1990年全国高考数学试题
高考试卷中立体几何试题归类(1990-2002年)
高考立体几何试题汇编(1990——2002年)(90全国)如图,在三棱锥S ABC中,SA⊥底面ABC,AB⊥BC.DE垂直平分SC,且分别交AC、SC于D、E.又SA=AB,SB=BC.求以BD为棱,以BDE与BDC为面的二面角的度数.(91全国)已知ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GC垂直于ABCD所在的平面,且GC=2.求点B到平面EFG的距离.(92理)两条异面直线a、b所成的角为θ,它们的公垂线段AA1的长度为d。
在直线a、b上分别取点E、F,设A1E=m,AF=n(93全国)如图,A1B1C1-ABC是直三棱柱,过点A1、B、C1的平面和平面ABC的交线记作l.(Ⅰ)判定直线A1C1和l的位置关系,并加以证明;(Ⅱ)若A1A=1,AB=4,BC=3,∠ABC=90°,求顶点A1到直线l的距离.(94全国)如图,已知A1B1C1-ABC是正三棱柱,D是AC中点.(1)证明AB1∥平面DBC1;(2)假设AB1⊥BC1,求以BC1为棱,DBC1与CBC1为面的二面角α的度数.(95全国)如图,ABCD是圆柱的轴截面,点E在底面的周长上,AF⊥DE,F是垂足。
(1)求证:AF⊥DB(2)如果AB=a,圆柱与三棱锥D-ABE的体积比等于3π,求点E到截面ABCD的距离(96全国)如图,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥侧面AC1.(Ⅰ)求证:BE=EB1;(Ⅱ)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).(Ⅰ)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.① ∵__________________________________∴EG⊥侧面AC1;取AC的中点F,连结BF,FG,由AB=BC得BF⊥AC,② ∵___________________________________∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.③ ∵ __________________________________∴BE∥FG,四边形BEGF是平行四边形,BE=FG,④ ∵_________________________________∴FG∥AA1,△AA1C∽△FGC,⑤ ∵_________________________(Ⅱ)解:(97全国)如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中点. (Ⅰ)证明AD ⊥D 1F; (Ⅱ)求AE 与D 1F 所成的角; (Ⅲ)证明面AED ⊥面A 1FD 1;(98全国)已知斜三棱柱ABC -A 1B 1C 1的侧面A 1ACC 1与底面ABC 垂直,∠ABC =90°,BC =2,AC =2,且AA 1⊥A 1C ,AA 1=A 1C 。
1990年高考全国卷数学试题及答案
1990年高考试题(理工农医类)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后括号内.【】【】(3)如果轴截面为正方形的圆柱的侧面积是S,那么圆柱的体积等于【】(4)方程sin2x=sinx在区间(0,2π)内的解的个数是(A)1(B)2(C)3(D)4【】(5)【】【】(A){-2,4}(B){-2,0,4}(C){-2,0,2,4}(D){-4,-2,0,4}(7)如果直线y=ax+2与直线y=3x-b关于直线y=x对称,那么【】(C)a=3,b=-2(D)a=3,b=6【】(A)圆(B)椭圆(C)双曲线的一支(D)抛物线【】(B){(2,3)}(C)(2,3)(D){(x,y)│y=x+1}【】(11)如图,正三棱锥S-ABC的侧棱与底面边长相等,如果E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于【】(A)90°(B)60°(C)45°(D)30°(12)已知h>0.设命题甲为:两个实数a,b满足│a-b│<2h;命题乙为:两个实数a,b满足│a-1│<h且│b-1│<h.那么【】(A)甲是乙的充分条件,但不是乙的必要条件(B)甲是乙的必要条件,但不是乙的充分条件(C)甲是乙的充分条件(D)甲不是乙的充分条件,也不是乙的必要条件(13)A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有【】(A)24种(B)60种(C)90种(D)120种(14)以一个正方体的顶点为顶点的四面体共有【】(A)70个(B)64个(C)58个(D)52个(15)设函数y=arctgx的图象沿x轴正方向平移2个单位所得到的图象为C.又设图象C'与C关于原点对称,那么C'所对应的函数是【】(A)y=-arctg(x-2)(B)y=arctg(x-2)(C)y=-arctg(x+2)(D)y=arctg(x+2)二、填空题:把答案填在题中横线上.(17)(x-1)-(x-1)2+(x-1)3-(x-1)4+(x-1)5的展开式中,x2的系数等于.(18)已知{a n}是公差不为零的等差数列,如果S n是{a n}的前n项的和,那(19)函数y=sinxcosx+sinx+cosx的最大值是.(20)如图,三棱柱ABC-A1B1C1中,若E、F分别为AB、AC的中点,平面EB1C1F将三棱柱分成体积为V1、V2的两部分,那么V1:V2=.三、解答题.(21)有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12.求这四个数.(23)如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC.DE垂直平分SC,且分别交AC、SC于D、E.又SA=AB,SB=BC.求以BD为棱,以BDE与BDC为面的二面角的度数.(24)设a≥0,在复数集C中解方程z2+2│z│=a.n≥2.(Ⅰ)如果f(x)当x∈(-∞,1]时有意义,求a的取值范围; (Ⅱ)如果a∈(0,1],证明2f(x)<f(2x)当x≠0时成立.1990年试题(理工农医类)答案一、选择题:本题考查基本知识和基本运算.(1)A(2)B(3)D(4)C(5)C(6)B (7)A(8)D(9)B(10)D(11)C(12)B (13)B(14)C(15)D二、填空题:本题考查基本知识和基本运算.三、解答题.(21)本小题考查等差数列、等比数列的概念和运用方程(组)解决问题的能力.解法一:①由②式得d=12-2a.③整理得a2-13a+36=0解得a1=4,a2=9.代入③式得d1=4,d2=-6.从而得所求四个数为0,4,8,16或15,9,3,1.解法二:设四个数依次为x,y,12-y,16-x①由①式得x=3y-12.③将③式代入②式得y(16-3y+12)=(12-y)2,整理得y2-13y+36=0.解得y1=4,y2=9.代入③式得x1=0,x2=15.从而得所求四个数为0,4,8,16或15,9,3,1.(22)本小题考查三角公式以及三角函数式的恒等变形和运算能力.解法一:由已知得解法二:如图,不妨设0≤α≤β<2π,且点A的坐标是(cosα,sinα),点B的坐标是(cosβ,sinβ),则点A,B在单位圆x2+y2=1上.连结连结OC,于是OC⊥AB,若设点D的坐标是(1,0),再连结OA,OB,则有解法三:由题设得4(sinα+sinβ)=3(cosα+cosβ).将②式代入①式,可得sin(α-)=sin(-β).于是α-=(2k+1)π-(-β)(k∈Z),或α-=2kπ+(-β)(k∈Z).若α-=(2k+1)π-(-β)(k∈Z),则α=β+(2k+1)π(k∈Z).于是sinα=-sinβ,即sinα+sinβ=0.由此可知α-=2kπ+(-β)(k∈Z),即α+β=2+2kπ(k∈Z).所以(23)本小题考查直线和平面,直线和直线的位置关系,二面角等基本知识,以及逻辑推理能力和空间想象能力.解法一:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.又已知SC⊥DE,BE∩DE=E,∴SC⊥面BDE,∴SC⊥BD.又∵SA⊥底面ABC,BD在底面ABC上,∴SA⊥BD.而SC∩SA=S,∴BD⊥面SAC.∵DE=面SAC∩面BDE,DC=面SAC∩面BDC,∴BD⊥DE,BD⊥DC.∴∠EDC是所求的二面角的平面角.∵SA⊥底面ABC,∴SA⊥AB,SA⊥AC.设SA=a,又因为AB⊥BC,∴∠ACS=30°.又已知DE⊥SC,所以∠EDC=60°,即所求的二面角等于60°.解法二:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.又已知SC⊥DE,BE∩DE=E∴SC⊥面BDE,∴SC⊥BD.由于SA⊥底面ABC,且A是垂足,所以AC是SC在平面ABC上的射影.由三垂线定理的逆定理得BD⊥AC;又因E∈SC,AC是SC在平面ABC上的射影,所以E在平面ABC上的射影在AC上,由于D∈AC,所以DE在平面ABC上的射影也在AC上,根据三垂线定理又得BD⊥DE.∵DE面BDE,DC面BDC,∴∠EDC是所求的二面角的平面角.以下同解法一.(24)本小题考查复数与解方程等基本知识以及综合分析能力.解法一:设z=x+yi,代入原方程得于是原方程等价于方程组由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数,或为纯虚数.下面分别加以讨论.情形1.若y=0,即求原方程的实数解z=x.此时,①式化为x2+2│x│=a.③(Ⅰ)令x>0,方程③变为x2+2x=a.④.由此可知:当a=0时,方程④无正根;(Ⅱ)令x<0,方程③变为x2-2x=a.⑤.由此可知:当a=0时,方程⑤无负根;当a>0时,方程⑤有负根x=1-.(Ⅲ)令x=0,方程③变为0=a.由此可知:当a=0时,方程⑥有零解x=0;当a>0时,方程⑥无零解.所以,原方程的实数解是:当a=0时,z=0;.情形2.若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为-y2+2│y│=a.⑦(Ⅰ)令y>0,方程⑦变为-y2+2y=a,即(y-1)2=1-a.⑧由此可知:当a>1时,方程⑧无实根.当a≤1时解方程⑧得y=1±,从而,当a=0时,方程⑧有正根y=2;当0<a≤1时,方程⑧有正根y=1±.(Ⅱ)令y<0,方程⑦变为-y2-2y=a,即(y+1)2=1-a.⑨由此可知:当a>1时,方程⑨无实根.当a≤1时解方程⑨得y=-1±,从而,当a=0时,方程⑨有负根y=-2;当0<a≤1时,方程⑨有负根y=-1±所以,原方程的纯虚数解是:当a=0时,z=±2i;当0<a≤1时,z=±(1+)i,z=±(1-)i.而当a>1时,原方程无纯虚数解.解法二:设z=x+yi代入原方程得于是原方程等价于方程组由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数,或为纯虚数.下面分别加以讨论.情形1.若y=0,即求原方程的实数解z=x.此时,①式化为x2+2│x│=a.即| x |2+2│x│=a.③解方程③得,所以,原方程的实数解是.情形2.若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为-y2+2│y│=a.即-│y│2 +2│y│=a.④当a=0时,因y≠0,解方程④得│y│=2,即当a=0时,原方程的纯虚数解是z=±2i.当0<a≤1时,解方程④得,即当0<a≤1时,原方程的纯虚数解是.而当a>1时,方程④无实根,所以这时原方程无纯虚数解.解法三:因为z2=-2│z│+a是实数,所以若原方程有解,则其解或为实数,或为纯虚数,即z=x或z=yi(y≠0).情形1.若z=x.以下同解法一或解法二中的情形1.情形2.若z=yi(y≠0).以下同解法一或解法二中的情形2.解法四:设z=r(cosθ+isinθ),其中r≥0,0≤θ<2π.代入原方程得r2cos2θ+2r+ir2sin2θ=a.于是原方程等价于方程组情形1.若r=0.①式变成0=a.③由此可知:当a=0时,r=0是方程③的解.当a>0时,方程③无解.所以,当a=0时,原方程有解z=0;当a>0时,原方程无零解.考查r>0的情形.(Ⅰ)当k=0,2时,对应的复数是z=±r.因cos2θ=1,故①式化为r2+2r=a.④.由此可知:当a=0时,方程④无正根;当a>0时,方程④有正根.所以,当a>0时,原方程有解.(Ⅱ)当k=1,3时,对应的复数是z=±ri.因cos2θ=-1,故①式化为-r2+2r=a,即(r-1)2=1-a,⑤由此可知:当a>1时,方程⑤无实根,从而无正根;.从而,当a=0时,方程⑤有正根r=2;.所以,当a=0时,原方程有解z=±2i;当0<a≤1时,原方程有解当a>1时,原方程无纯虚数解.(25)本小题考查椭圆的性质,距离公式,最大值知识以及分析问题的能力.解法一:根据题设条件,可取椭圆的参数方程是其中a>b>0待定,0≤θ<2π.设椭圆上的点(x,y)到点P的距离为d,则大值,由题设得,因此必有,由此可得b=1,a=2.所求椭圆的参数方程是.解法二:设所求椭圆的直角坐标方程是其中a>b>0待定.,设椭圆上的点(x,y)到点P的距离为d,则其中-byb.由此得,由此可得b=1,a=2.所求椭圆的直角坐标方程是(26)本题考查对数函数,指数函数,数学归纳法,不等式的知识以及综合运用有关知识解决问题的能力.(Ⅰ)解:f(x)当x∈(-∞,1]时有意义的条件是1+2x+…(n-1)x+n x a>0x∈(-∞,1],n≥2,上都是增函数,在(-∞,1]上也是增函数,从而它在x=1时取得最大值也就是a的取值范围为(Ⅱ)证法一:2f(x)<f(2x)a∈(0,1],x≠0.即[1+2x+…+(n-1)x+n x a]2<n[1+22x+…+(n-1)2x+n2x a]a∈(0,1],x≠0.②现用数学归纳法证明②式.(A)先证明当n=2时②式成立.假如0<a<1,x≠0,则(1+2x a)2=1+2·2x a+22x a2≤2(1+22x)<2(1+22x a).假如a=1,x≠0,因为1≠2x,所以因而当n=2时②式成立.(B)假如当n=k(k≥2)时②式成立,即有[1+2x+…+(k-1)x+k x a]2<k[1+22x+…+(k-1)2x a] a∈(0,1],x≠0,那么,当a∈(0,1],x≠0时[(1+2x+…+k x)+(k+1)xa]2=(1+2x+…+k x)2+2(1+2x+…+k x)(k+1)x a+(k+1)2x a2<k(1+22x+…+k2x)+2(1+2x+…+k x)(k+1)x a+(k+1)2x a2=k(1+22x+…+k2x)+[2·1·(k+1)x a+2·2x(k+1)x a+…+2k x(k+1)x a]+(k+1)2x a2<k(1+22x+…+k2x)+{[1+(k+1)2x a2]+[22x+(k+1)2x a2]+…+[k2x+(k+1)2x a2]}+(k+1)2x a2]=(k+1)[1+22x+…+k2x+(k+1)2x a2]≤(k+1)[1+22x+…+k2x+(k+1)2x a],这就是说,当n=k+1时②式也成立.根据(A),(B)可知,②式对任何n≥2(n∈N)都成立.即有2f(x)<f(2x)a∈(0,1],x≠0.证法二:只需证明n≥2时因为其中等号当且仅当a1=a2=…=a n时成立.利用上面结果知,当a=1,x≠0时,因1≠2x,所以有[1+2x+…+(n-1)x+n x]2<n[1+22x+…+(n-1)2x+n2x].当0<a<1,x≠0时,因a2<a,所以有[1+2x+…+(n-1)x+n x a]2≤n[1+22x+…+(n-1)2x+n2x a2]<n[1+22x+…+(n-1)2x+n2x a].即有2f(x)<f(2x)a∈(0,1),x≠0.。
1990年全国普通高等学校招生统一考试数学文.pdf
1990年(文史类) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.把所选项前的字母填在题后括号内. (2)cos275°+cos215°+cos75°cos15°的值等于 ?(3)如果轴截面为正方形的圆柱的侧面积是S,那么圆柱的体积等于 (6)已知上图是函数y=2sin(ωx+ψ)(│ψ│<)的图象,那么 ? (7)设命题甲为:0<x<5;命题乙为:│x-2│0,a≠1,解不等式loga(4+3x-x2)-loga(2x-1)>loga2. (25)设a≥0,在复数集C中解方程z2+2│z│=a. ? 1990年试题(文史类)答案 ? 一、选择题:本题考查基本知识和基本运算. (1)A (2)C (3)D (4)B (5)D (6)C (7)A (8)B (9)A (10)C (11)B? (12)D? (13)A? (14)C? (15)B 二、填空题:本题考查基本知识和基本运算. 三、解答题. (21)本小题考查等差数列、等比数列的概念和运用方程(组)解决问题的能力. 依题意有 由②式得 d=12-2a.? ③ 整理得 a2-13a+36=0. 解得? a1=4, a2=9. 代入③式得 d1=4,? d2=-6. 从而得所求四个数为0,4,8,16或15,9,3,1. 解法二:设四个数依次为x,y,12-y,16-x. 依题意,有 由①式得 x=3y-12.? ③ 将③式代入②式得? y(16-3y+12)=(12-y)2, 整理得 y2-13y+36=0. 解得? y1=4,y2=9. 代入③式得 x1=0,x2=15. 从而得所求四个数为0,4,8,16或15,9,3,1. (22)本小题考查三角公式以及三角函数式的恒等变形和运算能力. 解法一:由已知得 两式相除得 解法二:如图,不妨设0≤α≤βloga2(2x-1). ① 当01时,①式等价于 (25)本小题考查复数与解方程等基本知识以及综合分析能力. 解法一:设z=x+yi,代入原方程得 于是原方程等价于方程组 由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数或为纯虚数.下面分别加以讨论. 情形1. 若y=0,即求原方程的实数解z=x.此时,①式化为 x2+2│x│=a. ③ (Ⅰ)令x>0,方程③变为x2+2x=a.? ④ 由此可知:当a=0时,方程④无正根; (Ⅱ)令x0时,方程⑥无零解. 所以,原方程的实数解是: 当a=0时,z=0; 情形2. 若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为 -y2+2│y│=a. ⑦ (Ⅰ)令y>0,方程⑦变为-y2+2y=a,即(y-1)2=1-a. ⑧ 由此可知:当a>1时,方程⑧无实根. 从而,? 当a=0时,方程⑧有正根 y=2; (Ⅱ)令y1时,方程⑨无实根. 从而,? 当a=0时,方程⑨有负根 y=-2; 所以,原方程的纯虚数解是: 当a=0时,z=±2i; 而当a>1时,原方程无纯虚数解. 解法二:设z=x+yi,代入原方程得 于是原方程等价于方程组 由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数,或为纯虚数.下面分别加以讨论. 情形1. 若y=0,即求原方程的实数解z=x.此时,①式化为 x2+2│x│=a. 情形2. 若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为 -y2+2│y│=a. 当a=0时,因y≠0,解方程④得│y│=2, 即当a=0时,原方程的纯虚数解是z=±2i. 即当01时,方程④无实根,所以这时原方程无纯虚数解. 解法三:因为z2=-2│z│+a是实数,所以若原方程有解,则其解或为实数,或为纯虚数,即z=x或z=yi(y≠0). 情形1. 若z=x.以下同解法一或解法二中的情形1. 情形2. 若z=yi(y≠0).以下同解法一或解法二中的情形2. 解法四:设z=r(cosθ+isinθ),其中r≥0,0≤θ0时,方程③无解. 所以,? 当a=0时,原方程有解z=0; 当a>0时,原方程无零解. (Ⅰ)当k=0,2时,对应的复数是z=±r.因cos2θ=1,故①式化为 r2+2r=a.? ④ 由此可知:当a=0时,方程④无正根; (Ⅱ)当k=1,3时,对应的复数是z=±ri.因cos2θ=-1,故①式化为 -r2+2r=a,即(r-1)2=1-a,? ⑤ 由此可知:当a>1时,方程⑤无实根,从而无正根; 从而,? 当a=0时,方程⑤有正根 r=2; 所以,? 当a=o时,原方程有解z=±2i; 当01时,原方程无纯虚数解.。
1990年高考试题(上海-理)
1990年普通高等学校招生全国统一考试上海 数学试卷(理工农医类)一、填空题(每小题3分,共30分) 1、函数24++=x x y 的定义域是 。
2、函数x y arcsin =,(]1,1[-∈x )的反函数是 。
3、过点)2,1(且与直线012=-+y x 平行的直线方程是 。
4、已知圆柱的轴截面是正方形,它的面积是24cm ,那么这个圆柱的体积是 3cm (结果中保留π)。
5、在ABC ∆中,已知53cos -=A ,则=2sinA 。
6、设复数,则的值是 。
7、已知圆锥的中截面周长为a ,母线长为l ,则它的侧面积等于 。
8、已知7)(a x +的展开式中,4x 的系数是280-,则实数=a 。
9、双曲线2222=-my mx 的一条准线是1=y ,则=m 。
10、平面上,四条平行直线与另外五条平行直线互相垂直,则它的矩形共有个 (结果用数值表示)。
二、选择题(每小题3分,共30分)11、圆的半径是1,圆心的极坐标是(1,0),则这个圆的极坐标方程是( ) (A )、θρc o s = (B )、θρs i n = (C )、θρc o s 2= (D )、θρs i n 2= 12、函数)(x f 和)(x g 的定义域均为R ,“)(x f 、)(x g 都是奇函数”是“)(x f 与)(x g 的积是偶函数“的 ( ) (A )、必要条件但非充分条件 (B )、充分条件但非必要条件(C )、充分必要条件 (D )、非充分条件也非必要条件 13、设点P 在有向线段AB 的延长线上,P 分AB 所成的比为λ,则 ( ) (A )、1-<λ (B )、01<<-λ(C )、10<<λ (D )、1>λ14、设32=a ,62=b ,122=c ,则数列a ,b ,c ( ) (A )、是等差数列但不是等比数列(B )、是等比数列但不是等差数列(C )、既是等差数列又是等比数列(D )、既不是等差数列又不是等比数列 15、设α角属于第Ⅱ象限,且2cos|2cos|αα-=,则2α角属于 ( )(A )、第Ⅰ象限 (B )、第Ⅱ象限 (C )、第Ⅲ象限 (D )、第Ⅳ象限16、设过长方体同一个顶点的三个面的对角线长分别是a 、b 、c ,那么这个长方体的对角线长是 ( ) (A )、222c b a ++ (B )、2222cb a ++(C )、3222cb a ++ (D )、2222cb a ++17、函数ax atg x f =)(的最小正周期是 ( )(A )、a π (B )、| |a π (C )、aπ(D )、||a π 18、已知d x <<1,令2)(logx a d=,)(log 2x b d =,)(loglog x b dd =,则 ( ) (A )、c b a << (B )、b c a << (C )、a b c << (D )、b a c << 19、设b a ,是两条异面直线,那么下列四个命题中的假命题是 ( ) (A )、经过直线a 有且只有一个平面平行于直线b(B )、经过直线a 有且只有一个平面垂直于直线b (C )、存在分别经过直线a 和b 的两个互相平行的平面 (D )、存在分别经过直线a 和b 的两个互相垂直的平面20、下列四个函数中,在定义域内不具有单调性的函数是 ( ) (A )、)(a r c c o s x c t g y = (B )、)(a r c s i n x tg y =(C )、)s i n (a r c t g x y = (D )、)c o s (a r c t g x y = 三、解答题(共90分) 21、(本题满分8分)已知0)22(log 25=-+x x ,021log )2(log 255=+-+y x ,求y的值。
1990年高考试题(上海-理)
1990年普通高等学校招生全国统一考试上海 数学试卷(理工农医类)一、填空题(每小题3分,共30分)1、函数24++=x x y 的定义域是 。
2、函数x y arcsin =,(]1,1[-∈x )的反函数是 。
3、过点)2,1(且与直线012=-+y x 平行的直线方程是 。
4、已知圆柱的轴截面是正方形,它的面积是24cm ,那么这个圆柱的体积是 3cm (结果中保留π)。
5、在ABC ∆中,已知53cos -=A ,则=2sin A 。
6、设复数,则的值是 。
7、已知圆锥的中截面周长为a ,母线长为l ,则它的侧面积等于 。
8、已知7)(a x +的展开式中,4x 的系数是280-,则实数=a 。
9、双曲线2222=-my mx 的一条准线是1=y ,则=m 。
10、平面上,四条平行直线与另外五条平行直线互相垂直,则它的矩形共有个 (结果用数值表示)。
二、选择题(每小题3分,共30分)11、圆的半径是1,圆心的极坐标是(1,0),则这个圆的极坐标方程是( )(A )、θρcos = (B )、θρsin = (C )、θρcos 2= (D )、θρsin 2=12、函数)(x f 和)(x g 的定义域均为R ,“)(x f 、)(x g 都是奇函数”是“)(x f 与)(x g 的积是偶函数“的 ( ) (A )、必要条件但非充分条件 (B )、充分条件但非必要条件(C )、充分必要条件 (D )、非充分条件也非必要条件13、设点P 在有向线段AB 的延长线上,P 分AB 所成的比为λ,则 ( )(A )、1-<λ (B )、01<<-λ(C )、10<<λ (D )、1>λ14、设32=a ,62=b ,122=c ,则数列a ,b ,c ( )(A )、是等差数列但不是等比数列(B )、是等比数列但不是等差数列(C )、既是等差数列又是等比数列(D )、既不是等差数列又不是等比数列15、设α角属于第Ⅱ象限,且2cos |2cos|αα-=,则2α角属于 ( ) (A )、第Ⅰ象限 (B )、第Ⅱ象限(C )、第Ⅲ象限 (D )、第Ⅳ象限16、设过长方体同一个顶点的三个面的对角线长分别是a 、b 、c ,那么这个长方体的对角线长是 ( ) (A )、222c b a ++ (B )、2222c b a ++ (C )、3222c b a ++ (D )、2222c b a ++ 17、函数ax atg x f =)(的最小正周期是 ( ) (A )、a π (B )、| |a π (C )、aπ (D )、||a π 18、已知d x <<1,令2)(log x a d =,)(log 2x b d =,)(log log x b d d =,则 ( ) (A )、c b a << (B )、b c a << (C )、a b c << (D )、b a c <<19、设b a ,是两条异面直线,那么下列四个命题中的假命题是 ( )(A )、经过直线a 有且只有一个平面平行于直线b(B )、经过直线a 有且只有一个平面垂直于直线b(C )、存在分别经过直线a 和b 的两个互相平行的平面(D )、存在分别经过直线a 和b 的两个互相垂直的平面20、下列四个函数中,在定义域内不具有单调性的函数是 ( )(A )、)(arccos x ctg y = (B )、)(arcsin x tg y =(C )、)sin(arctgx y = (D )、)cos(arctgx y =三、解答题(共90分)21、(本题满分8分)已知0)22(log 25=-+x x ,021log )2(log 255=+-+y x ,求y 的值。
中国历届高考数学试卷
一、1977年高考数学试卷1977年是我国恢复高考的第一年,数学试卷如下:1. (1)求函数y=2x-1在x=2时的函数值。
(2)已知等差数列的前三项分别为2,5,8,求该数列的通项公式。
2. (1)若三角形ABC的三边长分别为a,b,c,且a=3,b=4,c=5,求该三角形的面积。
(2)已知函数y=x^2-4x+4,求该函数的顶点坐标。
二、1980年高考数学试卷1980年高考数学试卷如下:1. (1)已知等差数列的前三项分别为3,5,7,求该数列的通项公式。
(2)若等比数列的首项为2,公比为3,求该数列的前5项。
2. (1)已知圆的方程为x^2+y^2=4,求该圆的面积。
(2)若函数y=3x-2,求该函数在x=1时的导数。
三、1990年高考数学试卷1990年高考数学试卷如下:1. (1)已知等差数列的前三项分别为1,4,7,求该数列的通项公式。
(2)若等比数列的首项为1,公比为2,求该数列的前4项。
2. (1)已知圆的方程为x^2+y^2=9,求该圆的半径。
(2)若函数y=e^x,求该函数在x=0时的导数。
四、2000年高考数学试卷2000年高考数学试卷如下:1. (1)已知等差数列的前三项分别为2,5,8,求该数列的通项公式。
(2)若等比数列的首项为1,公比为3,求该数列的前5项。
2. (1)已知圆的方程为x^2+y^2=16,求该圆的面积。
(2)若函数y=lnx,求该函数在x=1时的导数。
五、2010年高考数学试卷2010年高考数学试卷如下:1. (1)已知等差数列的前三项分别为3,6,9,求该数列的通项公式。
(2)若等比数列的首项为2,公比为4,求该数列的前4项。
2. (1)已知圆的方程为x^2+y^2=25,求该圆的半径。
(2)若函数y=sinx,求该函数在x=π/2时的导数。
通过以上历届高考数学试卷,我们可以看出高考数学试卷的题型和难度逐年递增,考察的知识点也越来越广泛。
考生在备考过程中,需要掌握基础知识,提高解题能力,才能在高考中取得优异成绩。
高考数学普通高等学校招生全国统一考试90
高考数学普通高等学校招生全国统一考试90本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第I 卷1至2页;第Ⅱ卷3至4页;共150分.第I 卷注意事项:1.答题前;考生务必将自己的准考证号、姓名填写在答题卡上;考生要认真核对答题卡粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后;用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动;用橡皮擦干净后;再选涂其他答案标号;第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答;在试题卷上作答;答案无效.3.考试结束;临考员将试题卷、答题卡一并收回. 参考公式:如果事件A 、B 互斥;那么 球的表面积公式P(A+B)=P(A)+P(B) 24R S π=如果事件A 、B 相互独立;那么 其中R 表示球的半径P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是 球的体积公式 P ;那么n 次独立重复试验中恰好发生k 334R V π=次的概率k n kk n n P P C k P --=)1()( 其中R 表示球的半径一、选择题:本大题共12小题;每小题5分;共60分.在每小题给出的四个选项中;只有一项是符合题目要求的. 1.设集合⋃--==∈<=A B A Z x x x I 则},2,1,2{},2,1{},,3|||{( B )= ( )A .{1}B .{1;2}C .{2}D .{0;1;2} 2.已知==ααcos ,32tan 则( ) A .54 B .-54 C .154 D .-533.123)(x x +的展开式中;含x 的正整数次幂的项共有 ( )A .4项B .3项C .2项D .1项 4.函数)34(log 1)(22-+-=x x x f 的定义域为( )IA .(1;2)∪(2;3)B .),3()1,(+∞⋃-∞C .(1;3)D .[1;3]5.设函数)(|,3sin |3sin )(x f x x x f 则+=为( )A .周期函数;最小正周期为32πB .周期函数;最小正周期为3πC .周期函数;数小正周期为π2D .非周期函数6.已知向量的夹角为与则若c a c b a c b a ,25)(,5||),4,2(),2,1(=⋅+=--= ( )A .30°B .60°C .120°D .150°7.将9个(含甲、乙)平均分成三组;甲、乙分在同一组;则不同分组方法的种数为( ) A .70 B .140 C .280 D .840 8.在△ABC 中;设命题,sin sin sin :AcC b B a p ==命题q:△ABC 是等边三角形;那么命题p 是命题q 的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件9.矩形ABCD 中;AB=4;BC=3;沿AC 将矩形ABCD 折成一个直二面角B —AC —D ;则四面体ABCD 的外接球的体积为 ( )A .π12125B .π9125 C .π6125D .π312510.已知实数a 、b 满足等式,)31()21(ba =下列五个关系式:①0<b <a ②a <b <0 ③0<a <b ④b <a <0 ⑤a =b 其中不可能成立的关系式有( )A .1个B .2个C .3个D .4个11.在△OAB 中;O 为坐标原点;]2,0(),1,(sin ),cos ,1(πθθθ∈B A ;则当△OAB 的面积达最大值时;=θ( )A .6π B .4π C .3π D .2π12.为了解某校高三学生的视力情况;随机地抽查了该校100名高三学生的视力情况;得到频率分布直方图;如右;由于不慎将部分数据丢失;但知道前4组的频数成等比数列;后6组的频数成等差数列;设最大频率为a ;视力在到之间的学生数为b ;则a , b 的值分别为( ) A .0,27,78 B .0,27,83 C .2.7,78 D .2.7,83第Ⅱ卷注意事项: 第Ⅱ卷2页;须用黑色墨水签字笔在答题卡上书写作答;在试题卷上作答;答案无效。
高考理科数学试题及答案1990
高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为()A .2B .3C .2D .2310. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.111. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为()A .32 B .155 C .105D .33 12. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。
1990年全国高考数学试题
年全国高考数学试题(理工农医类)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后括号内.[]一、选择题:本题考查基本知识和基本运算.()【】[] ()()如果轴截面为正方形的圆柱的侧面积是,那么圆柱的体积等于【】[] ()()方程在区间(π)内的解的个数是()()()()【】[] ()()【】[] ()(){}(){}(){}(){}【】[] ()()如果直线+与直线-关于直线=对称,那么()()【】[] ()()圆()椭圆()双曲线的一支()抛物线【】[] ()(){()}()()(){()│}【】[] ()【】[] ()()如图,正三棱锥的侧棱与底面边长相等,如果、分别为、的中点,那么异面直线与所成的角等于()°()°()°()°【】[] ()()已知>.设命题甲为:两个实数满足│-│<;命题乙为:两个实数满足│-│<且││<.那么()甲是乙的充分条件,但不是乙的必要条件()甲是乙的必要条件,但不是乙的充分条件()甲是乙的充分条件()甲不是乙的充分条件,也不是乙的必要条件【】[] ()()五人并排站成一排,如果必须站在的右边(可以不相邻),那么不同的排法共有()种()种()种()种【】[] ()()以一个正方体的顶点为顶点的四面体共有()个()个()个()个【】[] ()()设函数的图象沿轴正方向平移个单位所得到的图象为.又设图象'与关于原点对称,那么'所对应的函数是()()()()()()()()【】[] ()二、填空题:把答案填在题中横线上.()()()()()()的展开式中的系数等于.()已知{}是公差不为零的等差数列,如果是{}的前项的和,那()函数的最大值是.()如图,三棱柱-中,若、分别为、的中点,平面将三棱柱分成体积为、的两部分,那么=.[] 二、填空题:本题考查基本知识和基本运算.三、解答题.()有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是,第二个数与第三个数的和是.求这四个数.[] 三、解答题.()本小题考查等差数列、等比数列的概念和运用方程(组)解决问题的能力.解法一:①由②式得.③整理得解得.代入③式得.从而得所求四个数为或.解法二:设四个数依次为①由①式得.③将③式代入②式得()(),整理得.解得.代入③式得.从而得所求四个数为或.[] ()本小题考查三角公式以及三角函数式的恒等变形和运算能力.解法一:由已知得解法二:如图,不妨设≤α≤β<π,且点的坐标是(α,α),点的坐标是(ββ),则点在单位圆上.连结连结,于是⊥,若设点的坐标是(),再连结,则有解法三:由题设得(αβ)(αβ).将②式代入①式,可得(α)(β).于是α-=()π(β)(∈),或απ(β)(∈).若α()π(β)(∈),则α=β+()π(∈).于是αβ,即αβ.由此可知απ(β)(∈),即α+β=π(∈).所以()如图,在三棱锥中⊥底面⊥.垂直平分,且分别交、于、.又==.求以为棱,以与为面的二面角的度数.[] ()本小题考查直线和平面,直线和直线的位置关系,二面角等基本知识,以及逻辑推理能力和空间想象能力.解法一:由于=,且是的中点,因此是等腰三角形的底边的中线,所以⊥.又已知⊥∩=,∴⊥面,∴⊥.又∵⊥底面在底面上,∴⊥.而∩=,∴⊥面.∵=面∩面=面∩面,∴⊥⊥.∴∠是所求的二面角的平面角.∵⊥底面,∴⊥⊥.设=,又因为⊥,∴∠=°.又已知⊥,所以∠=°,即所求的二面角等于°.解法二:由于=,且是的中点,因此是等腰三角形的底边的中线,所以⊥.又已知⊥∩=∴⊥面,∴⊥.由于⊥底面,且是垂足,所以是在平面上的射影.由三垂线定理的逆定理得⊥;又因∈是在平面上的射影,所以在平面上的射影在上,由于∈,所以在平面上的射影也在上,根据三垂线定理又得⊥.∵面面,∴∠是所求的二面角的平面角.以下同解法一.()设≥,在复数集中解方程││=.[] ()本小题考查复数与解方程等基本知识以及综合分析能力.解法一:设=,代入原方程得于是原方程等价于方程组由②式得或.由此可见,若原方程有解,则其解或为实数,或为纯虚数.下面分别加以讨论.情形.若,即求原方程的实数解.此时,①式化为││.③(Ⅰ)令>,方程③变为+.④.由此可知:当时,方程④无正根;(Ⅱ)令<,方程③变为.⑤.由此可知:当时,方程⑤无负根;当>时,方程⑤有负根.(Ⅲ)令,方程③变为.由此可知:当时,方程⑥有零解;当>时,方程⑥无零解.所以,原方程的实数解是:当时;.情形.若,由于的情形前已讨论,现在只需考查≠的情形,即求原方程的纯虚数解(≠).此时,①式化为││.⑦(Ⅰ)令>,方程⑦变为,即().⑧由此可知:当>时,方程⑧无实根.当≤时解方程⑧得±,从而,当时,方程⑧有正根;当<≤时,方程⑧有正根±.(Ⅱ)令<,方程⑦变为,即().⑨由此可知:当>时,方程⑨无实根.当≤时解方程⑨得±,从而,当时,方程⑨有负根;当<≤时,方程⑨有负根±所以,原方程的纯虚数解是:当时±;当<≤时,±()±().而当>时,原方程无纯虚数解.解法二:设代入原方程得于是原方程等价于方程组由②式得或.由此可见,若原方程有解,则其解或为实数,或为纯虚数.下面分别加以讨论.情形.若,即求原方程的实数解.此时,①式化为││.即││.③解方程③得,所以,原方程的实数解是.情形.若,由于的情形前已讨论,现在只需考查≠的情形,即求原方程的纯虚数解(≠).此时,①式化为││.即││││.④当时,因≠,解方程④得││,即当时,原方程的纯虚数解是±.当<≤时,解方程④得,即当<≤时,原方程的纯虚数解是.而当>时,方程④无实根,所以这时原方程无纯虚数解.解法三:因为││是实数,所以若原方程有解,则其解或为实数,或为纯虚数,即或(≠).情形.若.以下同解法一或解法二中的情形.情形.若(≠).以下同解法一或解法二中的情形.解法四:设(θθ),其中≥≤θ<π.代入原方程得θ+θ=.于是原方程等价于方程组情形.若.①式变成.③由此可知:当时是方程③的解.当>时,方程③无解.所以,当时,原方程有解;当>时,原方程无零解.考查>的情形.(Ⅰ)当时,对应的复数是±.因θ,故①式化为.④.由此可知:当时,方程④无正根;当>时,方程④有正根.所以,当>时,原方程有解.(Ⅱ)当时,对应的复数是±.因θ,故①式化为,即(),⑤由此可知:当>时,方程⑤无实根,从而无正根;.从而,当时,方程⑤有正根;.所以,当时,原方程有解±;当<≤时,原方程有解当>时,原方程无纯虚数解.[] ()本小题考查椭圆的性质,距离公式,最大值知识以及分析问题的能力.解法一:根据题设条件,可取椭圆的参数方程是其中>>待定≤θ<π.设椭圆上的点()到点的距离为,则大值,由题设得,因此必有,由此可得.所求椭圆的参数方程是.解法二:设所求椭圆的直角坐标方程是其中>>待定.,设椭圆上的点()到点的距离为,则其中.由此得,由此可得.所求椭圆的直角坐标方程是≥.(Ⅰ)如果()当∈(∞]时有意义,求的取值范围;(Ⅱ)如果∈(],证明()<()当≠时成立.[] ()本题考查对数函数,指数函数,数学归纳法,不等式的知识以及综合运用有关知识解决问题的能力.(Ⅰ)解()当∈(∞]时有意义的条件是…()>∈(∞]≥,上都是增函数,在(∞]上也是增函数,从而它在时取得最大值也就是的取值范围为(Ⅱ)证法一()<()∈(]≠.即[…()]<[…()]∈(]≠.②现用数学归纳法证明②式.()先证明当时②式成立.假如<<≠,则()·≤()<().假如≠,因为≠,所以因而当时②式成立.()假如当(≥)时②式成立,即有[…()]<[…()] ∈(]≠,那么,当∈(]≠时[(…)()](…)(…)()()<(…)(…)()()(…)[··()·()…()]()<(…){[()][()]…[()]}()]()[…()]≤()[…()],这就是说,当时②式也成立.根据(),()可知,②式对任何≥(∈)都成立.即有()<()∈(]≠.证法二:只需证明≥时因为其中等号当且仅当…时成立.利用上面结果知,当≠时,因≠,所以有[…()]<[…()].当<<≠时,因<,所以有[…()]≤[…()]<[…()].即有()<()∈(]≠.。
高考数学全国卷及答案理
1990年普通高等学校招生全国统一考试数学(理工农医类)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后括号内(3)如果轴截面为正方形的圆柱的侧面积是S,那么圆柱的体积等于(4)方程sin2x=sinx在区间(0,2π)内的解的个数是(A)1(B)2(C)3(D)4(5)(A){-2,4}(B){-2,0,4}(C){-2,0,2,4}(D){-4,-2,0,4}(7)如果直线y=ax+2与直线y=3x-b关于直线y=x对称,那么(C)a=3,b=-2(D)a=3,b=6(A)圆(B)椭圆(C)双曲线的一支(D)抛物线(B){(2,3)}(C)(2,3)(D){(x,y)│y=x+1}(11)如图,正三棱锥S ABC的侧棱与底面边长相等,如果E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于(A)90°(B)60°(C)45°(D)30°(12)已知h>0.设命题甲为:两个实数a,b满足│a-b│<2h。
命题乙为:两个实数a,b满足│a-1│<h且│b-1│<h.那么(A)甲是乙的充分条件,但不是乙的必要条件(B)甲是乙的必要条件,但不是乙的充分条件(C)甲是乙的充分条件(D)甲不是乙的充分条件,也不是乙的必要条件(13)A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有(A)24种(B)60种(C)90种(D)120种(14)以一个正方体的顶点为顶点的四面体共有(A)70个(B)64个(C)58个(D)52个(15)设函数y=arctgx的图象沿x轴正方向平移2个单位所得到的图象为C.又设图象C'与C关于原点对称,那么C'所对应的函数是(A)y=-arctg(x-2)(B)y=arctg(x-2)(C)y=-arctg(x+2)(D)y=arctg(x+2)二、填空题:把答案填在题中横线上.(17)(x-1)-(x-1)2+(x-1)3-(x-1)4+(x-1)5的展开式中,x2的系数等于(18)已知{a n}是公差不为零的等差数列,如果S n是{a n}的前n项的和,那(19)函数y=sinxcosx+sinx+cosx的最大值是(20)如图,三棱柱ABC-A1B1C1中,若E、F分别为AB、AC的中点,平面EB1C1F将三棱柱分成体积为V1、V2的两部分,那么V1:V2=三、解答题.7(21)有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12.求这四个数.(23)如图,在三棱锥S ABC中,SA⊥底面ABC,AB⊥BC.DE垂直平分SC,且分别交AC、SC于D、E.又SA=AB,SB=BC.求以BD为棱,以BDE与BDC为面的二面角的度数.(24)设a≥0,在复数集C中解方程z2+2│z│=a.n≥2.(Ⅰ)如果f(x)当x∈(-∞,1]时有意义,求a的取值范围。
1990年全国高考数学(文科)试题
1990年普通高等学校招生全国统一考试文科数学一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.把所选项前的字母填在题后括号内.1.方程3log 124x=的解是A.19x=B.3x=C.x=9x=2. 202000cos75cos15cos75cos15++的值等于A.232C.54D.14+3.如果轴截面为正方形的圆柱的侧面积是S,那么圆柱的体积等于4.把复数1i+对应的向量按顺时针方向旋转23π,所得到的向量对应的复数是A.1122i-++B.1122i--+5.双曲线221169y x-=的准线方程是A.y=x=165x=± D.165y=±6.已知如图是函数2sin() ()2y xπωϕϕ=+<的图象,A.10116πωϕ==, B.10116πωϕ==-,C.26πωϕ==, D.26πωϕ==-,7.设命题甲为: 05x<<;命题乙为: 23x-<.那么A.甲是乙的充分条件,但不是乙的必要条件.111B.甲是乙的必要条件,但不是乙的充分条件.C.甲是乙的充要条件.D.甲不是乙的充分条件,也不是乙的必要条件.8.函数cos cot sin tan sin cos tan cot x x x x y x x x x=+++的值域是 A.{}2,4- B.{}2,0,4- C.{}2,0,24-, D.{}4,2,0,4--9.如果直线2y ax =+与直线3y x b =+关于直线y x =对称,那么 A.1,63a b == B.1,63a b ==- C.3,2a b ==- D.3,6a b == 10.如果抛物线2(1)y a x =+的准线方程是3x =-,那么这条抛物线的焦点坐标是A.(3,0)B.(2,0)C.(1,0)D.(1,0)-11.设全集{}(,),I x y x y R =∈,集合3(,)12y M x y x ⎧-⎫==⎨⎬-⎩⎭,{}(,)1N x y y x =≠+,那么M N =A.∅B.{}(2,3)C.(2,3)D.{}(,)1x y y x =+ 12.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法共有A.60种B.48种C.36种D.24种13.已知53()8f x x ax bx =++-,且(2)10f -=,那么(2)f 等于A.26B.18-C.10-D.18-14.如图,正三棱锥S ABC -的侧棱与底面边长相等,如果,E F 分别为SC 、AB 的中点,那么异面直线EF 与SA 所成的角等于A.090B.060C.045D.03015.以一个正三棱柱的顶点为顶点的四面体共有A.6个B.12个C.18个D.30个AB C S E F二、填空题: 本大题共5小题,每小题3分,共15分,把答案填在题中横线上.16.已知3sin 5α=,(,)2παπ∈,那么sin 2α的值等于 . 17.2345(1)(1)(1)(1)(1)x x x x x ---+---+-的展开式中, 2x 的系数等于 .18.已知{}n a 是公差不为零的等差数列,如果n S 是数列{}n a 的前项的和,那么lim n n n na S →∞= . 19.如图,三棱柱111ABC A B C -中,若,E F 分别为,AB AC 的中点,平面11EB C F 将三棱柱分成体积为1V 、2V那么1V :2V = .20.如果实数,x y 满足等式22(2)3x y -+=,那么y x的最大值是 . 三、解答题. 本大题共6小题,共60分.解答应写出文字说明,证明过程或演算步骤.21.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.22.已知1sin sin 4αβ+=,1cos cos 3αβ+=,求tan()αβ+的值. 23.如图,在三棱锥S ABC -中, SA ⊥底面ABC ,AB BC ⊥.DE 垂直平分SC ,且分别交AC 、SC 于,D E .又SA AB =,SB BC =.求以BD 为棱,以BDE 与BDC 为面的二面角的度数.24.已知0a >,1a ≠,解不等式2log (43)log (21)log 2a a a x x x +--->. 25.设0a ≥,在复数集C 中解方程22z z a +=.26.设椭圆的中心是坐标原点,长轴在x 轴上, 离心率e =3(0,)2P 。
1990年全国普通高等学校招生统一考试——上海卷数学命题意图 试题及解答
1990年全国普通高等学校招生统一考试——上海卷数学命题
意图试题及解答
蔡武冈
【期刊名称】《数学教学》
【年(卷),期】1990(000)005
【摘要】上海卷数学命题意图今年是推出“高考考试说明”的第一年。
“说明”
对考试的性质、目标、内容要求已作了详尽的规定,并通过样题对考生和教师展示
了试卷的题型、题数、计分安排和具体要求。
它是上海单独命题五年来的宝贵经验总结,是指导本届命题组工作的依据。
为实现试卷的选拔性原则,整卷从第23题起,
把考查的重点放在灵活和综合运用数学知识的能力上,共五题72分,占总分的48%。
第23、25和26题分别是解析几何、代数和立体几何的单科综合题;第24和27
题分别是代数、解
【总页数】5页(P18-22)
【作者】蔡武冈
【作者单位】上海市教育考试中心
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.2008年普通高等学校招生全国统一考试地理单科测试试题(上海卷) [J], 卢大亮
2.2007年普通高等学校招生全国统一考试地理单科测试试题(上海卷) [J], 刁广利
3.1992年全国普通高等学校招生统一考试上海数学试题及解答 [J],
4.2007年普通高等学校招生全国统一考试(上海卷)生物学试题 [J],
5.2004年全国普通高等学校招生统一考试(上海卷)文科地理试题 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
1990年高考全国卷数学试题与答案
1990年高考试题(理工农医类)一、选择题 :在每小题给出的四个选项中 ,只有一项是符合题目要求的 ,把所选项前的字母填在题后括号内 .【】【】(3)如果轴截面为正方形的圆柱的侧面积是S,那么圆柱的体积等于【】(4)方程 sin2x=sinx在区间 (0,2π )内的解的个数是(A)1(B)2(C)3(D)4【】(5)【】【】(A){-2,4}(B){-2,0,4}(C){-2,0,2,4}(D){-4,-2,0,4}(7)如果直线 y=ax+2与直线 y=3x- b关于直线 y=x对称 ,那么【】(C)a=3,b=-2(D)a=3,b=6【】(A) 圆(B) 椭圆(C)双曲线的一支(D) 抛物线【】(B){(2,3)}(C)(2,3) (D){(x,y) │ y=x+1}【】(11)如图 ,正三棱锥 S- ABC 的侧棱与底面边长相等 ,如果 E、F分别为 SC、AB 的中点 ,那么异面直线 EF与SA所成的角等于【】(A)90° (B)60° (C)45° (D)30°(12)已知 h>0.设命题甲为 :两个实数 a,b满足│ a-b│<2h;命题乙为 : 两个实数 a,b满足│ a- 1│ <h且│ b-1 │ <h.那么【】(A)甲是乙的充分条件 ,但不是乙的必要条件(B)甲是乙的必要条件 ,但不是乙的充分条件(C)甲是乙的充分条件(D)甲不是乙的充分条件 ,也不是乙的必要条件(13)A,B,C,D,E 五人并排站成一排 ,如果 B必须站在 A 的右边( A,B 可以不相邻) , 那么不同的排法共有【】(A)24种 (B)60种 (C)90种 (D)120种(14)以一个正方体的顶点为顶点的四面体共有【】(A)70个 (B)64个 (C)58个 (D)52个(15)设函数 y=arctgx的图象沿 x轴正方向平移 2个单位所得到的图象为 C.又设图象 C'与 C关于原点对称 ,那么 C'所对应的函数是【】(A)y=-arctg(x-2)(B)y=arctg(x-2)(C)y=-arctg(x+2) (D)y=arctg(x+2)二、填空题 :把答案填在题中横线上 .(17)(x-1)-(x-1) 2+(x-1)3-(x-1) 4+(x-1)5的展开式中 ,x2的系数等于.(18)已知 { a n} 是公差不为零的等差数列 , 如果 S n是 { a n} 的前 n 项的和 , 那(19)函数 y=sinxcosx+sinx+cosx的最大值是.(20)如图 ,三棱柱 ABC -A 1B1C1中,若E、 F分别为 AB 、AC的中点 ,平面 EB1C1F将三棱柱分成体积为 V 1、V 2的两部分 ,那么V1:V2=.三、解答题 .(21)有四个数 ,其中前三个数成等差数列 ,后三个数成等比数列 ,并且第一个数与第四个数的和是 16,第二个数与第三个数的和是 12.求这四个数 .(23)如图 ,在三棱锥 S- ABC 中,SA⊥底面 ABC,AB ⊥BC.DE垂直平分 SC,且分别交AC、 SC于 D、E.又 SA=AB,SB = BC.求以 BD 为棱 ,以BDE 与BDC 为面的二面角的度数 .(24)设 a≥ 0,在复数集 C中解方程 z2+2│ z│= a.n≥2.(Ⅰ)如果 f(x) 当x ∈(-∞ ,1]时有意义 ,求a的取值范围 ; (Ⅱ)如果 a∈(0,1],证明 2f(x)<f(2x) 当 x≠ 0时成立 .1990年试题(理工农医类)答案一、选择题 :本题考查基本知识和基本运算.(1)A(2)B(3)D(4)C(5)C(6)B(7)A(8)D(9)B(10)D(11)C(12)B(13)B(14)C(15)D二、填空题 :本题考查基本知识和基本运算.三、解答题 .(21)本小题考查等差数列、等比数列的概念和运用方程(组)解决问题的能力.解法一 :①由②式得d=12-2a.③整理得a2-13a+36=0解得a1=4,a2=9.代入③式得 d1=4,d2=-6.从而得所求四个数为 0,4,8,16或 15,9,3,1.解法二 :设四个数依次为 x,y,12-y,16-x ①由①式得x=3y-12.③将③式代入②式得y(16-3y+12)=(12-y) 2,整理得y2-13y+36=0.解得y1=4,y2=9.代入③式得 x1=0,x2=15.从而得所求四个数为 0,4,8,16或 15,9,3,1.(22)本小题考查三角公式以及三角函数式的恒等变形和运算能力.解法一 :由已知得解法二 :如图 ,不妨设 0≤α≤β< 2π ,且点 A 的坐标是( cosα,sin α) , 点 B 的坐标是( cosβ ,sin β) , 则点 A,B 在单位圆 x2+y2=1 上 . 连结连结 OC,于是 OC⊥AB, 若设点 D的坐标是( 1,0),再连结 OA,OB,则有解法三 :由题设得4(sinα +sinβ)=3(cosα +cosβ).将②式代入①式 ,可得sin(α-)=sin(-β ).于是α-= (2k+1)π -(-β)(k ∈Z),或α-=2kπ +(-β )(k∈Z).若α-=(2k+1)π-(-β )(k∈Z),则α =β+(2k+1)π(k∈Z).于是sinα =-sinβ ,即sinα+sinβ =0.由此可知α-=2kπ+(-β)(k ∈Z),即α+β =2+2kπ(k∈Z).所以(23)本小题考查直线和平面 ,直线和直线的位置关系 ,二面角等基本知识 ,以及逻辑推理能力和空间想象能力 .解法一 :由于 SB=BC,且 E是 SC的中点 ,因此 BE 是等腰三角形 SBC的底边 SC的中线,所以 SC⊥BE.又已知SC⊥DE,BE ∩DE=E,∴SC⊥面 BDE,∴SC⊥ BD.又∵SA⊥底面ABC,BD在底面ABC上,∴SA⊥BD.而SC∩ SA= S,∴BD ⊥面 SAC.∵DE=面 SAC∩面 BDE,DC =面 SAC∩面 BDC,∴BD ⊥DE,BD ⊥DC.∴∠ EDC是所求的二面角的平面角.∵SA⊥底面 ABC, ∴SA⊥AB,SA ⊥AC.设SA= a,又因为 AB ⊥ BC,∴∠ ACS=30° .又已知 DE⊥SC,所以∠ EDC=60° ,即所求的二面角等于 60°.解法二 :由于 SB=BC,且 E是 SC的中点 ,因此 BE 是等腰三角形 SBC的底边 SC的中线,所以 SC⊥BE.又已知 SC⊥DE,BE∩DE=E∴SC⊥面 BDE,∴SC⊥ BD.由于 SA⊥底面 ABC, 且A 是垂足 ,所以 AC 是SC在平面 ABC 上的射影 .由三垂线定理的逆定理得 BD ⊥AC; 又因 E∈SC,AC是SC在平面 ABC 上的射影 ,所以 E在平面 ABC 上的射影在 AC上 ,由于 D∈AC, 所以 DE在平面 ABC 上的射影也在 AC 上,根据三垂线定理又得 BD ⊥DE.∵DE 面 BDE,DC 面BDC,∴∠ EDC是所求的二面角的平面角.以下同解法一 .(24)本小题考查复数与解方程等基本知识以及综合分析能力.解法一 :设z=x+yi, 代入原方程得于是原方程等价于方程组由②式得 y=0或x=0.由此可见 ,若原方程有解 ,则其解或为实数 ,或为纯虚数 .下面分别加以讨论 .情形 1.若y=0,即求原方程的实数解 z=x.此时 ,①式化为x2+2│x│=a.③(Ⅰ)令 x>0,方程③变为 x2+2x=a. ④.由此可知 :当a=0时 ,方程④无正根 ;(Ⅱ)令 x<0,方程③变为 x2-2x=a.⑤.由此可知 :当a=0时 ,方程⑤无负根 ;当a>0时,方程⑤有负根x=1-.(Ⅲ)令 x=0,方程③变为 0=a.由此可知 :当a=0时 ,方程⑥有零解 x=0;当a>0时,方程⑥无零解 .所以 ,原方程的实数解是 :当a=0时,z=0;.情形 2.若x=0,由于 y=0的情形前已讨论 ,现在只需考查 y≠ 0的情形 ,即求原方程的纯虚数解 z=yi(y ≠0).此时 ,①式化为-y2+2│ y│ =a.⑦(Ⅰ)令 y>0,方程⑦变为 -y2+2y=a,即(y-1) 2=1-a. ⑧由此可知 :当a>1时 ,方程⑧无实根 .当a≤ 1时解方程⑧得y=1±,从而 ,当a=0时,方程⑧有正根y=2;当0<a≤1时,方程⑧有正根y=1±.(Ⅱ)令 y<0,方程⑦变为 -y2-2y=a,即 (y+1)2=1-a. ⑨由此可知 :当a>1时 ,方程⑨无实根 .当a≤ 1时解方程⑨得y=-1±,从而 ,当 a=0时,方程⑨有负根 y=-2;当 0<a≤1时,方程⑨有负根y=-1±所以 ,原方程的纯虚数解是 :当 a=0时,z=±2i;当 0<a≤1时,z=±(1+)i,z= ±(1-)i.而当 a>1时,原方程无纯虚数解 .解法二 :设z=x+yi 代入原方程得于是原方程等价于方程组由②式得 y=0或x=0.由此可见 ,若原方程有解 ,则其解或为实数 ,或为纯虚数 .下面分别加以讨论 .情形 1.若y=0,即求原方程的实数解 z=x.此时 ,①式化为 x2+2│x│=a.即| x |2+2│ x│ =a. ③解方程③得,所以 ,原方程的实数解是.情形 2.若x=0,由于 y=0的情形前已讨论 ,现在只需考查 y≠ 0的情形 ,即求原方程的纯虚数解 z=yi(y ≠0).此时 ,①式化为-y2+2│y│=a.即-│y│2 +2│ y│=a.④当a=0时,因 y≠0,解方程④得│ y│=2,即当 a=0时,原方程的纯虚数解是 z=±2i.当0<a≤1时,解方程④得,即当 0<a≤1时,原方程的纯虚数解是.而当 a>1时,方程④无实根 ,所以这时原方程无纯虚数解.解法三 :因为 z2=-2│z│+a是实数 ,所以若原方程有解 ,则其解或为实数 ,或为纯虚数 ,即z=x或 z=yi(y ≠0).情形 1.若z=x.以下同解法一或解法二中的情形1.情形 2.若z=yi(y ≠0).以下同解法一或解法二中的情形2.解法四 :设z=r(cosθ+isinθ),其中 r≥0,0≤θ<2π.代入原方程得r2cos2θ+ 2r+ir2sin2θ=a.于是原方程等价于方程组情形 1.若r=0.①式变成0=a.③由此可知 :当a=0时 ,r=0是方程③的解 .当a>0时,方程③无解 .所以 ,当a=0时,原方程有解z=0;当a>0时,原方程无零解 .考查 r>0的情形 .(Ⅰ)当 k=0,2时,对应的复数是 z=±r.因cos2θ =1,故①式化为 r2+2r=a.④.由此可知 :当a=0时 ,方程④无正根 ;当 a>0时,方程④有正根.所以 ,当 a>0时,原方程有解.(Ⅱ)当 k=1,3时,对应的复数是 z=±ri.因cos2θ=-1,故①式化为-r2+2r=a,即 (r-1)2=1-a,⑤由此可知 :当a>1时 ,方程⑤无实根 ,从而无正根 ;.从而 ,当a=0时,方程⑤有正根r=2;.所以 ,当a=0时,原方程有解z=±2i;当0<a≤1时,原方程有解当a>1时,原方程无纯虚数解 .(25)本小题考查椭圆的性质,距离公式 ,最大值知识以及分析问题的能力.解法一 :根据题设条件,可取椭圆的参数方程是其中 a>b>0待定 ,0≤θ<2π.设椭圆上的点 (x,y) 到点 P的距离为 d,则大值 ,由题设得,因此必有,由此可得b=1,a=2.所求椭圆的参数方程是.解法二 :设所求椭圆的直角坐标方程是其中 a>b>0待定 .,设椭圆上的点 (x,y) 到点 P的距离为 d,则其中-byb.由此得,由此可得b=1,a=2.所求椭圆的直角坐标方程是(26)本题考查对数函数 ,指数函数 ,数学归纳法 ,不等式的知识以及综合运用有关知识解决问题的能力 .(Ⅰ)解:f(x) 当 x∈ (-∞ ,1]时有意义的条件是1+2x+⋯(n-1)x+n x a>0x∈(-∞,1],n≥2,上都是增函数 ,在 (-∞ ,1]上也是增函数 ,从而它在 x=1时取得最大值也就是 a的取值范围为(Ⅱ)证法一:2f(x)<f(2x) a∈(0,1],x ≠ 0.即[1+2x +⋯ +(n-1)x+n x a]2<n[1+22x+⋯ +(n-1)2x+n2x a]a∈(0,1],x ≠0.②现用数学归纳法证明②式.(A)先证明当 n=2时②式成立 .假如 0<a<1,x≠ 0,则(1+2x a)2=1+2·2x a+22x a2≤ 2(1+22x)<2(1+22x a).假如 a=1,x≠0,因为 1≠ 2x,所以因而当 n=2时②式成立 .( B)假如当 n=k(k≥2)时②式成立 ,即有[1+2x +⋯ +(k-1)x+k x a]2<k[1+2 2x+⋯ +(k-1)2x a] a∈(0,1],x ≠0, 那么 ,当 a∈(0,1],x ≠0时[(1+2x +⋯+k x )+(k+1) xa]2=(1+2x+⋯+k x)2+2(1+2x +⋯ +k x)(k+1) x a+(k+1)2x a2<k(1+22x+⋯ +k2x)+2(1+2x +⋯ +k x )(k+1)x a+(k+1)2x a2 =k(1+22x+⋯ +k2x)+[2·1·(k+1)x a+2·2x(k+1)x a+⋯+2k x(k+1)x a]+(k+1) 2x a2<k(1+22x+⋯+k2x)+{[1+(k+1) 2x a2]+[2 2x+(k+1)2x a2]+⋯+[k2x+(k+1)2x a2]}+(k+1) 2x a2]=(k+1)[1+2 2x+⋯ +k2x+(k+1) 2x a2]≤(k+1)[1+2 2x+⋯+k2x+(k+1)2x a],这就是说 ,当n=k+1时②式也成立 .根据 (A),(B) 可知 ,②式对任何 n≥2(n∈N) 都成立 .即有2f(x)<f(2x) a∈(0,1],x ≠0.证法二 :只需证明 n≥2时因为其中等号当且仅当 a1=a2=⋯ =a n时成立 .利用上面结果知 ,当a=1,x≠0时,因1≠2x,所以有 [1+2x +⋯ +(n-1)x+n x] 2<n[1+22x+⋯+(n-1)2x+n2x].当0<a<1,x≠0时,因a2<a,所以有[1+2x+⋯+(n-1) x+n x a]2≤n[1+22x+⋯ +(n-1)2x+n2x a2]<n[1+2 2x+⋯+(n-1)2x+n2x a].即有2f(x)<f(2x) a∈ (0,1),x≠0.。
1990福建高考数学真题
1990福建高考数学真题一、选择题1、(10分)已知点P(x, y)到两坐标轴的距离之比为:x : y = 3 : 4,且距原点(0,0)的距离为5,则点P的坐标是:A.(-15, -20)B.(-20, -15)C.(20, 15)D.(15, 20)2、(10分)在三个连续自然数中,已知这三个数的和为60,则其中最大的数为:A.19B.20C.21D.223、(10分)若等差数列9,7,5,3,…的通项公式为an,则an是:A.8-2nB.10-2nC.12-2nD.14-2n4、(10分)若函数f(x) = 2x²+ ax + b恒满足f(1)≤0,则a和b的值的关系式是:A.5a–6b≥− 3B.5a+6b≥3C.5a–6b≤−3D.5a+6b≤ 35、(10分)由1,2,3,4四个不同的数字组成一个三位数,其中,百位的数字是1、2、3、4中的一个,十位和个位任意,且所得的四个三位数的和是:A.800B.900C.1000D.1100二、计算题1、(15分)已知:2cos(α–β) = 0.5,sin(α + β) = √3/ 2,且α,β∈(0, π)。
求sinα,cosβ的值。
2、(15分)在平面直角坐标系中,点A(0, 1)、B(2, 3)、C(a, 3a)在同一直线上。
求实数a的值。
3、(15分)已知等差数列的前n项和Sn=4n²+2n,则这个等差数列的首项a₁和公差d的值。
4、(15分)已知集合A={1, 2, 3, 4, 5},B={2, 4, 6},且满足|AnB|=3。
求集合A与集合B之间的关系,并写出集合A—B和B—A的元素。
5、(15分)函数f(x) = |x + 1| + |x + 2| + |x + 3|的值域为:以上就是1990年福建高考数学真题,你可以挑战一下看看你的数学水平吧!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1990年全国高考数学试题(理工农医类)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后括号内.[Key]一、选择题:本题考查基本知识和基本运算.(1)A【】[Key] (2)B(3)如果轴截面为正方形的圆柱的侧面积是S,那么圆柱的体积等于【】[Key] (3)D(4)方程sin2x=sinx在区间(0,2π)内的解的个数是(A)1(B)2(C)3(D)4【】[Key] (4)C(5)【】[Key] (5)C(A){-2,4}(B){-2,0,4}(C){-2,0,2,4}(D){-4,-2,0,4}【】[Key] (6)B(7)如果直线y=ax+2与直线y=3x-b关于直线y=x对称,那么(C)a=3,b=-2(D)a=3,b=6【】[Key] (7)A(A)圆(B)椭圆(C)双曲线的一支(D)抛物线【】[Key] (8)D(B){(2,3)}(C)(2,3)(D){(x,y)│y=x+1}【】[Key] (9)B【】[Key] (10)D(11)如图,正三棱锥S ABC的侧棱与底面边长相等,如果E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于(A)90°(B)60°(C)45°(D)30°【】[Key] (11)C(12)已知h>0.设命题甲为:两个实数a,b满足│a-b│<2h;命题乙为:两个实数a,b满足│a-1│<h且│b-1│<h.那么(A)甲是乙的充分条件,但不是乙的必要条件(B)甲是乙的必要条件,但不是乙的充分条件(C)甲是乙的充分条件(D)甲不是乙的充分条件,也不是乙的必要条件【】[Key] (12)B(13)A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有(A)24种(B)60种(C)90种(D)120种【】[Key] (13)B(14)以一个正方体的顶点为顶点的四面体共有(A)70个(B)64个(C)58个(D)52个【】[Key] (14)C(15)设函数y=arctgx的图象沿x轴正方向平移2个单位所得到的图象为C.又设图象C'与C关于原点对称,那么C'所对应的函数是(A)y=-arctg(x-2)(B)y=arctg(x-2)(C)y=-arctg(x+2)(D)y=arctg(x+2)【】[Key] (15)D二、填空题:把答案填在题中横线上.(17)(x-1)-(x-1)2+(x-1)3-(x-1)4+(x-1)5的展开式中,x2的系数等于.(18)已知{a n}是公差不为零的等差数列,如果S n是{a n}的前n项的和,那(19)函数y=sinxcosx+sinx+cosx的最大值是.(20)如图,三棱柱ABC-A1B1C1中,若E、F分别为AB、AC的中点,平面EB1C1F将三棱柱分成体积为V1、V2的两部分,那么V1:V2=.[Key] 二、填空题:本题考查基本知识和基本运算.三、解答题.(21)有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12.求这四个数.[Key] 三、解答题.(21)本小题考查等差数列、等比数列的概念和运用方程(组)解决问题的能力.解法一:①由②式得d=12-2a.③整理得a2-13a+36=0解得a1=4,a2=9.代入③式得d1=4,d2=-6.从而得所求四个数为0,4,8,16或15,9,3,1.解法二:设四个数依次为x,y,12-y,16-x①由①式得x=3y-12.③将③式代入②式得y(16-3y+12)=(12-y)2,整理得y2-13y+36=0.解得y1=4,y2=9.代入③式得x1=0,x2=15.从而得所求四个数为0,4,8,16或15,9,3,1.[Key] (22)本小题考查三角公式以及三角函数式的恒等变形和运算能力.解法一:由已知得解法二:如图,不妨设0≤α≤β<2π,且点A的坐标是(cosα,sinα),点B的坐标是(cosβ,sinβ),则点A,B在单位圆x2+y2=1上.连结连结OC,于是OC⊥AB,若设点D的坐标是(1,0),再连结OA,OB,则有解法三:由题设得4(sinα+sinβ)=3(cosα+cosβ).将②式代入①式,可得sin(α-)=sin(-β).于是α-=(2k+1)π-(-β)(k∈Z),或α-=2kπ+(-β)(k∈Z).若α-=(2k+1)π-(-β)(k∈Z),则α=β+(2k+1)π(k∈Z).于是sinα=-sinβ,即sinα+sinβ=0.由此可知α-=2kπ+(-β)(k∈Z),即α+β=2+2kπ(k∈Z).所以(23)如图,在三棱锥S ABC中,SA⊥底面ABC,AB⊥BC.DE垂直平分SC,且分别交AC、SC于D、E.又SA=AB,SB=BC.求以BD为棱,以BDE与BDC为面的二面角的度数.[Key] (23)本小题考查直线和平面,直线和直线的位置关系,二面角等基本知识,以及逻辑推理能力和空间想象能力.解法一:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.又已知SC⊥DE,BE∩DE=E,∴SC⊥面BDE,∴SC⊥BD.又∵SA⊥底面ABC,BD在底面ABC上,∴SA⊥BD.而SC∩SA=S,∴BD⊥面SAC.∵DE=面SAC∩面BDE,DC=面SAC∩面BDC,∴BD⊥DE,BD⊥DC.∴∠EDC是所求的二面角的平面角.∵SA⊥底面ABC,∴SA⊥AB,SA⊥AC.设SA=a,又因为AB⊥BC,∴∠ACS=30°.又已知DE⊥SC,所以∠EDC=60°,即所求的二面角等于60°.解法二:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.又已知SC⊥DE,BE∩DE=E∴SC⊥面BDE,∴SC⊥BD.由于SA⊥底面ABC,且A是垂足,所以AC是SC在平面ABC上的射影.由三垂线定理的逆定理得BD⊥AC;又因E∈SC,AC是SC在平面ABC上的射影,所以E在平面ABC上的射影在AC上,由于D∈AC,所以DE在平面ABC上的射影也在AC上,根据三垂线定理又得BD⊥DE.∵DE面BDE,DC面BDC,∴∠EDC是所求的二面角的平面角.以下同解法一.(24)设a≥0,在复数集C中解方程z2+2│z│=a.[Key] (24)本小题考查复数与解方程等基本知识以及综合分析能力.解法一:设z=x+yi,代入原方程得于是原方程等价于方程组由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数,或为纯虚数.下面分别加以讨论.情形1.若y=0,即求原方程的实数解z=x.此时,①式化为x2+2│x│=a.③(Ⅰ)令x>0,方程③变为x2+2x=a.④.由此可知:当a=0时,方程④无正根;(Ⅱ)令x<0,方程③变为x2-2x=a.⑤.由此可知:当a=0时,方程⑤无负根;当a>0时,方程⑤有负根x=1-.(Ⅲ)令x=0,方程③变为0=a.由此可知:当a=0时,方程⑥有零解x=0;当a>0时,方程⑥无零解.所以,原方程的实数解是:当a=0时,z=0;.情形2.若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为-y2+2│y│=a.⑦(Ⅰ)令y>0,方程⑦变为-y2+2y=a,即(y-1)2=1-a.⑧由此可知:当a>1时,方程⑧无实根.当a≤1时解方程⑧得y=1±,从而,当a=0时,方程⑧有正根y=2;当0<a≤1时,方程⑧有正根y=1±.(Ⅱ)令y<0,方程⑦变为-y2-2y=a,即(y+1)2=1-a.⑨由此可知:当a>1时,方程⑨无实根.当a≤1时解方程⑨得y=-1±,从而,当a=0时,方程⑨有负根y=-2;当0<a≤1时,方程⑨有负根y=-1±所以,原方程的纯虚数解是:当a=0时,z=±2i;当0<a≤1时,z=±(1+)i,z=±(1-)i.而当a>1时,原方程无纯虚数解.解法二:设z=x+yi代入原方程得于是原方程等价于方程组由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数,或为纯虚数.下面分别加以讨论.情形1.若y=0,即求原方程的实数解z=x.此时,①式化为x2+2│x│=a.即| x |2+2│x│=a.③解方程③得,所以,原方程的实数解是.情形2.若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为-y2+2│y│=a.即-│y│2 +2│y│=a.④当a=0时,因y≠0,解方程④得│y│=2,即当a=0时,原方程的纯虚数解是z=±2i.当0<a≤1时,解方程④得,即当0<a≤1时,原方程的纯虚数解是.而当a>1时,方程④无实根,所以这时原方程无纯虚数解.解法三:因为z2=-2│z│+a是实数,所以若原方程有解,则其解或为实数,或为纯虚数,即z=x或z=yi(y≠0).情形1.若z=x.以下同解法一或解法二中的情形1.情形2.若z=yi(y≠0).以下同解法一或解法二中的情形2.解法四:设z=r(cosθ+isinθ),其中r≥0,0≤θ<2π.代入原方程得r2cos2θ+2r+ir2sin2θ=a.于是原方程等价于方程组情形1.若r=0.①式变成0=a.③由此可知:当a=0时,r=0是方程③的解.当a>0时,方程③无解.所以,当a=0时,原方程有解z=0;当a>0时,原方程无零解.考查r>0的情形.(Ⅰ)当k=0,2时,对应的复数是z=±r.因cos2θ=1,故①式化为r2+2r=a.④.由此可知:当a=0时,方程④无正根;当a>0时,方程④有正根.所以,当a>0时,原方程有解.(Ⅱ)当k=1,3时,对应的复数是z=±ri.因cos2θ=-1,故①式化为-r2+2r=a,即(r-1)2=1-a,⑤由此可知:当a>1时,方程⑤无实根,从而无正根;.从而,当a=0时,方程⑤有正根r=2;.所以,当a=0时,原方程有解z=±2i;当0<a≤1时,原方程有解当a>1时,原方程无纯虚数解.[Key] (25)本小题考查椭圆的性质,距离公式,最大值知识以及分析问题的能力.解法一:根据题设条件,可取椭圆的参数方程是其中a>b>0待定,0≤θ<2π.设椭圆上的点(x,y)到点P的距离为d,则大值,由题设得,因此必有,由此可得b=1,a=2.所求椭圆的参数方程是.解法二:设所求椭圆的直角坐标方程是其中a>b>0待定.,设椭圆上的点(x,y)到点P的距离为d,则其中-byb.由此得,由此可得b=1,a=2.所求椭圆的直角坐标方程是n≥2.(Ⅰ)如果f(x)当x∈(-∞,1]时有意义,求a的取值范围;(Ⅱ)如果a∈(0,1],证明2f(x)<f(2x)当x≠0时成立.[Key] (26)本题考查对数函数,指数函数,数学归纳法,不等式的知识以及综合运用有关知识解决问题的能力.(Ⅰ)解:f(x)当x∈(-∞,1]时有意义的条件是1+2x+…(n-1)x+n x a>0x∈(-∞,1],n≥2,上都是增函数,在(-∞,1]上也是增函数,从而它在x=1时取得最大值也就是a的取值范围为(Ⅱ)证法一:2f(x)<f(2x)a∈(0,1],x≠0.即[1+2x+…+(n-1)x+n x a]2<n[1+22x+…+(n-1)2x+n2x a]a∈(0,1],x≠0.②现用数学归纳法证明②式.(A)先证明当n=2时②式成立.假如0<a<1,x≠0,则(1+2x a)2=1+2²2x a+22x a2≤2(1+22x)<2(1+22x a).假如a=1,x≠0,因为1≠2x,所以因而当n=2时②式成立.(B)假如当n=k(k≥2)时②式成立,即有[1+2x+…+(k-1)x+k x a]2<k[1+22x+…+(k-1)2x a] a∈(0,1],x≠0,那么,当a∈(0,1],x≠0时[(1+2x+…+k x)+(k+1)xa]2=(1+2x+…+k x)2+2(1+2x+…+k x)(k+1)x a+(k+1)2x a2<k(1+22x+…+k2x)+2(1+2x+…+k x)(k+1)x a+(k+1)2x a2=k(1+22x+…+k2x)+[2²1²(k+1)x a+2²2x(k+1)x a+…+2k x(k+1)x a]+(k+1)2x a2<k(1+22x+…+k2x)+{[1+(k+1)2x a2]+[22x+(k+1)2x a2]+…+[k2x+(k+1)2x a2]}+(k+1)2x a2]=(k+1)[1+22x+…+k2x+(k+1)2x a2]≤(k+1)[1+22x+…+k2x+(k+1)2x a],这就是说,当n=k+1时②式也成立.根据(A),(B)可知,②式对任何n≥2(n∈N)都成立.即有2f(x)<f(2x)a∈(0,1],x≠0.证法二:只需证明n≥2时因为其中等号当且仅当a1=a2=…=a n时成立.利用上面结果知,当a=1,x≠0时,因1≠2x,所以有[1+2x+…+(n-1)x+n x]2<n[1+22x+…+(n-1)2x+n2x].当0<a<1,x≠0时,因a2<a,所以有[1+2x+…+(n-1)x+n x a]2≤n[1+22x+…+(n-1)2x+n2x a2]<n[1+22x+…+(n-1)2x+n2x a].即有2f(x)<f(2x)a∈(0,1],x≠0.。