如何抑制开关电源的干扰
抑制开关电源电磁干扰的措施
抑制开关电源电磁干扰的措施开关电源存在着共模干扰和差模干扰两种电磁干扰形式。
根据上篇分析的电磁干扰源,结合它们的耦合途径,可以从EMI 滤波器、吸收电路、接地和屏蔽等几个方面来抑制干扰,把电磁干扰衰减到允许限度之内。
1.交流输入EMI 滤波器滤波是一种抑制传导干扰的方法,在电源输入端接上滤波器可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。
电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。
电源进线端通常采用如图1 所示的EMI 滤波器电路。
该电路可以有效地抑制交流电源输入端的低频差模骚扰和高频段共模骚扰。
在电路中,跨接在电源两端的差模电容Cx1、Cx2 (亦称X 电容)用于滤除差模干扰信号,一般采用陶瓷电容器或聚脂薄膜电容器,电容值通常取0.1~ 0. 47F。
而中间连线接地的共模电容Cy1和Cy2 (亦称Y 电容)则用来短路共模噪声电流,取值范围通常为C1=C2 # 2200 pF。
抑制电感L1、L2 通常取100~ 130H,共模扼流圈L 是由两股等同并且按同方向绕制在一个磁芯上的线圈组成,通常要求其电感量L#15~ 25 mH。
当负载电流渡过共模扼流圈时,串联在火线上的线圈所产生的磁力线和串联在零线上线圈所产生的磁力线方向相反,它们在磁芯中相互抵消。
因此,即使在大负载电流的情况下,磁芯也不会饱和。
而对于共模干扰电流,两个线圈产生的磁场是同方向的,会呈现较大电感,从而起到衰减共模干扰信号的作用。
2.利用吸收电路开关电源产生EMI 的主要原因是电压和电流的急剧变化,因而需要尽可能地降低电路中电压和电流的变化率( du/ dt 和di/ dt )。
采取吸收电路能够抑制EMI,其基本原理就是在开关关断时为其提供旁路,吸收积蓄在寄生分布参数中的能量,从而抑制干扰的发生。
可以在开关管两端并联如图2( a)所示的RC 吸收电路,开关管或二极管在开通和关断过程中,管中产生的反向尖峰电流和尖峰电压,可以通过缓冲的方法予以克服。
开关电源emi电路原理
开关电源emi电路原理
开关电源EMI电路是指用来抑制电磁干扰(EMI)的电路。
开关电源是一种使用开关元件(如晶体管或MOSFET)工作
的电源,通过周期性地开关电流来提供电能。
开关电源会产生一定的电磁干扰,主要原因有以下几点:
1. 开关元件的快速开关会引起电压和电流的急剧变化,导致高频谐波成分的产生;
2. 开关电源中的变压器和电感器会产生磁场,进一步引起电磁辐射;
3. 开关电源中的电容器会产生串扰电容耦合,导致干扰信号的传导。
为了抑制开关电源的电磁干扰,可以采取以下措施:
1. 在开关电源输入端添加滤波器,用来抑制高频噪声,常见的滤波器包括电容滤波器和电感滤波器;
2. 设计合适的开关元件驱动电路,减小开关元件的开关速度,从而减小高频谐波的产生;
3. 采用引入屏蔽外壳或屏蔽包围电路等的屏蔽手段,减小电磁辐射;
4. 采用良好的地线布局和接地措施,降低地线电阻和噪声干扰;
5. 使用高频绕线技术和特殊布板设计,减少电感和电容器之间的串扰。
通过以上措施,可以有效地抑制开关电源产生的电磁干扰,提高电源的抗干扰能力,确保设备的正常运行。
抑制开关电源电磁干扰的方法研究
抑制开关电源电磁干扰的方法研究随着电子技术的飞速发展,开关电源的应用也越来越广泛。
开关电源具有效率高、噪声低、价格低等特点,但由于其时钟和开关频率较高,会产生大量的电磁波,这些电磁波会对原有电路造成严重的干扰,从而导致电子设备的错误工作或不能正常运行。
因此,有必要研究抑制开关电源电磁干扰的方法。
一是采用电磁屏蔽技术。
这种技术的原理是利用屏蔽材料产生一个电磁屏蔽环境,把电磁波从开关电源中过滤掉,从而保护原有电路不受干扰。
比如采用铝箔或者铝塑箔等物质作为屏蔽材料,再用电磁屏蔽丝缠绕在开关电源上,即可产生一个电磁屏蔽环境,杜绝电磁波影响原有电路。
二是采用电磁消波器技术。
电磁消波器是一种能够将电磁波过滤掉的电子元件,可以分为晶体消波器和谐振消波器两种。
其中晶体消波器的原理是利用电容和电感元件来平滑和整流电磁波,从而消除电磁波的影响。
谐振消波器是利用元件上电流进行消波,以降低谐波噪声,减轻负荷的影响,达到电磁抑制的目的。
另外,还可采用信号分离技术。
这种技术的实现原理是将开关电源的控制信号保持在一个独立的区域,然后再将其从其他电子元件中分离出来,从而减少电磁波的影响。
上述三种方法可以有效抑制开关电源造成的电磁干扰,从而保证原有电路的正常运行。
不过,在实际应用中需要根据实际情况选择最合适的技术手段,抑制其造成的电磁干扰。
总之,抑制开关电源电磁干扰是一项重要的研究工作,可以为电子设备正常运行提供有效的保障,从而改善实际应用效果。
综上所述,通过采用电磁屏蔽、消波器和信号分离技术等多种方式,可以有效抑制开关电源造成的电磁干扰,保证电子设备的正常工作。
因此,对于抑制开关电源电磁干扰的方法研究有着重要的意义,具有重要的现实意义和社会意义。
详解几种可有效开关电源的电磁干扰抑制方法
详解几种可有效开关电源的电磁干扰抑制方法
目前,许多大学及科研单位都进行了开关电源EMI(Electromagnetic Interference)的研究,他们中有些从EMI 产生的机理出发,有些从EMI 产生的影响出发,都提出了许多实用有价值的方案。
这里分析与比较了几种有效的方案,并为开关电源EMI 的抑制措施提出新的参考建议。
开关电源电磁干扰的产生机理
开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种,若按耦合通路来分,可分为传导干扰和辐射干扰两种。
现在按噪声干扰源来分别说明:
1、二极管的反向恢复时间引起的干扰
高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN 结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。
2、开关管工作时产生的谐波干扰
功率开关管在导通时流过较大的脉冲电流。
例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。
当采用零电流、零电压开关时,这种谐波干扰将会很小。
另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。
3、交流输入回路产生的干扰
无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。
开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播。
开关电源的抗干扰措施
开关电源的抗干扰措施1电路的隔离1.1开关电源电路隔离方式开关电源包括两部分,即变换部分与控制部分。
前者属于功率流强电范畴,后者属于信息流弱电范畴。
一般情况下前者是主电磁干扰源,后者是被干扰对象。
为了使电力电子设备可靠地运行,除了解决变换部分与控制部分之间的电气隔离外,还要解决控制部分的抗电磁干扰的问题,特别是当变换部分处于高电压、强电流、高频变换情况下尤其重要。
抗干扰问题实质上是解决电力电子设备的电磁兼容问题。
隔离技术是电磁兼容性中的重要技术之一,并且随着数字式开关电源的研究与开发,也是提高单片机抗干扰能力的重要措施。
在开关电源中,电路隔离主要有:模拟电路的隔离、数字电路的隔离、数字电路与模拟电路之间的隔离。
主要目的是通过隔离元器件把噪声干扰的路径切断,从而达到抑制噪声干扰的效果。
开关电源的模拟信号控制系统的隔离与测量系统中模拟信号的隔离类似,即交流信号一般采用变压器隔离,直流信号一般采用线性隔离器(如线性光电耦合器)隔离。
数字电路的隔离主要有:脉冲变压器隔离、光电耦合器隔离等。
其中数字量输入隔离方式主要采用脉冲变压器隔离、光电耦合器隔离;而数字量输出隔离方式主要采用光电耦合器隔离、高频变压器隔离(个别情况下采用)。
在采用了电路隔离的措施以后,绝大多数电路都能够取得良好的抑制噪声效果,使开关电源符合电磁兼容性的要求。
1.2变压器耦合隔离1.2.1变压器耦合变压器只能传输交流信号,不能传输直流信号。
因此对地线的低频干扰具有较好的抑制能力,并且电路单元间传输的信号电流只能在变压器绕组中流过,不流经地线,也可以避免对其他电路的干扰,如图1所示。
1.2.2脉冲变压器隔离脉冲变压器的匝数较少,而且一次绕组和二次绕组分别绕于铁氧体磁心的两侧,这种工艺使得它的分市电容很小,仅为几个皮法,所以可作为脉冲信号的隔离元件。
脉冲变压器传递输入、输出脉冲信号时,不传递直流分量,因而在微电子技术控制系统中得到了广泛的应用。
解析几种有效的开关电源电磁干扰的抑制措施
解析几种有效的开关电源电磁干扰的抑制措施
有效的开关电源电磁干扰抑制措施包括:
1. 选择合适的滤波器:在开关电源输入端、输出端以及变压器绕组的附近安装滤波器,可以有效滤除高频噪声和突变噪声,减少电磁辐射。
2. 使用磁性材料:在开关电源变压器绕组的附近使用磁性材料,如铁氧体、铁氟龙等,可以有效吸收和屏蔽电磁干扰。
3. 地线布局:合理布置地线,减少电磁干扰。
不同元器件的地线要分开布局,避免共
用一个接地点。
4. 合理选择元器件:选择低电阻、低电感、低容值的元器件,减少电路中的谐振,降
低电磁干扰。
5. 优化电路设计:合理布局和连接元器件,减少信号回路,增加信号路径的隔离,减
少电磁干扰。
6. 使用屏蔽材料:在开关电源敏感部分使用屏蔽材料,如铝箔、铁氧网、铜网等,将
电磁辐射封锁在内部。
7. 设计良好的接地系统:确保良好的接地系统,包括减少接地回路的电阻,建立良好
的接地连接。
8. 符合电磁兼容性标准:在设计和生产过程中遵循电磁兼容性标准,如EMC(电磁兼容性)标准,确保产品符合相关电磁干扰限制。
以上是一些常见的有效的开关电源电磁干扰抑制措施,根据具体的应用场景和需求,还可以采取其它的措施来减少电磁干扰的影响。
开关电源抗干扰的措施
开关电源抗干扰的措施本文从屏蔽、接地、PCB板的布局与布线几方面,对开关电源电路的抗干扰措施进行了详尽的分析讨论,以确保开关电源的正常工作。
标签:屏蔽接地抗干扰电磁兼容开关电源一般采用脉冲宽度调制技术,其特点是频率高、效率高、功率密度高。
然而,由于其开关器件工作在高频通断状态,高频的快速瞬变过程本身就是电磁干扰源,它产生的电磁干扰直接危害着电子设备的正常工作,为了确保开关电源工作的可靠性,必须进行抗干扰设计。
抗干扰措施包括屏蔽、接地、PCB 板的布局与布线等,这里仅对屏蔽、接地、PCB板的布局与布线这几种抗干扰措施进行分析讨论。
1.屏蔽技术。
抑制开关电源电磁干扰的有效方法是屏蔽。
即用导电良好的材料对电场进行屏蔽,用导磁率高的材料对磁场进行屏蔽。
用电磁屏蔽的方法解决EMI问题的好处是不会影响电路的正常工作。
屏蔽技术可分为对发出电磁波部位的屏蔽和易受电磁波影响的元器件的屏蔽。
在开关电源中,可发出电磁波的元器件是指变压器、电感器、功率器件等,通常在其周围采用铜板或铁板作为屏蔽,使其电磁波产生衰减。
对抗电磁波较弱的元器件,必要的情况下也应采取相应的屏蔽措施。
2.接地技术。
(1)接地。
接地技术是开关电源抗干扰技术和电磁兼容技术的重要内容之一。
不正确的工作接地反而会增加干扰。
比如共地线干扰、地环路干扰等。
为防止各种电路在工作中产生互相干扰,使之能相互兼容地工作,根据电路的性质,将工作接地分为不同的种类。
(2)交流地与直流地分开。
一般交流电源的零线是接地的。
但由于存在接地电阻和其上流过的电流,导致电源的零线电位并非为大地的零电位。
另外,交流电源的零线上往往存在很多干扰如果交流电源地与直流电源地不分开,将对直流电源和后续的直流电路正常工作产生影响。
因此,在开关电源中采用把交流电源地与直流电源地分开的浮地技术,可以隔离来自交流电源地线的干扰。
(3)模拟地与数字地分开。
随着数字开关电源的开发,为了抑制对数字芯片的干扰,数字芯片与模拟电路必须进行隔离。
开关电源噪声的产生与抑制措施(5篇模版)
开关电源噪声的产生与抑制措施(5篇模版)第一篇:开关电源噪声的产生与抑制措施噪声的种类开关电源无论在体积、重量和效率方面都有显著的优点,已得到广泛的应用。
但开关电源最大缺点是容易产生噪声。
噪声的产生一般可分为两大类:一是开关电源内部元件形成的干扰;二是由于外界因素影响而使开关电源产生的干扰,这涉及到人为因素和自然界的因素。
1.1 输出脉动噪声主要是在输出端出现的脉冲干扰,产生的原因有:由AC输入频率引起的低频脉动电压;开关电源频率引起的高次谐波脉动电压;开关接通、断开时的尖峰噪声;对上述噪声的振幅最大值可用同轴电缆接到示波器上来观察测定。
1.2 辐射电场强度开关电源产生的噪声会辐射到空间。
辐射噪声的测定方法是:接好天线,开启仪器(场强仪等),用天线接收直射波与反射波。
被测电源放在非金属的实验台上以360°来回转动,天线以上下1~4m距离移动以检测最大值。
测试以垂直与水平两个方向来测定。
1.3 外来突变电压外来突变电压干扰可用噪声模拟器检测。
在输入交流线上同时注入同相杂音(注入电压据开关电源种类而定)。
两者相位以90°、270°为最合适。
确认在这外来突变电压的作用下,输出直流电压有无变动,并观察保护装置等是否产生误动作。
1.4 雷电冲击耐压实验使用雷电冲击发生器,以保险丝以外的元件不损坏为原则,看一看输出电压的变动是否超过附加电压的规定。
噪声产生源 2.1 开关管开关功率管及其散热器与外壳和电源内部的引线间存在分布电容。
当开关管流过大的脉冲电流时,大体上形成了矩形波,该波形含有许多高频成份。
由于开关电源使用的元件参数如开关功率管的存储时间,输出级的大电流,开关整流二极管的反向恢复时间,会造成回路瞬间短路,产生很大短路电流。
凡有短路电流的导线及这种脉冲电流流经的变压器和电感产生的电磁场形成噪声源。
2.2 二极管的恢复特性PN型硅二极管用作高频整流时,正向电流蓄积的电荷在加上反向电压时不能立即消除(因载流子的存在,还有电流流过)。
开关电源的抗干扰解决方法(3)
开关电源的抗干扰解决方法(3)开关电源的抗干扰解决方法图4 高频工作下的元件频率特性2 开关电源emi抑制措施电磁兼容的三要素是干扰源、耦合通路和敏感体,抑制以上任何一项都可以减少电磁干扰问题。
开关电源工作在高电压大电流的高频开关状态时,其引起的电磁兼容性问题是比较复杂的。
但是,仍符合基本的电磁干扰模型,可以从三要素入手寻求抑制电磁干扰的方法。
2.1 抑制开关电源中各类电磁干扰源为了解决输入电流波形畸变和降低电流谐波含量,开关电源需要使用功率因数校正(pfc)技术。
pfc技术使得电流波形跟随电压波形,将电流波形校正成近似的正弦波。
从而降低了电流谐波含量,改善了桥式整流电容滤波电路的输入特性,同时也提高了开关电源的功率因数。
软开关技术是减小开关器件损耗和改善开关器件电磁兼容特性的重要方法。
开关器件开通和关断时会产生浪涌电流和尖峰电压,这是开关管产生电磁干扰及开关损耗的主要原因。
使用软开关技术使开关管在零电压、零电流时进行开关转换可以有效地抑制电磁干扰。
使用缓冲电路吸收开关管或高频变压器初级线圈两端的尖峰电压也能有效地改善电磁兼容特性。
输出整流二极管的反向恢复问题可以通过在输出整流管上串联一个饱和电感来抑制,如图5所示,饱和电感ls与二极管串联工作。
饱和电感的磁芯是用具有矩形bh曲线的磁性材料制成的。
同磁放大器使用的材料一样,这种磁芯做的电感有很高的磁导率,该种磁芯在bh曲线上拥有一段接近垂直的线性区并很容易进入饱和。
实际使用中,在输出整流二极管导通时,使饱和电感工作在饱和状态下,相当于一段导线;当二极管关断反向恢复时,使饱和电感工作在电感特性状态下,阻碍了反向恢复电流的大幅度变化,从而抑制了它对外部的干扰。
图5 饱和电感在减小二极管反向恢复电流中的应用2.2 切断电磁干扰传输途径——共模、差模电源线滤波器设计电源线干扰可以使用电源线滤波器滤除,开关电源emi滤波器基本电路如图6所示。
一个合理有效的开关电源emi滤波器应该对电源线上差模干扰和共模干扰都有较强的抑制作用。
开关电源的电磁干扰分析及有效的抑制措施
开关电源的电磁干扰分析及有效的抑制措施一、开关电源的概念开关电源就是通过对功率晶体管的导通和关断控制,截取幅值与直流输入相等的矩形脉冲,再通过整流和滤波装置输出稳定的直流电压值。
二、开关电源电磁干扰的产生机理开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;按耦合通道来分,可分为传导干扰和辐射干扰两种。
1、功率开关管开关工作产生的干扰。
开关电源中的功率开关管工作在开关状态,工作时会产生较大的脉冲电压和脉冲电流。
由于在脉冲电流和脉冲电压中含有丰富的高次谐波成分,同时又由于功率开关管导通时整流二极管的恢复特性会形成电流振荡,而在整流二极管上产生的浪涌电压。
2、由于二极管的恢复特性产生的干扰。
当二极管进行高频整流时,由于二极管的PN结,正向电流所储存的电荷在加反向电压时不能马上消失,会形成二极管的反向电流。
这段时间称为反向恢复时间,这时由于加到二极管的反向电压较大,会产生较大损耗和形成较大的干扰来源。
如果二极管在反向电流恢复时的电流变化率di/dt较大,由于电感作用会产生较大的尖峰电压,这就是二极管的恢复噪声。
Di/dt较大时称为硬恢复,Di/dt较小时称为软恢复。
软恢复既可通过吸收回路实现,也可通过谐振开关技术实现。
软恢复对提高开关电源的工作可靠性,减小干扰有很大的好处。
由于肖特基二极管没有载流子蓄积效应,所以恢复噪音很小。
3、由整流滤波电路产生的干扰。
由于交流市电输入的开关电源在输入端接有整流滤波电路,整流二极管的导通角很小,使整流电流的峰值很大,这种脉冲状的二极管整流电流也会产生干扰。
三、抑制开关管电源电磁干扰的措施主要有四种方法,即吸收法、屏蔽技术、滤波技术、接地技术。
1、吸收法,即是在开关管的两端并联RC电路,电容的作用就是把电流中的交流成分吸收掉,但是这时的电感和电容相连就会形成LC振荡回路,所以在其中加上一个电阻,主要的作用就是阻尼作用,把LC振荡回路中产生的能量消耗掉。
开关电源传导骚扰和辐射骚扰解决方法
开关电源传导骚扰和辐射骚扰解决方法开关电源是一种常见的电源供应器,在电子设备中广泛应用。
但是,开关电源工作时会产生电磁辐射和传导骚扰问题。
为了解决这些问题,可以采取以下方法:1.电磁屏蔽材料的使用:使用电磁屏蔽材料将开关电源封装起来,阻挡电磁辐射的传播,减少对周围设备和人员的骚扰。
这种材料通常是在电源外部或内部的铁壳上加上一层导电材料,如铜箔。
通过将电磁波引导到导体上,使其在外部不能通过,并通过接地,排除电磁波。
2.优化电源布线:合理优化电源布线,减少线路长度和交叉区域,减少电磁辐射。
如果电源线和信号线发生交叉,可以采取绕线或分离线路的方式,避免相互干扰,减少传导骚扰。
3.使用滤波器:在开关电源输入和输出端之间安装滤波器,可以抑制输入和输出信号的噪声,减少骚扰。
输入滤波器通常是由电容器和电感器组成,用于消除输入端的高频噪声。
输出滤波器通常是由电容器和电感器组成,用于消除输出端的高频噪声。
4.电源线的屏蔽:使用屏蔽电源线可以减少电磁辐射和传导骚扰。
屏蔽电源线通过在电源线外部包裹一层金属网或箔片,将电磁辐射和传导骚扰限制在金属屏蔽层内部。
5.合理设计散热系统:开关电源工作时会产生较大的热量,如果不能有效散热,会影响电源的工作效率,并可能导致电磁辐射和传导骚扰。
因此,电源的散热系统设计应合理,采用优质散热材料和风扇等散热设备,确保电源的正常工作和延长寿命。
6.选择高质量的开关电源产品:选择经过认证的高质量开关电源产品,这些产品通常具有较低的辐射和骚扰,较好的EMC性能。
这些产品经过专业的测试和验证,能够有效减少对其他设备的影响。
7.定期维护和检修:开关电源在长时间使用后,可能出现故障或老化现象,会导致电磁辐射和传导骚扰的增加。
因此,定期进行维护和检修工作,及时发现和解决问题,可以减少对设备和人员的骚扰。
总之,开关电源的电磁辐射和传导骚扰是一个需要重视的问题,可以通过采取合适的措施来解决。
这些方法包括使用电磁屏蔽材料、优化电源布线、使用滤波器、使用屏蔽电源线、合理设计散热系统、选择高质量产品以及定期维护和检修等。
开关电源的抗干扰解决方法
开关电源的抗干扰解决方法开关电源的抗干扰解决方法EMI干扰源对开关电源干扰的解决方案一般来说,来自外界辐射,雷击、或电网的抖动、等对电源开关的相关组成器件如整流二极管,高频变压器,功率开关管等外部环境的干扰是开关电源的EMI干扰源的主要体现。
首先:介绍辐射干扰的传输通道(1)在开关电源中,能构成辐射干扰源的元器件和导线均可以被假设为天线,从而利用电偶极子和磁偶极子理论进行分析;二极管、电容、功率开关管可以假设为电偶极子,电感线圈可以假设为磁偶极子;(2)没有屏蔽体时,电偶极子、磁偶极子,产生的电磁波传输通道为空气(可以假设为自由空间);(3)有屏蔽体时,考虑屏蔽体的缝隙和孔洞,按照泄漏场的数学模型进行分析处理。
其次:是传导干扰的传输通道(1)容性耦合(2)感性耦合(3)电阻耦合a.公共电源内阻产生的电阻传导耦合b.公共地线阻抗产生的电阻传导耦合c.公共线路阻抗产生的电阻传导耦合以下是EMI干扰源相关的抑制方案:1.高频变压器的屏蔽为防止高频变压器的漏磁对周围电路产生干扰,可采用屏蔽带来屏蔽高频变压器的漏磁场。
屏蔽带一般由铜箔制作,绕在变压器外部一周,并进行接地,屏蔽带相对于漏磁场来说是一个短路环,从而抑制漏磁场更大范围的泄漏。
高频变压器,磁心之间和绕组之间会发生相对位移,从而导致高频变压器在工作中产生噪声(啸叫、振动)。
涡街流量计为防止该噪声,需要对变压器采取加固措施:(1)用环氧树脂将磁心(例如EE、EI磁心)的三个接触面进行粘接,抑制相对位移的产生;(2)用“玻璃珠”(Glass beads)胶合剂粘结磁心,效果更好。
分开来讲开关电源EMI抑制有9大措施:(1)合理的PCB设计OFweek电源网–中国电源行业门户(2)压敏电阻的合理应用,以降低浪涌电压(3)减小dv/dt和di/dt(降低其峰值、减缓其斜率)(4)阻尼网络抑制过冲(5)采用合理设计的电源线滤波器(6)采用软恢复特性的二极管,以降低高频段EMI(7)有源功率因数校正,以及其他谐波校正技术(8)有效的屏蔽措施(9)合理的接地处理开关电源的电磁干扰问题研究和解决方法2017-03-22 16:06 | #2楼0 引言近年来,开关电源以其效率高、体积小、输出稳定性好的优点而迅速发展起来。
怎样抑制开关电源的电磁干扰
怎样抑制开关电源的电磁干扰通常开关电源EMI控制主要采用滤波技术、屏蔽技术、密封技术、接地技术等。
EMI干扰按传播途径分为传导干扰和辐射干扰。
开关电源主要是传导干扰,且频率范围最宽,约为10kHz一30MHz。
抑制传导干扰的对策基本上10kHz 一150kHz、150kHz一10MHz、10MHz以上三个频段来解决。
10kHz一150kHz范围内主要是常态干扰,一般采用通用LC滤波器来解决。
150kHz一10 MHz范围内主要是共模干扰,通常采用共模抑制滤波器来解决。
10MHz以上频段的对策是改进滤波器的外形以及采取电磁屏蔽措施。
采用交流输入EMI滤波器通常干扰电流在导线上传输时有两种方式:共模方式和差模方式。
共模干扰是载流体与大地之间的干扰:干扰大小和方向一致,存在于电源任何一相对大地、或中线对大地间,主要是由du/dt产生的,di/dt也产生一定的共模干扰。
而差模干扰是载流体之间的干扰:干扰大小相等、方向相反,存在于电源相线与中线及相线与相线之间。
干扰电流在导线上传输时既可以共模方式出现,也可以差模方式出现;但共模干扰电流只有变成差模干扰电流后,才能对有用信号构成干扰。
交流电源输人线上存在以上两种干扰,通常为低频段差模干扰和高频段共模干扰。
在一般情况下差模干扰幅度小、频率低、造成的干扰小;共模干扰幅度大、频率高,还可以通过导线产生辐射,造成的干扰较大。
若在交流电源输人端采用适当的EMI滤波器,则可有效地抑制电磁干扰。
电源线EMI滤波器基本原理如图1所示,其中差模电容C1、C2用来短路差模干扰电流,而中间连线接地电容C3、C4则用来短路共模干扰电流。
共模扼流圈是由两股等粗并且按同方向绕制在一个磁芯上的线圈组成。
如果两个线圈之间的磁藕合非常紧密,那么漏感就会很小,在电源线频率范围内差模电抗将会变得很小;当负载电流流过共模扼流圈时,串联在相线上的线圈所产生的磁力线和串联在中线上线圈所产生的磁力线方向相反,它们在磁芯中相互抵消。
抑制开关电源电磁干扰的对策
抑制开关电源电磁干扰的对策人们总是想方设法地将电磁干扰三要素之中的一个去掉:屏蔽掉骚扰源、隔离开敏感设备或者切断耦合途径。
从能量的角度来讲,电磁干扰是一种能量,无法不让它产生,只有用肯定的方法去减小其对系统的干扰。
可用到的方法可分为两大类:一种是让能量泄放掉;另一种是把能量给挡在外部。
可以说一种方法是减小其产生的幅度,另一种则切断其传播途径。
下面针对详细的方面一一分析:1、外界干扰的耦合(输入端和输出端)(1)输入端输入端是整个电源的入口处,电源内部的噪声也可由此传播到外部,对外界造成干扰。
通常采纳的策略是在输入加X电容、Y电容、差模电感和共模电感对噪声和干扰进行过滤。
图1就是一种比较常见的EMI滤波电路。
图1 EMI滤波电路其中L1、CY1和CY2组成的滤波电路可以抑制电源线上存在的共模干扰信号。
当有共模干扰电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模干扰。
差模电感L2和X 电容,组成的低通滤波可抑制电源线上的差模干扰。
(2)输出端对于输出,特殊是有长输出引线的状况,电源模块跟系统搭配后,电源内部一些噪声干扰就可能由输出线而耦合到外界,干扰其他用电设备。
对此,最好的方法是同应付输入端的干扰一样去加一些共模滤波和差模滤波。
此外,还可以在输出线串套磁珠环;采纳双绞线或是屏蔽线,以达到抑制EMI干扰的目的。
2、开关管在电源模块的工作过程中,由于开关管结电容的存在,开关管在快速开关的时候就会产生毛刺和尖峰,这样就会有一些传递或放射出来。
另外开关管的结电容和变压器的绕组漏感也有可能产生谐振而发出干扰。
对此可采纳的对策有:(1)开关管D极和G极串加磁珠环,这样等于加了一个小电感,减小开关管的电流变化率,从而达到减小尖峰的目的。
(2)在开关管处加缓冲电路或采纳软开关技术,减小开关管在快速工作时的尖峰,使其电压或电流能缓慢上升。
开关电源的电磁干扰及噪声抑制方法
开关电源的电磁干扰及噪声抑制方法开关电源是现代电子应用中常见的一种电源形式,其工作原理是通过开关管开关控制输入电压的大小和频率以实现电压转换。
但是,开关电源在工作过程中会产生电磁干扰和噪声,对其他电子设备的正常工作产生影响。
因此,为了抑制开关电源的电磁干扰和噪声,在设计和使用开关电源时需要采取一些措施。
首先,开关电源产生的电磁干扰主要包括导向式干扰和辐射式干扰。
导向式干扰是指开关电源通过引线或线路对周围设备产生的电磁干扰,辐射式干扰是指开关电源通过电磁波辐射对周围设备产生的干扰。
对于导向式干扰,可以采取以下措施进行抑制:1.滤波器:在开关电源的输入和输出端加装滤波器,用于滤除高频噪声和电磁干扰。
常用的滤波器有LC滤波器、RC滤波器和Pi型滤波器等。
2.输入电源线路的处理:尽量缩短输入电源线路的长度,采用屏蔽线材,减小电磁干扰的传播路径。
同时,在输入电源线上添加额外的滤波电容和电感,抑制高频噪声。
3.地线处理:通过合理布置地线,减小接地电阻,提高地线的抗干扰能力。
将开关电源的地线与其他设备的接地点连接,共用同一个地线。
对于辐射式干扰,可以采取以下措施进行抑制:1.屏蔽:在开关电源的外壳上添加金属屏蔽罩,减少电磁辐射。
金属屏蔽罩应与开关电源的地线连接,以形成完整的屏蔽。
2.PCB设计:在开关电源的PCB板设计中,合理布局信号和电源线路,减小线路的长度。
同时,采用地平面和电源平面屏蔽,减少信号线和电源线的交叉和干扰。
3.使用低频率开关管:低频率工作的开关管辐射干扰较小,可以有效降低开关电源的电磁辐射干扰。
此外1.选择合适的元器件:选用带有防干扰措施的元器件,如具有抗干扰特性的电解电容和电感器件,减小干扰的产生和传播。
2.电源输出滤波:在开关电源的输出端添加滤波电容和电感,减小输出电压的纹波和噪声。
3.接地处理:通过合理的接地设计和连接方式,减小接地电阻,提高接地抗干扰能力。
4.EMI滤波器:在开关电源的输入端和输出端加装EMI滤波器,进一步滤除高频噪声和电磁干扰。
几种有效开关电源电磁干扰抑制方案
北京联华行
前抑制干扰的几种措施
形成电磁干扰的三要素是干扰源、传播途径和受扰设备。因而,抑制电磁干扰也应该从这三方面着手。首先应该抑制干扰源,直接消除干扰原因;其次是消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径;第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度。目前抑制干扰的几种措施基本上都是用切断电磁干扰源和受扰设备之间的耦合通道,它们确是行之有效的办法。常用的方法是屏蔽箱、接地和滤波。
开关电源电磁干扰的控制技术
开关电源电磁干扰的控制技术要解决开关电源的电磁干扰问题,可从3个方面入手:1)减小干扰源产生的干扰信号;2)切断干扰信号的传播途径;3)增强受干扰体的抗干扰能力。
因此,开关电源电磁电磁干扰要控制技术主要有:电路措施、EMI滤波、元器件选择、屏蔽和印制电路板抗干扰设计等。
①减少开关电源本身的干扰●软开关技术:在原有的硬开关电路中增加电感和电容元件,利用电感和电容的谐振,降低开关过程中的du/dt和di/dt,使开关器件开通时电压的下降先于电流的上升,或关断时电流的下降先于电压的上升,来消除电压和电流的重叠。
●开关频率调制技术:通过调制开关频率fc,把集中在fc及其谐波2fc、3fc…上的能量分散到它们周围的频带上,以降低各个频点上的EMI幅值。
该方法不能降低干扰总量,但能量被分散到频点的基带上,从而使各个频点都不超过EMI规定的限值。
为了达到降低噪声频谱峰值的目的,通常有两种处理方法:随机频率法和调制频率法。
●共模干扰的有源抑制技术:设法从主回路中取出一个与导致电磁干扰的主要开关电压波形完全反相的补偿EMI噪声电压,并用它去平衡原开关电压。
●减小电磁干扰的缓冲电路:其由线性阻抗稳定网络组成,作用是消除在供电电力线内潜在的干扰,包括电力线干扰、电快速瞬变,电涌,电压高低变化和电力线谐波等。
这些干扰对一般稳压电源来说,影响不是很大,但对高频开关电源的影响显著。
●滤波:EMI滤波器的主要目的之一,就是要在150kHz~30MHz的频段范围获得较高的插入损耗,但对频率为50Hz工频信号不产生衰减,使额定电压、电流顺利通过,同时还必须满足一定的尺寸要求。
任何电源线上的传导干扰信号,均可用差模和共模信号来表示。
在一般情况下,差模干扰幅度小,频率低,所造成的干扰较小;共模干扰幅度大,频率高,还可以通过导线产生辐射,所造成的干扰较大。
因此,欲削弱传导干扰,把EMI信号控制在有关EMC标准规定的极限电平以下,最有效的方法就是在开关电源输入和输出电路中加装电磁干扰滤波器。
开关电源的干扰及抑制
开关电源的干扰及抑制第一篇:开关电源的干扰及抑制1.电磁干扰的产生与传输电磁干扰传输有两种方式:一种是传导传输方式,另一种则是辐射传输方式。
传导传输是在干扰源和敏感设备之间有完整的电路连接,干扰信号沿着连接电路传递到接收器而发生电磁干扰现象。
辐射传输是干扰信号通过介质以电磁波的形式向外传播的干扰形式。
常见的辐射耦合有三种:1)一个天线发射的电磁波被另一个天线意外地接收,称为天线对天线的耦合;2)空间电磁场经导线感应而耦合,称为场对线的耦合。
3)两根平等导线之间的高频信号相互感应而形成的耦合,称为线对线的感应耦合。
2.电磁干扰的产生机理从被干扰的敏感设备角度来说,干扰耦合又可分为传导耦合和辐射耦合两类。
传导耦合模型传导耦合按其原理可分为电阻性耦合、电容性耦合和电感性耦合三种基本耦合方式。
辐射耦合模型辐射耦合是干扰耦合的另一种方式,除了从干扰源发出的有意辐射外,还有大量的无意辐射。
同时,PCB板上的走线无论是电源线、信号线、时钟线、数据线或者控制线等,都能起到天线的效果,即可辐射出干扰波,又可起到接收作用。
3.电磁干扰控制技术①传输通道抑制滤波:在设计和选用滤波器时应注意频率特性、耐压性能、额定电流、阻抗特性、屏蔽和可靠性。
滤波器的安装正确与否对其插入损耗特性影响很大,只有安装位置恰当,安装方法正确,才能对干扰起到预期的滤波作用。
在安装滤波器时应考虑安装位置,输入输出侧的配线必须屏蔽隔离,以及高频接地和搭接方法。
屏蔽:电磁屏蔽按原理可分为电场屏蔽、磁场屏蔽和电磁场屏蔽三种。
电场屏蔽包含静电屏蔽和交变电场屏蔽;磁场屏蔽包含低频磁场屏蔽和高频磁场屏蔽。
不同类型的电磁屏蔽对屏蔽体的要求不同。
在实际的屏蔽中,电磁屏蔽效能更大程度上依赖于屏蔽体的结构,即导电的连续性。
实际的屏蔽体由于制造、装配、维修、散热、观察及接口连接要求,其上面一般都开有形状各异、尺寸不同的孔缝,这些孔缝对于屏蔽体的屏蔽效能起着重要的影响作用,因此必须采取措施来抑制孔缝的电磁泄漏。
抑制开关电源电磁干扰的方法研究
抑制开关电源电磁干扰的方法研究随着计算机技术的发展,越来越多的应用需要为开关电源提供功耗。
由于开关电源可以在比较短的时间内从极低功耗转换到极大功耗,所以它们会产生大量的电磁干扰。
电源电磁干扰(EMI)会影响各种设备,特别是敏感电子设备。
因此,有必要研究有效的方法来抑制开关电源的电磁干扰。
首先要考虑的是降低开关电源的电磁干扰发射等级(EMI辐射等级),这可以通过以下几种方法实现:(1)减少开关电源的匝数,避免发生匝内偏移,从而减少EMI干扰。
(2)对每一节点采取适当的措施,以限制电流流动,减小干扰电流。
(3)使用高品质的过滤器,如低通滤波器、带通滤波器和抗反射滤波器等,以有效地抑制EMI。
(4)使用适当的隔离技术,如电磁屏蔽和绝缘变压器等,可以有效地抑制EMI。
(5)选择低电阻值的电源组件,如电抗器、电容器、隔离变压器等,以减少EMI发射源的电流流动。
另外,在本次研究中,还考虑将开关电源的设计与EMI抑制相结合,以达到最佳的EMI抑制效果。
根据实际应用情况,开发出一个有效的EMI抑制系统。
EMI抑制系统的核心在于抑制开关电源的干扰。
抑制系统通常是采用电路和电磁屏蔽技术。
电路技术具有良好的抑制能力,以抑制低频或脉冲干扰。
电磁屏蔽技术可以有效地抑制中高频的EMI。
除了电路和电磁屏蔽技术外,还可以采用其他技术,如阻尼材料、陶瓷绝缘体、线槽路和变压器等,对电源的干扰进行抑制。
这些技术有助于减少基本电路的EMI,并可以与电路和电磁屏蔽技术结合使用,以实现最佳的EMI抑制结果。
此外,在实际前提下,还可以采用一些电子测试仪,如谐振场分析仪、电磁能量测量仪、模拟调制仪等,以测试设备的EMI响应。
可以利用这些仪器对设备的EMI响应进行详细的分析,为有效的EMI抑制技术的选择提供宝贵的参考资料。
综上所述,抑制开关电源电磁干扰的方法有很多,关键在于正确选择有效的技术,使用恰当的实验设备,平衡性能和成本,以实现最佳的EMI抑制效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 引言
开关电源作为电子设备的供电装置,具有体积小、重量轻、效率高等优点,在数字电路中得到了广泛的应用,然而由于工作在高频开关状态,属于强干扰源,其本身产生的干扰直接危害着电子设备的正常工作。
因此,抑制开关电源本身的电磁噪声,同时提高其对电磁干扰的抗扰性,以保证电子设备能够长期安全可靠地工作,是开发和设计开关电源的一个重要课题。
1 开关电源干扰的产生
开关电源的干扰一般分为两大类:一是开关电源内部元器件形成的干扰;二是由于外界因素影响而使开关电源产生的干扰。
两者都涉及到人为因素和自然因素。
1.1 开关电源内部干扰
开关电源产生的EMI主要是由基本整流器产生的高次谐波电流干扰和功率变换电路产生的尖峰电压干扰。
1.1.1基本整流器
基本整流器的整流过程是产生EMI最常见的原因。
这是因为工频交流正弦波通过整流后不再是单一频率的电流,而变成一直流分量和一系列频率不同的谐波分量,谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,使前端电流发生畸变,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰。
1.1.2功率变换电路
功率变换电路是开关稳压电源的核心,它产带较宽且谐波比较丰富。
产生这种脉冲干扰的主要元器件为
1)开关管开关管及其散热器与外壳和电源内部的引线间存在分布电容,当开关管流过大的脉冲电流(大体上是矩形波)时,该波形含有许多高频成份;同时,关电源使用的器件参数如开关功率管的存储时间,输出级的大电流,开关整流二极管的反向恢复时间,会造成回路瞬间短路,产生很大短路电流,另外,开关管的负载是高频变压器或储能电感,在开关管导通的瞬间,变压器初级出现很大的涌流,造成尖峰噪声。
2)高频变压器开关电源中的变压器,用作隔离和变压,但由于漏感的原因,会产生电磁感应噪声;同时,在高频状况下变压器层间的分布电容会将一次侧高次谐波噪声传递给次级,而变压器对外壳的分布电容形成另一条高频通路,使变压器周围产生的电磁场更容易在其他引线上耦合形成噪声。
3)整流二极管二次侧整流二极管用作高频整流时,由于反向恢复时间的因素,往往正向电流蓄积的电荷在加上反向电压时不能立即消除(因载流子的存在,还有电流流过)。
一旦这个反向电流恢复时的斜率过大,流过线圈的电感就产生了尖峰电压,在变压器漏感和其他分布参
数的影响下将产生较强的高频干扰,其频率可达几十MHz。
4)电容、电感器和导线开关电源由于工作在较高频率,会使低频元件特性发生变化,由此产生噪声。
1.2 开关电源外部干扰
开关电源外部干扰可以以“共模”或“差模”方式存在。
干扰类型可以从持续期很短的尖峰干扰到完全失电之间进行变化。
其中也包括电压变化、频率变化、波形失真、持续噪声或杂波以及瞬变等,电源干扰的类型见表1。
在表1中的几种干扰中,能够通过电源进行传输并造成设备的破坏或影响其工作的主要是电快速瞬变脉冲群和浪涌冲击波,而静电放电等干扰只要电源设备本身不产生停振、输出电压跌落等现象,就不会造成因电源引起的对用电设备的影响。
2 开关电源干扰耦合途径
开关电源干扰耦合途径有两种方式:一种是传导耦合方式,另一种是辐射耦合方式。
2.1 传导耦合
传导耦合是骚扰源与敏感设备之间的主要耦合途径之一。
传导耦合必须在骚扰源与敏感设备之间存在有完整的电路连接,电磁骚扰沿着这一连接电路从骚扰源传输电磁骚扰至敏感设备,产生电磁干扰。
按其耦合方式可分为电路性耦合、电容性耦合和电感性耦合。
在开关电源中,这3种耦合方式同时存在,互相联系。
2.1.1电路性耦合
电路性耦合是最常见、最简单的传导耦合方式。
其又有以下几种:
1)直接传导耦合导线经过存在骚扰的环境时,即拾取骚扰能量并沿导线传导至电路而造成对电路的干扰。
2)共阻抗耦合由于两个以上电路有公共阻抗,当两个电路的电流流经一个公共阻抗时,一个电路的电流在该公共阻抗上形成的电压就会影响到另一个电路,这就是共阻抗耦合。
形成共阻抗耦合骚扰的有电源输出阻抗、接地线的公共阻抗等。
2 1.2电容性耦合
电容性耦合也称为电耦合,由于两个电路之生的尖峰电压是一种有较大幅度的窄脉冲,其频间存在寄生电容,使一个电路的电荷通过寄生电容影响到另一条支路。
2.1.3 电感性耦合
电感性耦合也称为磁耦合,两个电路之间存在互感时,当干扰源是以电源形式出现时,此电流所产生的磁场通过互感耦合对邻近信号形成干扰。
2.2 辐射耦合
通过辐射途径造成的骚扰耦合称为辐射耦合。
辐射耦合是以电磁场的形式将电磁能量从骚扰源经空间传输到接受器。
通常存在4种主要耦合途径:天线耦合、导线感应耦合、闭合回路耦合和孔缝耦合。