电磁感应常考的几种题型
(高中段)第20讲难点增分电磁感应计算题中常考的四种题型
(3)如图丙所示,在第(2)问的基础上在 Q、N 处各接上一根相互平行的足够 长的水平光滑金属导轨 QR、NS,QR 与 PQ 在同一竖直面内,在与 QN 平行的 GH 边界右侧导轨间有竖直向下的匀强磁场 B2=0.5 T,QG 间导轨表面有绝缘 光滑膜,棒 ab 经过 QN 时速度大小 v=4 m/s 保持不变,求最终电容器上所带的 电荷量。
[典例 2] (2019·浙江 4 月选考)如图所示,倾角 θ=37°、间距 l=0.1 m 的 足够长金属导轨底端接有阻值 R=0.1 Ω 的电阻,质量 m=0.1 kg 的金属棒 ab 垂直导轨放置,与导轨间的动摩擦因数 μ=0.45。建立原点位于底端、方向沿 导轨向上的坐标轴 x。在 0.2 m≤x≤0.8 m 区间有垂直导轨平面向上的匀强磁 场。从 t=0 时刻起,棒 ab 在沿 x 轴正方向的外力 F 作用下,从 x=0 处由静 止开始沿斜面向上运动,其速度 v 与位移 x 满足 v=kx(可导出 a=kv),k=5 s -1。当棒 ab 运动至 x1=0.2 m 处时,电阻 R 消耗的电功率 P=0.12 W,运动至 x2=0.8 m 处时撤去外力 F,此后棒 ab 将继续运动,最终返回至 x=0 处。棒 ab 始终保持与导轨垂直,不计其他电阻,求:(提示:可以用 F-x 图像下的“面 积”代表力 F 做的功,sin 37°=0.6,g 可取 10 m/s2)
(1)通过棒 cd 的电流 Icd; (2)电动机对该装置的输出功率 P; (3)电动机转动角速度 ω 与弹簧伸长量 x 之间的函数关系。 [解析] (1)S 断开,cd 棒静止有 mg=kx0 S 闭合,cd 棒静止时受到的安培力 F=IcdB2l cd 棒静止有 mg+IcdB2l=kx 得:Icd=mgBx2l-x0x0。
高考电磁感应经典题型汇总
1.(单选)如图甲所示,长直导线与闭合金属线框位于同一平面内,长直导线中的电流i 随时间t 的变化关系如图乙所示.在0﹣2T 时间内,直导线中电流向上,则在2T﹣T 时间内,线框中感应电流的方向与所受安培力情况是( )A .感应电流方向为顺时针,线框受安培力的合力方向向左B .感应电流方向为逆时针,线框受安培力的合力方向向右C .感应电流方向为顺时针,线框受安培力的合力方向向右D .感应电流方向为逆时针,线框受安培力的合力方向向左答案及解析:.C 解:在﹣T 时间内,直线电流方向向下,根据安培定则,知导线右侧磁场的方向垂直纸面向外,电流逐渐增大,则磁场逐渐增强,根据楞次定律,金属线框中产生顺时针方向的感应电流.根据左手定则,知金属框左边受到的安培力方向水平向右,右边受到的安培力水平向左,离导线越近,磁场越强,则左边受到的安培力大于右边受到的安培力,所以金属框所受安培力的合力水平向右.故C 正确,A 、B 、D 错误.故选:C .2.(单选)如图所示,a 、b 、c 三个线圈是同心圆,b 线圈上连接有直流电源E 和电键K ,则下列说法正确的是( )A .在K 闭合的一瞬间,线圈a 中有逆时针方向的瞬时电流,有收缩趋势B .在K 闭合的一瞬间,线圈c 中有顺时针方向的瞬时电流,有收缩趋势C .在K 闭合电路稳定后,再断开K 的一瞬间,线圈c 中有感应电流,线圈a 中没有感应电流D .在K 闭合的一瞬间,线圈b 中有感应电动势;在K 闭合电路稳定后,再断开K 的一瞬间,线圈b 中仍然有感应电动势答案及解析:.D 解:A 、K 闭合时线圈b 中顺时针的电流,根据右手定则可知内部有向里增大的磁场,则a 线圈产生阻碍原磁通量变化的电流;根据楞次定律可知,电流方向为逆时针,线圈受到向外的安培力,故有扩张的趋势;故A 错误;B 、根据楞次定律可知,c 中感应电流为逆时针且有收缩的趋势;故B 错误;C 、在K 闭合电路稳定后,再断开K 的一瞬间,两线圈中均有磁通量的变化,故线圈中均有感应电流;故C 错误D 、在K 闭合的一瞬间,线圈b 中有感应电动势;在K 闭合电路稳定后,再断开K 的一瞬间,线圈b 中仍然有感应电动势;故D 正确;故选:D .3.(多选)如图所示,一电子以初速度v 沿与金属板平行方向飞入MN 极板间,突然发现电子向M 板偏转,若不考虑磁场对电子运动方向的影响,则产生这一现象的原因可能是( )A .开关S 闭合瞬间B .开关S 由闭合后断开瞬间C .开关S 是闭合的,变阻器滑片P 向右迅速滑动D .开关S 是闭合的,变阻器滑片P 向左迅速滑动答案及解析:AD 解:电子向M 板偏转,说明电子受到向左的电场力,两金属板间的电场由M 指向N ,M 板电势高,N 板电势低,这说明:与两金属板相连的线圈产生的感应电动势:左端电势高,与N 板相连的右端电势低;A 、开关S 闭合瞬间,由安培定则可知,穿过线圈的磁通量向右增加,由楞次定律知在右侧线圈中感应电流的磁场方向向左,产生左正右负的电动势,电子向M板偏振,A正确;B、开关S由闭合后断开瞬瞬间,穿过线圈的磁通量减少,由楞次定律知在右侧线圈中产生左负右正的电动势,电子向N板偏振,B错误;C、开关S是闭合的,变阻器滑片P向右迅速滑动,变阻器接入电路的电阻增大,电流减小,穿过线圈的磁通量减小,由楞次定律知在上线圈中产生左负右正的电动势,电子向N偏振,C错误;D、开关S是闭合的,变阻器滑片P向左迅速滑动,滑动变阻器接入电路的阻值减小,电流增大,穿过线圈的磁通量增大,由楞次定律知在上线圈中感应出左正右负的电动势,电子向M偏振,D 正确.故选:AD.4.(单选)如图所示,在磁感应强度大小为B、方向竖直向上的匀强磁场中,有一质量为m、阻值为R的闭合矩形金属线框abcd用绝缘轻质细杆悬挂在O点,并可绕O点摆动.金属线框从右侧某一位置静止开始释放,在摆动到左侧最高点的过程中,细杆和金属线框平面始终处于同一平面,且垂直纸面.则线框中感应电流的方向是()A.a→b→c→d→aB.d→c→b→a→dC.先是d→c→b→a→d,后是a→b→c→d→aD.先是a→b→c→d→a,后是d→c→b→a→d答案及解析:B解:由静止释放到最低点过程中,磁通量减小,且磁场方向向上,由楞次定律,感应电流产生磁场也向上,再由右手螺旋定则可知,感应电流的方向:d→c→b→a→d;同理,当继续向右摆动过程中,向上的磁通量增大,根据楞次定律可知,电流方向是d→c→b→a→d;故选:B.5.(单选)如图甲所示,电路的左侧是一个电容为C的电容器,电路的右侧是一个环形导体,环形导体所围的面积为S.在环形导体中有一垂直纸面向里的匀强磁场,磁感应强度的大小随时间变化的规律如图乙所示.则在0~t0时间内电容器()A.上极板带正电,所带电荷量为012)( t BB CS-B.上极板带正电,所带电荷量为012)(t BBC-C.上极板带负电,所带电荷量为012)( t BB CS-D.上极板带负电,所带电荷量为012)(t BBC-答案及解析:.A解:根据法拉第电磁感应定律,电动势E=,电容器两端的电压等于电源的电动势,所以电容器所带的带电量.根据楞次定律,在环形导体中产生的感应电动势的方向为逆时针方向,所以电容器的上极板带正电.故A正确,B、C、D错误.故选A.6.(单选)如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a ﹣b ﹣c ﹣aC .U bc =﹣21Bl 2ω,金属框中无电流D .U bc =21Bl 2ω,金属框中电流方向沿a ﹣c ﹣b ﹣a 答案及解析:.C 解:AB 、导体棒bc 、ac 做切割磁感线运动,产生感应电动势,根据右手定则,感应电动势的方向从b 到c ,或者说是从a 到c ,故U a =U b <U c ,磁通量一直为零,不变,故金属框中无电流,故A 错误,B 错误; CD 、感应电动势大小=Bl ()=Bl 2ω,由于U b <U c ,所以U bc =﹣Bl 2ω,磁通量一直为零,不变,金属框中无电流,故C 正确,D 错误;故选:C .7.(多选)如图所示,一个矩形线框从匀强磁场的上方自由落下,进入匀强磁场中,然后再从磁场中穿出.已知匀强磁场区域的宽度L 大于线框的高度h ,那么下列说法中正确的是( )A .线框只在进入和穿出磁场的过程中,才有感应电流产生B .线框从进入到穿出磁场的整个过程中,都有感应电流产生C .线框在进入和穿出磁场的过程中,都是机械能变成电能D .整个线框都在磁场中运动时,机械能转变成内能答案及解析:AC 解:A 、B 、线框在进入和穿出磁场的过程中,穿过线框的磁通量发生变化,有感应电流产生,而整个线框都在磁场中运动时,线框的磁通量不变,没有感应电流产生.故A 正确,B 错误.C 、线框在进入和穿出磁场的过程中,产生感应电流,线框的机械能减小转化为电能.故C 正确.D 、整个线框都在磁场中运动时,没有感应电流产生,线框的重力势能转化为动能,机械能守恒.故D 错误.故选:AC .8.(多选)如图所示,相距为d 的两条水平虚线L 1、L 2之间是方向水平向里的匀强磁场,磁感应强度为B ,正方形线圈abcd 边长为L (L <d ),质量为m 、电阻为R ,将线圈在磁场上方h 高处静止释放,cd 边刚进入磁场时速度为v 0,cd 边刚离开磁场时速度也为v 0,则线圈穿过磁场的过程中(从cd 边刚进入磁场一直到ab 边离开磁场为止):( )A .感应电流所做的功为2mgdB .线圈的最小速度可能为22L B mgR C .线圈的最小速度一定是)(2d L h g -+D .线圈穿出磁场的过程中,感应电流为逆时针方向答案及解析:.ABC解:A、据能量守恒,研究从cd边刚进入磁场到cd边刚穿出磁场的过程:动能变化量为0,重力势能转化为线框进入磁场的过程中产生的热量,Q=mgd.cd边刚进入磁场时速度为v0,cd边刚离开磁场时速度也为v0,所以从cd边刚穿出磁场到ab边离开磁场的过程,线框产生的热量与从cd边刚进入磁场到ab边刚进入磁场的过程产生的热量相等,所以线圈从cd边进入磁场到ab边离开磁场的过程,产生的热量Q′=2mgd,感应电流做的功为2mgd,故A正确.B、线框可能进入磁场先做减速运动,在完全进入磁场前已做匀速运动,刚完全进入磁场时的速度最小,有:mg=,解得可能的最小速度v=,故B正确.C、因为进磁场时要减速,线圈全部进入磁场后做匀加速运动,则知线圈刚全部进入磁场的瞬间速度最小,线圈从开始下落到线圈刚完全进入磁场的过程,根据能量守恒定律得:mg(h+L)=Q+,解得最小速度v=,故C正确.D、线圈穿出磁场的过程,由楞次定律知,感应电流的方向为顺时针,故D错误.故选:ABC.9.(单选)在竖直方向的匀强磁场中,水平放置一个矩形的金属导体框,规定磁场方向向上为正,导体框中电流的正方向如图所示,当磁场的磁感应强度B随时间t如图变化时,下图中正确表示导体框中感应电流变化的是()A.B.C.D.答案及解析:.C解:根据法拉第电磁感应定律有:E=n=n s,因此在面积、匝数不变的情况下,感应电动势与磁场的变化率成正比,即与B﹣t图象中的斜率成正比,由图象可知:0﹣2s,斜率不变,故形成的感应电流不变,根据楞次定律可知感应电流方向顺时针(俯视)即为正值,而在2﹣4s斜率不变,电流方向为逆时针,整个过程中的斜率大小不变,所以感应电流大小不变;根据楞次定律,向上的磁场先减小,再向下磁场在增大,则感应电流方向为逆时针,即为负方向,故ABD错误,C正确.故选:C.10.(多选)如图甲所示,正六边形导线框abcdef放在匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t的变化关系如图乙所示.t=0时刻,磁感应强度B的方向垂直纸面向里,设产生的感应电流顺时针方向为正、竖直边cd所受安培力的方向水平向左为正.则下面关于感应电流i和cd所受安培力F随时间t变化的图象正确的是()A.B.C.D.答案及解析:.AC解:A、0~2s内,磁场的方向垂直纸面向里,且逐渐减小,根据楞次定律,感应电流的方向为顺时针方向,为正值.根据法拉第电磁感应定律,E==B0S为定值,则感应电流为定值,.在2~3s内,磁感应强度方向垂直纸面向外,且逐渐增大,根据楞次定律,感应电流方向为顺时针方向,为正值,大小与0~2s 内相同.在3~4s内,磁感应强度垂直纸面向外,且逐渐减小,根据楞次定律,感应电流方向为逆时针方向,为负值,大小与0~2s内相同.在4~6s内,磁感应强度方向垂直纸面向里,且逐渐增大,根据楞次定律,感应电流方向为逆时针方向,为负值,大小与0~2s内相同.故A正确,B错误.C、在0~2s内,磁场的方向垂直纸面向里,且逐渐减小,电流恒定不变,根据F A=BIL,则安培力逐渐减小,cd边所受安培力方向向右,为负值.0时刻安培力大小为F=2B0I0L.在2s~3s内,磁感应强度方向垂直纸面向外,且逐渐增大,根据F A=BIL,则安培力逐渐增大,cd 边所受安培力方向向左,为正值,3s末安培力大小为B0I0L.在2~3s内,磁感应强度方向垂直纸面向外,且逐渐增大,则安培力大小逐渐增大,cd边所受安培力方向向右,为负值,第4s初的安培力大小为B0I0L.在4~6s内,磁感应强度方向垂直纸面向里,且逐渐增大,则安培力大小逐渐增大,cd边所受安培力方向向左,6s末的安培力大小2B0I0L.故C正确,D错误.故选AC.11.(单选)圆形导线框固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向外,磁感应强度B随时间变化规律如图示,若规定逆时针方向为感应电流i的正方向,下列图中正确的是()A.B.C.D.答案及解析:C解:由B﹣t图象可知,0﹣1s内,线圈中磁通量增大,由楞次定律可知,电路中电流方向为逆时针,即电流为正方向,故BD错误;由楞次定律可知,1﹣2s内电路中的电流为顺时针,为正方向,2﹣3s内,电路中的电流为顺时针,为正方向,3﹣4s内,电路中的电流为逆时针,为正方向,A错误,C正确;故选:C.12.(单选)一正三角形导线框ABC(高度为a)从图示位置沿x轴正向匀速穿过两匀强磁场区域.两磁场区域磁感应强度大小均为B、方向相反、垂直于平面、宽度均为a.图乙反映感应电流I与线框移动距离x的关系,以逆时针方向为电流的正方向.图象正确的是()A.B.C.D.答案及解析:.C解:A、x在a~2a范围,线框穿过两磁场分界线时,BC、AC边在右侧磁场中切割磁感线,有效切割长度逐渐增大,产生的感应电动势E1增大,AC边在左侧磁场中切割磁感线,产生的感应电动势E2增大,两个电动势串联,总电动势E=E1+E2增大.故A错误;B、x在0~a范围,线框穿过左侧磁场时,根据楞次定律,感应电流方向为逆时针,为正值.故B错误;CD、在2a~3a,线框穿过左侧磁场时,根据楞次定律,感应电流方向为逆时针,为正值.故C正确,D错误.故选:C.13.(多选)如图,A、B为两个完全相同的灯泡,L为自感线圈(自感系数较大;直流电阻不计),E为电源,S为开关.下列说法正确的是()A.闭合开关稳定后,A、B一样亮B.闭合开关的瞬间,A、B同时亮,但A很快又熄灭C.闭合开关稳定后,断开开关,A闪亮后又熄灭D.闭合开关稳定后,断开开关,A、B立即同时熄灭答案及解析:.BC解:A、B刚闭合S的瞬间,电源的电压同时加到两灯上,由于L的自感作用,L瞬间相当于断路,所以电流通过两灯,两灯同时亮.随着电流的逐渐稳定,L将A灯短路,所以A灯很快熄灭,B灯变得更亮,故A错误,B正确.C、D闭合S待电路达到稳定后,再将S断开,B灯立即熄灭,而L与A灯组成闭合回路,线圈产生自感电动势,相当于电源,A灯闪亮一下而后熄灭,故C正确,D错误.故选:BC14.(单选)如图所示,E为电池,L是电阻可忽略不计、自感系数足够大的线圈,D1、D2是两个规格相同的灯泡,S 是控制电路的开关、对于这个电路,下列说法中不正确的是()A.刚闭合S的瞬间,通过D1、D2的电流大小相等B.刚闭合S的瞬间,通过D1、D2的电流大小不等C.闭合S待电路达到稳定后,D1熄灭,D2比S刚闭合时亮D.闭合S待电路达到稳定后,再将S断开的瞬间,D1不立即熄灭,D2立即熄灭答案及解析:.B解:A、S闭合瞬间,由于自感线圈相当于断路,所以两灯是串联,电流相等,故A正确,B错误;C、闭合开关S待电路达到稳定时,D1被短路,D2比开关S刚闭合时更亮,C正确;D、S闭合稳定后再断开开关,D2立即熄灭,但由于线圈的自感作用,L相当于电源,与D1组成回路,D1要过一会在熄灭,故D正确;本题选择错误的,故选:B.15.(单选)如图所示的电路中,A1、A2是完全相同的灯泡,线圈L的自感系数较大,它的电阻与定值电阻R相等.下列说法正确的是()A.闭合开关S,A1先亮、A2后亮,最后它们一样亮B.闭合开关S,A1、A2始终一样亮C.断开开关S,A1、A2都要过一会才熄灭D.断开开关S,A2立刻熄灭、A1过一会才熄灭答案及解析:C解:A、闭合开关S,电阻R不产生感应电动势,A2立即发光.线圈中电流增大,产生自感电动势,根据楞次定律得知,自感电动势阻碍电流的增大,电流只能逐渐增大,A1逐渐亮起来,所以闭合开关S,A2先亮、A1后亮,最后它们一样亮.故AB错误.C、D断开开关S时,A2灯原来的电流突然消失,线圈中电流减小,产生感应电动势,相当于电源,感应电流流过A1、A2和R组成的回路,所以A1、A2都要过一会才熄灭.故C正确,D错误.16.(多选)如图所示,相同电灯A和B的电阻为R,定值电阻的阻值也为R,L是自感线圈.当S1闭合、S2断开且电路稳定时,A、B亮度相同.再闭合S2,待电路稳定后将S1断开.下列说法中正确的是()A.A灯将比原来更亮一些后再熄灭B.B灯立即熄灭C.没有电流通过B灯D.有电流通过A灯,方向为b→a答案及解析:.BCD解:A、由于自感形成的电流是在L原来电流的基础上逐渐减小的,并没有超过A灯原来电流,故A灯虽推迟一会熄灭,但不会比原来更亮,故A错误.B、S1闭合、S2断开且电路稳定时两灯亮度相同,说明L的直流电阻亦为R.闭合S2后,L与A灯并联,R与B灯并联,它们的电流均相等.当断开后,L将阻碍自身电流的减小,即该电流还会维持一段时间,在这段时间里,因S2闭合,电流不可能经过B灯和R,只能通过A灯形成b→A→a→L→c→b的电流,所以BCD正确;故选:BCD.17.(多选)如图中甲、乙两图,电阻R和自感线圈L的阻值都较小,接通开关S,电路稳定,灯泡L发光,则()A.在电路甲中,断开S,L逐渐变暗B.在电路甲中,断开S,L突然亮一下,然后逐渐变暗C.在电路乙中,断开S,L逐渐变暗D.在电路乙中,断开S,L突然亮一下,然后逐渐变暗答案及解析:AD解:A、在电路甲中,断开S,由于线圈阻碍电流变小,导致L将逐渐变暗.故A正确;B、在电路甲中,由于电阻R和自感线圈L的电阻值都很小,所以通过灯泡的电流比电阻的电流小,当断开S,L将不会变得更亮,但会渐渐变暗.故B错误;C、在电路乙中,由于电阻R和自感线圈L的电阻值都很小,所以通过灯泡的电流比线圈的电流小,断开S时,由于线圈阻碍电流变小,导致L将变得更亮,然后逐渐变暗.故C错误;D、在电路乙中,由于电阻R和自感线圈L的电阻值都很小,所以通过灯泡的电流比线圈的电流小,断开S时,由于线圈阻碍电流变小,导致L将变得更亮,然后逐渐变暗.故D正确;故选:AD.18.(单选)如图所示装置中,cd杆光滑且原来静止.当ab杆做如下哪些运动时,cd杆将向右移动()A.向右匀速运动B.向右加速运动C.向左加速运动D.向左匀速运动答案及解析:.B解:A、ab杆向右匀速运动,在ab杆中产生恒定的电流,该电流在线圈L1中产生恒定的磁场,在L2中不产生感应电流,所以cd杆不动.故A错误.B、ab杆向右加速运动,根据右手定则,知在ab杆上产生增大的a到b的电流,根据安培定则,在L1中产生向上增强的磁场,该磁场向下通过L2,根据楞次定律,在cd杆上产生c到d的电流,根据左手定则,受到向右的安培力,向右运动.故B正确.C、ab杆向左加速运动,根据右手定则,知在ab杆上产生增大的b到a的电流,根据安培定则,在L1中产生向下增强的磁场,该磁场向上通过L2,根据楞次定律,在cd杆上产生d到c的电流,根据左手定则,受到向左的安培力,向左运动.故C错误.D、ab杆向左匀速运动,根据右手定则,知在ab杆上产生不变的b到a的电流,根据安培定则,在L1中产生向下不变的磁场,该磁场向上通过L2,因此没有感应电流,则没有安培力,所以不会移动.故D错误.故选:B.20.截面积为0.2m 2的100匝圆形线圈A 处在匀强磁场中,磁场方向垂直线圈平面向里,如图所示,磁感应强度正按t B ∆∆=0.02T/s 的规律均匀减小,开始时S 未闭合.R 1=4Ω,R 2=6Ω,C=30µF ,线圈内阻不计.求:(1)S 闭合后,通过R 2的电流大小;(2)S 闭合后一段时间又断开,则S 切断后通过R 2的电量是多少?解:(1)磁感应强度变化率的大小为=0.02 T/s ,B 逐渐减弱, 所以E=n S=100×0.02×0.2 V=0.4 V I== A=0.04 A , (2)R 2两端的电压为U 2=E=×0.4 V=0.24 V所以Q=CU 2=30×10﹣6×0.24 Q=7.2×10﹣6 C .21.如图,两足够长的平行粗糙金属导轨MN ,PQ 相距d=0.5m .导轨平面与水平面夹角为α=30°,处于方向垂直导轨平面向上、磁感应强度B=0.5T 的匀强磁场中,长也为d 的金属棒ab 垂直于导轨MN 、PQ 放置,且始终与导轨接触良好,导体棒质量m=0.lkg ,电阻R=0.lΩ,与导轨之间的动摩擦因数μ=63,导轨上端连接电路如图,已知电阻R 1与灯泡电阻R L 的阻值均为0.2R ,导轨电阻不计,取重力加速度大小g=10m/s 2,(1)求棒由静止刚释放瞬间下滑的加速度大小a ;(2)假若导体棒有静止释放向下加速度运动一段距离后,灯L 的发光亮度稳定,求此时灯L 的实际功率P 及棒的速率v .解:(1)金属棒刚刚开始时,棒受到重力、支持力和摩擦力的作用,垂直于斜面的方向:N=mgcosα沿斜面的方向:mgsinα﹣μN=ma 代入数据解得:a=0.25g=2.5m/s 2(2)当金属棒匀速下滑时速度最大,达到最大时有mgsinα﹣μN=F 安又 F 安=Bid I= R 总=Ω联立以上方程得金属棒下滑的最大速度为:v m ==m/s=0.8m/s电动势:E=Bdv m =0.5×0.5×0.8=0.2V 电流: A灯泡两端的电压:U L =E ﹣IR=0.2﹣1×0.1=0.1V 灯泡的功率:W22.如图所示,表面绝缘且光滑的斜面MM′N′N固定在水平地面上,斜面所在空间有一边界与斜面底边NN′平行、宽度为d的匀强磁场,磁场方向垂直斜面.一个质量m=0.15kg、总电阻R=0.25Ω的正方形单匝金属框,放在斜面的顶端(金属框上边与MM′重合).现从t=0时开始释放金属框,金属框将沿斜面下滑.图2给出了金属框在下滑过程中速度v的二次方与对应的位移x的关系图象.取重力加速度g=l0m/s2.求:(1)斜面的倾角θ;(2)匀强磁场的磁感应强度B的大小;(3)金属框在穿过磁场的过程中电阻上生热的功率.解:(1)s=0到s=0.4 m由公式v2=2as,该段图线斜率:,所以有:a==5m/s2,根据牛顿第二定律mgsinθ=ma,得:sinθ=,所以:θ=30°(2)线框通过磁场时,v2=4,v=2 m/s,此时安培力等于重力沿斜面向下的分量:F安=mg sinθ,即:,所以解得: =T(3)由图象可知线框匀速穿过磁场,该过程中线框减少的重力势能转化为焦耳热,所以金属框在穿过磁场的过程中电阻上生热的功率等于重力做功的功率,即:P R=P G=mgsinθ•v=0.15×10×0.5×2W=1.5W23.如图所示,倾角θ为30°的光滑斜面上,有一垂直于斜面向下的有界匀强磁场区域PQNM,磁场区域宽度L=0.1m.将一匝数n=10匝、质量m=0.02kg、边长L=0.1m、总电阻R=0.4Ω的正方形闭合线圈abcd由静止释放,释放时ab边水平,且到磁场上边界PQ的距离也为L,当ab边刚进入磁场时,线圈恰好匀速运动.(g=10m/s2).求:(1)ab边刚进入磁场时,线圈所受安培力的大小及方向;(2)ab边刚进入磁场时,线圈的速度及磁场磁感应强度B的大小;(3)线圈穿过磁场过程产生的热量.解:(1)ab边刚进入磁场时线框做匀速运动,对线圈受力分析,如图所示,可知:线圈所受安培力的大小 F安=mgsinθ=0.1N方向沿斜面向上.(2)线框进入磁场前沿斜面向下做匀加速直线运动,设ab边刚进磁场时的速度为v,则由机械能守恒定律得:v2=mgL•sin30°得:v=1m/s线框切割磁感线产生的感应电动势 E=nBLv 线框中的感应电流 I=底边所受的安培力 F安=nBIL由以上各式解得:B=0.2T(3)分析可知线圈穿过磁场的过程中一直匀速运动,由能量守恒可得:Q=2mgL•sin30°=0.01J24.如图所示装置由水平轨道、倾角θ=37°的倾斜轨道连接而成,轨道所在空间存在磁感应强度大小为B、方向竖直向上的匀强磁场.质量m、长度L、电阻R的导体棒ab置于倾斜轨道上,刚好不下滑;质量、长度、电阻与棒ab 相同的光滑导体棒cd置于水平轨道上,用恒力F拉棒cd,使之在水平轨道上向右运动.棒ab、cd与导轨垂直,且两端与导轨保持良好接触,最大静摩擦力等于滑动摩擦力,sin37°=0.6,cos37°=0.8.(1)求棒ab与导轨间的动摩擦因数μ;(2)求当棒ab刚要向上滑动时cd速度v的大小;(3)若从cd刚开始运动到ab刚要上滑过程中,cd在水平轨道上移动的距离x,求此过程中ab上产生热量Q.解:(1)当ab刚好不下滑,静摩擦力沿导轨向上达到最大,由平衡条件得:mgsin37°=μmgcos37°则μ=tan37°=0.75(2)设ab刚好要上滑时,cd棒的感应电动势为E由法拉第电磁感应定律有 E=BLv设电路中的感应电流为I,由闭合电路欧姆定律有 I=设ab所受安培力为F安,有 F安=BIL此时ab受到的最大静摩擦力方向沿斜面向下,由平衡条件有F安cos37°=mgsin37°+μ(mg cos37°+F安sin37°)代入数据解得:F安==mg又F安=代入数据解得 v=(3)设ab棒的运动过程中电路中产生的总热量为Q总,由能量守恒有 F•x﹣2Q=mv2解得Q=F•x﹣mv2=F•x﹣。
电磁感应规律综合应用的常见题型
电磁感应规律综合应用的常见题型 一、 电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路2.电源电动势和路端电压(1)电动势:E Blv =或E n tϕ∆=∆. (2)电源正、负极:用右手定则或楞次定律确定.(内电路电流由低电势到高电势,外电路由高电势到底电势)。
(3)路端电压:U E Ir IR =-=3、电路问题分析方法(1)确定看做电源的导体(2)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;(3)画等效电路图;(4)运用闭合电路欧姆定律、串并联电路性质、电功率等公 式联立求解.例1.如图9-3-1所示,在磁感应强度为0.2 T 的匀强磁场中,有一长为0.5 m 、电阻为1.0 Ω的导体AB 在金属框架上以10 m/s 的速度向右滑动,R 1=R 2=2.0 Ω,其他电阻不计,求流过导体AB 的电流I.例2、(2012·浙江理综)为了提高自行车夜间行驶的安全性,小明同学设计了一种“闪烁”装置。
如图所示,自行车后轮由半径r 1=5.0×10-2m 的金属内圈、半径r 2=0.40m 的金属外圈和绝缘幅条构成。
后轮的内、外圈之间等间隔地接有4根金属条,每根金属条的中间均串联有一电阻值为R 的小灯泡。
在支架上装有磁铁,形成了磁感应强度B=0.10T 、方向垂直纸面向外的“扇形”匀强磁场,其内半径为r 1、外半径为r 2、张角θ=π/6 。
后轮以角速度 ω=2πrad/s 相对于转轴转动。
若不计其它电阻,忽略磁场的边缘效应。
(1)当金属条ab 进入“扇形”磁场时,求感应电动势E ,并指出ab 上的电流方向;(2)当金属条ab 进入“扇形”磁场时,画出“闪烁”装置的电路图;(3)从金属条ab 进入“扇形”磁场时开始,经计算画出轮子一圈过程中,内圈与外圈之间电势差Uab 随时间t 变化的Uab -t 图象;(4)若选择的是“1.5V 、0.3A ”的小灯泡,该“闪烁”装置能否正常工作?有同学提出,通过改变磁感应强度B 、后轮外圈半径r 2、角速度ω和张角θ等物理量的大小,优化前同学的设计方案,请给出你的评价二、 电磁感应中的动力学问题(一)应用知识:1、安培力的大小:由感应电动势E=BLv ,感应电流I=E/R,和安培力公式F=BIL 得22B l v F R= 2、安培力方向判断:先用右手定则判定电流方向,在用左手定则确定安培力方向。
电磁感应典型题型归类
电磁感应一、磁通量【例1】如图所示,两个同心放置的共面单匝金属环a和b,一条形磁铁穿过圆心且与环面垂直放置.设穿过圆环a的磁通量为Φa,穿过圆环b的磁通量为Φb,已知两圆环的横截面积分别为S a和S b,且S a<S b,则穿过两圆环的磁通量大小关系为A.Φa=ΦbB.Φa>ΦbC.Φa<ΦbD.无法确定二、电磁感应现象1、1841~1842年,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律。
2、1820年,丹麦物理学家奥斯特电流可以使周围的磁针偏转的效应,称为电流的磁效应。
3、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应现象;【例2】图为“研究电磁感应现象”的实验装置.(1)将图中所缺的导线补接完整.(2)如果在闭合电键时发现灵敏电流计的指针向右偏了一下,那么合上电键后()A.将原线圈迅速插入副线圈时,电流计指针向右偏转一下B.将原线圈插入副线圈后,电流计指针一直偏在零点右侧C.原线圈插入副线圈后,将滑动变阻器触头迅速向左拉时,电流计指针向右偏转一下D.原线圈插入副线圈后,将滑动变阻器触头迅速向左拉时,电流计指针向左偏转一下三、感应电流与感应电动势四、感应电流产生的条件(1)文字该念性【例3】关于感应电流,下列说法中正确的是()A.只要闭合电路里有磁通量,闭合电路里就有感应电流B.穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生C.线框不闭合时,即使穿过线框的磁通量发生变化,线框也没有感应电流D.只要电路的一部分切割磁感线运动电路中就一定有感应电流(2)图象分析性【例4】金属矩形线圈abcd在匀强磁场中做如图6所示的运动,线圈中有感应电流的是:【例5】如图所示,在条形磁铁的外面套着一个闭合弹簧线圈,若把线圈四周向外拉,使线圈包围的面积变大,这时:A、线圈中有感应电流B、线圈中无感应电流C、穿过线圈的磁通量增大D、穿过线圈的磁通量减小二、感应电流的方向对楞次定律的理解:从磁通量变化的角度来看,感应电流总是;从导体和磁体相对运动的角度来看,感应电流总是要;从能量转化与守恒的角度来看,产生感应电流的过程中能通过电磁感应转化成电能.1、楞次定律的第一种表述 ——“增反减同”【例6】在电磁感应现象中,下列说法中正确的是( )A .感应电流的磁场总是跟原来的磁场方向相反B .闭合线框放在变化的磁场中一定能产生感应电流C .闭合线框放在匀强磁场中做切割磁感线运动时一定能产生感应电流D .感应电流的磁场总是阻碍原磁通量的变化2、楞次定律的第二种表述之一 ——“来拒去留”【例7】如图所示线框ABCD 从有界的匀强磁场区域穿过,下列说法中正确的是( )A .进入匀强磁场区域的过程中,ABCD 中有感应电流B .在匀强磁场中加速运动时,ABCD 中有感应电流C .在匀强磁场中匀速运动时,ABCD 中没有感应电流 D .离开匀强磁场区域的过程中,ABCD 中没有感应电流 3、楞次定律的第二种表述之二 ——“反抗” 【例8】a 、b 两个金属圆环静止套在一根水平放置的绝缘光滑杆上,如图所示.一根条形磁铁自右向左向b 环中心靠近时,a 、b 两环将A .两环都向左运动,且两环互相靠近B .两环都向左运动,且两环互相远离C .两环都向右运动,且两环靠拢D .a 环向左运动,b 环向右运动【例9】如图所示,通电螺线管置于闭合金属环a 的轴线上,当螺线管中电流I 减少时 ( )A 、环有缩小的趋势以阻碍原磁通量的减小B 、环有扩大的趋势以阻碍原磁通量的减小C 、环有缩小的趋势以阻碍原磁通量的增大D 、环有扩大的趋势以阻碍原磁通量的增大4、右手定则5、比较电势的高低【例10】如图所示,螺线管中放有一根条形磁铁,当磁铁突然向左抽出时,A 点的电势比B 点的电势 ;当磁铁突然向右抽出时,A 点的电势比B 点的电势 。
电磁感应高考题型解析
电磁感应高考题型解析电磁感应是高考物理中的重要考点之一,涉及到的知识点较多,考察的形式也多样化。
下面我将为大家解析一下电磁感应在高考中常见的题型,并提供一些解题思路和方法。
1. 磁通量和法拉第电磁感应定律题型这类题目一般给出一个磁场强度、一个磁场面积以及磁场的变化速率,让求电动势、磁通量的变化量等。
解题思路:首先根据题意计算出磁通量的变化量。
根据法拉第电磁感应定律,电动势的大小等于磁通量的变化率的负值乘以匝数,即E=-dΦ/dt。
然后将计算得到的电动势代入恰当的公式中求解所需的物理量。
2. 线圈和磁感强度题型这类题目一般给出一个线圈在磁场中的面积、匝数以及磁感强度,让求电动势、力等。
解题思路:首先根据题意计算出磁通量。
磁通量的大小等于磁感强度与线圈面积乘积,即Φ=B*A。
然后根据电动势和力的定义,求解所需的物理量。
3. 涡旋电场题型这类题目一般给出一个金属棒在磁场中匀速旋转,然后问金属棒两端是否有电压出现。
解题思路:根据电磁感应的原理,在磁场中,当导体相对于磁场匀速运动时,导体两端会产生电压。
这是由于导体内部电荷因受到规则的磁场力而分开产生的电场导致的。
4. 安培环路定理题型这类题目一般给出一个闭合回路和一段电流,让求该回路在磁场中受到的力。
解题思路:首先根据安培环路定理,计算出该回路中的磁通量的变化量。
然后根据法拉第电磁感应定律,计算出回路上的电动势。
最后利用洛伦兹力定律,求解所需的力。
除了这些常见的题型,还可能出现一些结合其他知识点的复合题型,需要综合运用相关的物理知识进行解题。
总之,电磁感应作为高考物理考点之一,是考生必须掌握的内容。
了解常见的题型,并掌握解题的方法和思路是提高解题技巧的关键。
通过多做真题,掌握解题方法,加强对电磁感应的理解与运用,相信大家在高考中能够取得好成绩。
电磁感应现象中的常见题型汇总(很全很细)___精华版
电磁感应现象的常见题型分析汇总(很全)命题演变“轨道+导棒”模型类试题命题的“基本道具”:导轨、金属棒、磁场.其变化点有: 1.图像 2.导轨(1)轨道的形状:常见轨道的形状为U 形.还可以为圆形、三角形、三角函数图形等; (2)轨道的闭合性:轨道本身可以不闭合.也可闭合;(3)轨道电阻:不计、均匀分布或部分有电阻、串上外电阻;(4)轨道的放置:水平、竖直、倾斜放置等等.理图像是一种形象直观的“语言”.它能很好地考查考生的推理能力和分析、解决问题的能力.下面我们一起来看一看图像在电磁感应中常见的几种应用。
一、反映感应电流强度随时间的变化规律例1如图1—1.一宽40cm 的匀强磁场区域.磁场方向垂直纸面向里。
一边长为20cm 的正方形导线框位于纸面内.以垂直于磁场边界的恒定速度v=20cm/s 通过磁场区域.在运动过程中.线框有一边始 终与磁场区域的边界平行。
取它刚进入磁场的时刻t=0.在图 1-2所示的下列图线中.正确反映感应电流强度随时间变化规律的是( )分析与解 本题要求能正确分解线框的运动过程(包括部分进入、全部进入、部分离开、全部离开).分析运动过程中的电磁感应现象.确定感应电流的大小和方向。
线框在进入磁场的过程中.线框的右边作切割磁感线运动.产生感应电动势.从而在整个回路中产生感应电流.由于线框作匀速直线运动.其感应电流的大小是恒定的.由右手定则.可判断感应电流的方向是逆时针的.该过程的持续时间为t=(20/20)s=1s 。
线框全部进入磁场以后.左右两条边同时作切割磁感线运动.产生反向的感应电动势.相当于两个相同的电池反向连接.以致回路的总感应电动势为零.电流为零.该过程的时间也为1s 。
而当线框部分离开磁场时.只有线框的左边作切割磁感线运动.感应电流的大小与部分进入时相同.但方向变为顺时针.历时也为1s 。
正确答案:C评注 (1)线框运动过程分析和电磁感应的过程是密切关联的.应借助于运动过程的← 40cm → 图1—1图1—2分析来深化对电磁感应过程的分析;(2)运用E=Blv 求得的是闭合回路一部分产生的感应电动势.而整个电路的总感应电动势则是回路各部分所产生的感应电动势的代数和。
电磁感应常见题型
电磁感应的常见题型一.电势高低的判断:方法:找准电源,电源内部电流由负极流到正极例题:如图所示,两块水平放置的金属板距离为d,用导线与一个n匝的线圈连接,线圈置于方向竖直向上的变化磁场B中,两板间有一个质量为m、电量为+q的油滴处于静止状态,则线圈中的磁场B的变化情况和磁通量变化率分别是()A、正在增加,B、正在减弱,C、正在增加D、正在减弱,判断上下极板电势的高低练习:2012年11月24日,中国的歼-15战机成功在“辽宁号”航母上起降,使中国真正拥有了自己的航母.由于地磁场的存在,飞机在一定高度水平飞行时,其机翼就会切割磁感线,机翼的两端之间会有一定的电势差.则从飞行员的角度看,机翼左端的电势比右端的电势( B )A.低 B.高C.相等 D.以上情况都有可能二.再次感应问题:例题:如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,当PQ在外力作用下运动时,MN在磁场力作用下向右运动,则PQ所做的运动可能是()A.向右匀加速运动 B.向左匀加速运动C.向右匀减速运动 D.向左匀减速运动练习1:如图所示,在匀强磁场中,放有一与线圈D相连接的平行导轨,要使放在线圈D中的线圈A(A、D两线圈同心共面)各处受到沿半径方向指向圆心的力,金属棒MN的运动情况可能是()A.加速向右B.加速向左C.减速向右D.减速向左练习2:如图所示,金属导轨上的导体棒ab在匀强磁场中沿导轨做下列哪些运动时,铜制闭合线圈c将被螺旋管吸引( C )A.向右匀速运动B.向左做匀速运动C.向右做减速运动D.向右加速运动练习3:如图所示装置中,cd杆原来静止.当ab 杆做如下那些运动时,cd杆将向右移动(BD)A.向右匀速运动B.向右加速运动C.向左加速运动D.向左减速运三.电磁感应中电路问题:思路:找电源------画等效电路图-------I=E/R+r求出感应电流------由串并联知识和电学知识求未知物理量\例题1:水平轨道,B=1T,L=1m,v=4m/s,ab在水平外力的作用下匀速运动,求:(1)感应电动势和感应电流,判断ab电势的高低(2)外力的大小变式1:在范围足够大,方向竖直向下的匀强磁场中,B=0.2T.有一水平放置的光滑框架,宽度L=0.4m,框架上放置一质量为0.05kg,电阻为1欧的金属杆cd.框架电阻不计,若杆cd以恒定加速度a=2m/s,由静止开始做匀变速运动,求在5s内平均感应电动势是多少?第5s末回路的电流多大?第5s末作用在杆cd上的水平外力多大?变式2:如题18图所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN与PQ,导轨的电阻忽略不计.在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻,导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m 的金属棒ab,金属棒与导轨正交,交点为c、d。
电磁感应六类常考问题解析要点
“电磁感应”六类常考问题解析电磁感应是高中物理电磁学部分的重点内容之一, 也是高考重点考查的内容之一, 每年必考. 在这一知识模块中, 考查频率较高的知识点是感应电流的产生条件、方向判定和导体棒切割磁感线产生感应电动势大小的计算. 其中感应电流(或感应电动势随时间变化的图象问题、电磁感应现象与电场、电路、力和运动、能量等知识相联系的综合问题是近几年高考的热点问题. 分析近五年高考试题, 虽是管中窥豹, 但可略见一斑, 归纳起来, 涉及“电磁感应”考点有六类常考问题, 以下作一解析.一、应用楞次定律判定感应电流方向问题楞次定律的内容是“感应电流具有这样的方向, 即感应电流的磁场总要阻碍引起感应电流的磁通量的变化”,定律中没有直接陈述感应电流的方向, 只是描述出感应电流磁场的作用总是阻碍引起感应电流的磁通量的变化, 因此, 在应用楞次定律解题时, 首先要明确原磁场的方向, 由“阻碍”根据楞次定律得出感应电流的磁场方向, 再由安培定则来确定感应电流的方向. 楞次定律的理解关键在于对“阻碍”二字含义的理解, “阻碍”不等于“阻止”. 针对产生感应电流方式的不同, 可将楞次定律中的“阻碍”二字含义理解推广为下列几种表述:(1 就穿过闭合线圈中磁通量而言, 总是阻碍引起感应电流的磁通量(原磁通量的变化. 即当原磁通量增加时, 感应电流的磁场就与原磁场方向相反;当原磁通量减少时, 感应电流的磁场就与原磁场方向相同, 简称口诀“增反减同”.(2 就导体(或磁体)的相对运动而言, 阻碍所有的相对运动, 简称口诀:“来拒去留”. 从运动的效果上看, 也可以形象地表达为“敌”进“我”退, “敌”逃“我”追.(3 就闭合电路的面积改变而言, 致使电路的面积有收缩或扩张的趋势, 收缩或扩张是为了阻碍电路磁通量的变化. 若穿过闭合电路的磁感线皆朝同一个方向, 则磁通量增大时, 面积有收缩趋势;磁通量减少时, 面积有增大趋势, 简称口诀“增缩减扩”.(4 就电流变化而言, 感应电流阻碍原电流的变化. 若原电流增大, 则感应电流方向与原电流方向相反;若原电流减小, 则感应电流的方向与原电流方向相同, 简称口诀“增反减同”. 在解决一些具体问题时, 有时应用推广表达式解题比用楞次定律本身直接解题要方便、简捷得多.例1 (2005全国卷Ⅲ, 16)如图1所示, 闭合线圈上方有一竖直放置的条形磁铁, 磁铁的N 极朝下. 当磁铁向下运动时(但未插入线圈内部)()A. 线圈中感应电流的方向与图中箭头方向相同, 磁铁与线圈相互吸引B. 线圈中感应电流的方向与图中箭头方向相同, 磁铁与线圈相互排斥C. 线圈中感应电流的方向与图中箭头方向相反, 磁铁与线圈相互吸引D. 线圈中感应电流的方向与图中箭头方向相反, 磁铁与线圈相互排斥解析当磁铁的N 极向下运动时, 穿过闭合线圈的磁通量向下且增大, 由上述楞次定律的推论(1 可知, 线圈中感应电流的磁场方向向上,线圈中感应电流的方向与图中箭头方向相同;当磁铁向下运动时, 闭合线圈中产生感应电流,闭合线圈也就成为一个磁体, 它要阻碍条形磁铁的运动, 由上述楞次定律的推论(2 可知, 闭合线圈要阻碍条形磁铁向下运动, 即磁铁与线圈相互排斥. 故选项B正确.二、电磁感应中的图象问题图象问题是一种半定量分析, 电磁感应中常涉及磁感应强度B 、磁通量Ф、感应电动势ε和感应电流i 随时间t 变化的图象, 即B -t 图象、Ф-t 图象、ε-t 图象、i -t 图象. 此外, 还涉及感应电动势ε和感应电流i 随线圈位移x 变化的图象, 即ε-x 图象和i -x 图象. 这些图象问题大体上可分为两类: (1 由给定的电磁感应过程选出或画出正确的图象;(2 由给定的有关图象分析电磁感应过程, 求解相应的物理量. 不管是何种类型图象问题, 都需要考生有较高的审题能力、理解能力, 对电磁感应的过程分析和判断能力;并且, 要注意初始状态及正方向的选取, 并结合右手定则、楞次定律和法拉第电磁感应定律等规律去分析解决问题.例2 (2007全国卷Ⅰ, 21)如图2所示, LOO /L /为一折线, 它所形成的两个角∠LOO / 和∠OO /L / 均为450.折线的右边有一匀强磁场, 其方向垂直于纸面向里.边长为l 的正方形导线框沿垂直于OO /的方向以速度v 做匀速直线运动在t = 0时刻恰好位于图中所示位置. 方向, 在图3中能够正确表示电流—时间(I -t )关系的是(时间以l /v 单位)()解析四个特殊位置, 如图4所示. 由于导线框做匀速直线运动, 所以由位置Ⅰ→Ⅱ、Ⅱ→Ⅲ、Ⅲ→Ⅳ过程所花时间相等, 均为l /v . 由图4可以看出, 在第1个l /v 的时间内, 穿过导线框的磁通量逐渐增大, 切割的有效长度在均匀增大, 因而导线框中的电流在均匀增大, 由楞次定律可判定, 导线框中产生的电流方向为逆时针(即电流为正值;在第2个和第3个l /v 的时间里, 穿过导线框的磁通量一直减少, 由楞次定律可判定, 导线框中产生的电流方向为顺时针(即电流为负值, 在这两段时间内, 导线框切割的有效长度先均匀增加后均匀减小, 因而导线框中的电流先均匀增大后均匀减小, 故选项D 正确.三、电磁感应与电场、电路知识的综合应用问题在电磁感应中, 导体棒切割磁感线或磁通量发生变化的回路将产生感应电动势, 该导体棒或回路就相当于电源. 若将产生感应电动势的导体或回路接上电容器, 可使电容器充、放电. 充电后的电容器两板间存在电场;若将产生感应电动势的导体或回路接上电阻或用电器, 就构成完整的供电电路. 这就使得电磁感应与电场、电路知识相结合成为一类综合应用问题. 解决这类问题的关键是(1找准电源, 正确判断感应电动势的方向, 即电源的正负极;(2分析清楚哪部分是内电路(产生感应电动势的导体或磁通量发生变化的那部分回路当做电源内电路处理, 哪部分是外电路, 并画出等效电路图;(3 根据法拉第电磁感应定律求出感应电动势的大小, 利用串并联电路的性质、闭合(部分电路的欧姆定律计算电流、电压等物理量, 再结合带电粒子在电场中静止、加速及偏转的有关规律求解问题.例3 如图5所示, 光滑的平行导轨P 、Q 间距m 0. 1=l , 处在同一竖直面内, 导轨的左端接有如图所示的电路, 其中水平放置的电容器两极板相距 mm 10=d , 定值电阻Ω==831R R , Ω=22R , 导轨的电阻不计. 磁感强度T 4. 0=B 的匀强磁场垂直穿过导轨面. 当金属棒ab 沿导轨向右匀速运动(开关S 断开时, 电容器两极板之间质量m =1×10-14㎏、带电量q C =-⨯-11015的微粒恰好静止不动;当S 闭合时, 微粒以加速度2m/s7=a 向下做匀加速运动,取2m/s10=g . 求:(1金属棒ab 运动的速度多大?电阻多大? (2S 闭合后, 使金属棒ab 做匀速运动的外力的功率多大?解析金属棒ab 沿导轨运动切割磁感线, ab 棒相当于电源画出等效电路图如图6所示.R R(1带电微粒在电容器两极间静止时, 受向上的电场力和向下的重力作用而平衡, 因而有mg q U d =1, 由此可求得电容器板间电压 V 0. 11001. 010*******=⨯⨯==--q mgd U . 因微粒带负电, 可知上板电势高.由于S 断开, R 1与R 2的电压和等于电容器两端电压U 1, R 3上无电流通过,可知电路中的感应电流即通过R 1、R 2的电流强度为 A R R U I 1. 02111=+= 根据闭合电路的知识, 可知ab 切割磁感线运动产生的感应电动势为r I U E 11+= ① S 闭合时, 带电粒子向下做匀加速运动, 运动方程为 mg qU d ma -=2 S 闭合时, 电容器两板间电压为 (V 3. 02=-=q d a g m U 这时电路的感应电流为 A R U I 15. 0222== 根据闭合电路的知识, 可列方程⎪⎪⎭⎫⎝⎛+++=r R R R R R I E 131312 ②联立①、②式并代入数据得 E V r==122. ,Ω由E BLv =可得m/s3==BLE v 即ab 匀速运动的速度m/s3=v ,电阻Ω=2r . (2S 闭合时, 通过ab 的电流I A 2015=. , ab 所受安培力为F BI L N 22006==. ;ab 以速度v m s =3/做匀速运动, 所受外力F 必与磁场力F 2等大, 反向, 即F N =006. , 方向向右(与v 相同, 所以外力F 的功率为W 18. 0306. 0=⨯=⋅=v F P四、电磁感应与力学知识的综合应用问题电磁感应中产生感应电流的导体棒在磁场中将会受到安培力的作用, 因此, 电磁感应问题中往往涉及到力和运动等方面的力学知识, 成为一类电磁感应与力学知识综合应用问题. 在解决这类问题时, 不仅要用电磁学中的有关规律, 如楞次定律, 法拉第电磁感应定律, 左、右手定则, 安培力的计算公式等, 还要用到力学中的有关规律, 如牛顿运动定律, 动量定理, 动能定理, 动量守恒定律等, 要将这两部分知识综合起来应用. 做好受力分析和运动过程分析是解决这类问题的关键.例4 (2003新课程, 25)如图7所示, 两根平行的金属导轨, 固定在同一水平面上, 磁感应强度为B =0.50T 的匀强磁场与导轨所在平面垂直, 导轨的电阻很小, 可不计. 导轨间的距离l =0.20m . 两根质量均为m =0.10kg 的平行杆甲、乙可在导轨上无摩擦地滑动, 滑动过程中与导轨保持垂直, 每根金属杆的为电阻R =0.50Ω, 在t =0时刻, 两杆都处于静止状态. 现有一与导轨平行, 大小为0.20N 的外力F 作用于金属杆甲上, 使金属杆在导轨上滑动. 经过t =0.5s , 金属杆甲的加速度a =1.37m/s2, 问此时两金属杆的速度各为多少?解析设任一时刻t 两金属杆甲、乙之间的距离为x , 速度分别为v 1和v 2, 经过很短的时间△t (△t →0, 杆甲移动距离v 1△t , 杆乙移动距离v 2△t , 回路面积改变t l v v lx l t v t v x S ∆-=-⨯∆+∆-=∆ (] [(2112由法拉第电磁感应定律, 回路中的感应电动势t S B E ∆∆= ,回路中的电流 R E I 2=由牛顿第二定律得杆甲的动力学方程 ma BlI F =- 由于作用于杆甲和杆乙的安培力总是大小相等, 方向相反所以, 两杆的动量改变量等于外力F 的冲量, 即 0 (21-+=⋅mv mv t F乙甲联立以上各式并代入数据解得 m/s15. 8](2[21221=-+⋅=ma F lB R m t F v m/s85. 1](2[21222=--⋅=ma F lB R m t F v 五、电磁感应中的能量转化和守恒问题在电磁感应现象中, 当导体棒做切割磁感线运动或通过线圈的磁通量发生变化时,在电路中就可产生感应电流, 实现了由其他形式的能量转化为电能. 由于机械运动而产生感应电流时, 外力要克服感应电流产生的“阻碍”作用而做功, 感应电流的电能是由外界机械能转化或外力做功而来的;无机械运动而产生感应电流时, 感应电流的电能是由产生变化磁场的电路中的电能转化而来的. 总之, 产生和维持感应电流的存在的过程就是其他形式的能量转化为感应电流电能的过程.当感应电流通过用电器时, 电能又转化为其他形式的能量, 这个过程就是安培力做功的过程. 安培力做多少功, 就有多少电能转化为其他形式的能.电磁感应现象的实质是不同形式能量转化为电能的过程, 在电磁感应现象中, 能量是守恒的. 楞次定律、法拉第电磁感应定律与能量守恒定律是相符合的. 认真分析电磁感应过程中的能量转化, 应用能量转化和守恒定律是求解较复杂的电磁感应问题常用的简便方法. 因为用能量转化和守恒观点解决电磁感应问题, 只需要从全过程考虑, 不涉及电流产生过程的具体的细节. 处理问题时重在分析导体棒机械能的变化, 寻找用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程.例5 (2004年全国卷Ⅱ, 24)图8中a 1b 1c 1d 1和a 2b 2c 2d 2为在同一竖直平面内的金属导轨, 处在磁感应强度为B 的匀强磁场中, 磁场方向垂直导轨所在的平面(纸面向里. 导轨的a 1b 1段与a 2b 2段是竖直的, 距离为l 1 ;c 1d 1段与c 2d 2段也是竖直的, 距离为l 2 . x 1y 1与x 2y 2为两根用不可伸长的绝缘轻线相连的金属细杆, 质量分别为m 1和m 2 , 它们都垂直于导轨并与导轨保持光滑接触. 两杆与导轨构成的回路的总电阻为R . F 为作用于金属杆x 1y 1上的竖直向上的恒力. 已知两杆运动到图示位置时, 已匀速向上运动, 求此时作用于两杆的重力的功率的大小和回路电阻上的热功率. 解析若从力和运动的角度来分析, 这是一道求解过程较为复杂的力电综合问题, 抓住运动特点、突破受力分析是解题的关键. 但若从功和能的角度来分析, 问题就比较简单. 因为当两杆向上匀速运动时, m 1和m 2的动能不变. 恒力F 做功, 把其它形式的能最终转化为m 1、m 2的重力势能和回路电阻上的焦耳热.根据能量转化与守恒定律, m 1、m 2的动能不变, F 的机械功率等于m 1、m 2的重力功率加上回路电阻上的热功率, 即 R I v g m m v F ⋅+⋅+=⋅221 ( ①回路中感应电流的大小为 R v l l B I (12-= ②由①②两式解得 R l l B g m m F v ⋅-+-=212221 ( ( 所以, 作用于两杆的重力的功率大小为gR m m l l B g m m F v g m m P (( ( (2121222121+⋅-+-=⋅+= 回路电阻上的热功率为R l l B g m m F v g m m v F R I Q ⋅⎥⎦⎤⎢⎣⎡-+-=⋅+-⋅=⋅=21221212 ( ( ( 六、电磁感应知识在生活、生产和科技中的应用问题电磁感应知识与我们的生活、生产和科技联系非常紧密, 从能源角度看, 电气化时代的核心发电机、变压器等设备使电磁感应知识在生产和生活中得到广泛的应用;从信息产业的迅猛发展来看,Inter 网络、电脑、通讯等设备也都和电磁感应知识密切联系. 这类问题立意高而落点低, 用于考查考生的知识迁移能力, 要求考生会从分析复杂的“纯物理”过程变为更强调通过对实际情境分析, 建立物理模型, 综合运用电磁感应知识解决问题. 解决这类问题的关键是要善于挖掘出实际问题的本质内涵, 进行模型化处理.例6 (2001上海, 6)如图9所示是一种延时开关, 当S 1闭合时, 电磁铁F 将衔铁D 吸下, C 线路接通, 当S 1断开时, 由于电磁感应作用, D 将延迟一段时间才被释放, 则()A . 由于A 线圈的电磁感应作用, 才产生延时释放D 的作用B . 由于B 线圈的电磁感应作用, 才产生延时释放D 的作用C . 如果断开B 线圈的电键S 2, 无延时作用D . 如果断开B 线圈的电键S 2, 延时将变长解析若S 2合上, 当S 1正常接通时, 线圈A 中有电流, 电磁铁的磁性来源于线圈A 中电流形成的磁场. 这时, 线圈B 中无电流. 当S 1断开时, 线圈A 中电流形成的磁场即刻消失, 因而穿过线圈B 的磁通量发生变化, 线圈B 与电键S 2形成一个闭合回路,从而线圈B 中有感应电流产生, 感应电流激发磁场, 这时电磁铁的磁性由线圈B 产生, 即F 仍然继续吸引D . 可见, 延时作用是由于线圈B 产生的. 如果断开与B线圈连接的电键S 2, 则在S 1断开时虽然穿过线圈B 的磁通量发生变化, 但无闭合回路, 线圈B 中无感应电流产生, 因而无延时作用. 故选项B 、C 正确.。
电磁感应规律综合应用的常见题型
求瞬时功率用P Fv
FA ?, v ?
F合 FA a ? m m
2、与能量知识的结合
例1: 如图示:质量为m 、边长为a 的正方形金属线框自某一 高度由静止下落,依次经过B1和B2两匀强磁场区域,已知B1 =2B2 ,且B2磁场的高度为a,线框在进入B1的过程中做匀速运动,速度 大小为v1 ,在B1中加速一段时间后又匀速进入和穿出B2,进入和 穿出B2时的速度恒为v2,求: ⑴ v1和v2之比 a ⑵在整个下落过程中产生的焦耳热
(1)棒ab产生的感应电动势E? (2)通过电阻R的电流I , ab间的电压U? (3)若保证ab匀速运动,所加外力F的大小, 在时间t秒内的外力做功W大小 ,功率P? (4)时间t秒内棒ab生热 Q1 ,电阻R上生热Q2?
B 2l 2 v 1, E Blv 3, F F安培 BIl Rr 2 Blv E Blv 2 B 2l 2 v 2 4, Q1 I rt rt 2, I W FS t Rr Rr Rr Rr 2 BlvR 2 2 2 Blv Blv U ab IR Q2 I 2 Rt Rt P Fv Rr Rr Rr
Pab ( Rr
ab棒消耗的电功率
) r
例1:定值电阻R,导体棒ab电 阻r,水平光滑导轨间距 l ,匀 强磁场磁感应强度为B,当棒ab R 以速度v向右匀速运动时:
b v
a
问题2:棒ab受到的安培力为多大;要使棒ab匀 速运动,要施加多大的外力,方向如何?
Bl v F安 IBl Rr
30
0
B
FN B
30
0
F
mg
例4:如图所示, B=0.2T 与导轨垂直向上,导轨宽 度L=1m,α=300,电阻可忽略不计,导体棒ab质量 为m=0.2kg,其电阻R=0.1Ω,跨放在U形框架上, 并能无摩擦的滑动,求: (1)导体下滑的最大速度vm。
(完整版)电磁感应中的各种题型(习题,答案)
电磁感应中的各种题型一.电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等1.“双杆”向相反方向做匀速运动:当两杆分别向相反方向运动时,相当于两个电池正向串联。
[例1] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。
已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。
(1)求作用于每条金属细杆的拉力的大小。
(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。
2.“双杆”同向运动,但一杆加速另一杆减速:当两杆分别沿相同方向运动时,相当于两个电池反向串联。
[例2] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。
导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。
两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。
在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。
设两导体棒均可沿导轨无摩擦地滑行。
开始时,棒cd静止,棒ab有指向棒cd 的初速度v0。
若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少。
(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?3. “双杆”中两杆都做同方向上的加速运动。
:“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。
[例3](2003年全国理综卷)如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
导轨间的距离l=0.20m。
电磁感应中常考
电磁感应中常考问题主要题型:选择题或计算题 难度档次: 选择题中等难度题,计算题难度较大.电磁感应知识点较少,一般与电路知识、安培力进行简单的结合,或定性分析、或定量计算,通常涉及4~5个知识点.电磁感应中的计算题综合了力学,电学、安培力等知识,难度较大,尤其是导体棒模型和线框模型常考的3个问题1、电磁感应现象的演示实验(选择题)2、电磁感应中的图象问题(选择题)3、电磁感应规律与电路、力学规律的综合应用(计算题)一、电磁感应现象的演示实验(选择题)西城理综19、如图所示的电路可以用来“研究电磁感应现象”。
干电池、开关、线圈A 、滑动变阻器串联成一个电路,电流 计、线圈B 串联成另一个电路。
线圈A 、B 套在同一个 闭合铁芯上,且它们的匝数足够多。
从开关闭合时开始 计时,流经电流计的电流大小i 随时间t 变化的图象是AitO CitOBitODitOABCx 3L2L L 0I Bx3L 2L L 0I Ax3L 2L L 0I Dx3L 2L L 0I 2题图2题图2012北京理综19.物理课上,老师做了一个奇妙的“跳环实验”。
如图,她把一个带铁芯的线圈I 、开关S 和电源用导终连接起来后.将一金属套环置于线圈L 上,且使铁芯穿过套环。
闭合开关S 的瞬间,套环立刻跳起。
某司学另找来器材再探究此实验。
他连接好电路,经重复试验,线圈上的套环均末动。
对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是 A.线圈接在了直流电源上. B.电源电压过高.C.所选线圈的匝数过多,D.所用套环的材料与老师的不同二、电磁感应中的图象问题(选择题)讲练1、海淀一模18、在竖直方向的匀强磁场中,水平放置一圆形导体环.规定导体环中电流的正方向如图1所示,磁场向上为正.当磁感应强度 B 随时间 t 按图2变化时,下列能正确表示导体环中感应电流变化情况的是:讲练2、如图所示,等腰三角形内分布有垂直于纸面向外的匀强磁场,它的底边在x 轴上且长为2L ,高为L .纸面内一边长为L 的正方形导线框沿x 轴正方向做匀速直线运动穿过匀强磁场区域,在t =0时刻恰好位于图中所示的位置.以顺时针方向为导线框中电流的正方向,在下面四幅图中能够正确表示电流——位移(I —x )关系的是. . . . . . I 0 -I 0i /A0 1 2 3 4 5A . . . . . . I 0-I 0i /A0 1 2 3 4 5C . . . . . . I 0 -I 0i /A0 1 2 3 4 5D. . . . . . I 0 -I 0i /A0 t /s1 2 3 4 5Bt/st /st /sBI 图1图2.. . . . . B 0 -B 0B /T0 t /s1 2 3 4 52012福建理综18、如图所示,一圆形闭合铜环由高处从静止开始下落,穿过一根竖直悬挂的条形磁铁,铜环的中心轴线与条形磁铁的中轴线始终保持重合.若取磁铁中心O为坐标原点,建立竖直向下为正方向的x轴,则下图中最能正确反映环中感应电流i随环心位置坐标x变化的关系图象是().必备知识点:感应电流方向的判断方法:右手定则和楞次定律楞次定律的使用步骤方法总结:解决电磁感应现象中图象问题的基本方法1、常采用分段法2、数学法来处理(定性或定量地表示出所研究问题的函数关系)三、电磁感应规律与电路、力学规律的综合应用(计算题)(杆模型)如图所示,两根光滑的平行金属导轨MN、PQ处于同一水平面内,相距L=0.5m,导轨的左端用R=3Ω的电阻相连,导轨电阻不计,导轨上跨接一电阻r=1Ω的金属杆ab,质量m=0.2kg,整个装置放在竖直向下的匀强磁场中,磁感应强度B=2T,现对杆施加水平向右的拉力F=2N,使它由静止开始运动,求:⑴杆能达到的最大速度多大?最大加速度为多大?⑵杆的速度达到最大时,a、b两端电压多大?此时拉力的瞬时功率多大?⑶若已知杆从静止开始运动至最大速度的过程中,R上总共产生了10.2J的电热,则此过程中拉力F做的功是多大?此过程持续时间多长?⑷若杆达到最大速度后撤去拉力,则此后R上共产生多少热能?流过R的电荷量有多少?其向前冲过的距离会有多大?(框模型)超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具.其推进原理可以简化为如图12-9所示的模型:在水平面上相距L的两根平行直导轨间,有竖直方向等距离分布的匀强磁场B1和B2,且B1=B2=B,每个磁场的宽度都是l,相间排列,所有这些磁场都以相同的速度向右匀速运动,这时跨在两导轨间的长为L、宽为l的金属框abcd(悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R,运动中所受到的阻力恒为F f,金属框的最大速度为v m,则磁场向右匀速运动的速度v可表示为()图12-9A.v=(B2L2v m-F f R)/B2L2B.v=(4B2L2v m+F f R)/4B2L2C.v=(4B2L2v m-F f R)/4B2L2D.v=(2B2L2v m+F f R)/2B2L2方法总结:解决电磁感应综合问题的一般思路是“先电后力”即○1先作“源”的分析——分析电路中由电磁感应所产生的电源,求出电源参数E和r;○2再进行“路”的分析——分析电路结构,弄清串并联关系,求出相关部分的电流大小,以便安培力的求解○3然后是“力”的分析——分析研究对象(通常是金属杆、导体、线圈等)的受力情况,尤其注意其所受的安培力;○4接着进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型;○5最后是“能量”的分析——寻找电磁感应过程和研究对象的运动过程中其能量转化和守恒的关系.方法总结:能量转化及焦耳热的求法电磁感应中的压轴大题常考的问题有以下四个方面1.电磁感应与力学综合问题2.电磁感应与能量综合问题3.电磁感应与电路综合问题4.电磁感应与力、技术应用综合问题不论考查哪类问题,实质上就两个模型.模型1:电磁场中的导体棒模型(单棒)模型2:电磁场中的线框模型(含两根导体棒)。
电磁感应几类题型
D
6.如图甲所示,两个相邻的有界匀强磁场区,方向相反, 且垂直纸面,磁感应强度的大小均为B,以磁场区左边界 为y轴建立坐标系,磁场区在y轴方向足够长,在x轴方向 宽度均为a。矩形导线框ABCD 的CD边与y轴重合,AD边长 为a。线框从图示位置水平向右匀速穿过两磁场区域,且 线框平面始终保持与磁场垂直。以逆时针方向为电流的正 方向,线框中感应电流i与线框移动距离x的关系图象正确 的是图乙中的(以逆时针方向为电流的正方向)( C )
3.如图所示,在一均匀磁场中有一 U形导线框abcd, 线框处于水平面内,磁场与线框平面垂直,R为一电 阻, ef 为垂直于 ab 的一根导体杆,它可在 ab 、 cd 上 无摩擦地滑动。杆 ef 及线框中导线的电阻都可不计。 开始时,给ef一个向右的初速度,则 ( ) A A.ef 将减速向右运动,但不是匀减速 B. ef 将匀减速向右运动,最后停止 C.ef 将匀速向右运动 a e b D.ef 将往返运动
1.电磁感应中的电路问题:
解题要点:
电磁感应问题往往跟电路问题联系在一起。 产生感应电动势的导体相当于电源,将它们接 上电阻等用电器,便可对其供电;接上电容器, 便可使其充电。解决这类问题,不仅要运用电 磁感应中的规律,如右手定则、楞次定律和法 拉第电磁感应定律等,还要应用电场、电路中 的相关知识,如电容公式、欧姆定律、电功率 公式、串、并联电路性质等。关键是把电磁感 应的问题等效转换成稳恒电路问题来处理。一 般可按以下三个步骤进行。
2.如图,足够长的光滑平行金属导轨 MN、PQ固定在一水平面 上,两导轨间距L =0.2m,电阻R =0.4Ω,电容C=2 μF,导轨 上停放一质量m =0.1kg、电阻r =0.1Ω的金属杆CD,导轨电阻 可忽略不计,整个装置处于方向竖直向上B =0.5T 的匀强磁场 中。现用一垂直金属杆CD的外力F沿水平方向拉杆,使之由静 止开始向右运动。求: ⑴若开关S闭合,力F 恒为0.5N, CD运动的最大速度; ⑵若开关S闭合,使CD以⑴问中的最大速度匀速运动,现使 其突然停止并保持静止不动,当 CD停止下来后,通过导体棒 CD的总电量; ⑶若开关 S 断开,在力 F 作用下, CD 由静止开始作加速度 a =5m/s2的匀加速直线运动,请写出电压表的读数U随时间t变化 的表达式。 M C N V R S P
电磁感应现象中的常见题型汇总(很全很细)---精华版
电磁感应现象的常见题型分析汇总(很全)命题演变“轨道+导棒”模型类试题命题的“基本道具”:导轨、金属棒、磁场,其变化点有: 1.图像 2.导轨(1)轨道的形状:常见轨道的形状为U 形,还可以为圆形、三角形、三角函数图形等;(2)轨道的闭合性:轨道本身可以不闭合,也可闭合;(3)轨道电阻:不计、均匀分布或部分有电阻、串上外电阻;(4)轨道的放置:水平、竖直、倾斜放置等等. 理图像是一种形象直观的“语言”,它能很好地考查考生的推理能力和分析、解决问题的能力,下面我们一起来看一看图像在电磁感应中常见的几种应用。
一、反映感应电流强度随时间的变化规律例1如图1—1,一宽40cm 的匀强磁场区域,磁场方向垂直纸面向里。
一边长为20cm 的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v=20cm/s 通过磁场区域,在运动过程中,线框有一边始 终与磁场区域的边界平行。
取它刚进入磁场的时刻t=0,在图 1-2所示的下列图线中,正确反映感应电流强度随时间变化规律的是( )分析与解 本题要求能正确分解线框的运动过程(包括部分进入、全部进入、部分离开、全部离开),分析运动过程中的电磁感应现象,确定感应电流的大小和方向。
线框在进入磁场的过程中,线框的右边作切割磁感线运动,产生感应电动势,从而在整个回路中产生感应电流,由于线框作匀速直线运动,其感应电流的大小是恒定的,由右手定则,可判断感应电流的方向是逆时针的,该过程的持续时间为t=(20/20)s=1s 。
线框全部进入磁场以后,左右两条边同时作切割磁感线运动,产生反向的感应电动势,相当于两个相同的电池反向连接,以致回路的总感应电动势为零,电流为零,该过程的时间也为1s 。
而当线框部分离开磁场时,只有线框的左边作切割磁感线运动,感应电流的大小与部分进入时相同,但方向变为顺时针,历时也为1s 。
正确答案:C← → 图1—1图1—2评注 (1)线框运动过程分析和电磁感应的过程是密切关联的,应借助于运动过程的分析来深化对电磁感应过程的分析;(2)运用E=Blv 求得的是闭合回路一部分产生的感例2在磁棒自远处匀速沿一圆形线圈的轴线运动,并穿过 线圈向远处而去,如图2—1所示,则下列图2—2中较正确反 映线圈中电流i 与时间t 关系的是(线圈中电流以图示箭头为正方向)( )分析与解 本题要求通过图像对感应电流进行描述,具体思路为:先运用楞次定律判断磁铁穿过线圈时,线圈中的感应电流的情况,再提取图像中的关键信息进行判断。
电磁感应常考题型及解析
电磁感应经典题型及解析1.(多选)如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ 、MN ,MN 的左边有一如图所示的闭合电路,当PQ 在一外力的作用下运动时,MN 向右运动,则PQ 所做的运动可能是( )A .向右加速运动B .向左加速运动C .向右减速运动D .向左减速运动解析:选BC.MN 向右运动,说明MN 受到向右的安培力,因为ab 在MN 处的磁场垂直纸面向里――→左手定则MN 中的感应电流由M →N ――→安培定则L 1中感应电流的磁场方向向上――→楞次定律⎩⎪⎨⎪⎧L 2中磁场方向向上减弱L 2中磁场方向向下增强.若L 2中磁场方向向上减弱――→安培定则PQ 中电流为Q →P 且减小――→右手定则向右减速运动;若L 2中磁场方向向下增强――→安培定则PQ 中电流为P →Q 且增大――→右手定则向左加速运动.2.如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( )A .2.5 m/s 1 WB .5 m/s 1 WC.7.5 m/s9 W D.15 m/s9 W解析:选B.小灯泡稳定发光说明棒做匀速直线运动.此时:F安=B2l2vR总,对棒满足:mg sin θ-μmg cos θ-B2l2vR棒+R灯=0因为R灯=R棒则:P灯=P棒再依据功能关系:mg sin θ·v-μmg cos θ·v=P灯+P棒联立解得v=5 m/s,P灯=1 W,所以B项正确.3.(1)如图甲所示,两根足够长的平行导轨,间距L =0.3 m ,在导轨间有垂直纸面向里的匀强磁场,磁感应强度B 1=0.5 T .一根直金属杆MN 以v =2 m/s 的速度向右匀速运动,杆MN 始终与导轨垂直且接触良好.杆MN 的电阻r 1=1 Ω,导轨的电阻可忽略.求杆MN 中产生的感应电动势E 1.(2)如图乙所示,一个匝数n =100的圆形线圈,面积S 1=0.4 m 2,电阻r 2=1 Ω.在线圈中存在面积S 2=0.3 m 2垂直线圈平面(指向纸外)的匀强磁场区域,磁感应强度B 2随时间t 变化的关系如图丙所示.求圆形线圈中产生的感应电动势E 2.(3)有一个R =2 Ω的电阻,将其两端a 、b 分别与图甲中的导轨和图乙中的圆形线圈相连接,b 端接地.试判断以上两种情况中,哪种情况a 端的电势较高?求这种情况中a 端的电势φa .解析:(1)杆MN 做切割磁感线的运动,E 1=B 1L v 产生的感应电动势E 1=0.3 V .(2)穿过圆形线圈的磁通量发生变化,E 2=n ΔB 2Δt S 2 产生的感应电动势E 2=4.5 V .(3)当电阻R 与题图甲中的导轨相连接时,a 端的电势较高 通过电阻R 的电流I =E 1R +r 1电阻R 两端的电势差φa -φb =IR a 端的电势φa =IR =0.2 V .答案:(1)0.3 V (2)4.5 V (3)与图甲中的导轨相连接a 端电势高 φa =0.2 V4.[2016·全国卷Ⅱ] 如图1-所示,水平面(纸面)内间距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上.t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.t 0时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求:(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.图1-24.[答案] (1)Blt 0⎝⎛⎭⎫F m -μg (2)B 2l 2t 0m[解析] (1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得 ma =F -μmg ①设金属杆到达磁场左边界时的速度为v ,由运动学公式有v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为 E =Bl v ③ 联立①②③式可得 E =Blt 0⎝⎛⎭⎫Fm -μg ④ (2)设金属杆在磁场区域中匀速运动时,金属杆中的电流为I ,根据欧姆定律 I =ER⑤ 式中R 为电阻的阻值.金属杆所受的安培力为 f =BIl ⑥因金属杆做匀速运动,由牛顿运动定律得 F -μmg -f =0 ⑦联立④⑤⑥⑦式得 R =B 2l 2t 0m⑧5.(2017·北京东城期末)如图所示,两根足够长平行金属导轨MN 、PQ 固定在倾角θ=37°的绝缘斜面上,顶部接有一阻值R =3 Ω的定值电阻,下端开口,轨道间距L =1 m .整个装置处于磁感应强度B =2 T 的匀强磁场中,磁场方向垂直斜面向上.质量m =1 kg 的金属棒ab 置于导轨上,ab 在导轨之间的电阻r =1 Ω,电路中其余电阻不计.金属棒ab 由静止释放后沿导轨运动时始终垂直于导轨,且与导轨接触良好.不计空气阻力影响.已知金属棒ab 与导轨间动摩擦因数μ=0.5,sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2.(1)求金属棒ab 沿导轨向下运动的最大速度v m ;(2)求金属棒ab 沿导轨向下运动过程中,电阻R 上的最大电功率P R ; (3)若从金属棒ab 开始运动至达到最大速度过程中,电阻R 上产生的焦耳热总共为1.5 J ,求流过电阻R 的总电荷量q .解析:(1)金属棒由静止释放后,沿斜面做变加速运动,加速度不断减小,当加速度为零时有最大速度v m .由牛顿第二定律得mg sin θ-μmg cos θ-F 安=0 F 安=BIL ,I =BL v mR +r,解得v m =2.0 m/s (2)金属棒以最大速度v m 匀速运动时,电阻R 上的电功率最大,此时P R =I 2R ,解得P R =3 W(3)设金属棒从开始运动至达到最大速度过程中,沿导轨下滑距离为x ,由能量守恒定律得mgx sin θ=μmgx cos θ+Q R +Q r +12m v 2m根据焦耳定律Q RQ r =Rr,解得x=2.0 m根据q=IΔt,I=E R+rE=ΔΦΔt=BLxΔt,解得q=1.0 C答案:(1)2 m/s(2)3 W(3)1.0 C5.(2017·四川资阳诊断)如图所示,无限长金属导轨EF、PQ固定在倾角为θ=53°的光滑绝缘斜面上,轨道间距L=1 m,底部接入一阻值为R=0.4 Ω的定值电阻,上端开口.垂直斜面向上的匀强磁场的磁感应强度B=2 T.一质量为m =0.5 kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.2,ab连入导轨间的电阻r=0.1 Ω,电路中其余电阻不计.现用一质量为M=2.86 kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放M,当M下落高度h=2.0 m时,ab开始匀速运动(运动中ab始终垂直导轨,并接触良好).不计空气阻力,sin 53°=0.8,cos 53°=0.6,取g=10 m/s2.求:(1)ab棒沿斜面向上运动的最大速度v m;(2)ab棒从开始运动到匀速运动的这段时间内电阻R上产生的焦耳热Q R和流过电阻R的总电荷量q.解析:(1)由题意知,由静止释放M后,ab棒在绳拉力T、重力mg、安培力F和导轨支持力N及摩擦力f共同作用下沿导轨向上做加速度逐渐减小的加速运动直至匀速运动,当达到最大速度时,由平衡条件有T-mg sin θ-F-f=0N-mg cos θ=0,T=Mg又f=μNab棒所受的安培力F=BIL回路中的感应电流I=BL v mR+r联立以上各式,代入数据解得最大速度v m=3.0 m/s(2)由能量守恒定律知,系统的总能量守恒,即系统减少的重力势能等于系统增加的动能、焦耳热及由于摩擦产生的内能之和,有Mgh-mgh sin θ=12(M+m)v2m+Q+fh电阻R产生的焦耳热Q R=RR+rQ根据法拉第电磁感应定律和闭合电路欧姆定律有流过电阻R的总电荷量q=IΔt电流的平均值I=E R+r感应电动势的平均值E=ΔΦΔt磁通量的变化量ΔΦ=B·(Lh)联立以上各式,代入数据解得Q R=26.30 J,q=8 C.答案:(1)3.0 m/s(2)26.30 J8 C6. 如图所示,N=50匝的矩形线圈abcd,ab边长l1=20 cm,ad边长l2=25cm ,放在磁感应强度B =0.4 T 的匀强磁场中,外力使线圈绕垂直于磁感线且通过线圈中线的OO ′轴以n =3 000 r/min 的转速匀速转动,线圈电阻r =1 Ω,外电路电阻R =9 Ω,t =0时线圈平面与磁感线平行,ab 边正转出纸外、cd 边转入纸里.求:(1)t =0时感应电流的方向; (2)感应电动势的瞬时值表达式; (3)线圈转一圈外力做的功;(4)从图示位置转过90°的过程中流过电阻R 的电荷量. 解析:(1)根据右手定则,线圈感应电流方向为adcba . (2)线圈的角速度 ω=2πn =100π rad/s图示位置的感应电动势最大,其大小为 E m =NBl 1l 2ω代入数据得E m =314 V 感应电动势的瞬时值表达式 e =E m cos ωt =314cos(100πt ) V . (3)电动势的有效值E =E m2线圈匀速转动的周期 T =2πω=0.02 s线圈匀速转动一圈,外力做功大小等于电功的大小,即。
【电磁感应】高考必考题(详解版)
A. 磁感应强度地大小为
B. 导线框运动速度地大小为
C. 磁感应强度地方向垂直于纸面向外
D. 在
至
这段时间内,导线框所受地安培力大小为
解析 BC
解析 由于匀速运动,所以
面向外.
所以D错.
故选BC.
考点
电磁感应 电磁感应规律地应用 线框模型
由于电流方向顺时针,所以磁场垂直于纸
5 某同学自制地简易电动机示意图如下图所示,矩形线圈由一根漆包线绕制而成,漆包线地两端分别 从线圈地一组对边地中间位置引出,并作为线圈地转轴.将线圈架在两个金属支架之间,线圈平 面位于竖直面内,永磁铁置于线圈下方.为了使电池与两金属支架连接后线圈能连续转动起来, 该同学应将( )
开关 接 后, 开始向右加速运动,速度达到最大值 时,设 上地感应
电动势为 ,有
⑥
依题意有
⑦
设在此过程中 地平均电流为 , 上受到地平均安培力为 ,有
⑧
由动量定理,有
⑨
又
⑩
联立⑤⑥⑦⑧⑨⑩式得 ⑪
考点
电磁感应 交变电流地产生原理
三、计算题
4 两条平行线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为 、总电阻为
地正
方形导线框 位于纸面内, 边与磁场边界平行,如图(a)所示,已知导线框一直向右做匀速
直线运动, 边于 时刻进入磁场.线框中感应电动势随时间变化地图线如图(b)所示(感
应电流地方向为顺时针时,感应电动势取正),下列说法正确地是( )
器.电磁轨道炮示意如图,图中直流电源电动势为 ,电容器地电容为 .两根固定于水平面内地
光滑平行金属导轨间距为 ,电阻不计.炮弹可视为一质量为 、电阻为 地金属棒 ,垂直放
电磁感应大题题型总结
电磁感应大题题型总结一、导体棒切割磁感线产生感应电动势类1. 单棒平动切割磁感线- 题目示例:- 如图所示,在一磁感应强度B = 0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h = 0.1m的平行金属导轨MN与PQ,导轨的电阻忽略不计。
在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。
导轨上跨放着一根长为L =0.2m,每米长电阻r = 2.5Ω/m的金属棒ab,金属棒与导轨正交,交点为c、d。
当金属棒以速度v = 4.0m/s向左做匀速运动时,求:- (1)金属棒ab中感应电动势的大小;- (2)通过金属棒ab的电流大小;- (3)金属棒ab两端的电压大小。
- 解析:- (1)根据E = BLv,这里L = h = 0.1m(有效切割长度),B = 0.5T,v = 4.0m/s,则E=Bh v = 0.5×0.1×4.0 = 0.2V。
- (2)金属棒的电阻R_ab=Lr = 0.2×2.5 = 0.5Ω。
电路总电阻R_总=R +R_ab=0.3+0.5 = 0.8Ω。
根据I=(E)/(R_总),可得I=(0.2)/(0.8)=0.25A。
- (3)金属棒ab两端的电压U = E - IR_ab=0.2 - 0.25×0.5 = 0.075V。
2. 双棒切割磁感线- 题目示例:- 如图所示,两根足够长的平行金属导轨固定在倾角θ = 30^∘的斜面上,导轨电阻不计,间距L = 0.4m。
导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B = 0.5T。
在区域Ⅰ中,将质量m_1=0.1kg,电阻R_1=0.1Ω的金属条ab放在导轨上,ab刚好不下滑。
然后,在区域Ⅱ中将质量m_2=0.4kg,电阻R_2=0.1Ω的光滑导体棒cd置于导轨上,由静止开始下滑。
电磁感应中高考常考题型及解析
电磁感应中高考常考题型及解析山东省平度市第一中学韩显平 266700随着高考改革的不但深入,理科综合考试中对电磁感应部分难度有所逐年加大的趋势,考试题目不是单一的,而是通过电磁感应知识与电路知识、安培力进行简单的结合,或定性分析、或定量计算,尤其是导体棒模型和线框模型,是近几年高考的热点。
现就将这部分知识常考的题型总结如下,供同行们商榷。
类型一:电磁感应定律及楞次定律的应用。
【例1】(2012·福建理综,18)如图一圆形闭合铜环由高处从静止开始下落,穿过一根竖直悬挂的条形磁铁,铜环的中心轴线与条形磁铁的中轴线始终保持重合.若取磁铁中心O为坐标原点,建立竖直向下为正方向的x轴,则下图中最能正确反映环中感应电流i随环心位置坐标x变化的关系图象是( ).解析:闭合铜环在下落过程中穿过铜环的磁场方向始终向上,磁通量先增加后减少,由楞次定律可判断感应电流的方向要发生变化,D项错误;因穿过闭合铜环的磁通量的变化率不是均匀变化,所以感应电流随x的变化关系不可能是线性关系,A项错误;铜环由静止开始下落,速度较小,所以穿过铜环的磁通量的变化率较小,产生的感应电流的最大值较小,过O 点后,铜环的速度增大,磁通量的变化率较大,所以感应电流的反向最大值大于正向最大值,故B项正确,C项错误.点评与预测:本题主要考查由楞次定律判断感应电流方向问题,速度与磁通量变化大小问题,属于中档题目。
纵观近几年高考可以看到,电磁感应与楞次定律是每年高考必考内用,小题考查线圈与环,磁通量变化,感应电流变化等问题,14年也是考试的重点。
类型二:电磁感应中的图象问题。
【例2】 (2013·课标,20)如图一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行.已知在t=0到t=t1的时间间隔内,直导线中电流i发生某种变化,而线框中的感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右.设电流i正方向与图中箭头所示方向相同,则i随时间t变化的图线可能是( ).解析:因通电导线周围的磁场离导线越近磁场越强,而线框中左右两边的电流大小相等,方向相反,所以受到的安培力方向相反,导线框的左边受到的安培力大于导线框的右边受到的安培力,所以合力与左边导线框受力的方向相同.因为线框受到的安培力的合力先水平向左,后水平向右,根据左手定则,导线框处的磁场方向先垂直纸面向里,后垂直纸面向外,根据右手螺旋定则,导线中的电流先为正,后为负,所以选项A 正确、选项B 、C 、D 错误.选A.点评与预测:本题主要考查电流与安培力关系,有左右手定则判断磁场方向与电流正负关系,是中档题目。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应常考的几种题型
泗县二中倪怀轮
题型一:电磁感应与力学的综合问题
1、如图所示,磁感应强度的方向垂直于轨道平面倾斜向下,当磁场从
零均匀增大时,金属杆ab始终处于静止状态,则金属杆受到的静摩擦
力将( D ).
A.逐渐增大B.逐渐减小
C.先逐渐增大,后逐渐减小D.先逐渐减小,后逐渐增大
2、如图所示,在竖直向下的匀强磁场中,将一个水平放置的金属棒ab
以水平初速度v0抛出,设运动的整个过程中棒的取向不变且不计空气阻
力,则金属棒在运动过程中产生的感应电动势大小将( C )
A.越来越大
B.越来越小
C.保持不变
D.无法确定
3.如图所示,竖直平行导轨间距L=20 cm,导轨顶端接有一电键K.导
体棒ab与导轨接触良好且无摩擦,ab的电阻R=0.4 Ω,质量m=10g,
导轨的电阻不计,整个装置处在与轨道平面垂直的匀强磁场中,磁感应
强度B=1 T.当ab棒由静止释放0.8 s后,突然接通电键,不计空气阻力,
设导轨足够长.求ab棒的最大速度和最终速度的大小.(g取10 m/s2
4、如图所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略·让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.
(1)由b向a方向看到的装置如图2所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图;
(2)在加速下滑过程中,当杆ab的速度大小为v时,求此时ab杆中的电流及其加速度的大小;
(3)求在下滑过程中,ab杆可以达到的速度最大值.
题型二:电磁感应与能量综合问题
5、如图所示,匀强磁场和竖直导轨所在面垂直,金属棒ab 可在导轨上无摩擦滑动,在金属棒、导轨和电阻组成的闭合回路中,除电阻R 外,其余电阻均不计,在ab 下滑过程中:( C )
A.由于ab 下落时只有重力做功,所以机械能守恒.
B.ab 达到稳定速度前,其减少的重力势能全部转化为电阻R 的内能.
C.ab 达到稳定速度后,其减少的重力势能全部转化为电阻R 的内能.
D.ab 达到稳定速度后,安培力不再对ab 做功.
6、匀强磁场垂直穿过导轨平面.有一导体棒ab ,质量为m ,导体棒的电
阻与固定电阻R 1和R 2的阻值均相等,与导轨之间的动摩擦因数为μ,导
体棒ab 沿导轨向上滑动,当上滑的速度为v 时,受到安培力的大小为F .此
时下列说法错误的是( A )
(A )电阻R 1消耗的热功率为Fv /3
(B )电阻 R 1消耗的热功率为 Fv /6.
(C )整个装置因摩擦而消耗的热功率为μmgvcosθ.
(D )整个装置消耗的机械功率为(F +μmgcosθ)v·
7、如图所示,质量为m ,边长为L 的正方形线框,在有界匀强磁场上方h 高处
由静止自由下落,线框的总电阻为R ,磁感应强度为B 的匀强磁场宽度为2L .线框下落过程中,ab 边始终与磁场边界平行且处于水平方向.已知ab 边刚穿出磁场时线框恰好做匀速运动.求:
(1)cd 边刚进入磁场时线框的速度.
(2)线框穿过磁场的过程中,产生的焦耳热.
8、如图所示,AB .CD 是两根足够长的固定平行金属导轨,两轨间距离为L ,导轨平面与水平面的夹角为θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B ,在导轨的AC 端连接一个阻值为R 的电阻,一根垂直于导轨放置的金属棒ab ,质量为m ,电阻为R ,与导轨的动摩擦因数为μ ,从静止开始沿导轨下滑,求:
(1)ab 棒的最大速度
(2)ab 释放的最大功率 (3)若ab 棒下降高度h 时达到最大速度,在这个过程中,ab 棒
产生的焦耳热为多大?
B a θ D R b A C
题型三:电磁感应中的图像问题
9、如图3所示,竖直放置的螺线管与导线abed 构成回路,导线所围区域内有一垂直纸面向里的变化的匀强磁场,螺线管下方水平面桌面上有一导体圆环.导线abcd 所围区域内磁场的磁感强度按图1 5—11中哪一图线所表示的方式随时问变化时,导体圆环将受到向上的磁场力作用?( A ).
图3 A B C D
10、如图所示,两平行的虚线间的区域内存在着有界匀强磁场,有一较小的三角形线框abc 的ab 边与磁场边界平行,现使此线框向右匀速穿过磁场区域,运动
过程中始终保持速度方向与ab 边垂直.则下列各图中哪一个可以定性地表示线
框在进入磁场的过程中感应电流随时间变化的规律: ( D )
11.如图所示,一有界匀强磁场,磁感应强度大小均为B ,方向分 别
垂直纸面向里和向外,磁场宽度均为L ,在磁场区域的左侧相距为L
处,有一边长为L 的正方形导体线框,总电阻为R ,且线框平面与
磁场方向垂直。
现使线框以速度v 匀速穿过磁场区域。
若以初始位
置为计时起点,规定电流逆时针方向时的电流和电动势方向为正,B
垂直纸面向里时为正,则以下四个图象中对此过程描述不正确的是
( B )
12.一个“∠”形导轨垂直于磁场固定在磁感应强度为B 的匀强
磁场中,a 是与导轨材料相同、粗细相同的导体棒,导体棒与导轨接触良好。
在外力作用下,导体棒以恒定速度v 向右运动,以导体棒在右图所示位置的时刻作为时间的零点,下列物理量随时间变化的图像可能正确的是( D )
0 i t 0 i t 0 i t 0
i
t A D
C B a b
B c
其他题目:
13、如图所示的电路中,A1和A2是完全相同的灯泡,线圈L 的电阻可以忽略.下列说法中正确的是 ( A )
(A)合上开关K 接通电路时,A2先亮,A1后亮,最后一样亮
(B)合上开关K 接通电路时,A1和A2始终一样亮
(C)断开开关K 切断电路时,A2立刻熄灭,A1过一会儿才熄灭
(D)断开开关K 切断电路时,A1都要过一会儿才熄灭,A2亮一下
才熄灭。
14、如图13-2-1所示的交流电的电流随时间而变化的图象。
此交
流电的有效值是:( B )。
A .52A
B .5A
C .3.5A
D .3.52A
15、如图13-2-5,左图是某种型号的电热毯的电路图,电热
毯接在交变电源上,通过装置P 使加在电热
丝上的电压的波形如右图所示。
此时接在电
热丝两端的交流电压表的读数为( B )。
A .110V
B .156V
C .220V
D .311V
实验题 16、用如图所示的实验装置研究电磁感应现
象.当有电流从电流表的正极流入时,指针向右偏转.下列说法
哪些是正确的: ( AC )
A .当把磁铁N 极向下插入线圈时,电流表指针向左偏转
B .当把磁铁N 极从线圈中拔出时,电流表指针向左偏转
C .保持磁铁在线圈中静止,电流表指针不发生偏转
D .磁铁插入线圈后,将磁铁和线圈一起以同一速度向上运动,
电流表指针向左偏
17、如图所示,两个线圈绕在同一铁芯上,A 中接有电源,B 中
导
线接有一电阻R 。
在把磁铁迅速插入A 线圈的过程中,A 线
圈
中的电流将______减少____(填“减少”、“增大”或“不变”),
通过电阻R 的感应电流的方向为___Q 到P____;若线圈B 能
自由移动,则它将___向左_____移动(填“向左”、“向右”或“不”)。
N S - +
图13-2-1 P u V 12345 o t /10-2s u /V 311 图13-2-5
18、如图所示,以边长为50cm的正方形导线框,放置在B=0.40T的身强磁场中。
已知磁场方向与水平方向成37°角,线框电阻为0.10Ω,求线框绕其一边从水平方向转至竖直方向的过程中通过导线横截面积的电量。