电磁感应计算题精选

合集下载

【物理】高中物理电磁感应经典习题(含答案)

【物理】高中物理电磁感应经典习题(含答案)

【物理】高中物理电磁感应经典习题(含答案)题一题目:一个导线截面积为$2.5\times10^{-4}m^2$,长度为$0.3m$,放在磁感应强度为$0.5T$的均匀磁场中,将导线两端连接到一个电阻为$2\Omega$的电阻器上,求电阻器中的电流。

解析:根据电磁感应定律,导线中的感应电动势与导线长度、磁感应强度以及导线的运动速度有关。

在此题中,导线不运动,所以感应电动势为零。

因此,电路中的电流完全由电源提供,根据欧姆定律,可以使用$U=IR$求解电流。

答案:电路中的电流为0A。

题二题目:一个充满磁感应强度为$1T$的磁场的金属环,直径为$0.2m$,环的厚度可以忽略不计。

当磁场方向垂直于环的平面并向上时,将环从磁场中抽出后,环中的磁场强度变为多少?解析:根据法拉第电磁感应定律,当闭合回路中的磁通量发生变化时,环中会产生感应电动势导致感应电流的产生。

在此题中,环被抽出磁场后,磁通量减小,从而产生感应电动势。

根据安培环路定理和比奥-萨伐尔定律,感应电动势的方向与磁场的变化方向相反,因此感应电流会生成一磁场。

根据安培定律和环形线圈的磁场公式,可以计算出环中的新的磁场强度。

答案:环中的新磁场强度需要通过计算得出。

具体计算过程请参考相关物理教材或参考书籍。

题三题目:一根长度为$0.5m$的直导线与一个磁场相垂直,导线两端的电动势为$2V$,导线的电阻为$4\Omega$,求导线在磁场中运动的速度。

解析:根据电磁感应定律,导线中的感应电动势与导线长度、磁场强度以及导线的运动速度有关。

在此题中,导线的电动势和电阻已知,可以使用欧姆定律$U=IR$解出电流,并使用感应电动势的公式$E=Bvl$解出运动速度。

答案:导线在磁场中的运动速度需要通过计算得出。

具体计算过程请参考相关物理教材或参考书籍。

电磁感应题型 超全

电磁感应题型 超全

电磁感应计算题集锦7.位于坐标原点处的波源A沿y轴做简谐运动,A刚好完成一次全振动时,在介质中形成的简谐横波的波形如图所示,B是沿波传播方向上介质的一个质点,则A.波源A开始振动时的运动方向沿y轴负方向B.此后14周期内回复力对波源A一直做负功C.经半个周期时间质点B将向右迁移半个波长D.在一个周期时间内A所受回复力的冲量为零4.在匀强磁场中,一矩形金属线框绕与磁感线垂直的转轴匀速转动,如图1所示,产生的交变电动势的图象如图2所示,则A.t =0.005s时线框的磁通量变化率为零B.t =0.01s时线框平面与中性面重合C.线框产生的交变电动势有效值为311VD.线框产生的交变电动势的频率为100Hz5.板间距为d的平行板电容器所带电荷量为Q时,两极板间的电势差为U1,板间场强为E1。

现将电容器所带电荷量变为2Q,板间距变为12d,其他条件不变,这时两极板间电势差为U2,板间场强为E2,下列说法正确的是A.U2 = U1,E2 = E1 B.U2 = 2U1,E2 = 4E1C.U2 = U1,E2 = 2E1D.U2 = 2U1,E2 = 2E111.(18分)如图所示,两根足够长的光滑金属导轨MN、PQ间距为l=0.5m,其电阻不计,两导轨及其构成的平面均与水平面成30°角。

完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能保持静止。

取g=10m/s2,问:(1)通过cd棒的电流I是多少,方向如何?(2)棒ab受到的力F多大?(3)棒cd每产生Q=0.1J的热量,力F做的功W是多少?6、(12分)如图所示,AB 和CD 是足够长的平行光滑导轨,其间距为l ,导轨平面与水平面的夹角为θ。

高一物理电磁感应现象练习题及答案

高一物理电磁感应现象练习题及答案

高一物理电磁感应现象练习题及答案练习题一:1. 一根导线以速度v穿过磁感应强度为B的均匀磁场,导线长度为L,角度θ为导线与磁场方向的夹角。

求导线在时间Δt内所受到的感应电动势。

答案:感应电动势E = B * v * L * sinθ2. 一根导线以速度v进入磁感应强度为B的均匀磁场,导线的长度为L。

当导线完全进入磁场后,突然停止不动。

求此过程中导线两端之间的电势差。

答案:电势差V = B * v * L3. 一个长度为L的导线以速度v匀速通过磁感应强度为B的均匀磁场,当导线通过时间Δt后,磁场方向突然发生改变。

求导线两端之间产生的感应电动势。

答案:感应电动势E = 2 * B * v * L4. 一根长度为L的导线以速度v与磁感应强度为B的均匀磁场垂直相交,导线所受到的感应电动势大小为E,如果将导线切成长度为L/2的两段导线,两段导线所受感应电动势的大小分别是多少?答案:每段导线所受感应电动势的大小都是E练习题二:1. 一台电动机的转子有60个磁极,额定转速为3000转/分钟。

求转子在额定转速下的转子导线所受的感应电动势大小。

答案:转子导线所受感应电动势的大小为ω * Magnetic Flux,其中ω为角速度,Magnetic Flux为磁通量。

转速为3000转/分钟,转速ω =2π * 3000 / 60。

由于转子有60个磁极,每转所经过的磁通量为60 * Magnetic Flux。

因此,转子导线所受感应电动势的大小为60 * 2π * 3000 / 60 * Magnetic Flux。

2. 一根长度为L的导线以角速度ω绕通过导线轴线的磁感应强度为B的磁场旋转。

求导线两端之间的电势差大小。

答案:电势差V = B * ω * L3. 一根输电线路的电阻为R,长度为L,电流为I。

如果在电力系统中,磁感应强度为B的磁场垂直于导线方向,求输电线路两端之间的感应电动势。

答案:感应电动势E = B * L * I4. 一块矩形线圈有N匝,每匝的边长为a和b,磁通量为Φ,求矩形线圈所受到的感应电动势。

(完整版)电磁感应经典例题

(完整版)电磁感应经典例题

电磁感应考点清单1 电磁感应现象 感应电流方向(一)磁通量1.磁通量:穿过磁场中某个面的磁感线的条数叫做穿过这一面积的磁能量.磁通量简称磁通,符号为Φ,单位是韦伯(Wb ).2.磁通量的计算(1)公式Φ=BS此式的适用条件是:○1匀强磁场;○2磁感线与平面垂直.(2)如果磁感线与平面不垂直,上式中的S 为平面在垂直于磁感线方向上的投影面积.θsin S B •=Φ其中θ为磁场与面积之间的夹角,我们称之为“有效面积”或“正对面积”.(3)磁通量的方向性磁通量正向穿过某平面和反向穿过该平面时,磁通量的正负关系不同.求合磁通时应注意相反方向抵消以后所剩余的磁通量.(4)磁通量的变化12Φ-Φ=∆Φ∆Φ可能是B 发生变化而引起,也可能是S 发生变化而引起,还有可能是B 和S 同时发生变化而引起的,在确定磁通量的变化时应注意.(二)电磁感应现象的产生条件1.产生感应电流的条件:穿过闭合电路的磁通量发生变化.2.感应电动势的产生条件:无论电路是否闭合,只要穿过电路的磁通量发生变化, 这部分电路就会产生感应电动势.这部分电路或导体相当于电源.[例1] (2004上海,4)两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导体环.当A 以如图13-36所示的方向绕中心转动的角速度发生变化时,B 中产生如图所示方向的感应电流.则( )图13-36A.A 可能带正电且转速减小B.A 可能带正电且转速增大C.A 可能带负电且转速减小D.A 可能带负电且转速增大[解析] 由题目所给的条件可以判断,感应电流的磁场方向垂直于纸面向外,根据楞次定律,原磁场的方向与感应电流的磁场相同时是减少的,环A 应该做减速运动,产生逆时针方向的电流,故应该带负电,故选项C 是正确的,同理可得B 是正确的.[答案] BC(三)感应电流的方向1.右手定则当闭合电路的部分导体切割磁感线时,产生的感应电流的方向可以用右手定则来进行判断.右手定则:伸开右手,使大拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直穿入手心,大拇指指向导体运动方向,那么伸直四指指向即为感应电流的方向.[说明] 伸直四指指向还有另外的一些说法:○1感应电动势的方向;○2导体的高电势处.[例2](2004天津理综,20)图13-37中MN 、GH 为平行导轨,AB 、CD 为跨在导轨上的两根横杆,导轨和横杆均为导体.有匀强磁场垂直于导轨所在的平面,方向如图,用I 表示回路的电流.A.当AB 不动而CD 向右滑动时,0≠I 且沿顺时针方向B.当AB 向左、CD 向右滑动且速度大小相等时,I =0C.当AB 、CD 都向右滑动且速度大小相等时,I =0D.当AB 、CD 都向右滑动,且AB 速度大于CD 时,0≠I 且沿逆时针方向图13-37[解析] 当AB 不动而CD 向右滑动时,0≠I ,但电流方向为逆时针,A 错;当AB 向左,CD 向右滑动时,两杆产生的感应电动势同向,故0≠I ,B 错;当AB 和CD 都向右滑动且速度大小相等时,则两杆产生的感应电动势等值反向,故I =0,C 正确;当AB 和CD 都向右滑动,且AB 速度大于CD 时,0≠I ,但方向为顺时针,D 错误.[答案] C2.楞次定律(1)内容感应电流具有这样的方向:就是感应电流的磁场总是阻碍引起感应电流的磁通量的变化.注意:○1“阻碍”不是“相反”,原磁通量增大时,感应电流的磁场与原磁通量相反,“反抗”其增加;原磁通量减小时,感应电流的磁场与原磁通量相同,“补偿”其减小.即“增反减同”.○2“阻碍”也不是阻止,电路中的磁通量还是变化的,阻碍只是延缓其变化. ○3楞次定律的实质是“能量转化和守恒”,感应电流的磁场阻碍过程,使机械能减少,转化为电能.(2)应用楞次定律判断感应电流的步骤:○1确定原磁场的方向○2明确回路中磁通量变化情况.○3应用楞次定律的“增反减同”,确定感应电流磁场的方向.○4应用右手安培定则,确立感应电流方向.[例3] (2001上海综合,14)某实验小组用如图13-38所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是()A.a→G→bB.先a→G→b,后b→G→aC.b→G→aD.先b→G→a,后a→G→b图13-38[解析] ○1确定原磁场的方向:条形磁铁在穿入线圈的过程中,磁场方向向下.○2明确回路中磁通量变化情况:向下的磁通量增加.○3由楞次定律的“增反减同”可知:线圈中感应电流产生的磁场方向向上.○4应用右手安培定则可以判断感应电流的方向为逆时针(俯视)即:从b→G→a.同理可以判断:条形磁铁穿出线圈过程中,向下的磁通量减小,由楞次定律可得:线圈中将产生顺时针的感应电流(俯视),电流从a→G→b.[答案] D[评价] 该题目关键在于对楞次定律的理解和应用以及对“穿过”二字的正确理解,它包括穿入和穿出两个过程.(3)楞次定律的另一种表述楞次定律的另一种表达为:感应电流的效果,总是要反抗产生感应电流的原因.[说明] 这里产生感应电流的原因,既可以是磁通量的变化,也可以是引起磁通量变化的相对运动或回路的形变.○1当电路的磁通量发生变化时,感应电流的效果就阻碍变化−−变形为阻碍原磁通−→量的变化.○2当出现引起磁量变化的相对运动时,感应电流的效果就阻碍变化−−拓展为阻碍−→(导体间的)相对运动,即“来时拒,去时留”.○3当回路发生形变时,感应电流的效果就阻碍回路发生形变.○4当线圈自身的电流发生变化时,感应电流的效果就阻碍原来的电流发生变化. 总之,如果问题不涉及感应电流的方向,则从楞次定律的另类表述出发的分析方法较为简便.[例4] 如图13-19所示,光滑固定导轨M 、N 水平放置,两根导体棒P 、Q 平行放于导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时( )图13-39A.P 、Q 将互相靠拢B.P 、Q 将互相远离C.磁铁的加速度仍为gD.磁铁的加速度小于g[解析] 方法一:设磁铁下端为N 极,如图13-40所示,根据楞次定律可判断出P 、Q 中感应电流方向,根据左手定则可判断P 、Q 所受安培力的方向,可见P 、Q 将互相靠拢,由于回路所受安培力的合力向下,由牛顿第三定律,磁铁将受到向上的反作用力,从而加速度小于g .当S 极为下端时,可得到同样的结果.图13-40方法二:根据楞次定律的另一种表述——感应电流的效果总是要反抗产生感应电流的原因,本题的“原因”是回路中磁通量的增加.归根结底是磁铁靠近回路,“效果”便是阻碍磁通量的增加和磁铁的靠近,所以P 、Q 将互相靠近,且磁铁的加速度小于g .[答案] AD2 法拉第电磁感应定律 自感(一)法拉第电磁感应定律(1)内容:电磁感应中线圈里的感应电动势眼穿过线圈的磁通量变化率成正比.(2)表达式:t E ∆∆Φ=或tn E ∆∆Φ=. (3)说明:○1式中的n 为线圈的匝数,∆Φ是线圈磁通量的变化量,△t 是磁通量变化所用的时间.t ∆∆Φ又叫磁通量的变化率. ○2∆Φ是单位是韦伯,△t 的单位是秒,E 的单位是伏特. ○3t n E ∆∆Φ=中学阶段一般只用来计算平均感应电动势,如果t∆∆Φ是恒定的,那么E 是稳恒的.[例1] 有一面积为S =100cm 2金属环,电阻为R =0.1Ω,环中磁场变化规律如图13-41所示,且磁场方向垂直环面向里,在t 1到t 2时间内,环中感应电流的方向如何?通过金属环的电量为多少?图13-41[分析] 由楞次定律可判断感应电流的方向.感应电量的计算为 R t tR t R E t I Q ∆Φ=∆∆∆Φ=∆=∆=,仅由电路电阻和磁通量变化决定,与发生磁通量变化的时间无关,本题推导的感应电量的计算表达式可以直接使用.[解析] (1)由楞次定律,可以判断金属环中感应电流方向为逆时针方向.(2)由图可知:磁感应强度的变化率为1212t t B B t B --=∆∆ ○1 线圈中的磁通量的变化率: S t t B B S t B t •--=∆∆=∆∆Φ1212 ○2 环中形成感应电流tR R t R E I ∆∆Φ=∆∆Φ==/ ○3 通过金属环的电量:t I Q ∆= ○4由○1○2○3○4解得:1.010)1.02.0()(212-⨯-=-=R S B B Q C=0.1C. (二)导线切割磁感线的感应电动势1.公式:E=BLv2.导线切割磁感线的感应电动势公式的几点说明:(1)公式仅适用于导体上各点以相同的速度切割匀强的磁场的磁感线的情况.(2)公式中的B 、v 、L 要求互相两两垂直.当L ⊥B ,L ⊥v ,而v 与B 成θ夹角时,导线切割磁感线的感应电动势大小为θsin BLv E =.(3)适用于计算当导体切割磁感线产生的感应电动势,当v 为瞬时速度时,可计算瞬时感应电动势,当v 为平均速度时,可计算平均电动势.(4)若导体棒不是直的,θsin BLv E =中的L 为切割磁感线的导体棒的有效长度.如图13-42中,棒的有效长度有ab 的弦长.图13-42[例2] (2001上海物理,22)(13分)半径为a 的圆形区域内有均匀磁场,磁感应强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均匀为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计.(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径00′的瞬间(如图13-43所示)MN 中的电动势和流过灯L 1的电流.图13-43(2)撤去中间的金属棒MN ,将右面的半圆环OL 2O ′以OO ′为轴向上翻转90°,若此时磁场随时间均匀变化,其变化率为s T t B /)/4(/π=∆∆,求L 1的功率.[解析] (1)棒通过圆环直径时切割磁感线的有效长度L =2a ,棒中产生的感应电动势为58.02.02⨯⨯===av B BLv E V=0.8V ○1 当不计棒和环的电阻时,直径OO ′两端的电压U =E =0.8V ,通过灯L 1电流的为 28.001==R U I A =0.4A. ○2 (2)右半圆环上翻90°后,穿过回路的磁场有效面积为原来的一半,221a S π=',磁场变化时在回路中产生的感应电动热为V V a t B S t E 23.04212=⨯=∆∆•'=∆∆Φ='ππ ○3 由L 1、L 2两灯相同,圆环电阻不计,所以每灯的电压均为E U '='21,L 1的功率为 2020211028.1)21(-⨯='='=R E R U P W. ○4 3.导体切割磁感线产生的感应电动势大小两个特例:(1)长为L 的导体棒在磁感应强度为B 的匀强磁场中以ω匀速转动,导体棒产生的感应电动势:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===))((212121022212不同两段的代数和以任意点为轴时,)线速度(平均速度取中点位置以端点为轴时,(不同两段的代数和)以中点为轴时,L L B E L L B E E ωωω [例3] (2004两湖理综,19)一直升飞机停在南半球的地磁极上空.该处地磁场的方向竖直向上,磁感应强度为B ,直升飞机螺旋桨叶片的长度为l ,螺旋桨转动的频率为f ,顺着地磁场的方向看螺旋桨,螺旋桨顺时针方向转动.螺旋桨叶片的近轴端为a ,远轴端为b ,如图13-44所示.如果忽略a 到转轴中心线的距离,用ε表示每个叶片中的感应电动势,则( )A.B ft 2πε=,且a 点电势低于b 点电势B.B ft 22πε-=,且a 点电势低于b 点电势C.B ft 2πε=,且a 点电势高于b 点电势D.B ft 22πε=,且a 点电势高于b 点电势图13-44[解析] 对于螺旋桨叶片ab ,其切割磁感线的速度是其做圆周运动的线速度,螺旋桨不同点的线速度不同,但是满足R v ω=',可求其等效切割速度fl lv πω==2,运用法拉第电磁感应定律B ft Blv 2πε==,由右手定则判断电流的方向为由a 指向b ,在电源内部电流由低电势流向高电势,故选项A 是正确的.[答案] A(2)面积为S 的矩形线圈在匀强磁场B 中以角速度ω绕线圈平面内的任意轴匀速转动,产生的感应电动势:⎪⎩⎪⎨⎧===θωθωsin 0BS E E BS E 时,为线圈平面与磁感线夹角时,线圈平面与磁感线垂直时,线圈平面与磁感线平行 (三)自感1.自感现象:当导体中的电流发生变化,导体本身就产生感应电动势,这个电动势总是阻碍导体中原来的电流的变化,这种由于导体本身电流发生变化而产生的电磁感应现象,叫自感现象.2.自感现象的应用(1)通电自感:通电瞬间自感线圈处相当于断路.(2)断电自感:断电时自感线圈处相当于电源.○1当线圈中电阻≥灯丝电阻时,灯缓慢熄灭; ○2当线圈中电阻<灯丝电阻时,灯闪亮后缓慢熄灭. 3.增大线圈自感系数的方法(1)增大线圈长度(2)增多单位长度上匝数(3)增大线圈截面积(口径)(4)线圈中插入铁芯4.日光灯(1)日光灯电路的组成和电路图:○1灯管:日光灯管的两端各有一个灯丝,灯管内有微量的氩和汞蒸气,灯管内涂有荧光粉.两个灯丝之间的气体导电荷发出紫外线,激发管壁上的荧光粉发出可见光.但要使管内气体导电所需电压比200V 的电源电压高得多.○2镇流器:ⅰ)结构:线圈和铁芯.ⅱ)原理:自感.ⅲ)作用:灯管启动时提供一个瞬时高压,灯管工作时降压限流.○3启动器ⅰ) 结构:电容、氖气、静触片、U形动触片、管脚、外壳.ⅱ)原理:热胀冷缩. ⅲ)作用:先接通电路,再瞬间断开电路,使镇流器产生瞬间高压.(2)日光灯电路的工作过程:合上开关,电源电压220V加在启动器两极间→氖气放电发出辉光→辉光产生的热量,使U形动触片膨胀伸长,与静触片接触接通电路→镇流器和灯丝中通过电流→氖气停止放电→动静触片分离→切断电路→镇流器产生瞬间高压,与电源电压加在一起,加在灯管两端→灯管中气体放电→日光灯发光.(3)日光灯启动后正常工作时,启动器断开,电流从灯管中通过.镇流器产生自感电动势起降压限流作用.3 电磁感应规律的综合应用法拉第电磁感应定律是电磁学的重点内容之一,其综合了力、热、静电场、直流电路、磁场等许多内容,反映在以下几个方面:1.因导体在切割运动或电路中磁通量的变化,产生感应电流,使导体受到安培力的作用,从而直接影响到导体或线圈的运动.[例1] (2002粤豫大综合,30)如图13-45所示,在一均匀磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab、cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则()A.ef将减速向右运动,但不是匀减速B.ef将匀减速向右运动,最后停止C.ef将匀速向右运动D.ef将往返运动图13-45[解析] 给ef一个向右的初速度,则ef产生感应电动势,回路中产生感应电流.由楞次定律可以判断,ef受到一个向左的安培力的作用而减速,随着ef的速度减小,ef产生的感应电动势减小,回路的感应电流减小,安培力减小,因此可以判断ef 是做加速度逐渐减小的减速运动.因此可知选项A 是正确的.[答案] A[例2] (2004北京理综,23)如图13-46甲所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L .M 、P 两点间接有阻值R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B 的匀强磁场中,磁场方向的垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.13-46 (1)由b 向a 方向看到的装置如图13-46乙所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab 杆可以达到的速度最大值.[解析] (1)重力mg ,竖直向下;支撑力N ,垂直斜面向上;安培力F ,沿斜面向上.(2)当ab 杆速度为v 时,感应电动势E =B lv ,此时电路中电流RBlv R E I ==. ab 杆受到安培力Rv L B BIL F 22==, 根据牛顿运动定律,有Rv L B mg F mg ma 22sin sin -=-=θθ, mRv L B g a 22sin -=θ. (3)当θsin 22mg Rv L B =时,ab 杆达到最大速度v m .22sin L B mgR v m θ=. 2.以电磁感应现象为核心,综合力学各种不同的规律(如机械能、动量、牛顿运动定律)等内容形成的综合类问题.电学部分思路:将产生感应电动势的那部分电路等效为电源,如果在一个电路中切割磁感线的是几部分但又互相联系,可等效成电源的串并联,分析内外电路结构,应用闭合电路欧姆定律和部分电路欧姆定律理顺电学量之间的关系.力学部分思路:分析通电导体的受力情况及力的效果,应用牛顿定律、动量定理、动量守恒、动能定理、机械能守恒等规律理顺力学量之间的关系.[例3] (2001京春季,20)(12分)两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为l .导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图13-47所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:图13-47(1)在运动中产生的焦耳热最多是多少?(2)当ab 棒的速度变为初速度的43时,cd 棒的加速度是多少? [解析] ab 棒向cd 棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流.ab 棒受到与运动方向相反的安培力作用做减速运动,cd 棒则在安培力作用下做加速运动.在ab 棒的速度大于cd 棒的速度时,回路总有感应电流,ab 棒继续减速,cd 棒继续加速.两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v 做匀速运动.(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有mv mv 20= ○1根据能量守恒,整个过程中产生的总热量2022041)2(2121mv v m mv Q =-=○2 (2)设ab 棒的速度变为初速度的43时,cd 棒的速度为v ′,则由动量守恒可知v m v m mv '+=0043 ○3 此时回路中的感应电动势和感应电流分别为Bl v v E )43(0'-= ○4 R I 2ε= ○5此时cd 棒所受的安培力IBl F = ○6 cd 棒的加速度mF a = ○7 由以上各式,可得mRv l B a 4022=. ○8 3.电磁感应中的能量转化问题电磁感应过程实质是不同形式的能量转化的过程,电磁感应过程中产生的感应电流在磁场中必定受到安培力作用.因此要维持安培力存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为能.“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.当感应电流通过用电器时,电能又转化为其他形式的能.同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能.因此电能求解思路主要有三种:○1利用克服安培力求解:电磁感应中产生的电能等于克服安培力所做的功. ○2得用能量守恒求解:开始的机械能总和与最后的机械能总和之差等于产生的电能.○3利用电路特征来求解:通过电路中所产生的电能来计算. [例4] 把一个矩形线圈从有理想边界的匀强磁场中匀速拉出(如图13-48),第一次速度为v 1,第二次速度为v 2且v 2=2v 1,则两种情况下拉力的功之比W 1/W 2= ,拉力的功率之比P 1/P 2= ,线圈中产生焦耳热之比Q 1/Q 2= .[解析] 设线圈的ab 边长为L ,bc 边长为L ′,整个线圈的电阻为R ,把ab 边拉出磁场时,cd 边以速度v 匀速运动切割磁感线产生感应电动势Blv E =.其电流方向从c 指向d ,线圈中形成的感应电流R BLv R E I == cd 边所受的安培力Rv L B BIL F 22== 为了维持线圈匀速运动,所需外力大小为Rv L B BIL F F 22=='= 因此拉出线圈过程外力的功v RL L B L F W '='=22 外力的功率222v RL B Fv P == 线圈中产生的焦耳热W v R L L B v L R R v L B Rt I Q ='='•==2222222由上面得出的W 、P 、Q 的表达式可知,两情况拉力的功、功率、线圈中的焦耳热之比分别为1∶2、1∶4、1∶2.[评价] 从题中可以看出,安培力做的功,与电路的消耗的电能是相同的.[例5] (2004河南理综,24)图13-49中a 1b 1c 1d 1和a 2b 2c 2d 2为在同一竖直面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里.导轨的a 1b 1段与a 2b 2段是竖直的,距离为l 1;c 1d 1段与c 2d 2段也是竖直的,距离为l 2.x 1y 1与x 2y 2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m 1和m 2,它们都垂直于导轨并与导轨保持光滑接触.两杆与导轨构成的回路的总电阻为R .F 为作用于金属杆x 1y 1上的竖直向上的恒力.已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率.[解析] 设杆向上运动的速度为v ,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少,由法拉第电磁感应定律,回路中的感应电动势的大小v l l B E )(12-=回路中的电流RE I = 电流沿顺时针方向,两金属杆都要受到安培力作用,作用于杆x 1y 1的安培力为 11BIlF =(方向向上)作用于杆x 2y 2的安培力为22BIl F =(方向向下)当杆匀速运动时,根据牛顿第二定律有02121=-+--F F g m g m F解以上各式[]2122211221)()()()(l l B Rg m m F v l l B g m m F I -+-=-+-=作用于两杆的重力功率的大小gv m m P )(21+=电阻上的热功率.)()()()()(21221212122212R l l B g m m F Q g m m R l l B g m m F P RI Q ⎥⎦⎤⎢⎣⎡-+-=+-+-== 4.电磁感应中的图象问题电磁感应中常涉及磁感应强度B 、磁通量Φ、感应电动势E 和感应电流I 随时间t 变化的图象,即B -t 图象、Φ-t 图象、E -t 图象和I -t 图象.对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E 和感应电流I 随线圈位移x 变化的图象,即E -x 图象和I -x 图象.这些图象问题大体上可分为两类:○1由给定的电磁感应过程选出或画出正确的图象. ○2由给定的有关图象分析电磁感应过程,求解相应的物理量. 不管是何种类型,电磁感应中的图象问题常需利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解决.[例6] (2004内蒙理综,19)一矩形线圈位于一随时间t 变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面)向里,如图13-50所示.以I 表示线圈中的感应电流,以图中的线圈上所示方向的电流为正,则图13-51的I -t 图正确的是( )图13-50图13-51[解析] 由图象可知,在0到1秒的时间内,磁感应强度均匀增大,那么感应电流的方向为逆时针方向,与图示电流方向相反,为负值,排除B 、C 选项.根据法拉第电磁感应定律,其大小t S B t ∆•∆=∆∆Φ=ε,Rt S B R E I •∆•∆==为一定值,在2到3秒和4到5秒内,磁感应强度不变,磁通量不变,无感应电流生成,D 错误,所以A 选项感应强度不变,磁通量不变,无感应电流生成,D 错误,所以A 选项正确.[答案] A。

初三电磁感应练习题及答案

初三电磁感应练习题及答案

初三电磁感应练习题及答案练习题1:1. 一个导线以2.0m/s的速度从一个均匀磁场中通过,磁感应强度为0.4T,导线长度为0.5m。

求导线所受的感应电动势大小。

2. 一个长度为3.0m的导线以10m/s的速度垂直通过一个磁感应强度为1.5T的磁场,求导线两端之间的感应电势差。

3. 一个矩形导线框架的长边长度为2.0m,短边长度为0.5m,框架的整体电阻为6.0Ω。

当磁感应强度为0.8T时,框架被拉动,导线切割磁力线的速度恒定为3.0m/s。

求在导线上出现的电动势大小。

答案:1. 感应电动势的大小与磁感应强度、导线长度和导线在磁场中的速度有关。

根据公式E = B*d*l*v,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,v为导线长度。

将已知值代入计算,得到E = 0.4T * 0.5m * 2.0m/s = 0.4V。

故导线所受的感应电动势大小为0.4V。

2. 感应电势差的大小取决于磁感应强度、导线长度和导线在磁场中的速度之积。

根据公式∆V = B*l*v,其中B为磁感应强度,l为导线长度,v为导线在磁场中的速度。

将已知值代入计算,得到∆V = 1.5T * 3.0m * 10m/s = 45V。

导线两端之间的感应电势差为45V。

3. 在导线上出现的电动势大小取决于磁感应强度、导线长度、导线在磁场中的速度和导线的电阻之积。

根据公式E = B*d*l*v/R,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,R为导线的电阻。

将已知值代入计算,得到E = 0.8T * 3.0m * 2.0m * 0.5m/s / 6.0Ω = 0.8V。

在导线上出现的电动势大小为0.8V。

练习题2:1. 一个磁感应强度为0.5T的磁场垂直于一个半径为0.2m的圆环,圆环的电阻为2.0Ω。

圆环以5rad/s的角速度绕垂直磁场线旋转,求圆环上出现的感应电动势大小。

2. 一个长度为4.0m的直导线绕过一个半径为2.0m的圆形电感线圈,电感线圈中有100个匝。

高中物理电磁感应经典计算题

高中物理电磁感应经典计算题

电磁感应经典计算题1如图所示,边长L=0.20m 的正方形导线框 ABCD 由粗细均匀的同种材料制成, 正方形导线 框每边的电阻R )=1.0 Q,金属棒MNW 正方形导线框的对角线长度恰好相等, 金属棒MN 勺电磁场的磁感应强度 B=0.50T ,方向垂直导线框所在且与导线框对角线 BD 垂直放置在导线框上,金属v=4.0m/s 的速度向右匀速运动,当金属棒运动至AC 的位置时,求:(计算结果保留两位有效数字 )(1) 金属棒产生的电动势大小;(2) 金属棒MN 上通过的电流大小和方向; (3 )导线框消耗的电功率。

2.如图所示,正方形导线框 abed 的质量为m 边长为I ,导线框的总电阻为 R 。

导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落, 下落过程中,导线框始终在与磁场垂直的竖直平面内,cd 边保持水平。

磁场的磁感应强度大小为 B ,方向垂直纸面向里,磁场上、下两个界面水平距离为 I 。

已知cd 边刚进入磁场时线框恰好做匀速运动。

重力加速度为g o(1 )求cd 边刚进入磁场时导线框的速度大小。

(2)请证明:导线框的cd 边在磁场中运动的任意瞬间,导线框克服安培 力做功的功率等于导线框消耗的电功率。

(3 )求从线框cd 边刚进入磁场到 ab 边刚离开磁场的过程中,线框克服 安培力所做的功。

3.如图所示,在高度差 h = 0.50m 的平行虚线范围内,有磁感强度 A0.50T 、方向水平向里的匀强磁场,正方形线框 abcd 的质量m= 0.10kg 、 边长L = 0.50m 、电阻R = 0.50 Q ,线框平面与竖直平面平行, 静止在位置“I ”时,cd 边跟磁场下边缘有一段距离。

现用一竖直向上的恒力 F = 4.0N 向上提线框,该框由位置"I”无初速度开始向上运动,穿过磁场区,最 后到达位置“n”( ab 边恰好出磁场),线框平面在运动中保持在竖直 平面内,且cd 边保持水平。

初中电磁感应专题练习(含详细答案)

初中电磁感应专题练习(含详细答案)

初中电磁感应专题练习(含详细答案)
一、选择题
1. 一个导线在磁场中匀速向右移动,感应电动势的方向如何?
A. 由左向右
B. 由右向左
C. 没有感应电动势
D. 无法确定
答案:B
2. 带电粒子在磁场中匀速运动,运动轨迹如何?
A. 直线运动
B. 圆形运动
C. 抛物线运动
D. 双曲线运动
答案:B
二、计算题
1. 一个弯曲的导线长为10cm,导线中有一个电流I=2A,若在
导线处有一个磁感应强度为B=3T的磁场,求电动势的大小为多少?
解答:
$\mathcal{E}=Blv=\frac{1}{2}Blv=\frac{1}{2}Blsin\theta=\frac{1}{2} \times 3 \times 0.1 \times 2=\frac{3}{20}$V。

三、简答题
1. 什么是电磁感应?
电磁感应是指导体中的电子受到磁场的作用从而在导体两端产
生的电动势。

2. 什么是法拉第电磁感应定律?
法拉第电磁感应定律指出,当导体中的磁力线发生变化时,沿
着导体的任意闭合回路中就会产生感应电动势,其大小与磁通量的
变化率成正比,方向满足楞次定律。

3. 什么是楞次定律?
楞次定律指出,当导体内有感应电流时,该电流所发出的磁场的方向是这样的,即它所引起的磁通量的变化总是阻碍引起这种变化的原因。

4. 什么情况下会产生感应电流?
当导体在磁场中发生运动或被磁场线穿过而发生变化时,就会在导体中产生感应电流。

电磁感应计算题训练及答案

电磁感应计算题训练及答案

电磁感应大题训练1.如图所示,在倾角为θ的光滑斜面上,存在着两个磁感应强度相等的匀强磁场,方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L .一个质量为m 、边长也为L 的正方形线框(设电阻为R )以速度υ进入磁场时,恰好做匀速直线运动,若当ab 边到达'gg 与'ff 中间位置时,线框又恰好做匀速运动,则(1)当ab 边刚越过'ff 时,线框加速度的值为多少?(2)求线框从开始进入磁场到ab 边到达'gg 和'ff 中点的过程中产生的热量是多少?2.如图a所示,两水平放置的平行金属板C、D相距很近,上面分别开有小孔O、O′,水平放置的平行金属导轨与C、D接触良好,且导轨在磁感强度为B1=10T的匀强磁场中,导轨间距L=0.50m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动.其速度图象如图b所示,若规定向右运动速度方向为正方向,从t=0时刻开始,由C板小孔O处连续不断以垂直于C板方向飘入质量为m=3.2×10-21kg、电量q=1.6×10-19C的带正电的粒子(设飘入速度很小,可视为零).在D板外侧有以MN为边界的匀强磁场B2=10T,MN与D相距d=10cm,1B 、2B 方向如图所示(粒子重力及其相互作用不计).求(1)在0~4.0s时间内哪些时刻发射的粒子能穿过电场并飞出磁场边界MN?(2)粒子从边界MN射出来的位置之间最大的距离为多少?3.如图所示,电动机通过其转轴上的绝缘细绳牵引一根原来静止的长为L=1m,质量m=0.1㎏的导体棒ab,导体棒紧贴在竖直放置、电阻不计的金属框架上,导体棒的电阻R=1Ω,磁感强度B=1T的匀强磁场方向垂直于导体框架所在平面.当导体棒在电动机牵引下上升h=3.8m时,获得稳定速度,此过程中导体棒产生热量Q=2J.电动机工作时,电压表、电流表的读数分别为7V和1A,电动机的内阻r=1Ω.不计一切摩擦,g取10m/s2.求:(1)导体棒所达到的稳定速度是多少?(2)导体棒从静止到达稳定速度的时间是多少?.4.图中a1b1c1d1和a2b2c2d2为在同一竖直面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。

电磁感应计算题及解答

电磁感应计算题及解答

电磁感应一、选择题1、如图所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直纸面,MN、PQ为其边界,OO’为其对称轴。

一导线折成变长为的正方形闭合回路abcd,回路在纸面内以恒定速度v o向右运动,当运动到关于OO’对称的位置时A.穿过回路的磁通量为零B.回路中感应电动势大小为C.回路中感应电流的方向为顺时针方向D.回路中ab边与cd边所受安培力方向相同2、如图8,在O点下方有一个具有理想边界的磁场,铜环在A点由静止释放向右摆至最高点B,不考虑空气阻力,则下列说法正确的是()A.A、B两点在同一水平线B.A点高于B点C.A点低于B点D.铜环将做等幅摆动二、计算题3、如图所示,两根质量均为m=2kg的金属棒垂直地放在光滑的水平导轨上,左右两部分导轨间距之比为1∶2,导轨间有大小相等但左右两部分方向相反的匀强磁场,CD棒电阻为AB棒电阻的两倍,不计导轨电阻,今用250N的水平力F向右拉CD棒,在CD棒运动0.5m的过程中,两棒上产生的焦耳热共为45J,此时CD棒速率为8m/s,立即撤去拉力F,设导轨足够长且两棒始终在不同磁场中运动,求:(1)撤去拉力F瞬间AB棒速度v A;(2)两棒最终匀速运动的速度v A′和v C′。

4、如图所示,光滑矩形斜面ABCD的倾角为,在其上放置一矩形金属线框,的边长,的边长,线框的质量,电阻,线框通过细线绕过定滑轮与重物相连,细线与斜面平行且靠近。

重物质量,离地面的高度为。

斜面上区域是有界匀强磁场,方向垂直于斜面向上,已知AB到的距离为,到的距离为,到CD的距离为,取。

现让线框从静止开始运动(开始时刻与AB边重合),发现线框匀速穿过匀强磁场区域,求:(1)区域内匀强磁场的磁感应强度B(2)线框在通过磁场区域过程中产生的焦耳热Q(3)通过计算分析画出线框从开始运动到边与CD边重合过程中线框的图象5、如图所示,半径为r的圆形导线框内有一匀强磁场,磁场方向垂直于导线框所在平面,导线框的左端通过导线接一对水平放置的平行的金属板,两极间的距离为d,板长为L。

电磁感应计算题专项训练及答案

电磁感应计算题专项训练及答案

电磁感应计算题专项训练【注】该专项涉及规律:感应电动势、欧姆定律、牛顿定律、动能定理1、(2010重庆卷)法拉第曾提出一种利用河流发电的设想,并进行了实验研究。

实验装置的示意图如图所示,两块面积均为S 的矩形金属板,平行、正对、竖直地全部浸在河水中,间距为d 。

水流速度处处相同,大小为v ,方向水平。

金属板与水流方向平行。

地磁场磁感应强度的竖直分量为B ,水的电阻率为ρ,水面上方有一阻值为R 的电阻通过绝缘导线和电键K 连接到两金属板上。

忽略边缘效应,求:(1)该发电装置的电动势; (2)通过电阻R 的电流强度; (3)电阻R 消耗的电功率2、(2007天津)两根光滑的长直金属导轨MN 、M ´N ´平行置于同一水平面内,导轨间距为l ,电阻不计。

M 、M ´处接有如图所示的电路,电路中各电阻的阻值均为R ,电容器的电容为C 。

现有长度也为l ,电阻同为R 的金属棒ab 垂直于导轨放置,导轨处于磁感应强度为B 、方向竖直向下的匀强磁场中。

ab 在外力作用下向右匀速运动且与导轨保持良好接触,在ab 在运动距离为s 的过程中,整个回路中产生的焦耳热为Q 。

求:⑴ab 运动速度v 的大小;⑵电容器所带的电荷量q 。

3、(2010江苏卷)如图所示,两足够长的光滑金属导轨竖直放置,相距为L ,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直。

一质量为m 、有效电阻为R 的导体棒在距磁场上边界h 处由静止释放。

导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I 。

整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻。

求:(1)磁感应强度的大小B ;(2)电流稳定后,导体棒运动速度的大小v ; (3)流经电流表电流的最大值I maNN ´4、(2008北京)均匀导线制成的单匝正方形闭合线框abcd ,每边长为L ,总电阻为R ,总质量为m .将其置于磁感强度为B 的水平匀强磁场上方h 处,如图所示.线框由静止自由下落,线框平面保持在竖直平面内,且cd 边始终与水平的磁场边界平行.当cd 边刚进入磁场时,⑴求线框中产生的感应电动势大小; ⑵求cd 两点间的电势差大小;⑶若此时线框加速度恰好为零,求线框下落的高度h 所应满足的条件.5、(2010福建)如图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上,导轨上端连接一个定值电阻。

(完整版)电磁感应综合-导轨模型计算题(精选26题含答案详解),推荐文档

(完整版)电磁感应综合-导轨模型计算题(精选26题含答案详解),推荐文档

电磁感应综合-导轨模型计算题1.(9 分)如图所示,两根间距 L=1m、电阻不计的平行光滑金属导轨 ab、cd 水平放置,一端与阻值 R=2Ω的电阻相连。

质量 m=1kg 的导体棒 ef 在外力作用下沿导轨以 v=5m/s 的速度向右匀速运动。

整个装置处于磁感应强度 B=0.2T 的竖直向下的匀强磁场中。

求:a ebRc f d(1)感应电动势大小;(2)回路中感应电流大小;(3)导体棒所受安培力大小。

【答案】(1)E = 1V (2)I = 0.5A (3)F安= 0.1N【解析】试题分析:(1)导体棒向右运动,切割磁感线产生感应电动势E =BLv代入数据解得:E = 1V(2)感应电流I =ER代入数据解得:I = 0.5A(3)导体棒所受安培力F安=BIL代入数据解得:F安= 0.1N考点:本题考查了电磁感应定律、欧姆定律、安培力。

2.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距 1 m,导轨平面与水平面成θ=37°角,下端连接阻值为 R 的电阻.匀强磁场方向与导轨平面垂直,质量为0.2 kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为 0.25.(1)求金属棒沿导轨由静止开始下滑时的加速度大小.(2)当金属棒下滑速度达到稳定时,电阻 R 消耗的功率为 8 W,求该速度的大小.(3)在上问中,若 R=2 Ω,金属棒中的电流方向由 a 到b,求磁感应强度的大小与方向. (g 取10 m/s2,sin 37°=0.6,cos 37°=0.8)【答案】(1)4m/s2(2)10m/s (3)0.4T【解析】试题分析:(1)金属棒开始下滑的初速为零,V由牛顿第二定律得:mgsinθ-μmgcosθ=ma①由①式解得:a=10×(0.6-0.25×0.8)m/s2=4m/s2②;(2)设金属棒运动达到稳定时,速度为 v,所受安培力为 F,棒在沿导轨方向受力平衡:mgsinθ一μmgcos0一F=0 ③此时金属棒克服安培力做功的功率等于电路中电阻R 消耗的电功率:Fv=P ④由③、④两式解得:v =F =80.2 ⨯10 ⨯ (0.6 - 0.25 ⨯ 0.8)m / s = 10m / s ⑤(3)设电路中电流为 I,两导轨间金属棒的长为 l,磁场的磁感应强度为 B,Blv感应电流:I =⑥R电功率:P=I2R ⑦由⑥、⑦两式解得:B =PRvl 磁场方向垂直导轨平面向上;=8 ⨯ 2T = 0.4T ⑧10 ⨯1考点:牛顿第二定律;电功率;法拉第电磁感应定律.3.(13 分)如图,在竖直向下的磁感应强度为 B 的匀强磁场中,两根足够长的平行光滑金属轨道 MN、PQ 固定在水平面内,相距为 L。

电磁感应典型题目(含答案)

电磁感应典型题目(含答案)

电磁感应的典型计算1 如图所示,一与水平面夹角为θ=37°的倾斜平行金属导轨,两导轨足够长且相距L=0.2m,另外两根水平金属杆MN和PQ的质量均为m=0.01kg,可沿导轨无摩擦地滑动,MN杆和PQ杆的电阻均为R=0.2Ω(倾斜金属导轨电阻不计),MN杆被两个垂直于导轨的绝缘立柱挡住,整个装置处于匀强磁场内,磁场方向垂直于导轨平面向上,磁感应强度B=1.0T.PQ杆在恒定拉力F作用下由静止开始向上加速运动,拉力F垂直PQ杆沿导轨平面向上,当运动位移x=0.1 m时PQ杆达到最大速度,此时MN杆对绝缘立柱的压力恰好为零(g取10m/s2,sin 37°=0.6 ,cos 37°=0.8).求:(1) PQ杆的最大速度v m, (2)当PQ杆加速度时,MN杆对立柱的压力;(3)PQ杆由静止到最大速度过程中回路产生的焦耳热Q.解:(1)PQ达到最大速度时,关于电动势为:E m=BLv m,感应电流为:I m=REm2,根据MN杆受力分析可得:mg sinθ=BI m L,联立解得:v m=22sin2LBRmg=0.6m/s;(2)当PQ的加速度a=2 m/s2 时,对PQ根据牛顿第二定律可得:F-mg sinθ-BIL=ma,对MN根据共点力的平衡可得:BIL+F N-mg sinθ=0,PQ达到最大速度时,有:F-mg sinθ-BI m L=0,联立解得:F N=0.02N,根据牛顿第三定律可得对立柱的压力F N=0.02N;(3)PQ由静止到最大速度的过程中,根据功能关系可得:F x =221mmv+mgx sinθ+Q,解得:Q=4.2×10-3 J.答:(1)PQ杆的最大速度为0.6m/s;(2)当PQ杆加速度a=2m/s2时,MN杆对立柱的压力为0.02N (3)PQ杆由静止到最大速度回路产生的焦耳热为4.2×10-3 J.2 如图所示,平行金属导轨与水平面间夹角均为θ=37°,导轨间距为lm,电阻不计,导轨足够长.两根金属棒 ab 和a′b′的质量都是0.2kg,电阻都是1Ω,与导轨垂直放置且接触良好,金属棒a′b′和导轨之间的动摩擦因数为0.5,设金属棒a′b′受到的最大静摩擦力等于滑动摩擦力.金属棒ab和导轨无摩擦,导轨平面PMKO处存在着垂直轨道平面向上的匀强磁场,导轨平面PMNQ处存在着沿轨道平面向上的匀强磁场,磁感应强度B的大小相同.用外力让a′b′固定不动,将金属棒ab由静止释放,当ab下滑速度达到稳定时,整个回路消耗的电功率为18W.求:(1)ab 棒达到的最大速度;(2)ab棒下落了 30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足什么条件?( g=10m/s2,sin37°=0.6,cos37°=0.8 )解:(1)ab 棒达到最大速度时做匀速运动,其重力功率等于整个回路消耗的电功率,则有:mg sinθ•v m=P电,则得:ab棒的最大速度为:v m==m/s=15m/s;由P电==,得:B==T=0.4T(2)根据能量守恒得:mgh=Q+则得:Q=mgh-=0.2×10×30J-×0.2×152 =37.5 J(3)将a′b′固定解除,为确保a′b′始终保持静止,则对于a′b′垂直于斜面方向有:N=mg cos37°+BIL,平行于斜面方向有:mg sin37°≤f m=μN解得:I ≥2A对于ab棒:E=I•2R,E=BLv,则得:v=≥m/s=10m/s故ab的速度应满足的条件是:10m/s≤v≤15m/s答:(1)ab 棒达到的最大速度是15m/s;(2)ab棒下落了30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q是37.5J;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足的条件是10m/s≤v≤15m/s3 如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为L,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上.将甲乙两电阻阻值相同、质量均为m的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距L.静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨向下的外力F,使甲金属杆在运动过程中始终做沿导轨向下的匀加速直线运动,加速度大小g sinθ,乙金属杆刚进入磁场时,发现乙金属杆作匀速运动.(1)求乙刚进入磁场时的速度(2)甲乙的电阻R为多少;(3)乙刚释放时t=0,写出从开始释放到乙金属杆离开磁场,外力F随时间t的变化关系;(4 )若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q,试求此过程中外力F对甲做的功.解:⑴在乙尚未进入磁场中的过程中,甲、乙的加速度相同,设乙刚进入磁场时的速度v乙刚进入磁场时,对乙由根据平衡条件得(2)设乙从释放到刚进入磁场过程中做匀加速直线运动所需要的时间为设乙从进入磁场过程至刚离开磁场的过程中做匀速直线运动所需要的时间为设乙离开磁场时,甲的速度设甲从开始释放至乙离开磁场的过程中的位移为x根据能量转化和守恒定律得:4 如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接。

高考物理电磁感应练习题及答案

高考物理电磁感应练习题及答案

高考物理电磁感应练习题及答案1. 单选题:(1) 当穿过一根金属导线的电流方向改变时,导线中的电磁场磁感应强度的变化过程是:A. 逐渐增大,然后逐渐减小B. 逐渐减小C. 总是不变D. 逐渐增大答案:D(2) 一个圆形回路平面内以T/秒的速度向外运动,一匀强磁场的磁感应强度大小为B,方向垂直于回路平面。

圆形回路中的恒定磁通量的大小等于:A. BTB. BπT^2C. B/TD. B/T^2答案:B(3) 一根长度为l的匀强磁场中有一导线,导线以v的速度作匀速运动。

如果导线与磁感线的夹角为α,则磁感应强度大小的变化率为:A. l/vcosαB. vcosα/lC. v/lcosαD. v/(lcosα)答案:A2. 多选题:(1) 关于法拉第电磁感应定律的描述,下列说法中正确的是:A. 在一个闭合电路中,当磁通量发生变化时,电路中会产生感应电流B. 直流电流产生的磁感应强度可以通过法拉第电磁感应定律计算C. 在一个闭合电路中,当磁感应强度发生变化时,电路中会产生感应电流D. 电流在导体中流动会产生磁场,这是法拉第电磁感应定律的基础答案:A、B(2) 以下哪些现象可以用电磁感应来解释?A. 电动机的工作原理B. 发电机的工作原理C. 变压器的工作原理D. 电磁铁的吸铁石的原理答案:A、B、C3. 计算题:(1) 一根直导线的长度为0.2m,电流强度为2A。

将这根导线竖直放置在一个垂直于地面的匀强磁场中,磁感应强度为0.5T。

求导线上电流产生的磁场的磁感应强度大小。

解答:根据安培定律,导线产生的磁场的磁感应强度大小与电流强度和导线与磁感应强度之间的夹角有关。

在这个问题中,导线与磁场方向垂直,所以夹角为90°。

由于导线长度为0.2m,电流强度为2A,根据毕奥-萨伐尔定律,我们可以使用以下公式来计算导线上电流产生的磁场的磁感应强度大小:磁感应强度大小= (μ0/4π) * (I/l)其中,μ0是真空中的磁导率,其数值为4π * 10^-7 T·m/A,I是电流强度,l是导线长度。

高考复习超经典电磁感应计算难题-含答案

高考复习超经典电磁感应计算难题-含答案

高考复习超经典电磁感应计算难题-含答案(总9页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除1、如图所示,半径为a的圆形区域内有匀强磁场,磁感应强度B=0.2T,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a=0.4m,b=0.6m.金属环上分别接有灯L1、L2,两灯的电阻均为R0=2Ω.一金属棒MN与金属环接触良好,棒与环的电阻均不计.(1)若棒以v0=5m/s的速率在环上向右匀速滑动,求棒滑过圆环直径OO′的瞬时,MN中的感应电动势和流过灯L1的电流;(2)撤去中间的金属棒MN,将右面的半圆环OL2O′以OO′为轴向上翻转90°,若此时磁场强度随时间均匀变化,其变化率为=T/s,求L1的功率.2、如图所示,两个端面半径同为R的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场.一铜质细直棒ab水平置于缝隙中,且与圆柱轴线等高、垂直.让铜棒从静止开始自由下落,铜棒下落距离为0.2R时铜棒中电动势大小为,下落距离为0.8R时电动势大小为,忽略涡流损耗和边缘效应.关于、的大小和铜棒离开磁场前两端的极性,下列判断正确的是A、>,a端为正B、>,b端为正C、<,a端为正D、<,b端为正3、如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l、足够长且电阻忽略不计,导轨平面的倾角为,条形匀强磁场的宽度为d,磁感应强度大小为B、方向与导轨平面垂直。

长度为2d的绝缘杆将导体棒和正方形的单匝线框连接在一起组成“”型装置,总质量为m,置于导轨上。

导体棒中通以大小恒为I的电流(由外接恒流源产生,图中未图出)。

线框的边长为d(d < l),电阻为R,下边与磁场区域上边界重合。

将装置由静止释放,导体棒恰好运动到磁场区域下边界处返回,导体棒在整个运动过程中始终与导轨垂直。

电磁感应计算题大全

电磁感应计算题大全

a b s P Q 1.1. 如图所示,如图所示,MN MN MN、、PQ 是两条彼此平行的金属导轨,水平放置,匀强磁场的磁感线垂直导轨平面。

导轨左端连接一阻值R =1.5Ω的电阻,电阻两端并联一电压表,在导轨上垂直导轨跨接一金属杆ab ab,,ab 的质量m =0.1kg 0.1kg,电,电阻为r =0.50.5,,ab 与导轨间动摩擦因数μ=0.50.5,导轨电阻不计。

现用大小,导轨电阻不计。

现用大小恒定的力F =0.7N 水平向右拉ab 运动,经t=2s 后,后,ab ab 开始匀速运动,此时,电压表的示数为0.3V 0.3V。

求:。

求:。

求:(1)ab 匀速运动时,外力F 的功率的功率(2)从ab 开始运动到ab 匀速运动的过程中,通过电路中的电量匀速运动的过程中,通过电路中的电量2.2. 用电阻为18Ω的均匀导线弯成图9-5中直径D=0.80m 的封闭金属圆环,环上AB 弧所对圆心角为6060°,°,将圆环垂直于磁感线方向固定在磁感应强度B=0.50T 的匀强磁场中,磁场方向垂直于纸面向里。

一根每米电阻为1.25Ω的直导线PQ PQ,,沿圆环平面向左以3.0m/s 的速度匀速滑行的速度匀速滑行((速度方向与PQ 垂直垂直)),滑行中直导线与圆环紧密接触线与圆环紧密接触((忽略接触处的电阻忽略接触处的电阻)),当它通过环上A 、B 位置时,求:位置时,求:(1)(1)直导线直导线AB 段产生的感应电动势,并指明该段直导线中电流的方向。

段产生的感应电动势,并指明该段直导线中电流的方向。

(2)(2)此时圆环上发热损耗的电功率。

此时圆环上发热损耗的电功率。

此时圆环上发热损耗的电功率。

3.3. 如图所示,在磁感应强度为0.4T 的匀强磁场中,让长为0.5m 0.5m、电阻为、电阻为0.1Ω的导体ab 在金属框上以10m/s 的速度向右匀速滑动,如电阻R1=6Ω,R2=4Ω,其他导线上的电阻可忽略不计,求:其他导线上的电阻可忽略不计,求:(1)导体ab 中的电流强度与方向;中的电流强度与方向;(2)为使ab 棒匀速运动,外力的机械功率;棒匀速运动,外力的机械功率;4.4. 如图所示,两根足够长的平行光滑导轨,竖直放置在匀强磁场中,磁场的方向与导轨所在的平面垂直,金属棒PQ 两端套在导轨上且可以自由滑动,电源的电动势为3V 3V,电源内阻与金属棒的电阻相等,其余部分电阻不计。

电磁感应计算题专练

电磁感应计算题专练

专题强化 电磁感应计算题专练1、 (2016·全国卷Ⅱ·24)如图,水平面(纸面)内间距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上.t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.t 0时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求: (1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.答案 (1)Blt 0(Fm -μg ) (2)B 2l 2t 0m解析 (1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得F -μmg =ma ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有v =at 0②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律知产生的电动势为E =Bl v ③ 联立①②③式可得E =Blt 0(Fm-μg ) ④(2)设金属杆在磁场区域中匀速运动时,金属杆中的电流为I ,根据欧姆定律I =ER ⑤式中R 为电阻的阻值.金属杆所受的安培力为F 安=BlI ⑥ 因金属杆做匀速运动,有F -μmg -F 安=0 ⑦ 联立④⑤⑥⑦式得R =B 2l 2t 0m.2、 (2017·上海单科·20改编)如图,光滑平行金属导轨间距为L ,与水平面夹角为θ,两导轨上端用阻值为R 的电阻相连,该装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直于导轨平面.质量为m 的金属杆ab 以沿导轨平面向上的初速度v 0从导轨底端开始运动,然后又返回到出发位置.在运动过程中,ab 与导轨垂直且接触良好,不计ab 和导轨的电阻及空气阻力.(1)求ab 开始运动时的加速度a 的大小;(2)分析并说明ab 在整个运动过程中速度、加速度的变化情况.解析 (1)利用楞次定律,对初始状态的ab 受力分析得:mg sin θ+BIL =ma ①对回路分析I =E R =BL v 0R ②联立①②得a =g sin θ+B 2L 2v 0mR(2)上滑过程:由第(1)问中的分析可知,上滑过程加速度大小表达式为:a 上=g sin θ+B 2L 2vmR③上滑过程,a 、v 反向,做减速运动.利用③式,v 减小则a 减小,可知,杆上滑时做加速度逐渐减小的减速运动.下滑过程:由牛顿第二定律,对ab 受力分析得:mg sin θ-B 2L 2vR =ma 下④a 下=g sin θ-B 2L 2vmR⑤因a 下与v 同向,ab 做加速运动.由⑤得v 增加,a 下减小,杆下滑时做加速度逐渐减小的加速运动.3、如图所示,间距为L 的平行且足够长的光滑导轨由两部分组成.倾斜部分与水平部分平滑相连,倾角为θ,在倾斜导轨顶端连接一阻值为r 的定值电阻.质量为m 、电阻也为r 的金属杆MN 垂直导轨跨放在导轨上,在倾斜导轨区域加一垂直导轨平面向下、磁感应强度为B 的匀强磁场;在水平导轨区域加另一垂直轨道平面向下、磁感应强度也为B 的匀强磁场.闭合开关S ,让金属杆MN 从图示位置由静止释放,已知金属杆MN 运动到水平轨道前,已达到最大速度,不计导轨电阻且金属杆MN 两端始终与导轨接触良好,重力加速度为g .求: (1)金属杆MN 在倾斜导轨上滑行的最大速率v m ;(2)金属杆MN 在倾斜导轨上运动,速度未达到最大速度v m 前,当流经定值电阻的电流从零增大到I 0的过程中,通过定值电阻的电荷量为q ,求这段时间内在定值电阻上产生的焦耳热Q ; (3)金属杆MN 在水平导轨上滑行的最大距离x m .解析 (1)金属杆MN 在倾斜导轨上滑行的速度最大时,其受到的合力为零, 对其受力分析,可得mg sin θ-BI m L =0根据法拉第电磁感应定律、闭合电路欧姆定律可得:I m =BL v m2r解得:v m =2mgr sin θB 2L 2(2)设在这段时间内,金属杆MN 运动的位移为x 由电流的定义可得:q =I Δt 根据法拉第电磁感应定律、闭合电路欧姆定律得:平均电流I =B ΔS 2r Δt =BLx2r Δt解得:x =2qrBL设电流为I 0时金属杆MN 的速度为v 0,根据法拉第电磁感应定律、闭合电路欧姆定律, 可得I 0=BL v 02r ,解得v 0=2rI 0BL设此过程中,电路产生的焦耳热为Q 热,由功能关系可得:mgx sin θ=Q 热+12m v 02定值电阻r 产生的焦耳热Q =12Q 热解得:Q =mgqr sin θBL -mI 20r2B 2L2(3)设金属杆MN 在水平导轨上滑行时的加速度大小为a ,速度为v 时回路电流为I ,由牛顿第二定律得:BIL =ma由法拉第电磁感应定律、闭合电路欧姆定律可得:I =BL v2r联立可得:B 2L 22r v =m Δv Δt B 2L 22r v Δt =m Δv ,即B 2L 22r x m =m v m得:x m =4m 2gr 2sin θB 4L 44、如图所示,两条相距d 的平行金属导轨位于同一水平面内,其右端接一阻值为R 的电阻.质量为m 的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ 的磁感应强度大小为B 、方向竖直向下.当该磁场区域以速度v 0匀速地向右扫过金属杆后,金属杆的速度变为v .导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:(1)MN 刚扫过金属杆时,杆中感应电流的大小I ; (2)MN 刚扫过金属杆时,杆的加速度大小a ; (3)PQ 刚要离开金属杆时,感应电流的功率P . 答案 (1)Bd v 0R (2)B 2d 2v 0mR (3)B 2d 2(v 0-v )2R解析 (1)MN 刚扫过金属杆时,感应电动势E =Bd v 0 感应电流I =ER解得I =Bd v 0R(2)安培力F =BId 由牛顿第二定律得F =ma 解得a =B 2d 2v 0mR(3)金属杆切割磁感线的相对速度v ′=v 0-v ,则感应电动势E ′=Bd (v 0-v ) 电功率P =E ′2R 解得P =B 2d 2(v 0-v )2R5.(2016·全国卷Ⅰ·24)如图,两固定的绝缘斜面倾角均为θ,上沿相连.两细金属棒ab (仅标出a 端)和cd (仅标出c 端)长度均为L ,质量分别为2m 和m ;用两根不可伸长的柔软轻导线将它们连成闭合回路abdca ,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平.右斜面上存在匀强磁场,磁感应强度大小为B ,方向垂直于斜面向上,已知两根导线刚好不在磁场中,回路电阻为R ,两金属棒与斜面间的动摩擦因数均为μ,重力加速度大小为g ,已知金属棒ab 匀速下滑.求:(1)作用在金属棒ab 上的安培力的大小; (2)金属棒运动速度的大小. 答案 (1)mg (sin θ-3μcos θ)(2)mgRB 2L2(sin θ-3μcos θ) 解析 (1)由于ab 、cd 棒被平行于斜面的导线相连,故ab 、cd 速度总是相等,cd 也做匀速直线运动.设导线的张力的大小为F T ,右斜面对ab 棒的支持力的大小为F N1,作用在ab 棒上的安培力的大小为F ,左斜面对cd 棒的支持力大小为F N2,对于ab 棒,受力分析如图甲所示,由力的平衡条件得2mg sin θ=μF N1+F T +F ① F N1=2mg cos θ ② 对于cd 棒,受力分析如图乙所示,由力的平衡条件得 mg sin θ+μF N2=F T ′=F T ③ F N2=mg cos θ ④ 联立①②③④式得:F =mg (sin θ-3μcos θ) ⑤(2)设金属棒运动速度大小为v ,ab 棒上的感应电动势为E =BL v⑥回路中电流I =ER ⑦ 安培力F =BIL ⑧联立⑤⑥⑦⑧得: v =mgRB 2L2(sin θ-3μcos θ)6.如图所示,两平行光滑金属导轨倾斜放置且固定,两导轨间距为L ,与水平面间的夹角为θ,导轨下端有垂直于轨道的挡板(图中未画出),上端连接一个阻值R =2r 的电阻,整个装置处在磁感应强度为B 、方向垂直导轨向上的匀强磁场中,两根相同的金属棒ab 、cd 放在导轨下端,其中棒ab 靠在挡板上,棒cd 在沿导轨平面向上的拉力作用下,由静止开始沿导轨向上做加速度为a 的匀加速运动.已知每根金属棒质量为m 、长度为L 、电阻为r ,导轨电阻不计,棒与导轨始终接触良好.求:(1)经多长时间棒ab 对挡板的压力变为零; (2)棒ab 对挡板压力为零时,电阻R 的电功率; (3)棒ab 运动前,拉力F 随时间t 的变化关系.答案 (1)5mgr sin θ2B 2L 2a (2)m 2g 2r sin 2θ2B 2L 2 (3)F =m (g sin θ+a )+3B 2L 2a5r t解析 (1)棒ab 对挡板的压力为零时,受力分析可得 BI ab L =mg sin θ 设经时间t 0棒ab 对挡板的压力为零,棒cd 产生的电动势为E ,则 E =BLat 0 回路中电流I =E r +R 外 R 外=Rr R +r =23r I ab =RR +r I解得t 0=5mgr sin θ2B 2L 2a(2)棒ab 对挡板压力为零时,cd 两端电压为 U cd =E -Ir 解得U cd =mgr sin θBL此时电阻R 的电功率为 P =U 2cdR解得P =m 2g 2r sin 2θ2B 2L 2(3)对cd 棒,由牛顿第二定律得F -BI ′L -mg sin θ=ma I ′=E ′r +R 外 E ′=BLat解得F =m (g sin θ+a )+3B 2L 2a5rt .7.(2016·全国卷Ⅲ·25)如图,两条相距l 的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R 的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S 的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B 1随时间t 的变化关系为B 1=kt ,式中k 为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN (虚线)与导轨垂直,磁场的磁感应强度大小为B 0,方向也垂直于纸面向里.某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t 0时刻恰好以速度v 0越过MN ,此后向右做匀速运动.金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计.求:(1)在t =0到t =t 0时间间隔内,流过电阻的电荷量的绝对值;(2)在时刻t (t >t 0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小. 答案 (1)kt 0S R (2)B 0l v 0(t -t 0)+kSt (B 0l v 0+kS )B 0lR解析 (1)在金属棒未越过MN 之前,穿过回路的磁通量的变化量为ΔΦ=ΔBS =k ΔtS ① 由法拉第电磁感应定律有 E =ΔΦΔt②由欧姆定律得I =E R ③ 由电流的定义得 I =ΔqΔt ④联立①②③④式得 |Δq |=kSRΔt ⑤由⑤式得,在t =0到t =t 0的时间间隔内即Δt =t 0,流过电阻R 的电荷量q 的绝对值为 |q |=kt 0SR⑥ (2)当t >t 0时,金属棒已越过MN .由于金属棒在MN 右侧做匀速运动,有 F =F 安 ⑦ 式中,F 是外加水平恒力,F 安是金属棒受到的安培力.设此时回路中的电流为I , F 安=B 0lI ⑧此时金属棒与MN 之间的距离为s =v 0(t -t 0) ⑨ 匀强磁场穿过回路的磁通量为 Φ′=B 0ls ⑩ 回路的总磁通量为 Φt =Φ+Φ′ ⑪ 其中Φ=B 1S =ktS ⑫由⑨⑩⑪⑫式得,在时刻t (t >t 0),穿过回路的总磁通量为Φt =B 0l v 0(t -t 0)+kSt ⑬ 在t 到t +Δt 的时间间隔内,总磁通量的改变量ΔΦt 为 ΔΦt =(B 0l v 0+kS )Δt ⑭ 由法拉第电磁感应定律得,回路感应电动势的大小为 E t =ΔΦtΔt ⑮由欧姆定律得I =E tR⑯联立⑦⑧⑭⑮⑯式得 F =(B 0l v 0+kS )B 0lR.8、如图所示,两根电阻不计的光滑金属导轨竖直放置,相距为L ,导轨上端接电阻R ,宽度相同的水平条形区域Ⅰ和Ⅱ内有磁感应强度为B 、方向垂直导轨平面向里的匀强磁场,其宽度均为d ,Ⅰ和Ⅱ之间相距为h 且无磁场.一长度为L 、质量为m 、电阻为r 的导体棒,两端套在导轨上,并与两导轨始终保持良好的接触,导体棒从距区域Ⅰ上边界H 处由静止释放,在穿过两段磁场区域的过程中,流过电阻R 上的电流及其变化情况相同,重力加速度为g .求:(1)导体棒进入区域Ⅰ的瞬间,通过电阻R 的电流大小与方向. (2)导体棒通过区域Ⅰ的过程,电阻R 上产生的热量Q . (3)求导体棒穿过区域Ⅰ所用的时间.答案 (1)BL R +r 2gH ,方向向左 (2)R R +r mg (h +d ) (3)B 2L 2d mg (R +r )+2(H -h )g - 2H g解析 (1)设导体棒进入区域Ⅰ瞬间的速度大小为v 1, 根据动能定理:mgH =12m v 12 ①由法拉第电磁感应定律:E =BL v 1 ②由闭合电路的欧姆定律:I =ER +r③由①②③得:I =BLR +r2gH由右手定则知导体棒中电流方向向右,则通过电阻R 的电流方向向左. (2)由题意知,导体棒进入区域Ⅱ的速度大小也为v 1, 由能量守恒,得:Q 总=mg (h +d ) 电阻R 上产生的热量Q =RR +rmg (h +d )(3)设导体棒穿出区域Ⅰ瞬间的速度大小为v 2,从穿出区域Ⅰ到进入区域Ⅱ,v 12-v 22=2gh ,得:v 2=2g (H -h )设导体棒进入区域Ⅰ所用的时间为t ,根据动量定理: 设向下为正方向:mgt -B I Lt =m v 2-m v 1 此过程通过整个回路的电荷量为:q =I t =BLdR +r得:t =B 2L 2dmg (r +R )+2(H -h )g -2H g9、 (2018·甘肃天水模拟)如图所示,竖直放置的两光滑平行金属导轨,置于垂直于导轨平面向里的匀强磁场中,两根质量相同的导体棒a 和b ,与导轨紧密接触且可自由滑动.先固定a ,释放b ,当b 的速度达到10 m /s 时,再释放a ,经过1 s 后,a 的速度达到12 m/s ,g 取10 m/s 2,则: (1)此时b 的速度大小是多少?(2)若导轨足够长,a 、b 棒最后的运动状态怎样? 答案 (1)18 m/s (2)匀加速运动解析 (1)当b 棒先向下运动时,在a 和b 以及导轨所组成的闭合回路中产生感应电流,于是a 棒受到向下的安培力,b 棒受到向上的安培力,且二者大小相等.释放a 棒后,经过时间t ,分别以a 和b 为研究对象,根据动量定理,则有(mg +F )t =m v a (mg -F )t =m v b -m v 0 代入数据可解得v b =18 m/s(2)在a 、b 棒向下运动的过程中,a 棒的加速度a 1=g +F m ,b 产生的加速度a 2=g -Fm .当a 棒的速度与b 棒接近时,闭合回路中的ΔΦ逐渐减小,感应电流也逐渐减小,则安培力也逐渐减小,最后,两棒以共同的速度向下做加速度为g 的匀加速运动.10、(2017·湖南长沙四县三月模拟)足够长的平行金属轨道M 、N ,相距L =0.5 m ,且水平放置;M 、N 左端与半径R =0.4 m 的光滑竖直半圆轨道相连,与轨道始终垂直且接触良好的金属棒b 和c 可在轨道上无摩擦地滑动,两金属棒的质量m b =m c =0.1 kg ,接入电路的有效电阻R b =R c =1 Ω,轨道的电阻不计.平行水平金属轨道M 、N 处于磁感应强度B =1 T 的匀强磁场中,磁场方向与轨道平面垂直向上,光滑竖直半圆轨道在磁场外,如图3所示,若使b 棒以初速度v 0=10 m /s 开始向左运动,运动过程中b 、c 不相撞,g 取10 m/s 2,求: (1)c 棒的最大速度;(2)c 棒达最大速度时,此棒产生的焦耳热;(3)若c 棒达最大速度后沿半圆轨道上滑,金属棒c 到达轨道最高点时对轨道的压力的大小. 答案 (1)5 m/s (2)1.25 J (3)1.25 N解析 (1)在磁场力作用下,b 棒做减速运动,c 棒做加速运动,当两棒速度相等时,c 棒达最大速度.选两棒为研究对象,根据动量守恒定律有 m b v 0=(m b +m c )v解得c 棒的最大速度为:v =m b m b +m cv 0=12v 0=5 m/s(2)从b 棒开始运动到两棒速度相等的过程中,系统减少的动能转化为电能,两棒中产生的总热量为:Q =12m b v 02-12(m b +m c )v 2=2.5 J因为R b =R c ,所以c 棒达最大速度时此棒产生的焦耳热为Q c =Q2=1.25 J(3)设c 棒沿半圆轨道滑到最高点时的速度为v ′,从最低点上升到最高点的过程由机械能守恒可得: 12m c v 2-12m c v ′2=m c g ·2R 解得v ′=3 m/s在最高点,设轨道对c 棒的弹力为F ,由牛顿第二定律得 m c g +F =m c v ′2R解得F =1.25 N由牛顿第三定律得,在最高点c 棒对轨道的压力为1.25 N ,方向竖直向上.11、如图所示,平行倾斜光滑导轨与足够长的平行水平光滑导轨平滑连接,导轨电阻不计.质量分别为m 和12m 的金属棒b 和c 静止放在水平导轨上,b 、c 两棒均与导轨垂直.图中de 虚线往右有范围足够大、方向竖直向上的匀强磁场.质量为m 的绝缘棒a 垂直于倾斜导轨静止释放,释放位置与水平导轨的高度差为h .已知绝缘棒a 滑到水平导轨上与金属棒b 发生弹性正碰,金属棒b 进入磁场后始终未与金属棒c 发生碰撞.重力加速度为g .求:(1)绝缘棒a 与金属棒b 发生弹性正碰后分离时两棒的速度大小; (2)金属棒b 进入磁场后,其加速度为其最大加速度的一半时的速度大小; (3)两金属棒b 、c 上最终产生的总焦耳热. 答案 (1)02gh (2)562gh (3)13mgh解析 (1)设a 棒滑到水平导轨时,速度为v 0,下滑过程中a 棒机械能守恒12m v 02=mgha 棒与b 棒发生弹性碰撞 由动量守恒定律:m v 0=m v 1+m v 2 由机械能守恒定律:12m v 02=12m v 12+12m v 22解出v 1=0,v 2=v 0=2gh (2)b 棒刚进磁场时的加速度最大.b 、c 两棒组成的系统合外力为零,系统动量守恒. 由动量守恒定律:m v 2=m v 2′+m2v 3′设b 棒进入磁场后任一时刻,b 棒的速度为v b ,c 棒的速度为v c ,则b 、c 组成的回路中的感应电动势E =BL (v b -v c ),由闭合电路欧姆定律得I =ER 总,由安培力公式得F =BIL =ma ,联立得a =B 2L 2(v b -v c )mR 总.故当b 棒加速度为最大值的一半时有v 2=2(v 2′-v 3′) 联立得v 2′=56v 2=562gh(3)最终b 、c 以相同的速度匀速运动.由动量守恒定律:m v 2=(m +m 2)v 由能量守恒定律:12m v 22=12(m +m2)v 2+Q解出Q =13mgh12、如图所示,两根彼此平行放置的光滑金属导轨,其水平部分足够长且处于竖直向下的匀强磁场中,磁感应强度为B .现将质量为m 1的导体棒ab 放置于导轨的水平段,将质量为m 2的导体棒cd 从导轨的圆弧部分距水平段高为h 的位置由静止释放.已知导体棒ab 和cd 接入电路的有效电阻分别为R 1和R 2,其他部分电阻不计,整个过程中两导体棒与导轨接触良好且未发生碰撞,重力加速度为g .求: (1)导体棒ab 、cd 最终速度的大小; (2)导体棒ab 所产生的热量.答案 (1)都为m 2m 1+m 22gh (2)R 1R 1+R 2·m 1m 2m 1+m 2·gh解析 (1)设导体棒cd 沿光滑圆弧轨道下滑至水平面时的速度为v 0,由机械能守恒定律m 2gh =12m 2v 02,解得v 0=2gh ,随后,导体棒cd 切割磁感线产生感应电动势,在回路中产生感应电流,导体棒cd 、ab 受到安培力的作用,其中导体棒cd 所受的安培力为阻力,而导体棒ab 所受的安培力为动力,但系统所受的安培力为零;当导体棒cd 与导体棒ab 速度相等时,回路的感应电动势为零,回路中无感应电流,此后导体棒cd 与导体棒ab 以相同的速度匀速运动,以v 0的方向为正方向,由动量守恒定律可得:m 2v 0=(m 1+m 2)v ,解得两棒最终速度为v =m 2m 1+m 22gh(2)由能量守恒定律可得系统产生的热量为Q =ΔE =12m 2v 02-12(m 1+m 2)v 2=m 1m 2m 1+m 2gh由焦耳定律可得,导体棒ab 、cd 所产生的热量之比是:Q 1Q 2=R 1R 2解得Q 1=R 1R 1+R 2·m 1m 2m 1+m 2·gh13 .(2017·山东青岛一模)如图所示,两平行光滑金属导轨由两部分组成,左面部分水平,右面部分为半径r =0.5 m 的竖直半圆,两导轨间距离d =0.3 m ,导轨水平部分处于竖直向上、磁感应强度大小B =1 T 的匀强磁场中,两导轨电阻不计.有两根长度均为d 的金属棒ab 、cd ,均垂直导轨置于水平导轨上,金属棒ab 、cd 的质量分别为m 1=0.2 kg 、m 2=0.1 kg ,电阻分别为R 1=0.1 Ω、R 2=0.2 Ω.现让ab 棒以v 0=10 m /s 的初速度开始水平向右运动,cd 棒进入圆轨道后,恰好能通过轨道最高点PP ′,cd 棒进入圆轨道前两棒未相碰,重力加速度g =10 m/s 2,求: (1)ab 棒开始向右运动时cd 棒的加速度a 0; (2)cd 棒刚进入半圆轨道时ab 棒的速度大小v 1; (3)cd 棒进入半圆轨道前ab 棒克服安培力做的功W . 答案 (1)30 m /s 2(2)7.5 m/s (3)4.375 J解析 (1)ab 棒开始向右运动时,设回路中电流为I ,有 E =Bd v 0 I =E R 1+R 2 BId =m 2a 0解得:a 0=30 m/s 2(2)设cd 棒刚进入半圆轨道时的速度为v 2,系统动量定恒,有 m 1v 0=m 1v 1+m 2v 2 12m 2v 22=m 2g ·2r +12m 2v P 2 m 2g =m 2v 2P r解得:v 1=7.5 m/s(3)由动能定理得12m 1v 12-12m 1v 02=-W 解得:W =4.375 J.。

电磁感应计算题及答案

电磁感应计算题及答案

电磁感应计算题及答案1.如图29所示,金属框架与水平面成30°角,匀强磁场的磁感强度B=0.4T,方向垂直框架平面向上,金属棒长l=0.5m,重量为0.1N,可以在框架上无摩擦地滑动,棒与框架的总电阻为2Ω,运动时可认为不变,问:(1)要棒以2m/s的速度沿斜面向上滑行,应在棒上加多大沿框架平面方向的外力?(2)当棒运动到某位置时,外力突然消失,棒将如何运动?(3)棒匀速运动时的速度多大?(4)达最大速度时,电路的电功率多大?重力的功率多大?2.如图30所示,导轨是水平的,其间距l1=0.5m,ab杆与导轨左端的距离l2=0.8m,由导轨与ab杆所构成的回路电阻为0.2Ω,方向垂直导轨平面向下的匀强磁场的磁感应强度B=1T,滑轮下挂一重物质量0.04kg,ah杆与导轨间的摩擦不计,现使磁场以=0.2T/s的变化率均匀地增大,问:当t为多少时,M刚离开地面?3.如图31所示,平行金属导轨的电阻不计,ab、cd的电阻均为R,长为l,另外的电阻阻值为R,整个装置放在磁感强度为B的匀强磁场中,当ab、cd以速率v向右运动时,通过R的电流强度为多少?4.固定在匀强磁场中的正方形导线框abcd各边长为l,其中ab是一段电阻为R的均匀电阻丝,其余三边均为电阻可忽略的铜线,磁感应强度为B,方向垂直纸面向里,现有一段与ab完全相同的电阻丝PQ 架在导线框上,如图32所示,以恒定的速度v从ad滑向bc,当PQ滑过5.两根相距0.2m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计,已知金属细杆在平行于导轨的拉力的作用下,沿导轨朝相反方向匀速平移,速率大小都是v=0.5m/s,如图33所示,不计导轨上的摩擦,求:(1)作用于每条金属细杆的拉力;(2)求两金属细杆在间距增加0.10m的滑动过程中共产生的热量6.电阻为R的矩形导线框abcd,边长ab=l,ad=h,质量为m,自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁场区域的宽度为h,如图34所示,若线框恰好以恒定速度通过磁场,线框内产生的焦耳热是多少?7.如图35所示,导线框abcd固定在竖直平面内,bc段的电阻为R,其他电阻均可忽略,ef是一电阻可忽略的水平放置的导体杆,杆长为l,质量为m,杆的两端分别与ab和cd保持良好接触,又能沿它们无摩擦地滑动,整个装置放在磁感强度为B的匀强磁场中,磁场方向与框面垂直,现用一恒力F竖直向上拉ef,当ef匀速上升时,其速度的大小为多少?答案1.0.09N,减速,2.5m/s0.125J,0.125J2.5s 3.2BLv/3R4.9BLv/nR,向左5.3.2×10-2N 1.28×10-2J6.2mgh 7.R(F-mg)/B2l2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12讲法拉第电磁感应定律4----能量问题1能的转化与守恒,是贯穿物理学的基本规律之一。

从能量的观点来分析、解决问题,既是学习物理的基本功,也是一种能力。

自然界存在着各种不同形式的能,如;动能机械能重力势能弹性势能(弹簧)热能1.如图16-7-6所示,在竖直向上B=0.2T的匀强磁场内固定一水平无电阻的光滑U形金属导轨,轨距50cm。

金属导线ab的质量m=0.1kg,电阻r=0.02Ω且ab垂直横跨导轨。

导轨中接入电阻R=0.08Ω,今用水平恒力F=0.1N拉着ab向右匀速平移,则(1)ab 的运动速度为多大?(2)电路中消耗的电功率是多大?(3)撤去外力后R上还能产生多少热量?图16-7-62.相距为d的足够长的两平行金属导轨(电阻不计)固定在绝缘水平面上,导轨间有垂直轨道平面的匀强磁场,磁感强度为B,导轨左端接有电容为C的电容器,在导轨上放置一金属棒并与导轨接触良好,如图所示。

现用水平拉力使金属棒开始向右运动,拉力的功率恒为P,在棒达到最大速度之前,下列叙述正确的是A. 金属棒做匀加速运动B. 电容器所带电量不断增加C. 作用于金属棒的摩擦力的功率恒为PD. 电容器a极板带负电3.如图所示,两根光滑的金属导轨,平行放置在倾角为θ斜角上,导轨的左端接有电阻R,导轨自身的电阻可忽路不计。

斜面处在一匀强磁场中,磁场方向垂直于斜面向上。

质量为m,电阻可不计的金属棒ab,在沿着斜面与棒垂直的恒力作用下沿导轨匀速上滑,并上升h高度,如图所示。

在这过程中A.作用于金属捧上的各个力的合力所作的功等于零B.作用于金属捧上的各个力的合力所作的功等于mgh与电阻R上发出的焦耳热之和C.恒力F与安培力的合力所作的功等于零D.恒力F与重力的合力所作的功等于电阻R上发出的焦耳热4.两根光滑金属导轨平行放置在倾角为θ=30°的斜面上,导轨左端接有电阻R=10Ω,导轨自身电阻忽略不计。

匀强磁场垂直于斜面向上,磁感强度B=0.5T。

质量为m=0.1kg ,电阻可不计的金属棒ab静止释放,沿导轨下滑。

如图所示,设导轨足够长,导轨宽度L=2m,金属棒ab下滑过程中始终与导轨接触良好,当金属棒下滑h=3m时,速度恰好达到最大速度,求此(1)最大速度(2)从开始到速度达到最大,过程中R上产生的热量和通过R的电量?5.如图所示,在与水平面成θ角的矩形框范围内有垂直于框架的匀强磁场,磁感应强度为B,框架的ad边和bc边电阻不计,而ab边和cd边电阻均为R,长度均为L,有一质量为m、电阻为2R的金棒MN,无摩擦地冲上框架,上升最大高度为h,在此过程中ab边产生的热量为Q,求(1)画出线框从开始到上升到最大高度过程的v-t草图与I-t草图。

(2)求上升过程中整个电路的最大热功率P max。

6.如图甲所示,平行光滑金属导轨MN、PQ之间距离L=0.5m,所在平面与水平面成θ=370角,M、P两端接有阻值为R=0.8Ω的定值电阻。

质量为m=0.5kg、阻值为r=0.2Ω的金属棒ab垂直导轨放置,其它部分电阻不计。

整个装置处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向上。

从t=0时刻开始ab棒受到一个平行于导轨向上的外力F作用,由静止开始沿导轨向上运动,运动中棒始终与导轨垂直,且接触良好,F的大小随时间变化的图象如图乙所示(t1=2s时,安培力F1=2N)。

从t=0到t=2s过ab棒受到的安培力安程中通过电阻R横截面上的电量q=2C,R上的发热量Q1=2J。

求:(1)磁感应强度B的大小;(2)t=0到t=2s过程中拉力F做的功W;(3)t=2s时拉力的瞬时功率P.7.如图2所示,abcd为静置于水平面上的宽度为L而长度足够长的U型金属滑轨,bc边接有电阻R,其它部分电阻不计.ef为一可在滑轨平面上滑动、质量为m的均匀金属棒.一均匀磁场B垂直滑轨面。

金属棒以一水平细绳跨过定滑轮,连接一质量为M的重物.今重物M自静止开始下落,假定滑轮无质量,且金属棒在运动中均保持与bc边平行.忽略所有摩擦力, (1)求金属棒作匀速运动时的速率v(忽略bc边对金属棒的作用力)。

(2)若重物从静止开始至匀速运动之后的某一时刻下落的总高度为h,求这一过程中电阻R上产生的热量Q.8. 如图所示,质量为m 、边长为l 的正方形线框,从有界的匀强磁场上方由静止自由下落,线框电阻为R 。

匀强磁场的宽度为H 。

(l <H ,磁感强度为B ,线框下落过程中ab 边与磁场边界平行且沿水平方向。

已知ab 边刚进入磁场和刚穿出磁场时线框都作减速运动,加速度大小都是g 31。

求 (1)ab 边刚进入磁场时与ab 边刚出磁场时的速度大小; (2)cd 边刚进入磁场时,线框的速度大小; (3)线框进入磁场的过程中,产生的热量。

9. 如图,光滑斜面的倾角α=30°,在斜面上放置一矩形线框abcd ,ab 边的边长l 1=1m ,bc 边的边l 2=0.6m ,线框的质量m =1kg ,电阻R =0.1Ω,线框通过细线与重物相连,重物质量M =2kg ,斜面上ef 线(ef ∥gh )的右端方有垂直斜面向上的匀强磁场,B=0.5T ,如果线框从静止开始运动,进入磁场最初一段时间是匀速的,ef 线和gh 线的距离s =11.4m ,(取g =10m/s 2),试求: 画出ab 从静止开始到到达gh 的整个过程中的v-t 图像 ⑴线框进入磁场时的速度v 是多少? ⑵ab 边由静止开始运动到gh 线所用的时间t 是多少?10. 如图所示,电阻不计的光滑平行金属导轨MN 和OP 水平放置,MO 间接有阻值为R 的电阻,导轨相距为L ,其间有竖直向下的匀强磁场,质量为m ,电阻为R 0的导体棒CD 垂直于导轨放置,并接触良好。

用平行于MN 向右的水平力拉动CD 从静止开始运动,拉力的功率恒定为P ,经过时间t 导体棒CD 达到最大速度v 0。

①求出磁场磁感强度B 的大小②求出该过程中R 电阻上所产生的电热③若换用一恒力F 拉动CD 从静止开始运动,则导体棒CD 达到最大速度为2v 0,求出恒力F 的大小及当导体棒CD 速度v 0时棒的加速度。

e cdab Mf αHBd a b11.如图所示,在倾角为θ的光滑斜面上存在着两个磁感强度相等的匀强磁场,方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L.一个质量为m、边长也为L的正方形线框(设电阻为R)以速度v进入磁场时,恰好作匀速直线运动。

若当ab边到达gg1与ff1中间位置时,线框又恰好作匀速直线运动,则:(1)当ab边刚越过ff1时,线框加速度的值为多少?(2)求线框从开始进入磁场到ab边到达gg1和ff1中点的过程中产生的热量是多少?1.解析:(1)匀速运动时F=ILB,I=0.1/(0.5×0.2)=1A. E=LvB=I(R+r), v=1m/s.(2 ) P=I2(R+r)=0.1W(3 ) 撤去外力后金属导线ab的动能全部转化为电能,电路中能产生的总热量为Q=mv2/2=0.05J, R上产生的热量为Q的五分之四,Q R=0.04J。

2. B3.AD4.解:当金属棒速度恰好达到最大速度时,受力分析,mgsinθ=BIL 得最大速度5m/s下滑过程据动能定理得:mgh-f hsinθ-W =12mv2解得W=1J ,∴此过程中电阻中产生的热量Q=W=1.75J5.解:棒MN沿框架向上运动产生感应电动势,相当于电源;ab和cd相当于两个外电阻并联。

根据题意可知,ab和cd中的电流相同,MN中的电流是ab中电流的2倍。

由焦耳定律知,当ab边产生的热量为Q时,cd边产生的热量也为Q,MN产生的热量则为8Q。

金属棒MN沿框架向上运动过程中,能量转化情况是:MN的动能转化为MN的势能和电流通过MN、ab、cd时产生的热量。

设MN的初速度为,由能量守恒得,即而MN在以速度v上滑时,产生的瞬时感应电动势所以,整个电路的瞬时热功率为可见,当MN 的运动速度v 为最大速度时,整个电路的瞬时热功率P 为最大值,即6. 解析:(1)由题得:t=0到t=2s 过程中电路中电流的平均值为:qI 1A t==-由安培力公式有:F BIL =安由图知:F kt t ==安, k 1N /s =则得:BIL t =,BL 一定,则I t ∝设t=2s 时电路中电流为I ,则有:0II 2+=-, I 2I 2A ==-则得:F B 2T IL ==安;(2)设t=2s 末ab 棒的速度为v ;则有:22B L vF BIL R r ==+安,得:()22F R r v 2m /s B L+==安 又由22B L v F BIL kt R r ===+安,知v t ∝,所以ab 棒做匀加速运动,t=2s 内通过的位移为:0vx t 2m 2+== 回路中产生的总热量为:1R r Q Q 2.5J R +==根据功能关系得:21W mgxsin37Q mv 2-︒-= 则得:21W mgxsin37Q mv 9.5J 2=︒++= (3)棒的加速度为:2va 1m /s t==;根据牛顿第二定律得:F F mgsin37ma --︒=安 则得:F F mgsin37ma =+︒+安t=2s 时拉力的瞬时功率为:P Fv F mgsin37ma v 11W ==+︒+=安()。

7. (1)0.4J ; 0.9J (2)1.88m/s (3)3.93m解析:(1)金属棒cd 从静止开始运动直至细绳刚好被拉断的过程中有: Q ab =U 2t/R ab ① Q R =U 2t/R ② 联立①②可得Q ab =0.4J ③ 用Q=I 2Rt 的比值问题方法对cd 和R 进行相比,得Q cd =0.9J ⑥ (1分)(2) 细绳被拉断瞬时,对ab 棒有:F m =mg+BI ab L ⑦ 又有I R =R ab I ab /R ⑧ I cd =I ab +I cd ⑨ 又由闭合欧姆定可得 BLv=I cd [R cd +R ab R/(R ab +R)] ⑩ 联立⑦⑧⑨⑩可得v=1.88m/s (3)由功能关系得 Mgh= Q 总 +mv 2/2 即可得h=3.93m8. 由能的转化和守恒定律,有:Mgh=(m+M)v 2/2 +Q只需求得系统匀速运动速度即可.据平衡条件;Mg =F 安,得v =MgR /B 2L 2。

将v 代入上式得Q=Mg[h-(m+M)MgR 2/2B 4L 4]9. 解(1)由题意可知ab 边刚进入磁场与刚出磁场时的速度相等,设为v 1,则结线框有:ε=Blv 1 I =ε/R F =BIl 且F -mg =mg/3 解得速度v 1为:v 1=4mgR/3B 2l2(2)设cd 边刚进入磁场时速度为v 2,则cd 边进入磁场到ab 边刚出磁场应用动能定理得:)(21212221l H mg mv mv -=-解得: )(2)34(2222l H g l B mgR v --=(3)由能和转化和守恒定律,可知在线框进入磁场的过程中有Q mv mgl mv +=+22212121 解得产生的热量Q 为:Q =mg2L10. 6m/s , 2.5s11.12.解析:此题旨在考查电磁感应与能量之间的关系.线框刚越过ff ′时,两条边都在切割磁感线,其电路相当于两节相同电池的串联,并且这两条边还同时受到安培力的阻碍作用.(1)a b 边刚越过ee ′即做匀速直线运动,表明线框此时所受的合力为0,即L RBlvBmg =θsin 在a b 边刚越过ff ′时,a b 、cd 边都切割磁感线产生感应电动势,但线框的运动速度不能突变,则此时回路中的总感应电动势为E ′=2BLv ,设此时线框的加速度为a ,则2BE ′L/R-mgsin θ=m a ,a =4B 2L 2v/(Rm)-gsin θ=3gsin θ,方向沿斜面向上.(2)设线框再做匀速运动时的速度为v ′,则mgsin θ=(2B 2L 2v ′/R)×2,即v ′=v/4,从线框越过ee ′到线框再做匀速运动过程中,设产生的热量为Q ,则由能量守恒定律得:2223215sin 23'2121sin 23mv mgL mv mv L mg Q +=-+⋅=θθ。

相关文档
最新文档