电磁感应计算题总结(易错题型)
【物理】物理法拉第电磁感应定律的专项培优 易错 难题练习题及答案
【物理】物理法拉第电磁感应定律的专项培优易错难题练习题及答案一、法拉第电磁感应定律1.如图所示,垂直于纸面的匀强磁场磁感应强度为B。
纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。
从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求:(1)拉力做功的功率P;(2)ab边产生的焦耳热Q.【答案】(1)P=222B L vR(2)Q=234B L vR【解析】【详解】(1)线圈中的感应电动势E=BLv 感应电流I=E R拉力大小等于安培力大小F=BIL 拉力的功率P=Fv=222 B L v R(2)线圈ab边电阻R ab=4R 运动时间t=L vab边产生的焦耳热Q=I2R ab t =23 4B L vR2.如图所示,在垂直纸面向里的磁感应强度为B的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd,线框平面垂直于磁感线。
线框以恒定的速度v沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求:(1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l vQ R=(3)43cd Blv U =【解析】 【详解】(1)线框离开磁场的过程中,则有:2E B lv =gE I R = q It =l t v=联立可得:22Bl q R=(2)线框中的产生的热量:2Q I Rt=解得:234B l vQ R=(3) cd 间的电压为:23cd U I R =g解得:43cd BlvU =3.如图所示,间距为l 的平行金属导轨与水平面间的夹角为α,导轨间接有一阻值为R 的电阻,一长为l 的金属杆置于导轨上,杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ,导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于斜面向上,当金属杆受到平行于斜面向上大小为F 的恒定拉力作用,可以使其匀速向上运动;当金属杆受到平行于斜面向下大小为2F的恒定拉力作用时,可以使其保持与向上运动时大小相同的速度向下匀速运动,重力加速度大小为g ,求:(1)金属杆的质量;(2)金属杆在磁场中匀速向上运动时速度的大小。
法拉第电磁感应定律易错题知识点及练习题附答案
法拉第电磁感应定律易错题知识点及练习题附答案一、高中物理解题方法:法拉第电磁感应定律1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。
求:(1)线圈中的感应电流的大小和方向;(2)电阻R两端电压及消耗的功率;(3)前4s内通过R的电荷量。
【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。
4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。
【解析】【详解】(1)0﹣4s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:由楞次定律知感应电流方向沿逆时针方向。
4﹣6s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:,方向沿顺时针方向。
(2)0﹣4s内,R两端的电压为:消耗的功率为:4﹣6s内,R两端的电压为:消耗的功率为:故R消耗的总功率为:(3)前4s内通过R的电荷量为:2.如图所示,垂直于纸面的匀强磁场磁感应强度为B。
纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。
从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求:(1)拉力做功的功率P;(2)ab边产生的焦耳热Q.【答案】(1)P=222B L vR(2)Q=234B L vR【解析】【详解】(1)线圈中的感应电动势E=BLv 感应电流I=E R拉力大小等于安培力大小F=BIL 拉力的功率P=Fv=222 B L v R(2)线圈ab边电阻R ab=4R 运动时间t=L vab边产生的焦耳热Q=I2R ab t =23 4B L vR3.如图,匝数为N、电阻为r、面积为S的圆形线圈P放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P通过导线与阻值为R的电阻和两平行金属板相连,两金属板之间的距离为d,两板间有垂直纸面的恒定匀强磁场。
备战高考物理复习法拉第电磁感应定律专项易错题及答案解析
备战高考物理复习法拉第电磁感应定律专项易错题及答案解析一、法拉第电磁感应定律1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。
求:(1)线圈中的感应电流的大小和方向;(2)电阻R两端电压及消耗的功率;(3)前4s内通过R的电荷量。
【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。
4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。
【解析】【详解】(1)0﹣4s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:由楞次定律知感应电流方向沿逆时针方向。
4﹣6s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:,方向沿顺时针方向。
(2)0﹣4s内,R两端的电压为:消耗的功率为:4﹣6s内,R两端的电压为:消耗的功率为:故R消耗的总功率为:(3)前4s内通过R的电荷量为:2.光滑平行的金属导轨MN 和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直于导轨平面向上,MP 间接有阻值R=2.0Ω的电阻,其它电阻不计,质量m=2.0kg 的金属杆ab 垂直导轨放置,如图(a)所示.用恒力F 沿导轨平面向上拉金属杆ab,由静止开始运动,v−t 图象如图(b)所示.g=10m/s 2,导轨足够长.求: (1)恒力F 的大小;(2)金属杆速度为2.0m/s 时的加速度大小;(3)根据v−t 图象估算在前0.8s 内电阻上产生的热量.【答案】(1)18N(2)2m/s 2(3)4.12J 【解析】 【详解】(1)由题图知,杆运动的最大速度为4/m v m s =,有22sin sin mB L v F mg F mg Rαα=+=+安,代入数据解得F=18N . (2)由牛顿第二定律可得:sin F F mg ma α--=安得222222212sin 182100.52/2/2B L v F mg R a m s m s m α⨯⨯----⨯⨯===, (3)由题图可知0.8s 末金属杆的速度为1 2.2/v m s =,前0.8s 内图线与t 轴所包围的小方格的个数约为28个,面积为28×0.2×0.2=1.12,即前0.8s 内金属杆的位移为 1.12x m =, 由能量的转化和守恒定律得:211sin 2Q Fx mgx mv α=--, 代入数据解得: 4.12J Q =. 【点睛】本题电磁感应与力学知识的综合,抓住速度图象的两个意义:斜率等于加速度,“面积”等于位移辅助求解.估算位移时,采用近似的方法,要学会运用.3.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。
高考物理电磁学知识点之电磁感应易错题汇编及答案解析(5)
高考物理电磁学知识点之电磁感应易错题汇编及答案解析(5)一、选择题1.一个刚性矩形铜制线圈从高处自由下落,进入一水平的匀强磁场区域,然后穿出磁场区域继续下落,如图所示,则 ()A.若线圈进入磁场过程是匀速运动,则离开磁场过程也是匀速运动B.若线圈进入磁场过程是加速运动,则离开磁场过程也是加速运动C.若线圈进入磁场过程是减速运动,则离开磁场过程是加速运动D.若线圈进入磁场过程是减速运动,则离开磁场过程也是减速运动2.如图所示,铁芯P上绕着两个线圈A和B, B与水平光滑导轨相连,导体棒放在水平导轨上。
A中通入电流i(俯视线圈A,顺时针电流为正),观察到导体棒向右加速运动,则A中通入的电流可能是()A.B.C.D.3.如图所示,A、B是相同的白炽灯,L是自感系数很大、电阻可忽略的自感线圈。
下面说法正确的是()A.闭合开关S瞬间,A、B灯同时亮,且达到正常B.闭合开关S瞬间,A灯比B灯先亮,最后一样亮C.断开开关S瞬间,P点电势比Q点电势低D.断开开关S瞬间,通过A灯的电流方向向左4.如图甲所示,矩形线圈位于一变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面)向里,磁感应强度B随时间t的变化规律如图乙所示.用I表示线圈中的感应电流,取顺时针方向的电流为正.则下图中的I-t图像正确的是 ( )A.B.C.D.5.如图所示,一闭合直角三角形线框abc以速度v匀速向右穿过匀强磁场区域,磁场宽度大于ac边的长度.从bc边进入磁场区,到a点离开磁场区的过程中,线框内感应电流的情况(以逆时针方向为电流的正方向)是下图中的()A.B.C.D.6.如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab边和cd边刚进入磁场的时刻.线框下落过程形状不变,ab边始终保持与磁场水平边界线OO′平行,线框平面与磁场方向垂直.设OO′下方磁场区域足够大,不计空气阻力影响,则下列图像不可能反映线框下落过程中速度v随时间t变化的规律()A.B.C.D.7.如图甲所示,光滑的平行金属导轨(足够长)固定在水平面内,导轨间距为l=20cm,左端接有阻值为R=1Ω的电阻,放在轨道上静止的一导体杆MN与两轨道垂直,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度大小为B=0.5T.导体杆受到沿轨道方向的拉力F做匀加速运动,测得力F与时间t的关系如图2所示。
易错点11 电磁感应 —备战2021年高考物理一轮复习易错题
易错点11 电磁感应易错题【01】对电磁感应现象理解不到位一、磁通量1.概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S与B的乘积叫做穿过这个面积的磁通量。
2.公式:Φ=BS,单位符号是Wb。
[注1]3.适用条件:(1)匀强磁场。
(2)S为垂直于磁场的有效面积。
4.物理意义:相当于穿过某一面积的磁感线的条数。
二、电磁感应现象1.定义:当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应。
2.感应电流的产生条件(1)表述一:闭合电路的一部分导体在磁场内做切割磁感线的运动。
(2)表述二:穿过闭合电路的磁通量发生变化。
3.实质产生感应电动势,如果电路闭合,则有感应电流。
如果电路不闭合,则只有感应电动势而无感应电流。
三、感应电流方向的判定1.楞次定律(1)内容:感应电流的磁场总要阻碍[注2]引起感应电流的磁通量的变化。
(2)适用范围:一切电磁感应现象。
2.右手定则[注3](1)内容:如图,伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内;让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。
(2)适用情况:导线切割磁感线产生感应电流。
易错题【02】对法拉第电磁感应定律理解有误一、法拉第电磁感应定律 1.感应电动势(1)概念:在电磁感应现象中产生的电动势。
(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。
(3)方向判断:感应电动势的方向用楞次定律或右手定则判断。
[注1] 2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
[注2] (2)公式:E =n ΔΦΔt ,其中n 为线圈匝数。
[注3]3.导体切割磁感线的情形 (1)垂直切割:E =Blv 。
(2)倾斜切割:E =Blv sin_θ,其中θ为v 与B 的夹角。
(3)旋转切割(以一端为轴):E =12Bl 2ω。
高考物理电磁感应现象易错题知识归纳总结含答案
高考物理电磁感应现象易错题知识归纳总结含答案一、高中物理解题方法:电磁感应现象的两类情况1.某科研机构在研究磁悬浮列车的原理时,把它的驱动系统简化为如下模型;固定在列车下端的线圈可视为一个单匝矩形纯电阻金属框,如图甲所示,MN 边长为L ,平行于y 轴,MP 边宽度为b ,边平行于x 轴,金属框位于xoy 平面内,其电阻为1R ;列车轨道沿Ox 方向,轨道区域内固定有匝数为n 、电阻为2R 的“”字型(如图乙)通电后使其产生图甲所示的磁场,磁感应强度大小均为B ,相邻区域磁场方向相反(使金属框的MN 和PQ 两边总处于方向相反的磁场中).已知列车在以速度v 运动时所受的空气阻力f F 满足2f F kv =(k 为已知常数).驱动列车时,使固定的“”字型线圈依次通电,等效于金属框所在区域的磁场匀速向x 轴正方向移动,这样就能驱动列车前进.(1)当磁场以速度0v 沿x 轴正方向匀速移动,列车同方向运动的速度为v (0v <)时,金属框MNQP 产生的磁感应电流多大?(提示:当线框与磁场存在相对速度v 相时,动生电动势E BLv =相)(2)求列车能达到的最大速度m v ;(3)列车以最大速度运行一段时间后,断开接在“” 字型线圈上的电源,使线圈与连有整流器(其作用是确保电流总能从整流器同一端流出,从而不断地给电容器充电)的电容器相接,并接通列车上的电磁铁电源,使电磁铁产生面积为L b ⨯、磁感应强度为B '、方向竖直向下的匀强磁场,使列车制动,求列车通过任意一个“”字型线圈时,电容器中贮存的电量Q .【答案】(1) 012() BL v v R -222210122BL B L kR v B L +-24nB Lb R ' 【解析】 【详解】解:(1)金属框相对于磁场的速度为:0v v - 每边产生的电动势:0()E BL v v =-由欧姆定律得:12E I R = 解得:01(2 )BL v v I R -=(2)当加速度为零时,列车的速度最大,此时列车的两条长边各自受到的安培力:B F BIL =由平衡条件得:20B f F F -= ,已知:2f F kv =解得:222210122m BL B L kR v B L v kR +-=(3)电磁铁通过字型线圈左边界时,电路情况如图1所示:感应电动势:n E tφ∆=∆,而B Lb φ∆=' 电流:12E I R =电荷量:11Q I t =∆ 解得:12nB LbQ R '= 电磁铁通过字型线圈中间时,电路情况如图2所示:B Lb φ∆=',2222E nI R tφ∆==∆ 22Q I t =∆解得:222nB LbQ R '= 电磁铁通过字型线圈右边界时,电路情况如图3所示:n E tφ∆=∆, B Lb φ∆=',32E I R =33Q I t =∆解得:32nB LbQ R '=, 总的电荷量:123Q Q Q Q =++ 解得:24nB LbQ R '=2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)00.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J 【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t == 0t =时棒的速度为零,故回路中只有感生感应势为: 0.05V BE Ld t tΦ=== 感应电流为:0.25A EI R== 可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-=== 解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -= 解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=3.如图甲所示,在一对平行光滑的金属导轨的上端连接一阻值为R =4Ω的定值电阻,两导轨在同一平面内。
高考物理新电磁学知识点之电磁感应易错题汇编附答案
高考物理新电磁学知识点之电磁感应易错题汇编附答案一、选择题1.如图所示,一个圆形线圈的匝数为N,半径为a,线圈平面与匀强磁场垂直,且一半处在磁场中。
在Δt时间内,磁感应强度的方向不变,大小由B均匀地增大到2B。
在此过程中,线圈中产生的感应电动势为()A.2NBatπ∆B.22NBatπ∆C.2Batπ∆D.22Batπ∆2.如图所示,用粗细均匀的同种金属导线制成的两个正方形单匝线圈a、b,垂直放置在磁感应强度为B的匀强磁场中,a的边长为L,b的边长为2L。
当磁感应强度均匀增加时,不考虑线圈a、b之间的影响,下列说法正确的是()A.线圈a、b中感应电动势之比为E1∶E2=1∶2B.线圈a、b中的感应电流之比为I1∶I2=1∶2C.相同时间内,线圈a、b中产生的焦耳热之比Q1∶Q2=1∶4D.相同时间内,通过线圈a、b某截面的电荷量之比q1∶q2=1∶43.如图所示,L是自感系数很大的线圈,但其自身的电阻几乎为零。
A和B是两个完全相同的小灯泡。
下列说法正确的是()A.接通开关S瞬间,A灯先亮,B灯不亮B.接通开关S后,B灯慢慢变亮C.开关闭合稳定后,突然断开开关瞬间,A灯立即熄灭、B灯闪亮一下D.开关闭合稳定后,突然断开开关瞬间,A灯、B灯都闪亮一下4.下列关于教材中四幅插图的说法正确的是()A.图甲是通电导线周围存在磁场的实验。
这一现象是物理学家法拉第通过实验首先发现B.图乙是真空冶炼炉,当炉外线圈通入高频交流电时,线圈产生大量热量,从而冶炼金属C.图丙是李辉用多用电表的欧姆挡测量变压器线圈的电阻刘伟手握线圈裸露的两端协助测量,李辉把表笔与线圈断开瞬间,刘伟觉得有电击说明欧姆挡内电池电动势很高D.图丁是微安表的表头,在运输时要把两个接线柱连在一起,这是为了保护电表指针,利用了电磁阻尼原理5.如图所示,一带铁芯线圈置于竖直悬挂的闭合铝框右侧,与线圈相连的导线abcd内有水平向里变化的磁场.下列哪种变化磁场可使铝框向左偏离 ( )A.B.C.D.6.如图所示,铁芯P上绕着两个线圈A和B, B与水平光滑导轨相连,导体棒放在水平导轨上。
山东省淄博第一中学高中物理法拉第电磁感应定律压轴题易错题
山东省淄博第一中学高中物理法拉第电磁感应定律压轴题易错题一、高中物理解题方法:法拉第电磁感应定律1.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。
已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4Ω求:(1)磁通量变化率,回路的感应电动势。
(2)a 、b 两点间电压U ab 。
【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】(1)由B =(2+0.2t )T 得磁场的变化率为0.2T/s Bt∆=∆ 则磁通量的变化率为:0.04Wb/s BS t t∆Φ∆==∆∆ 根据E nt∆Φ=∆可知回路中的感应电动势为: 4V BE nnS t t∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:1122.4V ab ER R R U =+=答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。
(2)a 、b 两点间电压U ab 为2.4V 。
2.如图所示,两彼此平行的金属导轨MN 、PQ 水平放置,左端与一光滑绝缘的曲面相切,右端接一水平放置的光滑“>”形金属框架NDQ ,∠NDQ=1200,ND 与DQ 的长度均为L ,MP 右侧空间存在磁感应强度大小为B 、方向竖直向上的匀强磁场.导轨MN 、PQ 电阻不计,金属棒与金属框架NDQ 单位长度的电阻值为r ,金属棒质量为m ,长度与MN 、PQ 之间的间距相同,与导轨MN 、PQ 的动摩擦因数为.现让金属棒从曲面上离水平面高h 的位置由静止释放,金属棒恰好能运动到NQ 边界处.(1)刚进入磁场时回路的电流强度i 0;(2)棒从MP 运动到NQ 所用的时间为t ,求导轨MN 、PQ 的长度s ;(3)棒到达NQ 后,施加一外力使棒以恒定的加速度a 继续向右运动,求此后回路中电功率的最大值p max .【答案】06(23)B ghi r =+;023(2)m gh umgt rS ++=();22max 4(23)P r =+ 【解析】 【详解】解:(1)金属棒从光滑绝缘曲面向下运动,机械能守恒,设刚进入MP 边界时,速度大小为0v ,则:2012mgh mv =解得:0v 2gh =刚进入磁场时产生的感应电动势:10e Bdv = 导轨宽度:3d L =回路电阻:(23)R Lr =+ 联立可得:06(23)B gh i r=+(2)设长度为S ,从MP 到NQ 过程中的任一时刻,速度为i v ,在此后无穷小的t ∆时间内,根据动量定理:22()ii B d v umg t m v R∑+∆=∑∆22(3(23)i i L t umg t m v Lr+∑∆=∑∆+2(23)i i v t umg t m v r∆+∑∆=∑∆+200(23)umgt mv r+=+得:023(2)m gh umgt rS ++=() (3)金属棒匀加速运动,v at =切割磁感线的有效长度为:021'2cos60)tan 602l L at =⋅-︒(产生感应电动势:E Bl v '=2212(cos60)tan 603()2E B L at at Ba L at t =⋅︒-︒⋅=-回路的瞬时电阻:2022121[2(cos60)tan 60(cos60)(23)()2cos602R r L at L at r L at =︒-+︒-=+- 功率:2222222222242222()[()]24(23)()(23)(23)E L L P at Lt a t R a a r L at r r===-+=--++-++ 金属棒运动到D 点,所需的时间设为t ',则有: 21122L at '= 解得:Lt a'=当2Lt t a '=<时, 22max 4(23)P r =+3.如图所示,ACD 、EFG 为两根相距L =0.5m 的足够长的金属直角导轨,它们被竖直固定在绝缘水平面上,CDGF 面与水平面夹角θ=300.两导轨所在空间存在垂直于CDGF 平面向上的匀强磁场,磁感应强度大小为B`=1T .两根长度也均为L =0.5m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,ab 杆的质量m 1未知,cd 杆的质量m 2=0.1kg ,两杆与导轨之间的动摩擦因数均为μ=3,两金属细杆的电阻均为R =0.5Ω,导轨电阻不计.当ab 以速度v 1沿导轨向下匀速运动时,cd 杆正好也向下匀速运动,重力加速度g 取10m/s 2.(1)金属杆cd 中电流的方向和大小 (2)金属杆ab 匀速运动的速度v 1 和质量m 1【答案】I =5A 电流方向为由d 流向c; v 1=10m/s m 1=1kg 【解析】 【详解】(1)由右手定则可知cd 中电流方向为由d 流向c对cd 杆由平衡条件可得:μ=+0022安sin 60(cos 60)m g m g F=安F BLI联立可得:I =5A(2) 对ab: 由 =12BLv IR得 110m/s v = 分析ab 受力可得: 0011sin 30cos 30m g BLI m g μ=+解得: m 1=1kg4.如图所示,两条平行的金属导轨相距L =lm ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ 的质量均为m =0.2kg ,电阻分别为R MN =1Ω和R PQ =2Ω.MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1m /s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态.t =3s 时,PQ 棒消耗的电功率为8W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动.求: (1)磁感应强度B 的大小;(2)t =0~3s 时间内通过MN 棒的电荷量; (3)求t =6s 时F 2的大小和方向;(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移s 满足关系:v =0.4s ,PQ 棒仍然静止在倾斜轨道上.求MN 棒从静止开始到s =5m 的过程中,系统产生的焦耳热.【答案】(1)B = 2T ;(2)q = 3C ;(3)F 2=-5.2N (负号说明力的方向沿斜面向下)(4)203Q J =【解析】 【分析】t =3s 时,PQ 棒消耗的电功率为8W ,由功率公式P =I 2R 可求出电路中电流,由闭合电路欧姆定律求出感应电动势.已知MN 棒做匀加速直线运动,由速度时间公式求出t =3s 时的速度,即可由公式E =BLv 求出磁感应强度B ;根据速度公式v =at 、感应电动势公式E =BLv 、闭合电路欧姆定律和安培力公式F =BIL 结合,可求出PQ 棒所受的安培力大小,再由平衡条件求解F 2的大小和方向;改变F 1的作用规律时,MN 棒做变加速直线运动,因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,可根据安培力的平均值求出安培力做功,系统产生的热量等于克服安培力,即可得解. 【详解】(1)当t =3s 时,设MN 的速度为v 1,则v 1=at =3m/s 感应电动势为:E 1=BL v 1 根据欧姆定律有:E 1=I (R MN + R PQ )根据P =I 2 R PQ 代入数据解得:B =2T(2)当t =6 s 时,设MN 的速度为v 2,则 速度为:v 2=at =6 m/s 感应电动势为:E 2=BLv 2=12 V 根据闭合电路欧姆定律:224MN PQE I A R R ==+安培力为:F 安=BI 2L=8 N规定沿斜面向上为正方向,对PQ 进行受力分析可得: F 2+F 安cos 37°=mg sin 37°代入数据得:F 2=- 5.2 N(负号说明力的方向沿斜面向下)(3)MN 棒做变加速直线运动,当x =5 m 时,v =0.4x =0.4×5 m/s =2 m/s 因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,安培力做功:12023MN PQ BLv W BL x J R R =-⋅⋅=-+安【点睛】本题是双杆类型,分别研究它们的情况是解答的基础,运用力学和电路.关键要抓住安培力与位移是线性关系,安培力的平均值等于初末时刻的平均值,从而可求出安培力做功.5.在如图所示的电路中,螺线管上线圈的匝数n=1500匝,横截面积.螺线管上线圈的电阻r=1.0Ω,定值电阻、,电容器的电容C=30μF.在一段时间内,螺线管中磁场的磁感应强度B 按如图所示的规律变化.(1)求螺线管中产生的感应电动势.(2)闭合开关S ,电路中的电流稳定后,求电阻的电功率.(3)开关S 断开后,求流经电阻的电荷量. 【答案】(1)1.2V (2) (3)【解析】 【详解】(1)根据法拉第电磁感应定律得(2)根据闭合电路欧姆定律得电阻的电功率.(3)开关S 断开后,流经电阻的电荷量即为S 闭合时电容器所带的电荷量.电容器两端的电压流经电阻的电荷量. 故本题答案是:(1)1.2V (2) (3)【点睛】根据法拉第电磁感应定律求出回路中的电动势,在结合闭合电路欧姆定律求电流,即可求解别的物理量。
电磁感应现象易错题综合题及答案解析
电磁感应现象易错题综合题及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B Lθθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++ 再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L +=∆=2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)00.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J 【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t == 0t =时棒的速度为零,故回路中只有感生感应势为: 0.05V BE Ld t tΦ=== 感应电流为:0.25A EI R== 可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-=== 解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -= 解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=3.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。
电磁感应现象易错题专项复习及答案
电磁感应现象易错题专项复习及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大? 【答案】(1)2sin mgR B L vθ=2)sin sin t gvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流EI R=,棒所受的安培力F BIL =联立可得22B L v F R =,由平衡条件可得F mgsin θ=,解得2mgRsin B L vθ(2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t则电容器板间电压为 U E BLv ='= 此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q则电路中电流Q C U CBL v i t t t ∆∆∆===∆∆∆,又va t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θθ'==+.考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.2.如图所示,两平行长直金属导轨(不计电阻)水平放置,间距为L ,有两根长度均为L 、电阻均为R 、质量均为m 的导体棒AB 、CD 平放在金属导轨上。
高考物理复习法拉第电磁感应定律专项易错题及详细答案
一、法拉第电磁感应定律1.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。
当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。
重力加速度为g ,求:(1)匀强电场的电场强度 (2)流过电阻R 的电流(3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgdqR(3)()B mgd R r t NQRS ∆+=∆ 【解析】 【详解】 (1)由题意得:qE =mg解得mg qE =(2)由电场强度与电势差的关系得:UE d=由欧姆定律得:U I R=解得mgdI qR=(3)根据法拉第电磁感应定律得到:E Nt∆Φ=∆ BS t t∆Φ∆=∆∆根据闭合回路的欧姆定律得到:()E I R r =+ 解得:()B mgd R r t NqRS∆+=∆2.如图所示,竖直平面内两竖直放置的金属导轨间距为L 1,导轨上端接有一电动势为E 、内阻不计的电源,电源旁接有一特殊开关S ,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L 2的矩形匀强磁场区域,磁感应强度大小均为B ,方向如图。
一质量为m 的金属棒从ab 位置由静止开始下落,到达cd 位置前已经开始做匀速运动,棒通过cdfe 区域的过程中始终做匀速运动。
已知定值电阻和金属棒的阻值均为R ,其余电阻不计,整个过程中金属棒与导轨接触良好,重力加速度为g ,求:(1)金属棒匀速运动的速度大小; (2)金属棒与金属导轨间的动摩擦因数μ;(3)金属棒经过efgh 区域时定值电阻R 上产生的焦耳热。
【答案】(1) ;(2);(3)mgL 2。
【解析】 【分析】(1)金属棒到达cd 位置前已经开始做匀速运动,根据平衡条件结合安培力的计算公式求解;(2)分析导体棒的受力情况,根据平衡条件结合摩擦力的计算公式求解; (3)根据功能关系结合焦耳定律求解。
电磁感应经典易错练习题总结(上海高三复习或高二提高适用)
环有一半面积在A环内,
垂直的平面上出现如图所示的
已知某一区域的地下埋有一根与地表面平行的直线电缆,电缆中通有变化的电流,在其周围有变化的磁场,因此可以通过在地面上测量闭合试探小线圈中的感应电动势来探测电缆的确切位置、走向和深度。
当线圈平面平行地面
两处线圈中的
两处测得试探线圈中
如图所示,用两种方法将线
,两次通过线圈的电量分别
甲、乙两个完全相同的金属环可绕固定轴旋转,当给以相同初速度开始转动时,由于阻力,经相同时间便停止,若将两金属环置于磁感应强度大小相
bc边进入磁场到ad 边进入磁场那段时间内,线框运动的速度图象可能是下面的哪些?( )
如图甲所示,导体框架abcd放在倾角为θ的绝缘光滑斜面上,质量为m
的正方形导线框底边水平,且平行于正下方的磁场
,磁感强度等值反向,两磁场区域紧邻。
当
,磁感应强度为B的匀
型,底部导轨面水平,
相连,整个装置处于竖直向上的大
,垂直于导轨放置,且与导轨。
高考物理晋中电磁学知识点之电磁感应易错题汇编含答案
高考物理晋中电磁学知识点之电磁感应易错题汇编含答案一、选择题1.穿过一个单匝闭合线圈的磁通量始终为每秒均匀增加2Wb,则()A.线圈中感应电动势每秒增加2VB.线圈中感应电动势始终为2VC.线圈中感应电动势始终为一个确定值,但由于线圈有电阻,电动势小于2VD.线圈中感应电动势每秒减少2V2.两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直。
边长为0.1m、总电阻为0.005Ω的正方形导线框abcd位于纸面内,cd边与磁场边界平行,如图甲所示。
已知导线框向右做匀速直线运动,cd边于t=0时刻进入磁场。
导线框中感应电动势随时间变化的图线如图乙所示(规定感应电流的方向abcda为正方向)。
下列说法正确的是()A.磁感应强度的方向垂直纸面向内B.磁感应强度的大小为0.5TC.导线框运动速度的大小为0.05m/sD.在t=0.4s至t=0.6s这段时间内,导线框所受的安培力大小为0.04N3.下列关于教材中四幅插图的说法正确的是()A.图甲是通电导线周围存在磁场的实验。
这一现象是物理学家法拉第通过实验首先发现B.图乙是真空冶炼炉,当炉外线圈通入高频交流电时,线圈产生大量热量,从而冶炼金属C.图丙是李辉用多用电表的欧姆挡测量变压器线圈的电阻刘伟手握线圈裸露的两端协助测量,李辉把表笔与线圈断开瞬间,刘伟觉得有电击说明欧姆挡内电池电动势很高D.图丁是微安表的表头,在运输时要把两个接线柱连在一起,这是为了保护电表指针,利用了电磁阻尼原理4.如图所示,一带铁芯线圈置于竖直悬挂的闭合铝框右侧,与线圈相连的导线abcd内有水平向里变化的磁场.下列哪种变化磁场可使铝框向左偏离 ( )A.B.C.D.5.如图所示为地磁场磁感线的示意图,在北半球地磁场的竖直分量向下。
一飞机在北半球的上空以速度v水平飞行,飞机机身长为a,翼展为b;该空间地磁场磁感应强度的水平分量为B1,竖直分量为B2;驾驶员左侧机翼的端点用A表示,右侧机翼的端点用B表示,用E表示飞机产生的感应电动势,则A.E=B2vb,且A点电势高于B点电势B.E=B1vb,且A点电势高于B点电势C.E=B2vb,且A点电势低于B点电势D.E=B1vb,且A点电势低于B点电势6.在倾角为θ的两平行光滑长直金属导轨的下端,接有一电阻R,导轨自身的电阻可忽略不计,有一匀强磁场与两金属导轨平面垂直,方向垂直于导轨面向上。
电磁感应大题题型总结
电磁感应大题题型总结一、导体棒切割磁感线产生感应电动势类1. 单棒平动切割磁感线- 题目示例:- 如图所示,在一磁感应强度B = 0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h = 0.1m的平行金属导轨MN与PQ,导轨的电阻忽略不计。
在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。
导轨上跨放着一根长为L =0.2m,每米长电阻r = 2.5Ω/m的金属棒ab,金属棒与导轨正交,交点为c、d。
当金属棒以速度v = 4.0m/s向左做匀速运动时,求:- (1)金属棒ab中感应电动势的大小;- (2)通过金属棒ab的电流大小;- (3)金属棒ab两端的电压大小。
- 解析:- (1)根据E = BLv,这里L = h = 0.1m(有效切割长度),B = 0.5T,v = 4.0m/s,则E=Bh v = 0.5×0.1×4.0 = 0.2V。
- (2)金属棒的电阻R_ab=Lr = 0.2×2.5 = 0.5Ω。
电路总电阻R_总=R +R_ab=0.3+0.5 = 0.8Ω。
根据I=(E)/(R_总),可得I=(0.2)/(0.8)=0.25A。
- (3)金属棒ab两端的电压U = E - IR_ab=0.2 - 0.25×0.5 = 0.075V。
2. 双棒切割磁感线- 题目示例:- 如图所示,两根足够长的平行金属导轨固定在倾角θ = 30^∘的斜面上,导轨电阻不计,间距L = 0.4m。
导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B = 0.5T。
在区域Ⅰ中,将质量m_1=0.1kg,电阻R_1=0.1Ω的金属条ab放在导轨上,ab刚好不下滑。
然后,在区域Ⅱ中将质量m_2=0.4kg,电阻R_2=0.1Ω的光滑导体棒cd置于导轨上,由静止开始下滑。
高中物理电磁学电磁感应易错知识点总结
(每日一练)高中物理电磁学电磁感应易错知识点总结单选题1、在如图甲所示的电路中,螺线管匝数n=1000匝,横截面积S=20cm2。
螺线管导线电阻r=1.0Ω,R1=4.0Ω,R2=5.0Ω,C=30μF。
在一段时间内,垂直穿过螺线管的磁场的磁感应强度B的方向如图甲所示,大小按如图乙所示的规律变化,则下列说法中正确的是()A.螺线管中产生的感应电动势为1.2VB.闭合K,电路中的电流稳定后,电容器的下极板带负电C.闭合K,电路中的电流稳定后,电阻R1的电功率为2.56×10-2WD.闭合K,电路中的电流稳定后,断开K,则K断开后,流经R2的电荷量为1.8×10-2C答案:C解析:A.根据法拉第电磁感应定律可得螺线管中产生的感应电动势为E=n ΔΦΔt=nSΔBΔt=0.8V故A错误;B.根据楞次定律可以判断回路中感应电流的方向应为逆时针方向,所以电容器的下极板带正电,故B错误;C.闭合K,电路中的电流稳定后,电阻R1的电功率为P=(ER1+R2+r)2R1=2.56×10−2W故C正确;D.闭合K,电路中的电流稳定后电容器两端的电压为U=R2R1+R2+rE=0.4VK断开后,流经R2的电荷量即为K闭合时电容器一个极板上所带的电荷量,即Q=CU=1.2×10-5C故D错误。
故选C。
2、如图,水平放置的圆柱形光滑玻璃棒左边绕有一线圈,右边套有一金属圆环。
圆环初始时静止。
将图中开关S由断开状态拨至连接状态,电路接通的瞬间,可观察到()A.拨至M端或N端,圆环都向左运动B.拨至M端或N端,圆环都向右运动C.拨至M端时圆环向左运动,拨至N端时向右运动D.拨至M端时圆环向右运动,拨至N端时向左运动答案:B解析:无论开关S拨至哪一端,当把电路接通一瞬间,左边线圈中的电流从无到有,电流在线圈轴线上的磁场从无到有,从而引起穿过圆环的磁通量突然增大,根据楞次定律(增反减同),右边圆环中产生了与左边线圈中方向相反的电流,异向电流相互排斥,所以无论哪种情况,圆环均向右运动。
高中物理电磁感应现象易错题知识归纳总结含答案
高中物理电磁感应现象易错题知识归纳总结含答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= ,cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图所示,空间存在竖直向下的匀强磁场,磁感应强度B =0.5T .在匀强磁场区域内,有一对光滑平行金属导轨,处于同一水平面内,导轨足够长,导轨间距L =1m ,电阻可忽略不计.质量均为m =lkg ,电阻均为R =2.5Ω的金属导体棒MN 和PQ 垂直放置于导轨上,且与导轨接触良好.先将PQ 暂时锁定,金属棒MN 在垂直于棒的拉力F 作用下,由静止开始以加速度a =0.4m /s 2向右做匀加速直线运动,5s 后保持拉力F 的功率不变,直到棒以最大速度v m 做匀速直线运动.(1)求棒MN 的最大速度v m ;(2)当棒MN 达到最大速度v m 时,解除PQ 锁定,同时撤去拉力F ,两棒最终均匀速运动.求解除PQ 棒锁定后,到两棒最终匀速运动的过程中,电路中产生的总焦耳热.(3)若PQ 始终不解除锁定,当棒MN 达到最大速度v m 时,撤去拉力F ,棒MN 继续运动多远后停下来?(运算结果可用根式表示)【答案】(1)25m /s m v = (2)Q =5 J (3)405m x = 【解析】 【分析】 【详解】(1)棒MN 做匀加速运动,由牛顿第二定律得:F -BIL =ma 棒MN 做切割磁感线运动,产生的感应电动势为:E =BLv 棒MN 做匀加速直线运动,5s 时的速度为:v =at 1=2m/s 在两棒组成的回路中,由闭合电路欧姆定律得:2E I R=联立上述式子,有:222B L atF ma R=+代入数据解得:F =0.5N 5s 时拉力F 的功率为:P =Fv 代入数据解得:P =1W棒MN 最终做匀速运动,设棒最大速度为v m ,棒受力平衡,则有:0m mPBI L v -= 2mm BLv I R=代入数据解得:25m/s m v =(2)解除棒PQ 后,两棒运动过程中动量守恒,最终两棒以相同的速度做匀速运动,设速度大小为v ′,则有:2m mv mv '=设从PQ 棒解除锁定,到两棒达到相同速度,这个过程中,两棒共产生的焦耳热为Q ,由能量守恒定律可得:2211222m Q mv mv '=-⨯ 代入数据解得:Q =5J ;(3)棒以MN 为研究对象,设某时刻棒中电流为i ,在极短时间△t 内,由动量定理得:-BiL △t =m △v对式子两边求和有:()()m BiL t m v ∑-∆=∑∆ 而△q =i △t对式子两边求和,有:()q i t ∑∆=∑∆ 联立各式解得:BLq =mv m , 又对于电路有:2E q It t R==由法拉第电磁感应定律得:BLxE t= 又2BLxq R=代入数据解得:405m x =3.在如图甲所示的电路中,螺线管匝数n=1000匝,横截面积S=20cm 2.螺线管导线电阻r=1.0Ω,R 1=3.0Ω,R 2=4.0Ω,C=30μF .在一段时间内,穿过螺线管的磁场的磁感应强度B 按如图乙所示的规律变化.求:(1)求螺线管中产生的感应电动势; (2)S 断开后,求流经R 2的电量. 【答案】(1)0.8V ;(2)41.210C -⨯ 【解析】 【分析】 【详解】(1)感应电动势:10.210000.00200.82B E n n S V t t ∆Φ∆-===⨯⨯=∆∆; (2)电路电流120.80.1134E I A r R R ===++++,电阻2R 两端电压220.140.4U IR V ==⨯=,电容器所带电荷量65230104 1.210Q CU C --==⨯⨯=⨯,S 断开后,流经2R 的电量为41.210C -⨯;【点睛】本题是电磁感应与电路的综合,知道产生感应电动势的那部分相当于电源,运用闭合电路欧姆定律进行求解.4.如图(a)所示,平行长直金属导轨水平放置,间距L =0.4 m .导轨右端接有阻值R =1 Ω的电阻,导体棒垂直放置在导轨上,且接触良好.导体棒及导轨的电阻均不计,导轨间正方形区域abcd 内有方向竖直向下的匀强磁场,bd 连线与导轨垂直,长度也为L .从0时刻开始,磁感应强度B 的大小随时间t 变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s 后刚好进入磁场.若使棒在导轨上始终以速度v =1 m/s 做直线运动,求:(1)棒进入磁场前,回路中的电动势E 大小;(2)棒在运动过程中受到的最大安培力F ,以及棒通过三角形abd 区域时电流I 与时间t 的关系式.【答案】(1)0.04 V ; (2)0.04 N , I =22Bv tR;【解析】 【分析】 【详解】⑴在棒进入磁场前,由于正方形区域abcd 内磁场磁感应强度B 的变化,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,在棒进入磁场前回路中的电动势为E ==0.04V⑵当棒进入磁场时,磁场磁感应强度B =0.5T 恒定不变,此时由于导体棒做切割磁感线运动,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,回路中的电动势为:e =Blv ,当棒与bd 重合时,切割有效长度l =L ,达到最大,即感应电动势也达到最大e m =BLv =0.2V >E =0.04V根据闭合电路欧姆定律可知,回路中的感应电流最大为:i m ==0.2A根据安培力大小计算公式可知,棒在运动过程中受到的最大安培力为:F m =i m LB =0.04N 在棒通过三角形abd 区域时,切割有效长度l =2v (t -1)(其中,1s≤t≤+1s ) 综合上述分析可知,回路中的感应电流为:i ==(其中,1s≤t≤+1s )即:i =t -1(其中,1s≤t≤1.2s ) 【点睛】注意区分感生电动势与动生电动势的不同计算方法,充分理解B-t 图象的含义.5.如图所示,竖直固定的足够长的光滑金属导轨MN 、PQ ,间距L =0.2m ,其电阻不计.完全相同的两根金属棒ab 、cd 垂直导轨放置,每棒两端都与导轨始终良好接触.已知两棒质量均为m =0.01kg ,电阻均为R =0.2Ω,棒cd 放置在水平绝缘平台上,整个装置处在垂直于导轨平面向里的匀强磁场中,磁感应强度B =1.0T.棒ab 在竖直向上的恒力F 作用下由静止开始向上运动,当ab 棒运动位移x =0.1m 时达到最大速度,此时cd 棒对绝缘平台的压力恰好为零,重力加速度g 取10m/s 2.求: (1)恒力F 的大小;(2)ab 棒由静止到最大速度通过ab 棒的电荷量q ; (3)ab 棒由静止到达到最大速度过程中回路产生的焦耳热Q .【答案】(1)0.2N(2)0.05C(3)5×10-3J 【解析】 【详解】(1)当棒ab 达到最大速度时,对ab 和cd 的整体:20.2N F mg ==(2) ab 棒由静止到最大速度通过ab 棒的电荷量q It = 22BLx E tI R R== 解得10.20.1C 0.05C 220.2BLx q R ⨯⨯===⨯ (3)棒ab 达到最大速度v m 时,对棒cd 有 BIL=mg由闭合电路欧姆定律知2EI R=棒ab 切割磁感线产生的感应电动势E=BLv m代入数据解得v m =1m/sab 棒由静止到最大速度过程中,由能量守恒定律得()212m F mg x mv Q -+=代入数据解得Q =5×10-3J6.如图所示,光滑绝缘水平面上放置一均匀导体制成的正方形线框abcd ,线框质量为m,电阻为R,边长为L ,有yi 方向竖直向下的有界磁场,磁场的磁感应强度为B,磁场区宽度大于L ,左边界与ab 边平行,线框水平向右拉力作用下垂直于边界线穿过磁场区.(1)若线框以速度v 匀速穿过磁场区,求线框在离开磁场时七两点间的电势差; (2)若线框从静止开始以恒定的加速度a 运动,经过h 时间七边开始进入磁场,求cd 边将要进入磁场时刻回路的电功率;(3)若线框速度v 0进入磁场,且拉力的功率恒为P 0,经过时间T ,cd 边进入磁场,此过程中回路产生的电热为Q ,后来ab 边刚穿出磁场时,线框速度也为v 0,求线框穿过磁场所用的时间t. 【答案】(1)(2)(3)【解析】 【分析】 【详解】(1)线框在离开磁场时,cd 边产生的感应电动势 E=BLv 回路中的电流则ab 两点间的电势差 U=IR ab =BLv (2)t 1时刻线框速度 v 1=at 1设cd 边将要进入磁场时刻速度为v 2,则v 22-v 12=2aL 此时回路中电动势 E 2=BLv 2回路的电功率解得(3)设cd 边进入磁场时的速度为v ,线框从cd 边进入到ab 边离开磁场的时间为△t ,则 P 0T=(mv 2−m v 02)+Q P 0△t=m v 02-mv 2 解得线框离开磁场时间还是T ,所以线框穿过磁场总时间t=2T+△t=+T【点睛】本题电磁感应中电路问题,要熟练运用法拉第电磁感应定律切割式E=Blv ,欧姆定律求出电压.要抓住线框运动过程的对称性,分析穿出磁场时线框的速度,运用能量守恒列式求时间.7.如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上磁感应强度大小为B 的匀强磁场中.一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ.现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直).设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g .求:此过程中,(1)导体棒刚开始运动时的加速度a (2)导体棒速度的最大值v m (3)导体棒中产生的焦耳热Q (4)流过电阻R 的电量q 【答案】(1)F mg a m μ-= (2)22()()m F mg r R v B d μ-+= (3){2221()()[]2r F mg r R Q FL mgL m r R B d μμ-+⎫=--⎬+⎭(4)BLdq R r =+ 【解析】(1)导体棒刚开始运动时,水平方向只受拉力F 和摩擦力作用,则F-μmg=ma,解得F mga mμ-=(2)杆受到的安培力:F B =BId=22 mB d v R r+,杆匀速运动时速度最大,由平衡条件得:F=F B +f ,即:F=22 mB d v R r++μmg , 解得:()()22m F mg r R v B d μ-+=;(3)开始到达到最大速度的过程中,由能量守恒定律得:FL-μmgL=Q+12mv m 2, 导体棒上产生的热流量:Q R =rR r+Q , 解得:Q R = r R r + [(F-μmg )L-2244()()2m F mg R r B dμ-+]; (4)电荷量:()E BdL BdLq I t t t R r R r tR r ===⨯=+++; 【点睛】当杆做匀速运动时速度最大,应用平衡条件、安培力公式、能量守恒定律即可正确解题.分析清楚杆的运动过程,杆做匀速运动时速度最大;杆克服安培力做功转化为焦耳热,可以从能量角度求焦耳热.8.如图所示,间距为L 、电阻不计的足够长双斜面型平行导轨,左导轨光滑,右导轨粗糙,左、右导轨分别与水平面成α、β角,分别有垂直于导轨斜面向上的磁感应强度为 B1、B2 的匀强磁场,两处的磁场互不影响.质量为 m 、电阻均为 r 的导体棒 ab 、cd 与两平行导轨垂直放置且接触良 好.ab 棒由静止释放,cd 棒始终静止不动.求: (1)ab 棒速度大小为 v 时通过 cd 棒的电流大小和 cd 棒受到的摩擦力大小. (2)ab 棒匀速运动时速度大小及此时 cd 棒消耗的电功率.【答案】(1)12B Lv r ;2122B B L vr -mgsin β(2)222221sin m g r B L α 【解析】 【分析】(1)当导体棒ab 的速度为v 时,其切割磁感线产生的感应电动势大小为:E =B 1Lv① 导体棒ab 、cd 串联,由全电路欧姆定律有:2E I r=② 联立①②式解得流过导体棒cd 的电流大小为:12B LvI r=③ 导体棒cd 所受安培力为:F 2=B 2IL④ 若mgsin β >F 2,则摩擦力大小为:21212sin ?sin 2B B L vf mg F mg rββ=-=-⑤ 若mgsin β ≤F 2,则摩擦力大小为: 21222sin sin 2B B L vf F mg mg rββ=-=-⑥(2)设导体棒ab 匀速运动时速度为v 0,此时导体棒ab 产生的感应电动势为:E 0=B 1Lv 0⑦流过导体棒ab 的电流大小为:002E I r=⑧ 导体棒ab 所受安培力为:F 1=B 1I 0L⑨ 导体棒ab 匀速运动,满足:mgsin α-F 1=0⑩ 联立⑦⑧⑨⑩式解得:02212sin mgr v B L α=此时cd 棒消耗的电功率为:22220221sin m g r P I R B Lα== 【点睛】本题是电磁感应与力学知识的综合应用,在分析中要注意物体运动状态(加速、匀速或平衡),认真分析物体的受力情况,灵活选取物理规律,由平衡条件分析和求解cd 杆的受力情况.9.如图,光滑的平行金属导轨水平放置,导轨间距为L ,左侧接一阻值为R 的电阻,导轨其余部分电阻不计。
电磁感应计算题总结(易错题型)
电磁感应易错题1.如图所示,边长L=0.20m 的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R 0=1.0Ω,金属棒MN 与正方形导线框的对角线长度恰好相等,金属棒MN 的电阻r=0.20Ω。
导线框放置在匀强磁场中,磁场的磁感应强度B =0.50T ,方向垂直导线框所在平面向里。
金属棒MN 与导线框接触良好,且与导线框对角线BD 垂直放置在导线框上,金属棒的中点始终在BD 连线上。
若金属棒以v =4.0m/s 的速度向右匀速运动,当金属棒运动至AC 的位置时,求:(计算结果保留两位有效数字) (1)金属棒产生的电动势大小;(2)金属棒MN 上通过的电流大小和方向; (3)导线框消耗的电功率。
2.如图所示,正方形导线框abcd 的质量为m 、边长为l ,导线框的总电阻为R 。
导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直平面内,cd 边保持水平。
磁场的磁感应强度大小为B ,方向垂直纸面向里,磁场上、下两个界面水平距离为l 。
已知cd 边刚进入磁场时线框恰好做匀速运动。
重力加速度为g 。
(1)求cd 边刚进入磁场时导线框的速度大小。
(2)请证明:导线框的cd 边在磁场中运动的任意瞬间,导线框克服安培力做功的功率等于导线框消耗的电功率。
(3)求从线框cd 边刚进入磁场到ab 边刚离开磁场的过程中,线框克服安培力所做的功。
3.如图所示,在高度差h =0.50m 的平行虚线范围内,有磁感强度B =0.50T 、方向水平向里的匀强磁场,正方形线框abcd 的质量m =0.10kg 、边长L =0.50m 、电阻R =0.50Ω,线框平面与竖直平面平行,静止在位置“I”时,cd 边跟磁场下边缘有一段距离。
现用一竖直向上的恒力F =4.0N 向上提线框,该框由位置“Ⅰ”无初速度开始向上运动,穿过磁场区,最后到达位置“Ⅱ”(ab 边恰好出磁场),线框平面在运动中保持在竖直平面内,且cd 边保持水平。
高考物理法拉第电磁感应定律易错题知识点及练习题及答案解析
高考物理法拉第电磁感应定律易错题知识点及练习题及答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。
已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4Ω求:(1)磁通量变化率,回路的感应电动势。
(2)a 、b 两点间电压U ab 。
【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】(1)由B =(2+0.2t )T 得磁场的变化率为0.2T/s Bt∆=∆ 则磁通量的变化率为:0.04Wb/s BS t t∆Φ∆==∆∆ 根据E nt∆Φ=∆可知回路中的感应电动势为: 4V BE nnS t t∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:1122.4V ab ER R R U =+=答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。
(2)a 、b 两点间电压U ab 为2.4V 。
2.如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R =1.5Ω的电阻,质量为m =0.2Kg 、阻值r=0.5Ω的金属棒放在两导轨上,距离导轨最上端为L 2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.为保持ab 棒静止,在棒上施加了一平行于导轨平面的外力F ,g =10m/s 2求:(1)当t =1s 时,棒受到安培力F 安的大小和方向; (2)当t =1s 时,棒受到外力F 的大小和方向;(3)4s 后,撤去外力F ,金属棒将由静止开始下滑,这时用电压传感器将R 两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2m,求棒下滑该距离过程中通过金属棒横截面的电荷量q. 【答案】(1)0.5N ;方向沿斜面向上(2)0.5N ,方向沿斜面向上(3)1.5C 【解析】 【分析】 【详解】(1)0-3s 内,由法拉第电磁感应定律得:122V BE L L t t∆Φ∆===∆∆ T =1s 时,F 安=BIL 1=0.5N 方向沿斜面向上(2)对ab 棒受力分析,设F 沿斜面向下,由平衡条件: F +mg sin30° -F 安=0 F =-0.5N外力F 大小为0.5N .方向沿斜面向上 (3)q =It ,EI R r =+;E t∆Φ=∆; 1∆Φ=BL S 联立解得1 1.512C 1.5C 1.50.5BL S q R r ⨯⨯===++3.如图1所示,水平面上有两根足够长的光滑平行金属导轨MN 和PQ ,两导轨间距为l ,电阻均可忽略不计。
电磁感应现象易错题一轮复习及答案
电磁感应现象易错题一轮复习及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.某兴趣小组设计制作了一种磁悬浮列车模型,原理如图所示,PQ 和MN 是固定在水平地面上的两根足够长的平直导轨,导轨间分布着竖直(垂直纸面)方向等间距的匀强磁场1B 和2B ,二者方向相反.矩形金属框固定在实验车底部(车厢与金属框绝缘).其中ad边宽度与磁场间隔相等,当磁场1B 和2B 同时以速度0m 10s v =沿导轨向右匀速运动时,金属框受到磁场力,并带动实验车沿导轨运动.已知金属框垂直导轨的ab 边长0.1m L =m 、总电阻0.8R =Ω,列车与线框的总质量0.4kg m =,12 2.0T B B ==T ,悬浮状态下,实验车运动时受到恒定的阻力1h N .(1)求实验车所能达到的最大速率;(2)实验车达到的最大速率后,某时刻让磁场立即停止运动,实验车运动20s 之后也停止运动,求实验车在这20s 内的通过的距离;(3)假设两磁场由静止开始向右做匀加速运动,当时间为24s t =时,发现实验车正在向右做匀加速直线运动,此时实验车的速度为m 2s v =,求由两磁场开始运动到实验车开始运动所需要的时间.【答案】(1)m 8s ;(2)120m ;(3)2s 【解析】 【分析】 【详解】(1)实验车最大速率为m v 时相对磁场的切割速率为0m v v -,则此时线框所受的磁场力大小为2204-B L v v F R=()此时线框所受的磁场力与阻力平衡,得:F f = 2m 028m/s 4fRv v B L =-= (2)磁场停止运动后,线圈中的电动势:2E BLv = 线圈中的电流:EI R=实验车所受的安培力:2F BIL =根据动量定理,实验车停止运动的过程:m F t ft mv ∑∆+=整理得:224m B L vt ft mv R∑∆+=而v t x ∑∆=解得:120m x =(3)根据题意分析可得,为实现实验车最终沿水平方向做匀加速直线运动,其加速度必须与两磁场由静止开始做匀加速直线运动的加速度相同,设加速度为a ,则t 时刻金属线圈中的电动势 2)E BLat v =-( 金属框中感应电流 2)BL at v I R-=( 又因为安培力224)2B L at v F BIL R(-==所以对试验车,由牛顿第二定律得 224)B L at v f ma R(--=得 21.0m/s a =设从磁场运动到实验车起动需要时间为0t ,则0t 时刻金属线圈中的电动势002E BLat =金属框中感应电流002BLat I R=又因为安培力2200042B L at F BI L R==对实验车,由牛顿第二定律得:0F f =即2204B L at f R= 得:02s t =3.图中装置在水平面内且处于竖直向下的匀强磁场中,足够长的光滑导轨固定不动。
法拉第电磁感应定律易错题知识归纳总结附答案
法拉第电磁感应定律易错题知识归纳总结附答案一、高中物理解题方法:法拉第电磁感应定律1.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220B l t m【解析】 【分析】 【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫=-⎪⎝⎭④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=ER⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m2.如图甲所示,光滑导体轨道PMN 和P ′M ′N ′是两个完全一样的轨道,是由半径为r 的四分之一圆弧轨道和水平轨道组成,圆弧轨道与水平轨道在M 和M ′点相切,两轨道并列平行放置,MN 和M ′N ′位于同一水平面上,两轨道之间的距离为L ,PP ′之间有一个阻值为R 的电阻,开关K 是一个感应开关(开始时开关是断开的),MNN ′M ′是一个矩形区域内有竖直向上的磁感应强度为B 的匀强磁场,水平轨道MN 离水平地面的高度为h ,其截面图如图乙所示.金属棒a 和b 质量均为m 、电阻均为R ,在水平轨道某位置放上金属棒b ,静止不动,a 棒从圆弧顶端PP ′处静止释放后,沿圆弧轨道下滑,若两导体棒在运动中始终不接触,当两棒的速度稳定时,两棒距离2222mR grx B L=,两棒速度稳定之后,再经过一段时间,b 棒离开轨道做平抛运动,在b 棒离开轨道瞬间,开关K 闭合.不计一切摩擦和导轨电阻,已知重力加速度为g .求:(1)两棒速度稳定时的速度是多少? (2)两棒落到地面后的距离是多少?(3)从a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳热是多少? 【答案】(1)12gr v =2rhx ∆= (3) 12Q mgr =【解析】 【分析】 【详解】(1)a 棒沿圆弧轨道运动到最低点M 时,由机械能守恒定律得:2012mgr mv =解得a 棒沿圆弧轨道最低点M 时的速度02v gr =从a 棒进入水平轨道开始到两棒达到相同速度的过程中,两棒在水平方向受到的安培力总是大小相等,方向相反,所以两棒的总动量守恒.由动量守恒定律得:012mv mv =解得两棒以相同的速度做匀速运动的速度0122gr v v ==(2)经过一段时间,b 棒离开轨道后,a 棒与电阻R 组成回路,从b 棒离开轨道到a 棒离开轨道过程中a 棒受到安培力的冲量大小:2222A B L xI ILBt BL Rit R∆Φ===由动量定理:21A I mv mv --=解得22grv =由平抛运动规律得,两棒落到地面后的距离()1222h rh x v v g ∆=-= (3)由能量守恒定律可知,a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳热:220111(2)22Q mv m v =- 解得:12Q mgr =3.如图所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直向下的磁场中,整个磁场由n 个宽度皆为x0的条形匀强磁场区域1、2、3、…n 组成,从左向右依次排列,磁感应强度的大小分别为B 、2B 、3B 、…nB ,两导轨左端MP 间接入电阻R ,一质量为m 的金属棒ab 垂直于MN 、PQ 放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应易错题1.如图所示,边长L=0.20m 的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R 0=1.0Ω,金属棒MN 与正方形导线框的对角线长度恰好相等,金属棒MN 的电阻r=0.20Ω。
导线框放置在匀强磁场中,磁场的磁感应强度B =0.50T ,方向垂直导线框所在平面向里。
金属棒MN 与导线框接触良好,且与导线框对角线BD 垂直放置在导线框上,金属棒的中点始终在BD 连线上。
若金属棒以v =4.0m/s 的速度向右匀速运动,当金属棒运动至AC 的位置时,求:(计算结果保留两位有效数字)(1)金属棒产生的电动势大小;(2)金属棒MN 上通过的电流大小和方向; (3)导线框消耗的电功率。
2.如图所示,正方形导线框abcd 的质量为m 、边长为l ,导线框的总电阻为R 。
导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直平面内,cd 边保持水平。
磁场的磁感应强度大小为B ,方向垂直纸面向里,磁场上、下两个界面水平距离为l 。
已知cd 边刚进入磁场时线框恰好做匀速运动。
重力加速度为g 。
(1)求cd 边刚进入磁场时导线框的速度大小。
(2)请证明:导线框的cd 边在磁场中运动的任意瞬间,导线框克服安培力做功的功率等于导线框消耗的电功率。
(3)求从线框cd 边刚进入磁场到ab 边刚离开磁场的过程中,线框克服安培力所做的功。
3.如图所示,在高度差h =0.50m 的平行虚线范围内,有磁感强度B =0.50T 、方向水平向里的匀强磁场,正方形线框abcd 的质量m =0.10kg 、边长L =0.50m 、电阻R =0.50Ω,线框平面与竖直平面平行,静止在位置“I”时,cd 边跟磁场下边缘有一段距离。
现用一竖直向上的恒力F =4.0N 向上提线框,该框由位置“Ⅰ”无初速度开始向上运动,穿过磁场区,最后到达位置“Ⅱ”(ab 边恰好出磁场),线框平面在运动中保持在竖直平面内,且cd 边保持水平。
设cd 边刚进入磁场时,线框恰好开始做匀速运动。
(g 取10m /s 2)a b d cll求:(1)线框进入磁场前距磁场下边界的距离H 。
(2)线框由位置“Ⅰ”到位置“Ⅱ”的过程中,恒力F 做的功是多少?线框内产生的热量又是多少?4.如图所示,水平地面上方的H 高区域内有匀强磁场,水平界面PP '是磁场的上边界,磁感应强度为B ,方向是水平的,垂直于纸面向里。
在磁场的正上方,有一个位于竖直平面内的闭合的矩形平面导线框abcd ,ab 长为l 1,bc 长为l 2,H >l 2,线框的质量为m ,电阻为R 。
使线框abcd 从高处自由落下,ab 边下落的过程中始终保持水平,已知线框进入磁场的过程中的运动情况是:cd 边进入磁场以后,线框先做加速运动,然后做匀速运动,直到ab 边到达边界PP '为止。
从线框开始下落到cd 边刚好到达水平地面的过程中,线框中产生的焦耳热为Q 。
求:(1)线框abcd 在进入磁场的过程中,通过导线的某一横截面的电量是多少? (2)线框是从cd 边距边界PP'多高处开始下落的? (3)线框的cd 边到达地面时线框的速度大小是多少?5.如图所示,质量为m 、边长为l 的正方形线框,从有界的匀强磁场上方由静止自由下落.线框电阻为R ,匀强磁场的宽度为H (l <H ),磁感应强度为B ,线框下落过程中ab 边与磁场边界平行且沿水平方向.已知ab 边刚进入磁场和刚穿出磁场时线框都作减速运动,加速度大小都是31g .求:(1)ab 边刚进入磁场时与ab 边刚出磁场时的速度大小. (2)cd 边刚进入磁场时,线框的速度大小. (3)线框进入磁场的过程中,产生的热量.6.如图所示,竖直平面内有一半径为r 、内阻为R 1、粗细均匀的光滑半圆形金属环,在M 、 N 处与相距为2r 、电阻不计的平行光滑金属轨道ME 、NF 相接,EF 之间接有电阻R 2,已知 R 1=12R ,R 2=4R 。
在MN 上方及CD 下方有水平方向的匀强磁场I 和II ,磁感应强度大小 均为B 。
现有质量为m 、电阻不计的导体棒ab ,从半圆环的最高点A 处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,高平行轨道中够长。
已知导体棒ab 下落r /2时的速度大小为v 1,下落到MN 处的速度大小为v 2。
(1)求导体棒ab 从A 下落r /2时的加速度大小; (2)若导体棒ab 进入磁场II 后棒中电流大小始终不变,求磁场I 和II 之间的距离h 和R 2上的电功率P 2;(3)若将磁场II 的CD 边界略微下移,导体棒ab 刚进入磁场II 时Hh l 2l 1a b c dP P ′ Bb ad cH速度大小为v3,要使其在外力F作用下做匀加速直线运动,加速度大小为a,求所加外力F 随时间变化的关系式。
7. 如图所示,空间存在垂直纸面向里的两个匀强磁场区域,磁感应强度大小均为B ,磁场 Ⅰ宽为L ,两磁场间的无场区域为Ⅱ,宽也为L ,磁场Ⅲ宽度足够大。
区域中两条平行直光 滑金属导轨间距为l ,不计导轨电阻,两导体棒ab 、cd 的质量均为m ,电阻均为r 。
ab 棒静 止在磁场Ⅰ中的左边界处,cd 棒静止在磁场Ⅲ中的左边界处,对ab 棒施加一个瞬时冲量, ab 棒以速度v 1开始向右运动。
(1)求ab 棒开始运动时的加速度大小;(2)ab 棒在区域Ⅰ运动过程中,cd 棒获得的最大速度为v 2,求ab 棒通过区域Ⅱ的时间; (3)若ab 棒在尚未离开区域Ⅱ之前,cd 棒已停止运动,求:ab 棒在区域Ⅱ运动过程中产生的焦耳热。
8.如图所示,一正方形平面导线框abcd ,经一条不可伸长的绝缘轻绳与另一正方形平面导线框a 1b 1c 1d 1相连,轻绳绕过两等高的轻滑轮,不计绳与滑轮间的摩擦.两线框位于同一竖直平面内,ad 边和a 1d 1边是水平的.两线框之间的空间有一匀强磁场区域,该区域的上、下边界MN 和PQ 均与ad 边及a 1d 1边平行,两边界间的距离为h =78.40 cm .磁场方向垂直线框平面向里.已知两线框的边长均为l = 40. 00 cm ,线框abcd 的质量为m 1 = 0. 40 kg ,电阻为R 1= 0. 80Ω。
线框a 1 b 1 c 1d 1的质量为m 2 = 0. 20 kg ,电阻为R 2 =0. 40Ω.现让两线框在磁场外某处开始释放,两线框恰好同时以速度v =1.20 m/s 匀速地进入磁场区域,不计空气阻力,重力加速度取g =10 m/s 2.(1)求磁场的磁感应强度大小.(2)求ad 边刚穿出磁场时,线框abcd 中电流的大小.9.如图所示,倾角为θ=37o 、电阻不计的、间距L =0.3m 且足够长的平行金属导轨处在磁感强 度B =1T 、方向垂直于导轨平面的匀强磁场中.导轨两端各接一个阻值R 0=2Ω的电阻.在平行 导轨间跨接一金属棒,金属棒质量m =1kg 电阻r =2Ω,其与导轨间的动摩擦因数μ=0.5。
金 属棒以平行于导轨向上的初速度υ0=10m/s 上滑直至上升到最高点的过程中,通过上端电阻 的电量Δq =0.1C (g =10m/s 2)(1)金属棒的最大加速度;(2)上端电阻R 0中产生的热量。
c d a b LL l Ⅰ ⅢⅡ R 0 R 0v 0θ10.如图所示,金属框架竖直放置在绝缘地面上,框架上端接有一电容为C 的电容器,框架上有一质量为m 、长为L 的金属棒平行于地面放置,与框架接触良好无摩擦。
离地高为h 、磁感应强度为B 匀强磁场与框架平面相垂直,开始时电容器不带电,自静止起将棒释放,求棒落到地面的时间。
不计各处电阻。
11.如图所示,一直导体棒质量为m 、长为l 、电阻为r ,其两端放在位于水平面内间距也为l 的光滑平行导轨上,并与之密接;棒左侧两导轨之间连接一可控制的负载电阻(图中未画出);导轨置于匀强磁场中,磁场的磁感应强度大小为B ,方向垂直于导轨所在平面。
开始时,给导体棒一个平行于导轨的初速度v 0。
在棒的运动速度由v 0减小至v 1的过程中,通过控制负载电阻的阻值使棒中的电流强度I 保持恒定。
导体棒一直在磁场中运动。
若不计导轨电阻,求此过程中导体棒上感应电动势的平均值和负载电阻上消耗的平均功率。
12.磁悬浮列车运行的原理是利用超导体的抗磁作用使列车向上浮起,同时通过周期性变换磁极方向而获得推进动力,其推进原理可简化为如图所示的模型,在水平面上相距L 的两根平行导轨间,有竖直方向且等距离分布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽度都是l ,相间排列,所有这些磁场都以速度v 向右匀速运动,这时跨在两导轨间的长为L 宽为l 的金属框abcd (悬浮在导轨上方)在磁场力作用下也将会向右运动,设直导轨间距L = 0.4m ,B = 1T ,磁场运动速度为v = 5 m/s ,金属框的电阻R = 2Ω。
试问:(1)金属框为何会运动,若金属框不受阻力时金属框将如何运动?(2)当金属框始终受到f = 1N 阻力时,金属框最大速度是多少? (3)当金属框始终受到1N 阻力时,要使金属框维持最大速度,每秒钟需消耗多少能量?这些能量是谁提供的?B hC B 1B 2vabcdlLlL13.图中虚线为相邻两个匀强磁场区域1和2的边界,两个区域的磁场方向相反且都垂直于纸面,磁感应强度大小都为B ,两个区域的高度都为l 。
一质量为m 、电阻为R 、边长也为l 的单匝矩形导线框abcd ,从磁场区上方某处竖直自由下落,ab 边保持水平且线框不发生转动。
当ab 边刚进入区域1时,线框恰开始做匀速运动;当线框的ab 边下落到区域2的中间位置时,线框恰又开始做匀速运动。
求:(1)当ab 边刚进入区域1时做匀速运动的速度v 1;(2)当ab 边刚进入磁场区域2时,线框的加速度的大小与方向; (3)线框从开始运动到ab 边刚要离开磁场区域2时的下落过程中产生的热量Q 。
14.半径为a 的圆形区域内有均匀磁场,磁感强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径O O '的瞬时(如图所示)MN 中的电动势和流过灯L 1的电流。
(2)撤去中间的金属棒MN 将右面的半圆环O OL '2以O O '为轴向上翻转90º,若此时磁场随时间均匀变化,其变化率为ΔB/Δt =(4 /π)T/s ,求L 1的功率。