小波变换 matlab 总结

合集下载

matlab小波变换函数的总结与程序

matlab小波变换函数的总结与程序

小波去噪举例MATLAB中用wnoise函数测试去噪算法sqrt_snr=3;init=231434;[x,xn]=wnoise(3,11,sqrt_snr,init); % 加噪,信噪比为3 subplot(3,2,1),plot(x)title('original test function')subplot(3,2,2),plot(xn)title('noised function')lev=5;xd=wden(x,'heursure','s','one',lev,'sym8');%利用小波对一维信号进行降噪, XD为降噪后的%信号,CXD,LXD为XD的小波分解结构% 's' or 'h'决定阈值的使用方式,SCAL决定阈值是%否随噪声变化:'one' 不调整, 'sln'对第一层系%数的层噪声分别进行估计和调整; 'mln'对各层%系数的层噪声分别进行估计和调整;subplot(3,2,3),plot(xd)title('One de-noised function')xd=wden(x,'heursure','s','sln',lev,'sym8');subplot(3,2,4),plot(xd)title('Sln de-noised function')xd=wden(x,'sqtwolog','s','sln',lev,'sym8');% 固定阈值选择算法去噪subplot(3,2,5),plot(xd)title('Sqtwolog de-noised function')[c,l]=wavedec(x,lev,'sym8');subplot(3,2,6),plot(xd)title('CL de-noised function')MATLAB中图像噪声处理举例load sinsin;colormap('default');subplot(1,3,1),image(X);title('original image');axis('square');init=231434;randn('seed',init);X=X+18*randn(size(X)); %产生噪声信号subplot(1,3,2),image(x);title('noised image');axis('square');[thr,sorh,keepapp]=ddencmp('den','wv',x); %自动生成小波去躁或压缩的阈值选择方案,也 %就是寻找默认值[xc,cxc,lxc,perf0,perfl2]=wdencmp('gbl',x,'sym4',2,thr, sorh,keepapp);%使用全局阈值进行%图象降噪subplot(1,3,3),image(xc);title('denoised image');axis('square')可见,含躁图像的噪声含量很强,利用小波去躁,可以有效去除躁声,同时保留了边界。

Matlab中的小波变换与小波包分析方法详解

Matlab中的小波变换与小波包分析方法详解

Matlab中的小波变换与小波包分析方法详解引言近年来,小波变换在信号处理领域中得到了广泛的应用。

小波变换是一种能够捕捉信号时频特性的有效工具,可以用来分析、压缩和去噪各种类型的信号。

本文将详细介绍Matlab中的小波变换和小波包分析方法,以帮助读者更好地理解和应用这一强大的信号处理技术。

一、小波变换(Wavelet Transform)小波变换是一种将信号分解成不同尺度的基函数的技术。

与传统的傅里叶变换相比,小波变换具有更好的时频局部化特性。

Matlab中提供了丰富的小波分析工具箱,可以方便地进行小波变换的计算。

1.1 小波基函数小波基函数是小波变换的基础。

不同类型的小波基函数适用于不同类型的信号。

在Matlab中,我们可以使用多种小波基函数,如Daubechies小波、Haar小波和Morlet小波等。

1.2 小波分解小波分解是指将信号分解成多个尺度的小波系数。

通过小波分解,我们可以获取信号在不同尺度上的时频特性。

Matlab中提供了方便的小波分解函数,例如'dwt'和'wavedec'。

1.3 小波重构小波重构是指根据小波系数重新构建原始信号。

通过小波重构,我们可以恢复原始信号的时域特性。

在Matlab中,可以使用'idwt'和'waverec'函数进行小波重构。

二、小波包分析(Wavelet Packet Analysis)小波包分析是对小波变换的进一步扩展,它允许对信号进行更精细的分解和重构。

小波包分析提供了一种更灵活的信号分析方法,能够获得更详细的时频特性。

2.1 小波包分解小波包分解是指将信号分解成具有不同频带的小波包系数。

与小波分解相比,小波包分解提供了更高的分辨率和更详细的频谱信息。

在Matlab中,可以使用'wavedec'函数进行小波包分解。

2.2 小波包重构小波包重构是根据小波包系数重新构建原始信号。

Matlab中的小波变换技术详解

Matlab中的小波变换技术详解

Matlab中的小波变换技术详解1. 引言小波变换是一种数学工具,可将任意信号分解成不同尺度和频率成分。

它在信号处理、图像压缩等领域得到广泛应用。

Matlab作为一种功能强大的数值计算和数据可视化软件,提供了丰富的小波变换函数和工具箱。

本文将详细介绍Matlab中小波变换的原理、应用和实现方法。

2. 小波变换原理小波变换利用小波函数的一组基来表示信号。

小波函数是一种局部振荡函数,具有时域和频域局部化的特性。

通过将信号与小波函数进行内积运算,可以得到不同尺度和频率的小波系数,从而揭示信号的局部特征。

小波变换具有多分辨率分析的优势,能够在时间和频率上同时提供较好的分析结果。

3. 小波变换函数在Matlab中,可以使用wavelet工具箱提供的函数来进行小波变换。

最常用的函数是cwt,用于连续小波变换。

通过设置小波函数、尺度范围和采样频率等参数,可以得到连续小波系数矩阵。

另外,还有其他函数如dwt、idwt用于离散小波变换和反离散小波变换。

4. 小波函数小波变换的关键在于选择合适的小波函数。

常用的小波函数有多种,如哈尔、Daubechies、Symlets等。

这些小波函数在时域和频域上都有不同的特性,适用于不同类型的信号。

Matlab提供了丰富的小波函数库,可以根据需要选择合适的小波基函数。

5. 小波分析与信号处理小波变换在信号处理中有广泛的应用。

它可以用于信号去噪、特征提取、边缘检测等方面。

通过对小波系数进行阈值去噪,可以有效地去除信号中的噪声。

小波变换还能够提取信号的局部特征,捕捉信号的边缘信息。

此外,小波变换还可以用于图像压缩、图像分割等领域。

6. Matlab中的小波分析实例为了更好地理解Matlab中小波变换的应用,下面将给出一个实例。

假设我们有一个包含某种周期性成分和噪声的信号,我们希望通过小波变换将其分解成不同尺度的成分,并去除噪声。

首先,我们使用Matlab中的cwt函数对信号进行连续小波变换,并得到小波系数矩阵。

MATLAB小波变换指令及其功能介绍(超级有用)解读

MATLAB小波变换指令及其功能介绍(超级有用)解读

MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname'对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。

(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。

'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。

2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换----------------------------------------------------------- (1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。

收集和总结MATLAB中涉及到的小波函数

收集和总结MATLAB中涉及到的小波函数

一、收集和总结MA TLAB中涉及到的小波函数1.cwt函数功能:实现一维连续小波变换的函数。

cwt函数语法格式:COEFS=cwt(S, SCALES, 'wname')COEFS=cwt(S, SCALES, 'wname', 'plot')COEFS=cwt(S, SCALES, 'wname', 'PLOTMODE') 2.dwt函数功能:单尺度一维离散小波变换函数语法格式:[cA,cD] = dwt(X,'wname')[cA,cD] = dwt(X,'wname','mode',MODE)[cA,cD] = dwt(X,Lo_D,Hi_D)3.meyer函数功能:Meyer小波函数语法格式:[PHI,PSI,T] = meyer(LB,UB,N)[PHI,T] = meyer(LB,UB,N,'phi')[PSI,T] = meyer(LB,UB,N,'psi')4.plot函数功能:绘制向量或矩阵的图形函数语法格式:plot(Y)plot(X1,Y1,...)plot(X1,Y1,LineSpec,...)5.cgauwavf函数功能:Complex Gaussian小波函数语法格式:[PSI,X] = cgauwavf(LB,UB,N,P)6.iswt函数功能:一维逆SWT(Stationary Wavelet Transform)变换函数语法格式:X = iswt(SWC,'wname')X = iswt(SWA,SWD,'wname')X = iswt(SWC,Lo_R,Hi_R)7.mexihat函数功能:墨西哥帽小波函数语法格式:[PSI,X] = mexihat(LB,UB,N)8.morlet函数功能:Morlet小波函数语法格式:[PSI,X] = morlet(LB,UB,N)9.symwavf函数功能:Symlets小波滤波器函数语法格式:F = symwavf(W)10.upcoef函数功能:一维小波分解系数的直接重构函数语法格式:Y = upcoef(O,X,'wname',N)Y = upcoef(O,X,'wname',N,L)Y = upcoef(O,X,Lo_R,Hi_R,N)Y = upcoef(O,X,Lo_R,Hi_R,N,L)Y = upcoef(O,X,'wname')Y = upcoef(O,X,Lo_R,Hi_R) 11.upwlev函数功能:单尺度一维小波分解的重构函数语法格式:[NC,NL,cA] = upwlev(C,L,'wname')[NC,NL,cA] = upwlev(C,L,Lo_R,Hi_R) 12.wavedec函数功能:单尺度一维小波分解函数语法格式:[C,L] = wavedec(X,N,'wname')[C,L] = wavedec(X,N,Lo_D,Hi_D) 13.wavefun函数功能:小波函数和尺度函数函数语法格式:[PHI,PSI,XVAL] = wavefun('wname',ITER) 14.waverec函数功能:多尺度一维小波重构函数语法格式:X = waverec(C,L,'wname')X = waverec(C,L,Lo_R,Hi_R)15.wpcoef函数功能:计算小波包系数函数语法格式:X = wpcoef(T,N)X = wpcoef(T)16.wpdec函数功能:一维小波包的分解函数语法格式:T = wpdec(X,N,'wname',E,P)T = wpdec(X,N,'wname')17.wpfun函数功能:小波包函数[函数语法格式:WPWS,X] = wpfun('wname',NUM,PREC) [WPWS,X] = wpfun('wname',NUM) 18.wprcoef函数功能:小波包分解系数的重构函数语法格式:X = wprcoef(T,N)19.wprec函数功能:一维小波包分解的重构函数语法格式:X = wprec(T)20.wrcoef函数功能:对一维小波系数进行单支重构函数语法格式:X = wrcoef('type',C,L,'wname',N)X = wrcoef('type',C,L,Lo_R,Hi_R,N)X = wrcoef('type',C,L,'wname')X = wrcoef('type',C,L,Lo_R,Hi_R)。

小波变换的matlab实现

小波变换的matlab实现
*
举例: A1=upcoef('a','cA1','db1',1,ls); D1=upcoef('d','cD1','db1',1,ls);
subplot(1,2,1);plot(A1);title('Approximation A1')
subplot(1,2,2);plot(D1);title('Detail D1')
重构原始信号
*
2D图形接口
*
显示
*
小波分析用于信号处理
01
信号的特征提取
信号处理
常用信号的小波分析
GUI进行信号处理
*
正弦波的线性组合
S(t)=sin(2t)+sin(20t)+sin(200t)
*
2019
间断点检测
01
2020
波形未来预测
02
2021
各分信号的频率识别
03
2022
信号从近似到细节的迁移
*
多尺度二维小波
命令:wavedec2
格式: [C, S]=wavedec2(X,N,’wname’) [C, S]=wavedec2(X,N,Lo_D,Hi_D)
*
[C,S] = wavedec2(X,2,'bior3.7'); %图像的多尺度二维小波分解
提取低频系数
命令:appcoef2 格式: 1. A=appcoef2(C,S,’wname’,N) 2. A=appcoef2(C,S,’wname’) 3. A=appcoef2(C,S,Lo_R,Hi_R) 4. A=appcoef2(C,S,Lo_R,Hi_R,N) cA2 = appcoef2(C,S,'bior3.7',2); %从上面的C中提取第二层的低频系数

MATLAB小波变换指令及其功能介绍(超级有用).

MATLAB小波变换指令及其功能介绍(超级有用).

MATLAB 小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1 dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname'[cA,cD]=dwt(X,Lo_D,Hi_D别可以实现一维、二维和 N 维 DFT说明:[cA,cD]=dwt(X,'wname' 使用指定的小波基函数 'wname' 对信号X 进行分解,cA 、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。

(2 idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname'X=idwt(cA,cD,Lo_R,Hi_RX=idwt(cA,cD,'wname',L函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L说明:X=idwt(cA,cD,'wname' 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。

'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L 和 X=idwt(cA,cD,Lo_R,Hi_R,L 指定返回信号 X 中心附近的 L 个点。

2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能--------------------------------------------------- dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换 -----------------------------------------------------------(1 wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOLY=wcodemat(X,NB,OPTY=wcodemat(X,NBY=wcodemat(X说明:Y=wcodemat(X,NB,OPT,ABSOL 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB ,缺省值 NB=16; OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分 ABSOL 是函数的控制参数(缺省值为 '1'),即: ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X1. 离散傅立叶变换的 Matlab实现(2 dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname'[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D说明:[cA,cH,cV,cD]=dwt2(X,'wname'使用指定的小波基函数 'wname' 对二维信号 X 进行二维离散小波变幻;cA ,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D 使用指定的分解低通和高通滤波器 Lo_D 和Hi_D 分解信号 X 。

MATLAB小波变换指令及其功能介绍(超级有用)

MATLAB小波变换指令及其功能介绍(超级有用)

MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname'对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。

(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。

'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。

2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换----------------------------------------------------------- (1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。

matlab离散小波变换dwt(小波分解)

matlab离散小波变换dwt(小波分解)

小波变换是一种在信号处理领域广泛应用的数学工具,它可以将信号分解成不同尺度和频率成分,具有良好的局部化特性。

在Matlab中,离散小波变换(Discrete Wavelet Transform, DWT)是其中一种常用的小波变换方法,它广泛应用于图像处理、语音处理、数据压缩等领域。

本文将对Matlab中离散小波变换的原理、应用及实现方法进行详细介绍。

1. 离散小波变换的原理离散小波变换是通过将信号经过多级高通和低通滤波器的卷积运算,然后下采样,最终得到近似系数和细节系数的过程。

具体来说,设输入信号为x[n],高通滤波器为h[n],低通滤波器为g[n],则小波变换的原理可以表述为:\[a_{\text{scale},n} = x[n]*h_{\text{scale},n} \]\[d_{\text{scale},n} = x[n]*g_{\text{scale},n} \]其中,a为近似系数,d为细节系数,scale表示尺度,n表示离散时间序列。

2. Matlab中离散小波变换的应用离散小波变换在Matlab中有着广泛的应用,包括但不限于图像处理、语音处理、数据压缩等领域。

其中,图像处理是离散小波变换最为常见的应用之一。

通过对图像进行小波变换,可以将图像分解成不同尺度和频率的分量,实现图像的分析和处理。

在语音处理领域,离散小波变换可以用于信号降噪、语音特征提取等方面。

在数据压缩领域,离散小波变换可以实现对数据的降维和提取主要信息,从而实现数据的压缩存储。

3. Matlab中离散小波变换的实现方法在Matlab中,可以通过调用相关函数来实现离散小波变换。

其中,dwt函数是Matlab中常用的离散小波变换函数之一。

其调用格式为:\[cA = dwt(X,'wname','mode')\]\[cA, cD = dwt(X,'wname','mode')\]其中,X为输入信号,'wname'为小波基函数的名称,'mode'为信号的扩展模式。

最新小波变换-matlab-总结

最新小波变换-matlab-总结

小波变换matlab总结目录一、预置工具 (4)1.预置信号 (4)2.预置小波 (4)3.滤波器函数 (6)wfilters函数 (6)4.量化编码 (6)wcodemat函数 (6)5.阈值获取 (6)ddencmp函数 (6)thselect函数 (7)wbmpen函数 (7)wdcbm函数 (7)6.阈值去噪 (8)wden函数 (8)wdencmp函数 (8)wthresh函数 (9)wthcoef函数 (9)wpdencmp函数 (9)二、小波变换函数 (12)单尺度一维小波变换 (12)cwt一维连续小波变换 (12)dwt一维离散小波变换 (12)idwt一维离散小波逆变换 (13)upcoef 一维小波系数重构 (13)多尺度一维小波变换 (14)wavedec多尺度一维分解 (14)waverec多尺度一维重构 (15)appcoef低频系数提取 (16)detcoef高频系数提取 (16)wrcoef多尺度小波系数重构 (17)一维静态(平稳)小波变换 (18)swt一维平稳小波变换 (18)iswt一维平稳小波逆变换 (18)实例 (19)单尺度二维小波变换 (19)dwt2二维离散小波变换 (19)idwt2二维离散小波逆变换 (20)upcoef2二维系数重构 (20)多尺度二维小波变换 (21)wavedec2多尺度二维分解 (21)waverec2多尺度二维重构 (22)appcoef2低频系数提取 (23)detcoef2高频系数提取 (23)wrcoef2多尺度小波系数重构 (24)二维静态(平稳)小波变换 (26)swt2二维静态小波变换 (26)iswt2二维静态小波逆变换 (26)实例 (26)直接调用的小波函数 (28)meyer函数 (28)cgauwavf函数 (28)mexihat函数 (28)morlet函数 (29)symwavf函数 (29)三、图像接口调用 (30)使用图形接口做一维连续小波分析 (30)使用图形接口做一维离散小波分析 (33)使用图形接口分析复信号 (36)使用图形接口做一维除噪分析 (36)四、小波变换在图像处理中的应用 (40)4.1 小波分析用于图像压缩 (40)4.1.1 基于小波变换的图像局部压缩 (40)4.1.2 小波变换用于图像压缩的一般方法 (41)4.1.3 基于小波包变换的图像压缩 (45)4.2 小波分析用于图像去噪 (47)小噪声阈值去噪 (48)大噪声滤波去噪 (49)少量噪声的小波分解系数阈值量化去噪 (50)4.3 小波分析用于图像增强 (52)4.3.1 图像增强问题描述 (52)4.3.2 图像钝化 (53)4.3.3 图像锐化 (54)4.4 小波分析用于图像融合 (56)4.5 小波分析用于图像分解 (57)一、预置工具1.预置信号Matlab 内置了大量的信号实例,进行信号试验的时候可以调用。

MATLAB小波变换指令及其功能介绍(超级有用)(可编辑修改word版)

MATLAB小波变换指令及其功能介绍(超级有用)(可编辑修改word版)

MATLAB 小波变换指令及其功能介绍1一维小波变换的 Matlab 实现(1)dwt 函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname'对信号 X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。

(2)idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。

'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。

2二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换(1)wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即: ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab 实现(2)dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。

matlab对信号小波变换

matlab对信号小波变换

matlab对信号小波变换(原创版)目录一、引言二、小波变换概述三、MATLAB 对信号进行小波变换的方法四、小波变换在信号处理中的应用五、结论正文一、引言在信号处理领域,小波变换被广泛应用于信号分析、特征提取、压缩等领域。

小波变换是一种时频分析方法,可以同时获取信号的频率信息和时间信息。

MATLAB 作为信号处理的常用软件,提供了丰富的函数和工具箱,可以方便地对信号进行小波变换。

本文将介绍如何使用 MATLAB 对信号进行小波变换,以及小波变换在信号处理中的应用。

二、小波变换概述小波变换是一种短时傅里叶变换,它可以将信号分解为不同频率的小波函数,并获得信号在不同时间尺度上的频率信息。

小波变换具有良好的局部特性和多尺度特性,可以有效地分析信号的局部特征和多尺度特征。

三、MATLAB 对信号进行小波变换的方法在 MATLAB 中,可以使用 Wavelet Toolbox 提供的函数对信号进行小波变换。

以下是一个简单的示例:1.导入信号:使用 wavread 函数读取音频信号。

2.对信号进行小波分解:使用 wavedec 函数对信号进行小波分解,得到小波系数。

3.提取小波系数:使用 waveget 函数提取指定层数的小波系数。

4.对小波系数进行处理:例如,可以对小波系数进行幅度模长处理,得到信号的能量分布情况。

5.重构信号:使用 waverec 函数根据小波系数重构信号。

四、小波变换在信号处理中的应用小波变换在信号处理中有广泛的应用,例如:1.信号压缩:通过对信号进行小波分解,可以得到信号的频谱特征,然后根据频谱特征设计合适的量化方案,对信号进行压缩。

2.信号去噪:通过对信号进行小波分解,可以将信号中的噪声分离出来,然后对噪声进行抑制或去除,从而提高信号的质量。

3.信号特征提取:通过对信号进行小波分解,可以获得信号在不同时间尺度上的频率信息,从而提取信号的特征。

五、结论MATLAB 提供了丰富的函数和工具箱,可以方便地对信号进行小波变换。

收集和总结MATLAB中涉及到的小波函数

收集和总结MATLAB中涉及到的小波函数

一、收集和总结MA TLAB中涉及到的小波函数1.cwt函数功能:实现一维连续小波变换的函数。

cwt函数语法格式:COEFS=cwt(S, SCALES, 'wname')COEFS=cwt(S, SCALES, 'wname', 'plot')COEFS=cwt(S, SCALES, 'wname', 'PLOTMODE') 2.dwt函数功能:单尺度一维离散小波变换函数语法格式:[cA,cD] = dwt(X,'wname')[cA,cD] = dwt(X,'wname','mode',MODE)[cA,cD] = dwt(X,Lo_D,Hi_D)3.meyer函数功能:Meyer小波函数语法格式:[PHI,PSI,T] = meyer(LB,UB,N)[PHI,T] = meyer(LB,UB,N,'phi')[PSI,T] = meyer(LB,UB,N,'psi')4.plot函数功能:绘制向量或矩阵的图形函数语法格式:plot(Y)plot(X1,Y1,...)plot(X1,Y1,LineSpec,...)5.cgauwavf函数功能:Complex Gaussian小波函数语法格式:[PSI,X] = cgauwavf(LB,UB,N,P)6.iswt函数功能:一维逆SWT(Stationary Wavelet Transform)变换函数语法格式:X = iswt(SWC,'wname')X = iswt(SWA,SWD,'wname')X = iswt(SWC,Lo_R,Hi_R)7.mexihat函数功能:墨西哥帽小波函数语法格式:[PSI,X] = mexihat(LB,UB,N)8.morlet函数功能:Morlet小波函数语法格式:[PSI,X] = morlet(LB,UB,N)9.symwavf函数功能:Symlets小波滤波器函数语法格式:F = symwavf(W)10.upcoef函数功能:一维小波分解系数的直接重构函数语法格式:Y = upcoef(O,X,'wname',N)Y = upcoef(O,X,'wname',N,L)Y = upcoef(O,X,Lo_R,Hi_R,N)Y = upcoef(O,X,Lo_R,Hi_R,N,L)Y = upcoef(O,X,'wname')Y = upcoef(O,X,Lo_R,Hi_R) 11.upwlev函数功能:单尺度一维小波分解的重构函数语法格式:[NC,NL,cA] = upwlev(C,L,'wname')[NC,NL,cA] = upwlev(C,L,Lo_R,Hi_R) 12.wavedec函数功能:单尺度一维小波分解函数语法格式:[C,L] = wavedec(X,N,'wname')[C,L] = wavedec(X,N,Lo_D,Hi_D) 13.wavefun函数功能:小波函数和尺度函数函数语法格式:[PHI,PSI,XVAL] = wavefun('wname',ITER) 14.waverec函数功能:多尺度一维小波重构函数语法格式:X = waverec(C,L,'wname')X = waverec(C,L,Lo_R,Hi_R)15.wpcoef函数功能:计算小波包系数函数语法格式:X = wpcoef(T,N)X = wpcoef(T)16.wpdec函数功能:一维小波包的分解函数语法格式:T = wpdec(X,N,'wname',E,P)T = wpdec(X,N,'wname')17.wpfun函数功能:小波包函数[函数语法格式:WPWS,X] = wpfun('wname',NUM,PREC) [WPWS,X] = wpfun('wname',NUM) 18.wprcoef函数功能:小波包分解系数的重构函数语法格式:X = wprcoef(T,N)19.wprec函数功能:一维小波包分解的重构函数语法格式:X = wprec(T)20.wrcoef函数功能:对一维小波系数进行单支重构函数语法格式:X = wrcoef('type',C,L,'wname',N)X = wrcoef('type',C,L,Lo_R,Hi_R,N)X = wrcoef('type',C,L,'wname')X = wrcoef('type',C,L,Lo_R,Hi_R)。

MATLAB 小波变换 指令及其功能介绍

MATLAB 小波变换 指令及其功能介绍

MATLAB 小波变换指令及其功能介绍3. 图像小波变换的 Matlab 实现函数 fft、fft2 和 fftn 分析3.1 一维小波变换的 Matlab 实现(1) dwt 函数 Matlab功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维 DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。

(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。

'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。

1. 离散傅立叶变换的 Matlab实现3.2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT-------------------------------------------------函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换 Matlabwaverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量1. 离散傅立叶变换的Matlab实现detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构1. 离散傅立叶变换的 Matlab实现dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换-------------------------------------------------------------函数 fft、fft2 和 fftn 分(1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数 'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。

(完整word版)MATLAB小波变换指令及其功能介绍(超级有用)

(完整word版)MATLAB小波变换指令及其功能介绍(超级有用)

MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname'对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。

(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。

'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。

2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换----------------------------------------------------------- (1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。

Matlab中的小波变换方法和应用

Matlab中的小波变换方法和应用

Matlab中的小波变换方法和应用导言:小波变换是一种用于信号分析和处理的重要工具。

与傅里叶变换相比,小波变换具有更好的时频局部化特性,可以更好地描述信号的瞬时特征。

Matlab作为一种被广泛应用于科学计算和数据分析的工具,提供了丰富的小波变换函数和工具包。

一、小波变换的基本原理1.1 小波变换的概念小波变换是一种通过将信号与一系列小波基函数进行卷积运算来分析信号的变换方法。

小波基函数是一组可变尺度和平移的函数,可以自适应地适应信号的局部特征。

1.2 小波基函数的选择在Matlab中,常用的小波基函数有Daubechies小波、Haar小波、Symlets小波等。

不同的小波基函数适用于不同类型的信号。

用户可以根据信号的特点选择合适的小波基函数。

二、Matlab中的小波变换函数2.1 waverec和wavelet函数waverec和wavelet是Matlab中用于小波信号重构和小波信号变换的基本函数。

waverec函数用于通过小波系数重构原始信号,而wavelet函数用于对信号进行小波变换得到小波系数。

2.2 cwt和icwt函数cwt和icwt是Matlab中用于连续小波变换和连续小波逆变换的函数。

cwt函数用于对信号进行连续小波变换,得到不同尺度和频率下的小波系数,而icwt函数用于对小波系数进行连续小波逆变换,恢复原始信号。

三、小波变换的应用3.1 信号去噪小波变换在信号去噪领域具有广泛的应用。

由于小波变换可以提供信号的时频局部特征,可以有效地去除信号中的噪声成分,并保留信号的有效信息。

在Matlab中,可以利用小波变换函数对信号进行去噪处理。

3.2 图像处理小波变换在图像处理领域也有着重要的应用。

图像可以看作是二维信号,而小波变换可以对二维信号进行分析和处理。

通过对图像进行小波变换,可以提取图像的纹理特征,实现图像的压缩和增强。

3.3 特征提取小波变换还可以应用于特征提取。

通过对信号进行小波变换,可以提取信号的时频特征,并用于信号分类和识别。

matlab实现小波变换

matlab实现小波变换

matlab实现小波变换小波变换(Wavelet Transform)是一种信号处理技术,可以将信号分解成不同频率和时间分辨率的成分。

在Matlab中,可以利用小波变换函数实现信号的小波分析和重构。

本文将介绍小波变换的原理和在Matlab中的使用方法。

一、小波变换原理小波变换是一种时频分析方法,通过对信号进行多尺度分解,可以同时观察信号的时间和频率信息。

小波变换使用小波函数作为基函数,将信号分解成不同频率的子信号。

小波函数是一种具有有限长度的波形,可以在时间和频率上进行局部化分析。

小波变换的主要步骤包括:选择小波函数、信号的多尺度分解、小波系数的计算和重构。

1. 选择小波函数:小波函数的选择对小波变换的结果有重要影响。

常用的小波函数有Haar小波、Daubechies小波、Symlet小波等。

不同的小波函数适用于不同类型的信号,选择合适的小波函数可以提高分析的效果。

2. 信号的多尺度分解:信号的多尺度分解是指将信号分解成不同尺度的成分。

小波变换采用层级结构,每一层都将信号分解成低频和高频两部分。

低频表示信号的平滑部分,高频表示信号的细节部分。

3. 小波系数的计算:小波系数表示信号在不同尺度和位置上的强度。

通过计算每一层的小波系数,可以得到信号在不同频率上的能量分布。

4. 信号的重构:信号的重构是指将分解得到的小波系数合成为原始信号。

小波重构的过程是小波分析的逆过程,通过将每一层的低频和高频合并,可以得到原始信号的近似重构。

二、Matlab中的小波变换在Matlab中,可以使用wavedec函数进行小波分解,使用waverec 函数进行小波重构。

具体步骤如下:1. 加载信号:需要加载待处理的信号。

可以使用load函数从文件中读取信号,或者使用Matlab中自带的示例信号。

2. 选择小波函数:根据信号的特点和分析目的,选择合适的小波函数。

Matlab提供了多种小波函数供选择。

3. 进行小波分解:使用wavedec函数进行小波分解,指定分解的层数和小波函数名称。

MATLAB小波函数总结

MATLAB小波函数总结

MATLAB小波函数总结在MATLAB中,小波函数是一种弧形函数,广泛应用于信号处理中的压缩,降噪和特征提取等领域。

小波函数具有局部化特性,能够在时频域上同时分析信号的瞬时特征和频率信息。

本文将总结MATLAB中常用的小波函数及其应用。

一、小波函数的基本概念小波变换是一种时间-频率分析方法,通过将信号与一组基函数进行卷积得到小波系数,从而实现信号的时频分析。

小波函数具有紧致性,能够在时域和频域具有局域性。

MATLAB提供了一系列的小波函数,用于不同的应用场景。

1. Haar小波函数Haar小波函数是最简单的一类小波函数,它是一种基于矩阵变换的正交小波函数。

具体而言,Haar小波函数形式如下:ψ(x)=1(0≤x<1/2)-1(1/2≤x<1)0(其他)Haar小波函数的最大优点是构造简单,仅由两个基本函数构成,且可以有效地表示信号的边缘和跳变。

2. Daubechies小波函数Daubechies小波函数是一类紧支小波函数,能够在时域和频域上实现精确的表示。

MATLAB提供了多个Daubechies小波函数,如db1、db2、db3等,其选择取决于所需的时频分析精度。

3. Symlets小波函数Symlets小波函数是Daubechies小波函数的一种变形,它在保持带通特性的基础上增加了支持系数的数量,提高了时频分析的精度。

MATLAB 提供了多个Symlets小波函数,如sym2、sym3、sym4等。

4. Coiflets小波函数Coiflets小波函数是一种具有对称性和紧支特性的小波函数,可用于信号压缩和降噪等应用。

MATLAB提供了多个Coiflets小波函数,如coif1、coif2、coif3等。

二、小波函数的应用小波函数广泛应用于信号处理中的各个领域,包括信号压缩、降噪、图像处理和模式识别等。

下面将重点介绍小波函数在这些领域的应用。

1.信号压缩小波函数可以通过选择合适的小波基函数和阈值策略来实现信号的压缩。

MATLAB小波变换指令及其功能介绍(超级有用)

MATLAB小波变换指令及其功能介绍(超级有用)

MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname'对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。

(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。

'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。

2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换----------------------------------------------------------- (1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。

最新小波变换-matlab-总结

最新小波变换-matlab-总结

小波变换matlab总结目录一、预置工具 (4)1.预置信号 (4)2.预置小波 (4)3.滤波器函数 (6)wfilters函数 (6)4.量化编码 (6)wcodemat函数 (6)5.阈值获取 (6)ddencmp函数 (6)thselect函数 (7)wbmpen函数 (7)wdcbm函数 (7)6.阈值去噪 (8)wden函数 (8)wdencmp函数 (8)wthresh函数 (9)wthcoef函数 (9)wpdencmp函数 (9)二、小波变换函数 (12)单尺度一维小波变换 (12)cwt一维连续小波变换 (12)dwt一维离散小波变换 (12)idwt一维离散小波逆变换 (13)upcoef 一维小波系数重构 (13)多尺度一维小波变换 (14)wavedec多尺度一维分解 (14)waverec多尺度一维重构 (15)appcoef低频系数提取 (16)detcoef高频系数提取 (16)wrcoef多尺度小波系数重构 (17)一维静态(平稳)小波变换 (18)swt一维平稳小波变换 (18)iswt一维平稳小波逆变换 (18)实例 (19)单尺度二维小波变换 (19)dwt2二维离散小波变换 (19)idwt2二维离散小波逆变换 (20)upcoef2二维系数重构 (20)多尺度二维小波变换 (21)wavedec2多尺度二维分解 (21)waverec2多尺度二维重构 (22)appcoef2低频系数提取 (23)detcoef2高频系数提取 (23)wrcoef2多尺度小波系数重构 (24)二维静态(平稳)小波变换 (26)swt2二维静态小波变换 (26)iswt2二维静态小波逆变换 (26)实例 (26)直接调用的小波函数 (28)meyer函数 (28)cgauwavf函数 (28)mexihat函数 (28)morlet函数 (29)symwavf函数 (29)三、图像接口调用 (30)使用图形接口做一维连续小波分析 (30)使用图形接口做一维离散小波分析 (33)使用图形接口分析复信号 (36)使用图形接口做一维除噪分析 (36)四、小波变换在图像处理中的应用 (40)4.1 小波分析用于图像压缩 (40)4.1.1 基于小波变换的图像局部压缩 (40)4.1.2 小波变换用于图像压缩的一般方法 (41)4.1.3 基于小波包变换的图像压缩 (45)4.2 小波分析用于图像去噪 (47)小噪声阈值去噪 (48)大噪声滤波去噪 (49)少量噪声的小波分解系数阈值量化去噪 (50)4.3 小波分析用于图像增强 (52)4.3.1 图像增强问题描述 (52)4.3.2 图像钝化 (53)4.3.3 图像锐化 (54)4.4 小波分析用于图像融合 (56)4.5 小波分析用于图像分解 (57)一、预置工具1.预置信号Matlab 内置了大量的信号实例,进行信号试验的时候可以调用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小波变换matlab总结目录一、预置工具 (4)1.预置信号 (4)2.预置小波 (4)3.滤波器函数 (6)wfilters函数 (6)4.量化编码 (6)wcodemat函数 (6)5.阈值获取 (6)ddencmp函数 (6)thselect函数 (7)wbmpen函数 (7)wdcbm函数 (7)6.阈值去噪 (8)wden函数 (8)wdencmp函数 (8)wthresh函数 (9)wthcoef函数 (9)wpdencmp函数 (9)二、小波变换函数 (12)单尺度一维小波变换 (12)cwt一维连续小波变换 (12)dwt一维离散小波变换 (12)idwt一维离散小波逆变换 (13)upcoef 一维小波系数重构 (13)多尺度一维小波变换 (14)wavedec多尺度一维分解 (14)waverec多尺度一维重构 (15)appcoef低频系数提取 (16)detcoef高频系数提取 (16)wrcoef多尺度小波系数重构 (17)一维静态(平稳)小波变换 (18)swt一维平稳小波变换 (18)iswt一维平稳小波逆变换 (18)实例 (19)单尺度二维小波变换 (19)dwt2二维离散小波变换 (19)idwt2二维离散小波逆变换 (20)upcoef2二维系数重构 (20)多尺度二维小波变换 (21)wavedec2多尺度二维分解 (21)waverec2多尺度二维重构 (22)appcoef2低频系数提取 (23)detcoef2高频系数提取 (23)wrcoef2多尺度小波系数重构 (24)二维静态(平稳)小波变换 (26)swt2二维静态小波变换 (26)iswt2二维静态小波逆变换 (26)实例 (26)直接调用的小波函数 (28)meyer函数 (28)cgauwavf函数 (28)mexihat函数 (28)morlet函数 (29)symwavf函数 (29)三、图像接口调用 (30)使用图形接口做一维连续小波分析 (30)使用图形接口做一维离散小波分析 (33)使用图形接口分析复信号 (36)使用图形接口做一维除噪分析 (36)四、小波变换在图像处理中的应用 (40)4.1 小波分析用于图像压缩 (40)4.1.1 基于小波变换的图像局部压缩 (40)4.1.2 小波变换用于图像压缩的一般方法 (41)4.1.3 基于小波包变换的图像压缩 (45)4.2 小波分析用于图像去噪 (47)小噪声阈值去噪 (48)大噪声滤波去噪 (49)少量噪声的小波分解系数阈值量化去噪 (50)4.3 小波分析用于图像增强 (52)4.3.1 图像增强问题描述 (52)4.3.2 图像钝化 (53)4.3.3 图像锐化 (54)4.4 小波分析用于图像融合 (56)4.5 小波分析用于图像分解 (57)一、预置工具1.预置信号Matlab 内置了大量的信号实例,进行信号试验的时候可以调用。

调用格式:load signalmatlab安装目录的toolbox/wavelet/wavedemonoissin 包含噪声的正弦波leleccum一维电压信号,有365560个采样点wbarb 专指图片:2.预置小波Matlab预置了共计15种小波。

查看语句:wavemngr('read',1)查看单个小波:waveinfo('wname')1.Haar小波小波名haar2. Daubechies小波系小波名db调用名db1 db2 db3 db4 db5 db6 db7 db8 db9 db103.对称小波系Symlets小波名sym调用名sym2 sym3 sym4 sym5 sym6 sym7 sym84. Coiflets 小波系小波名coif调用名 coif1 coif2 coif3 coif4 coif55. Biorthogonal小波系小波名bior调用名bior1.1 bior1.3 bior1.5 bior2.2 bior2.4 bior2.6 bior2.8 bior3.1 bior3.3 bior3.5 bior3.7 bior3.9 bior4.4 bior5.5 bior6.86.ReverseBior小波系小波名rbio调用名rbio1.1 rbio1.3 rbio1.5 rbio2.2 rbio2.4 rbio2.6 rbio2.8 rbio3.1 rbio3.3 rbio3.5 rbio3.7 rbio3.9 rbio4.4 rbio5.5 rbio6.87.Meyer小波小波名meyr8. Dmeyer小波小波名dmey9. Gaussian小波系小波名gaus调用名gaus1 gaus2 gaus3 gaus4 gaus5 gaus6 gaus7 gaus810. Mexican hat小波小波名mexh11. Morlet小波小波名morlplex Gaussian小波系小波名cgau调用名cgau1 cgau2 cgau3 cgau4 cgau5 cgau13. Shannon小波系小波名shan调用名shan1-1.5 shan1-1 shan1-0.5 shan1-0.1 shan2-314. Frequency B小波系小波名fbsp调用名fbsp1-1-1.5 fbsp1-1-1 fbsp1-1-0.5 fbsp2-1-1 fbsp2-1-0.5 fbsp2-1-0.115. Complex Morlet小波系小波名cmor调用名cmor1-1.5 cmor1-1 cmor1-0.5 cmor1-1 cmor1-0.5 cmor1-0.13.滤波器函数wfilters函数[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('wname')计算对应小波的滤波器。

The four output filters areLo_D, 用于分解的低通滤波器Hi_D, 用于分解的高通滤波器Lo_R, 用于重构的低通滤波器Hi_R, 用于重构的高通滤波器4.量化编码wcodemat函数y=wcodemat(x,nb,opt,absol)y=wcodemat(x,nb,opt)y=wcodemat(x,nb)y=wcodemat(x)该函数是用来对矩阵X进行量化编码,它返回矩阵X的一个编码矩阵,在编码中,把矩阵X中元素绝对值最大的作为NB(NB是一个整数),绝对值最小的作为1,其他元素依其绝对值的大小在1与NB中排列.当OPT为'row'时,做行编码;当OPT为'col'时,做列编码,当OPT为'mat'时,做全局编码,即把整个矩阵中的元素绝对值最大的元素作为NB,最小的作为1,其他元素依其绝对值的大小在整个矩阵中排列.当ABSOL为0时,该函数返回输入矩阵X的一个编码版本;为非0时,返回X的绝对值5.阈值获取MATLAB中实现阈值获取的函数有ddencmp、thselect、wbmpen和wwdcbm,下面对它们的用法进行简单的说明。

ddencmp函数调用格式:[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,IN2,X)函数ddencmp用于获取信号在消噪或压缩过程中的默认阈值。

输入参数X为一维或二维信号;IN1取值为'den'或'cmp','den'表示进行去噪,'cmp'表示进行压缩;IN2取值为'wv'或'wp',wv表示选择小波,wp表示选择小波包。

输出参数THR为函数选择的阈值,SORH为函数选择阈值使用方式。

Sorh=s,为软阈值;Sorh=h,为硬阈值;输出参数KEEPAPP决定了是否对近似分量进行阈值处理。

可选为0或1。

CRIT为使用小波包进行分解时所选取的熵函数类型。

例:自动生成信号小波处理的阈值选取方案。

r=2055415866; randn('seed',r);x=randn(1,1000);%产生白噪声;%求取对信号进行小波消噪处理的默认阈值、软阈值,并且保留低频系数;[thr,sorh,keepapp]=ddencmp('den','wv',x);输出:thr = 3.8593sorh = skeepapp = 1thselect函数调用格式如下:THR=thselect(X,TPTR);根据字符串TPTR定义的阈值选择规则来选择信号X的自适应阈值。

自适应阈值的选择规则包括以下四种:*TPTR='rigrsure',自适应阈值选择使用Stein的无偏风险估计原理。

*TPTR='heursure',使用启发式阈值选择。

*TPTR='sqtwolog',阈值等于sqrt(2*log(length(X))).*TPTR='minimaxi',用极大极小原理选择阈值。

阈值选择规则基于模型 y = f(t) + e,e是高斯白噪声N(0,1)。

wbmpen函数调用格式:THR=wbmpen(C,L,SIGMA,ALPHA);返回去噪的全局阈值THR。

THR通过给定的一种小波系数选择规则计算得到,小波系数选择规则使用Birge-Massart的处罚算法。

[C,L]是进行去噪的信号或图像的小波分解结构;SIGMA是零均值的高斯白噪声的标准偏差;ALPHA是用于处罚的调整参数,它必须是一个大于1的实数,一般去ALPHA=2。

wdcbm函数调用格式:(1)[THR,NKEEP]=wdcbm(C,L,ALPHA);(2)[THR,NKEEP]=wdcbm(C,L,ALPHA,M);函数wdcbm是使用Birge-Massart算法获取一维小波变换的阈值。

返回值THR是与尺度无关的阈值,NKEEP是系数的个数。

[C,L]是要进行压缩或消噪的信号在j=length(L)-2层的分解结构;LAPHA和M必须是大于1的实数;THR是关于j的向量,THR(i)是第i层的阈值;NKEEP也是关于j的向量,NKEEP(i)是第i层的系数个数。

一般压缩时ALPHA取1.5,去噪时ALPHA取3.6.阈值去噪MATLAB中实现信号的阈值去噪的函数有wden、wdencmp、wthresh、wthcoef、wpthcoef 以及wpdencmp。

下面对它们的用法作简单的介绍。

wden函数调用格式:(1)[XD,CXD,LXD]=wden(X,TPTR,SORH,SCAL,N,'wname')(2)[XD,CXD,LXD]=wden(C,L,TPTR,SORH,SCAL,N,'wname')函数wden用于一维信号的自动消噪。

相关文档
最新文档