节点和单元数量也就越多。
接下来,需要定义物体或结构的边界条件和加载条件。
边界条件包括约束条件和固定边界条件,用于限制节点的位移和旋转。
加载条件包括力、热源、压力等外部作用力,用于模拟实际工程中的加载情况。
有限元分析通过求解有限元模型的全局刚度矩阵和加载向量来计算系统的响应。
根据有限元模型的节点和单元之间的连接关系,全局刚度矩阵可以通过将每个单元的刚度矩阵组合而成。
加载向量则是由加载条件决定的。
最后,通过求解线性方程组,即全局刚度矩阵乘以位移向量等于加载向量的形式,可以得到有限元分析的结果。
位移向量记录了每个节点在加载后的位移情况,从而可以计算各个节点的应力、应变等响应参数。
总之,ANSYS有限元分析原理是将复杂的物体或结构划分为小的几何单元,通过离散化、边界条件和加载条件的定义,以及全局刚度矩阵和加载向量的计算,求解线性方程组,最终得到系统的响应结果。
这个方法在解决工程问题中具有广泛的应用。
2.有限元分析与ANSYS分析
![2.有限元分析与ANSYS分析](https://img.taocdn.com/s3/m/8a9cb76df242336c1eb95ed6.png)
– ANSYS EMAX –高频电磁场分析产品.集成了ANSYS公司的ICEM CFD 前处理器和后
处理器的功能、高频电磁求解器. – CFX – 流体动力学分析专用软件,由ANSYS的子公司CFX 提 供.(/cfx/)
– AI*Nastran – 新一代NASTRAN求解器,由 SAS LLC 提供.
•
ANSYS:
– 融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件, 擅长于多物理场和非线性问题的有限元分析。其融合的LS-DYNA对于爆炸、 冲击等强非线性分析比较精确。
其他如ADINA、MSC.DYTRAN、MARC、COSMOS等
中南大学
工程软件应用
关于 ANSYS
• ANSYS是一个完整的FEA(有限元分析)软件包,适合世界范围各工程 领域的工程师们使用:
有限元分析与ANSYS
实际系统
有限元模型
中南大学
工程软件应用
... 什么是有限元分析? 为什么需要有限元分析? • 减少模型试验的数量
– 计算机模拟容许对大量的假设情况进行快速有效的试验 。
有限元分析与ANSYS
• 模拟不适合在原型上试验的设计。
– 例如:器官移植,比如人造膝盖。
• 概要:
– 节省费用 – 节省时间… 缩短产品开发时间! – 创造出更可靠、高品质的设计
历史
• 1)提出(1943年):朗克发表论文—— 《平衡和振动问题的变分解法》 • 2)发展和完善(1944—至今):单元划 分及后期扩展到结构力学意外的领域 • 3)趋势:单一场到多场耦合、线性到非线 性、自动化网格处理、面向专业用户的开
有限元分析与ANSYS
放性等
• Tips:结构分析有限元法是1950年至 1960年期间,由学术界和工业界的研究人 员建立起来的。
ANSYS有限元结构分析
![ANSYS有限元结构分析](https://img.taocdn.com/s3/m/2abafe6e25c52cc58bd6beca.png)
1.ANSYS有限元分析实例_结构分析
一个零件、部件或产品,为要实现某种技术功能,往往可以采用不同的构形方案,而目前这项工作又大都是凭着设计者的“直觉”进行的,所以结构设计具有灵活多变和工作结果多样性等特点。
对于一个产品来说,往往从不同的角度提出许多要求或限制条件,而这些要求或限制条件常常是彼此对立的。
例如:高性能与低成本的要求,结构紧凑与避免干涉或足够调整空间的要求,在接触式密封中既要密封可靠又要运动阻力小的要求,以及零件既要加工简单又要装配方便的要求等等。
结构设计必须面对这些要求与限制条件,并需根据各种要求与限制条件的重要程度去寻求某种“折衷”,求得对立中的统一。
结构设计是机械设计的基本内容之一,也是设计过程中花费时间最多的一个工作环节。
在产品形成过程中,起着十分重要的作用。
通过有限元分析软件ansys对产品进行结构分析,可以大大缩短产品的开发周期,同时,通过有限元分析技术可以大大降低开发试制样品的成本。
此案例通过有限元分析软件ANSYS对脚踏板的各个部件进行了不同方向的强度校核、变形量、应变及刚度计算,验证脚踏板在各种加载和约束条件下是否满足设计要求。
产品的结构设计是指产品开发环节中结构设计工程师根据产品功能而进行的内部结构的设计工作,产品结构设计的工作包括根据外观模型进行零件的分件、确定各个部件的固定方法、设计产品使用和运动功能的实现方式、确定产品各部分的使用材料、尺寸和表面处理工艺等等产品结构设计是机械设计的基本内容之一,也是设计过程中花费时间最多的一个工作环节。
在产品形成过程中,起着十分重要的作用。
ANSYS16.0有限元分析从入门到精通(第2版)
![ANSYS16.0有限元分析从入门到精通(第2版)](https://img.taocdn.com/s3/m/a6ac2f54b207e87101f69e3143323968011cf4ce.png)
ANSYS16.0有限元分析从⼊门到精通(第2版)ANSYS 16.0有限元分析从⼊门到精通(第2版)第⼀部分 基础知识1 绪论1.1 有限元法概述1.1.1 有限元法分析过程1.1.2 有限元的⽅法和理论⼿段1.2 ANSYS 16.0简介1.2.1 ANSYS启动与退出1.2.2 ANSYS操作界⾯1.2.3 ANSYS⽂件管理1.2.4 ANSYS分析流程1.2.5 分析实例⼊门1.3 本章⼩结2 APDL基础应⽤2.1 APDL参数2.1.1 参数的概念与类型2.1.2 参数命名规则2.1.3 参数的定义与复制操作2.1.4 参数的删除操作2.1.5 数组参数2.2 APDL的流程控制2.2.1 *GO分⽀语句2.2.2 *IF分⽀语句2.2.3 *DO循环语句2.2.4 *DOWHILE循环语句2.3 宏⽂件2.3.1 创建宏⽂件2.3.2 调⽤宏⽂件2.4 运算符、函数与函数编辑器2.5 本章⼩结3 实体建模3.1 实体建模操作概述3.2 ⽤⾃下向上的⽅法建模3.3 ⾃顶向下法3.4 外部程序导⼊模型3.5 常⽤建模命令汇总3.6 实体模型的建⽴3.7 本章⼩结4 划分⽹格4.1 定义单元属性4.2 设置⽹格划分控制4.2.1 智能⽹格划分4.2.2 全局单元尺⼨控制4.2.3 默认单元尺⼨控制4.2.4 关键点尺⼨控制4.2.5 线尺⼨控制4.2.6 ⾯尺⼨控制4.2.7 单元尺⼨定义命令的优先顺序4.2.8 完成划分4.3 ⽹格的修改4.3.1 清除⽹格4.3.2 ⽹格的局部细化4.3.3 层状⽹格划分4.4 ⾼级⽹格划分技术4.4.1 单元选择4.4.2 映射⽹格4.4.3 扫掠⽹格4.4.4 拉伸⽹格4.5 划分⽹格命令汇总4.6 本章⼩结5 加载5.1 载荷与载荷步5.1.1 载荷5.1.2 载荷步5.2 加载⽅式5.2.1 实体加载的特点5.2.2 有限元模型的加载特点5.3 施加载荷5.4 齿轮泵模型的加载5.5 耦合与约束⽅程5.5.1 耦合5.5.2 约束⽅程5.6 本章⼩结6 求解6.1 求解综述6.2 例题6.3 求解命令汇总6.4 本章⼩结7 后处理7.1 通⽤后处理器7.1.1 结果⽂件7.1.2 结果输出7.1.3 结果处理7.1.4 结果查看器7.2 时间历程后处理器7.2.1 时间历程变量浏览器7.2.2 定义变量7.2.3 显⽰变量7.3 本章⼩结第⼆部分 专题技术8 结构静⼒分析8.1 结构分析概述8.1.1 结构分析的定义8.1.2 静⼒学分析的基本概念8.1.3 结构静⼒学分析的⽅法8.2 开孔平板静⼒分析8.2.1 问题描述8.2.2 设置分析环境8.2.3 定义单元与材料属性8.2.4 建⽴模型8.2.5 划分⽹格8.2.6 施加边界条件8.2.7 求解8.2.8 显⽰变形图8.2.9 显⽰结果云图8.2.10 查看⽮量图8.2.11 查看约束反⼒8.2.12 查询危险点坐标8.3 平⾯应⼒分析8.3.1 问题描述8.3.2 设置分析环境8.3.3 定义⼏何参数8.3.4 选择单元8.3.5 定义实常数8.3.6 定义材料属性8.3.7 创建实体模型8.3.8 设定⽹格尺⼨并划分⽹格8.3.9 施加载荷并求解8.3.10 求解8.3.11 查看分析结果8.3.12 命令流8.4 本章⼩结9 模态分析9.1 模态分析的基本假设9.2 模态分析⽅法9.3 ⽴体桁架结构模态分析9.3.1 问题描述9.3.2 分析9.3.3 设置环境变量9.3.4 设置材料属性9.3.5 创建⼏何模型9.3.6 划分⽹格9.3.7 施加约束9.3.8 设置分析类型9.3.9 设置分析选项9.3.10 求解9.3.11 观察固有频率结果9.3.12 读⼊数据结果9.3.13 观察振型等值线结果。
ANSYS学习总结
![ANSYS学习总结](https://img.taocdn.com/s3/m/d1c9b7f0f705cc1755270922.png)
学习ANSYS经验总结(来自CAE联盟)1学习ANSYS需要认识到的几点相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。
在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:1.1将ANSYS的学习紧密与工程力学专业结合起来毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS 之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。
作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。
而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。
实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。
模态分析有限元仿真分析学习心得
![模态分析有限元仿真分析学习心得](https://img.taocdn.com/s3/m/ba75d3dd0066f5335b81219a.png)
有限元仿真分析学习心得1 有限元分析方法原理有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。
有限元法是随着电子计算机发展而迅速发展起来的一种工程力学问题的数值求解方法。
20世纪50年代初,它首先应用于连续体力学领域—飞机结构静、动态特性分析之中,用以求得结构的变形、应力、固有频率以及阵型。
由于其方法的有效性,迅速被推广应用于机械结构分析中。
随着电子计算机的发展,有限元法从固体力学领域扩展到流体力学、传热学、电磁学、生物工程学、声学等。
随着计算机科学与应用技术的发展,有限元理论日益完善,随之涌现了一大批通用和专业的有限元计算软件。
其中,通用有限元软件以ANSYS,MSC公司旗下系列软件为杰出代表,专业软件以ABAQUS、LS-DYNA、Fluent、ADAMS 为代表。
ANSYS作为最著名通用和有效的商用有限元软件之一,集机构、传热、流体、电磁、碰撞爆破分析于一体,具有强大的前后处理及计算分析能力,能够进行多场耦合,结构-热、流体-结构、电-磁场的耦合处理求解等。
有限元分析一般由以下基本步骤组成:①建立求解域,并将之离散化成有限个单元,即将问题分解成单元和节点;②假定描述单元物理属性的形(shape)函数,即用一个近似的连续函数描述每个单元的解;③建立单元刚度方程;④组装单元,构造总刚度矩阵;⑤应用边界条件和初值条件,施加载荷;⑥求解线性或者非线性微分方程组得到节点值,如不同节点的位移;⑦通过后处理获得最大应力、应变等信息。
结构的离散化是有限元的基础。
所谓离散化就是将分析的结构分割成为有限个单元体,使相邻单元体仅在节点处相连接,而以此单元的结合体去代替原来的结构。
如果分析的对象是桁架或者是刚架,显然可以取每一根杆作为单元,因为这一类结构就是由每一杆件相互连接而成;如果分析二维或是三维的连续介质,就要根据实际物体的形状和对于计算结果所要求的精度来确定单元的形状和剖分方式。
有限元分析要点(ANSYS)
![有限元分析要点(ANSYS)](https://img.taocdn.com/s3/m/898a3e2783c4bb4cf7ecd13c.png)
目录一、分析类型划分 (3)1.1 结构静力学分析 (4)1.2 结构动力学分析 (4)1.2.1 模态分析特点 (4)1.2.2 循环对称结构模态分析 (5)1.3 谐响应分析 (5)1.3.1 简谐载荷 (5)1.3.2 求解方法: (5)1.4 瞬态动力学分析 (6)1.4.1 瞬态动力学分析特点 (6)1.5 刚体动力学分析 (7)1.6 响应谱分析 (7)1.7 接触问题 (8)1.7.1 接触选项 (8)1.7.2 接触结果 (9)1.8 弹塑性分析 (9)1.8.1 屈服准则 (9)1.8.2 流动准则 (9)1.8.3 强化准则 (9)1.8.4 材料数据 (9)1.9 线性屈曲分析 (9)1.10 非线性屈曲分析 (10)1.11 疲劳强度计算 (11)1.12 热分析和热应力计算 (13)1.12.1 稳态热分析步骤 (13)1.13 实例 (16)1.11.1. 利用MPC技术对3D实体-面体进行连接 (16)1.11.2. 带预紧力的螺栓连接 (16)二、模型建立 (17)2.1概念建模 (17)三、网格划分 (18)3.1网格划分整体控制 (18)3.2局部网格控制 (19)3.3网格划分基础 (19)3.3.1网格划分方法 (19)四、分析设置 (23)五、载荷与约束 (25)六、应力应变结果 (27)一、分析类型划分1.1 结构静力学分析在线性结构静力学分析时,材料属性必须输入杨氏模量(即弹性模量)和泊松比;如果施加了惯性载荷,必须输入材料的密度;如果施加了温度载荷,必须输入材料的线膨胀系数。
可以施加的载荷有:惯性载荷可以使用的是重力加速度及旋转速度,所有的结构载荷、结构约束及温度载荷。
1.2结构动力学分析结构在随时间变化载荷作用下的响应分析称为结构动力学分析,其与结构静力学分析不通,必须考虑载荷的时间效应和结构的惯性效应。
1.2.1 模态分析特点1. 支持所有类型几何体,但对于线体,只能得到振型、位移结果(普通分析还有应力解)。
ANSYS网格划分总结大全
![ANSYS网格划分总结大全](https://img.taocdn.com/s3/m/9bea1fe0fc4ffe473268ab84.png)
有限元分析中的网格划分好坏直接关系到模型计算的准确性.本文简述了网格划分应用的基本理论,并以ANSYS限元分析中的网格划分为实例对象,详细讲述了网格划分基本理论及其在工程中的实际应用,具有一定的指导意义。
1 引言ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。
网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素.从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的.同理,平面应力和平面应变情况设计的单元求解方程也不相同。
在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分.辛普生积分点的间隔是一定的,沿厚度分成奇数积分点.由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。
2 ANSYS网格划分的指导思想ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。
在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。
为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。
利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。
有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。
在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则.在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材料的体积自锁等问题ANSYS软件平台提供了网格映射划分和自由适应划分的策略。
ansys有限元分析报告
![ansys有限元分析报告](https://img.taocdn.com/s3/m/51f31d4453ea551810a6f524ccbff121dc36c569.png)
ANSYS有限元分析报告1. 引言有限元分析(Finite Element Analysis, FEA)是一种常用的工程分析方法,可以用于预测材料和结构在各种工况下的行为和性能。
本报告旨在通过使用ANSYS软件进行有限元分析,对某一具体的工程问题进行模拟和分析,并得出相应的结论和建议。
2. 问题描述本次有限元分析的问题是研究某结构在受载情况下的应力分布和变形情况。
具体而言,我们关注的结构是一个柱形零件,其材料为XXX,尺寸为XXX。
该结构在受到垂直向下的均布载荷时,会发生弯曲变形和应力集中现象。
我们的目标是通过有限元方法对该结构进行分析,预测其应力分布情况,并评估其承载能力。
3. 模型建立我们使用ANSYS软件来建立和分析该结构的有限元模型。
首先,我们将导入该零件的几何数据,然后通过ANSYS的建模工具创建相应的有限元模型。
在建立模型的过程中,我们需要注意几何尺寸、材料特性、约束条件和加载方式等参数的设定,以确保模型的准确性和可靠性。
4. 材料属性和加载条件在进行有限元分析之前,我们需要确定材料的特性和加载条件。
根据提供的信息,我们将采用XXX材料的力学特性进行模拟。
同时,我们假设该结构受到均布载荷的作用,其大小为XXX。
这些参数将在后续的分析中使用。
5. 模型网格划分在进行有限元分析之前,我们需要对模型进行网格划分。
网格的密度和质量将直接影响分析结果的准确性和计算效率。
在本次分析中,我们将采用适当的网格划分策略,以满足准确性和计算效率的要求。
6. 模型分析和结果通过ANSYS软件进行有限元分析后,我们得到了该结构在受载情况下的应力分布和变形情况。
根据分析结果,我们可以观察到应力集中区域和变形程度,并根据材料的特性进行评估。
同时,我们可以通过对加载条件的变化进行分析,预测该结构的承载能力和安全系数。
7. 结论和建议根据有限元分析的结果,我们得出以下结论和建议:•该结构在受均布载荷作用下发生应力集中现象,需要对其进行加强和优化设计。
ansys有限元模态分析详解
![ansys有限元模态分析详解](https://img.taocdn.com/s3/m/d4e5b90710a6f524ccbf852a.png)
培训手册
ANSYS80模态分析——段志东制作
•
定义结构振动特性的方法:
– 固有频率 – 模态形式 – 模态参与因子(在特定方向上某个模态的参与的程度)
•
模态分析是各种动力学分析类型最基础的内容。
1-3
模态分析
… 定义和目的
模态分析的优点
培训手册
ANSYS80模态分析——段志东制作
• 使结构设计避免共振或按特定频率进行振动(例如扬声器) • 使工程师可以认识到对于不同类型的动力载荷结构是如何响应的 • 有助于在其它动力分析中估算求解控制参数(如时间步长)
1-7
模态分析 – 术语和概念
模态提取法
• 在ANSYS中有以下几种模态提取方法:
– – – – – – – 分块Lanczos 法(缺省) 子空间法 PowerDynamics法 缩减法 非对称法 阻尼法(full) QR 阻尼法
培训手册
ANSYS80模态分析——段志东制作
•
使用何种模态提取方法主要取决于模型大小(相对于计算机的计算能 力而言)和具体的应用场合
培训手册
1-11
ANSYS80模态分析——段志东制作
模态分析 – 术语和概念
… 模态提取法 – 缩减法
• 如果模型中的集中质量不会引起局部振动,例如象梁和杆那样,可以使 用缩减法:
– 内存和磁盘要求较低
– 它是所有方法中最快的 – 使用矩阵缩减法,即选择一组主自由度来减小[K]和[M]的大小 – 缩减的刚度矩阵[K]是精确的,但缩减的质量矩阵[M]是近似的 – 质量矩阵[M]精确程度取决于主自由度的数目和位置 – 通常不推荐使用,因为: • 在选择主自由度需要有很高的要求 • 分块Lanczos 法能有效的取代该方法 • 降低了硬件的花费
ansys workbench有限元总结
![ansys workbench有限元总结](https://img.taocdn.com/s3/m/03655b7c01f69e3143329475.png)
该零件在给定载荷谱的作用下,可以承受6. 238×l03次循环。
13.疲劳,(静载荷)静应力应力循环比r=1,(恒定振幅载荷)脉动循环变应力r=0,(恒定振幅载荷)对称循环变应力r=-1,(非恒定振幅载荷)非对称循环变应力-1<r<1.疲劳强度因子0.8,设计寿命10e6,疲劳敏感曲线最小基本载荷变化幅度为50%,最大基本载荷变化幅度为200%,寿命云图,安全系数云图,雨流分析法(雨流阵列图和损伤阵列图)是用于把不规律应力历程转化为用于疲劳计算的循环的一种技术。疲劳是由于重复加载引起的,恒定振幅载荷(Constant amplitude load)是指最大和最小的应力水平恒定,比如对称循环载荷,否则称为变化振幅或者非恒定振幅载荷(Non-constant amplitude load)需要历程数据,比如随机载荷疲劳分析,应力范围 定义为 ,平均应力 定义为 ,应力幅或交变应力 是 ,应力比R是 ,当施加的是大小相等且方向相反的载荷时,发生的是对称循环载荷。这就是σm=0,R=-1的情况。当施加载荷后又撤除该载荷,将发生脉动循环载荷。这就是σm=σmax/2,R=0的情况。
No Separation(不分离): 这种接触方式和绑定类似。它只适用于面。不允许接触区域的面分离,但是沿着接触面可以有小的无摩擦滑动。
Frictionless(无摩擦): 这种接触类型代表单边接触,即,如果出现分离则法向压力为零。只适用于面接触。因此,根据不同的载荷,模型间可以出现间隙。它是非线性求解,因为在载荷施加过程中接触面积可能会发生改变。假设摩擦系数为零,因此允许自由滑动。使用这种接触方式时,需注意模型约束的定义,防止出现欠约束。程序会给装配体加上弱弹簧,帮助固定模型,以得到合理的解。无摩擦约束给施加面上提供了垂直方向的限制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习ANSYS经验总结一学习ANSYS需要认识到的几点相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。
在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:(1)将ANSYS的学习紧密与工程力学专业结合起来毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS 很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。
作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。
而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。
实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。
在涉及到复杂的非线性问题时(比如接触问题),一方面,不同的问题对应着不同的数值计算方法,求解器的选择直接关系到程序的计算代价和问题是否能顺利解决;另一方面,需要对非线性的求解过程有比较清楚的了解,知道程序的求解是如何实现的。
只有这样,才能在程序的求解过程中,对计算的情况做出正确的判断。
因此,要能对具体的问题选择什么计算方法做出正确判断以及对计算过程进行适当控制,对《计算方法》里面的知识必须要相当熟悉,将其理解运用到ANSYS的计算过程中来,彼此相互加强理解。
要知道ANSYS是基于有限元单元法与现代数值计算方法的发展而逐步发展起来的。
因此,在解决非线性问题时,千万别忘了复习一下《计算方法》。
此外,对《计算固体力学》也要有所了解(一门非常难学的课),ANSYS对非线性问题处理的理论基础就是基于《计算固体力学》里面所讲到的复杂理论。
作为学工程力学的学生,提高建模能力是非常急需加强的一个方面。
在做偏向于理论的分析时,可能对建模能力要求不是很高,但对于实际的工程问题,有限元模型的建立可以说是一个最重要的问题,而后面的工作变得相对简单。
建模能力的提高,需要掌握好的建模思想和技巧,但这只能治标不能治本,最重要的还是要培养较强看图纸的能力,而看图纸的能力培养一直是我们所忽视的,因此要加强对《现代工程图学》的回忆,最好能同时结合实际的操作。
以上几个方面,只是说明在ANSYS的过程中,不要纯粹的把ANSYS当作一门功课来学,这样是不可能学好ANSYS的,而要针对问题来学,特别是遇到的新问题,首先要看它涉及到那些理论知识,最好能作到有所了解,然后与ANSYS相关设置结合起来,作到心中有数,不至于遇到某些参数设置时,没一点概念,不知道如何下手。
工程力学专业更多的偏向于理论,往往觉得学了那么多的力学理论知识没什么用,不知道将来自己能作什么,而学ANSYS实际起到了沟通理论与实践的桥梁作用,使你能够感到所学的知识都能用上,甚至激发出对本专业的热爱。
(2)多问多思考多积累经验学习ANSYS的过程实际上是一个不断解决问题的过程,问题遇到的越多,解决的越多,实际运用ANNSYS的能力才会越高。
对于初学者,必将会遇到许许多多的问题,对遇到的问题最好能记下来,认真思考,逐个解决,积累经验。
只有这样才会印象深刻,避免以后犯类似的错误,即使遇到也能很快解决。
因此,建议一开始接触ANSYS就要注意以下三点:第一,要多问,切记不要不懂就问。
在使用ANSYS处理具体的问题时,虽然会遇到大量ERROR提示,实际上,其中许多ERROR经过自己的思考是能够解决的简单问题,只是由于缺乏经验才感觉好难。
因此,首先一定要自己思考,实在自己解决不了的问题才去问老师,在老师帮你解决的问题的过程中,去享受恍然大悟的感觉。
第二,要有耐心,不要郁闷,多思考。
对初学者而言,感觉ANSYS特别费时间,又作不出什么东西,没有成就感,容易产生心理疲劳,缺乏耐心。
“苦中作乐”应是学ANSYS的人所必须保持的一种良好心态,往往就是那么一个ERROR要折磨你好几天,使问题没有任何进展,遇到这种情况要能调整自己的心态,坦然面对,要有耐心,针对问题积极思考,发现原因,坚信没有自己解决不了的问题,要能把解决问题当作一种乐趣,时刻让自己保持愉快的心情,真正当你对问题有突破性进展时,迎接的必定是巨大的成就感。
第三,注意经验的积累,不断总结经验。
一方面,初学时,要注重自己经验的积累(前面两点说的就是这个问题),即在自己解决的问题中积累经验;另一方面,当灵活运用ANSYS的能力达到一定程度时,要注重积累别人的经验,把别人的经验为自己所用,使自己少走弯路,提高效率,方便自己问题的解决。
对于ANSYS越学到后面就越感觉是一个经验问题,因为该懂得的基本都懂了,麻烦的就是一些参数的调试,需要的是用时间去摸索,对同一类型的问题,别人的参数已经调试好了,完全没有必要自己去调试,直接拿来用即可。
(3)练习使用ANSYS最好直接找力学专业书后的习题来做可能这一点与学习ANSYS的一般方法相背,我开始学ANSYS时也是照着书上现成的例子做,但照着书上的做就是做不出来,实在没有耐心,就干脆从书上(如材力,弹力)直接找些简单的习题来做。
尽管简单,但每一步都需要自己思考,只有思考了的东西才能成为自己的东西,慢慢的自己解决的问题多了,运用ANSYS的能力提高相当明显,这可能是我无意中对学ANSYS在方法上的一点创新吧。
我觉得直接从书上找习题做有以下好处:第一,从书上找习题练习是一种更加主动的学习方法,由于整个分析过程都要独立思考,实际上比照着书上练习难度更大。
对初学者来说,照着书上练习很难理解为什么要这么做,因此,尽管做出来了,但以后遇到类似问题可能还是不知道。
第二,书上现成的例子基本上是非常经典的,是不可能有错的,一旦需要独立解决问题时,由于没有对错误的处理经验,遇到错误还是得要从头摸索,可以说,ANSYS的使用过程就是一个解决ERROR的过程,ERROR实际上提供了问题的解决思路,而自己找问题做,由于水平并不高,必将会遇到大量的ERROR,对这些ERROR的解决,经验的积累就是ANSYS运用能力的提高。
第三,将书上的习题用ANSYS来实现,可以将习题的理论结果和ANSYS计算的数值结果进行对比,验证ANSYS计算结果的正确性,比较两者结果的差异,分析产生差异的原因,加深对理论的理解,这是照着现成的例子练习所作不到的。
当然,并不就说书上的例子毫无用处,多多看下书上的例子可以对ANSYS 的整个分析问题的过程有比较清楚的了解,还可以借鉴一些处理问题的方法。
(四)保持带着问题去看ANSYS是怎样处理相关问题的良好习惯可能平时在看关于ANSYS的参考书籍时,对其中如何处理各种复杂问题的部分,看起来觉得也并不是很难理解,而一旦要自己处理一个复杂的非线性问题时,就有点束手无策,不知道所分析的问题与书上的讲的是怎么相关的。
说明要将书上的东西真正用到具体的问题中还不是一件容易的事情。
带着问题去看ANSYS是怎样处理相关问题的部分,可能是解决以上问题的一个好方法:当着手分析一个复杂的问题时,首先要分析问题的特征,比如一个二维接触问题,就要分析它是不是轴对称,是直线接触还是曲线接触(三维问题:是平面接触还是曲面接触),接触状态如何等等,然后带着这些问题特征,将ANSYS书上相关的部分有对号入座的看书,一遇到与问题有关的介绍就其与实际问题联系起来重点思考,理解了书上东西的同时问题也就解决了,这才真正将书上的知识变成了自己的东西,比如上个问题,如果是轴对称,就需要设置KEYOPT(3),如果是曲线接触就要设置相应的关键字以消除初始渗透和初始间隙。
可能就会有这样的感慨:原来书上已经写得很清楚了,以前看书的时候怎么就没什么印象了。
如果照着这种方法处理的问题多了的话,就会进一步体会到:其实,ANSYS 的使用并不难,基本上是照着书上的说明一步一步作,并不需要思考多少问题,学ANSYS真正难得是将一个实际问题转化成一个ANSYS能够解决且容易解决的问题。
这才是学习ANSYS所需要解决的一个核心问题,可以说其他一切问题都是围绕它而展开的。
对于初学者而言,注重的是ANSYS的实际操作,而提高“将一个实际问题转化成一个ANSYS能够解决且容易解决的问题”的能力是一直所忽视的,这可能是造成许多人花了很多时间学ANSYS,而实际应用能力却很难提高的一个重要原因。
(五)熟悉GUI操作之后再来使用命令流ANSYS一个最大的优点是可以使用参数化的命令流,因而,学ANSYS最终应非常熟练的使用命令流,一方面,可以大大提高解决问题的效率;另一方面,只有熟悉命令流之后,才会更方便的与人交流问题。
老师一开始讲授ANSYS时往往把ANSYS吹得天昏地暗,其中一条必定是夸ANSYS的命令流是如何的方便,并且拿GUI与命令流大加对比一番。
问题也确实如此,但对那些积极性相当高且有点好高骛远的同学可能就会产生误导:最终是要掌握命令流,学了GUI还去学命令流多麻烦诺,干脆直接学命令流算了,不是可以省很多事吗?如将这种想法付诸于实践的话往往是适得其反,不仅掌握命令流的效率底,而且GUI又不熟悉,结果使用ANSYS处理问题来就有点无所适从,两头用得都不爽。
因此,初学者容易一心想着使用命令流,忽视对GUI操作的练习,难以认识到命令流与GUI的联系:没有对GUI的熟练操作要掌握好命令流是很难的,或者代价是很高的。
直接去学命令流之所以难,一个是命令太多,不易知道那些命令是常用的,那些是不常用的,我们只要掌握最常用的就足够了,而如果GUI使用得多的话,就会很清楚那些命令是常用的(实现的目的一样),以后掌握命令流就有了针对性;另一个是一个命令的参数太多,同一个命令,通过参数的变化可以对应不同的GUI操作,事先头脑里没有GUI印象的话,对参数的变化可能就没有很多的体会,难以加深对参数的理解。