2017年高考全国卷3理科数学试题解析

合集下载

2017年高考真题(全国Ⅲ卷)数学理科含解析

2017年高考真题(全国Ⅲ卷)数学理科含解析

2017年普通高等学校招生统一考试全国卷Ⅲ理科数学一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={}22x y y x│,则A B=(,)(,)1│,B={}x y x y+=中元素的个数为A.3 B.2 C.1D.0【答案】B【解析】【考点】交集运算;集合中的表示方法。

【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件。

集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性。

2.设复数z 满足(1+i)z=2i ,则∣z ∣= A .12 BCD .2【答案】C 【解析】【考点】 复数的模;复数的运算法则 【名师点睛】共轭与模是复数的重要性质,注意运算性质有: (1)1212z zz z ±=± ;(2) 1212z z z z ⨯=⨯;(3)22z z z z⋅== ;(4)121212z z z z z z -≤±≤+ ;(5)1212z zz z =⨯ ;(6)1121z z z z =。

3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【答案】A【解析】动性大,选项D说法正确;故选D。

【考点】折线图【名师点睛】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图,频率分布折线图的的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,他们比频率分布表更直观、形象地反映了样本的分布规律。

2017全国高考理科数学试题与答案解析_全国卷3

2017全国高考理科数学试题与答案解析_全国卷3

WORD 格式整理绝密★启封并使用完毕前试题类型:2016 年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 1 至3 页,第Ⅱ卷 3 至5 页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S=S x P(x 2)(x 3) 0 ,T x x 0 ,则S I T=(A) [2 ,3] (B) (- ,2] U [3,+ )(C) [3,+ )(D) (0,2] U [3,+ )4i(2)若z=1+2i ,则zz 1(A)1 (B) -1 (C) i (D)-i(3)已知向量u uvBA1 2( , )2 2,u u u vBC3 1( , ),2 2则ABC=(A)30 0 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低0C,B 点表示四月的平均最低气气温的雷达图。

图中 A 点表示十月的平均最高气温约为150C。

下面叙述不正确的是温约为 5专业技术参考资料(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于20 C 的月份有 5 个(5)若tan 34 ,则2cos 2sin 2(A) 6425(B)4825(C) 1 (D)16254 3 1(6)已知 3a 2 ,4b 4 ,3c 25 ,则(A )b a c (B)a b c(C)b c a(D)c a b(7)执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=专业技术参考资料(A )3 (B)4 (C)5 (D)6(8)在△ABC中,πB = ,BC 边上的高等于413BC ,则cos A=(A)31010 (B)1010(C)10- (D)10-3 1010(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18 36 5(B)54 18 5(C)90(D)81(10) 在封闭的直三棱柱ABC -A1B1C1 内有一个体积为V 的球,若AB BC,AB=6,BC =8,AA 1=3,则V 的最大值是(A )4π(B)92 (C)6π(D)323(11)已知O 为坐标原点, F 是椭圆C:2 2x y2 2 1(a b 0)a b的左焦点,A,B 分别为 C的左,右顶点.P 为C 上一点,且PF⊥x 轴.过点 A 的直线l 与线段PF 交于点M,与y 轴交于点 E.若直线BM 经过OE 的中点,则 C 的离心率为(A )13 (B)12(C)23(D)34 专业技术参考资料(12)定义“规范01 数列”{a n} 如下:{ a n} 共有2m 项,其中m 项为0,m 项为1,且对任意k 2m ,a1,a2, ,a k 中0 的个数不少于 1 的个数.若m=4,则不同的“规范01 数列”共有(A )18 个(B)16 个(C)14 个(D)12 个第II 卷本卷包括必考题和选考题两部分. 第( 13) 题~第( 21) 题为必考题,每个试题考生都必须作答. 第( 22) 题~第( 24) 题为选考题,考生根据要求作答.二、填空题:本大题共 3 小题,每小题 5 分(13)若x,y 满足约束条件则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。

2017年高考新课标Ⅲ卷理数试题解析(精编版)(原卷版)

2017年高考新课标Ⅲ卷理数试题解析(精编版)(原卷版)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.()()52x y x y +-的展开式中33x y 的系数为A .80-B .40-C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=6.设函数()π(3cos )f x x =+,则学科/网下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称 C .(π)f x +的一个零点为π6x =D .()f x 在(π2,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .24-B .3-C .3D .810.已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1311.已知函数211()2(ee )x xf x x x a --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为 A .3B .22C .5D .2二、填空题:本题共4小题,每小题5分,共20分。

2017年高考真题数学理(全国Ⅲ卷)【答案加解析】

2017年高考真题数学理(全国Ⅲ卷)【答案加解析】

绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B C D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -=B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6π D .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为ABC.3D .1311.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。

2017年全国三卷数学理科

2017年全国三卷数学理科

2017年全国三卷数学理科全文共四篇示例,供读者参考第一篇示例:2017年全国三卷数学理科考试是全国范围内的一次重要考试,考察了参加考试学生的数学知识和解题能力。

数学一直被认为是一门重要的学科,对培养学生的逻辑思维能力、分析问题的能力以及解决实际问题的能力具有重要意义。

本次考试的题目设计和难度设置充分体现了数学的应用性和分析性,考生需要具备扎实的数学基础知识和一定的解题技巧方能应对。

2017年全国三卷数学理科考试分为选择题和解答题两部分,选择题主要考察了考生对基础知识的掌握程度,涵盖了代数、几何、概率统计等多个方面的题目。

解答题则更注重考查考生的解题思路和分析问题的能力,要求考生深入分析问题,提出合理的解题思路,得出正确的答案,并对解题过程进行合理的解释。

整个试卷设计合理,考查面广,既考察了学生的记忆能力,又考察了学生的理解和应用能力,全面考查了学生的数学素养。

在2017年全国三卷数学理科考试中,不乏一些难度较大的题目,考生需要具备较强的解题能力和丰富的解题经验才能顺利完成。

一道关于函数和极限的题目,要求考生证明一个函数在某一区间内的极限存在,并计算这个极限的值。

这个题目需要考生运用函数的定义和极限的性质进行推导,需要对函数的性质有深刻的理解和运用,对考生解题思维和分析问题的能力提出了较高的要求。

2017年全国三卷数学理科考试试题设计合理,考查内容全面,考查重点准确,能够全面考察学生的数学知识和解题能力。

参加考试的学生应该在平时的学习中注重数学基础知识的掌握和解题方法的积累,不断提高自己的数学素养和解题能力,以便在考试中取得更好的成绩。

希望广大学生在数学学习中能够充分发挥自己的潜力,不断提高数学素养,为未来的学习和工作打下坚实的数学基础。

第二篇示例:2017年全国三卷数学理科试卷考试共计123道题,共计150分,试卷满分为750分,本次考试的试卷设置了选择题、填空题、解答题等不同类型的题目,涵盖了数学理科的各个知识点和能力要求。

2017年全国卷3高考理科数学含答案详解

2017年全国卷3高考理科数学含答案详解

绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考生务必将自己的、号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.学#科&网根据该折线图,下列结论错误的是 A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为5y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6π D .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为ABC.3D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。

2017年新课标全国卷3高考理科数学试题及答案(2)

2017年新课标全国卷3高考理科数学试题及答案(2)
如需改动, 用橡皮擦干净后, 再选涂其他答案标号。 回答非选 择题时, 将答案写在答题卡上。
写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分。在 每小题给出的四个选项中,只
有一项是符合题目要求的。
1.已知集合 A=
2
2
(x, y│) x y
其中正确的是 ________。(填写所有正确结论的编号)
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步 骤。第 17~21 题为必考题,
每个试题考生都必须作答。第 22、 23 题为选考题,考生根 据要求作答。
(一)必考题:共 60 分。
17.(12 分)
----
2017 年新课标全国卷 3 高考理科数学试题及答案(2)(word 版可编辑修改)
( 1)证明:平面 ACD ⊥平面 ABC; (2)过 AC 的平面交 BD 于点 E,若平面 AEC 把四面体 ABCD 分成体积相等的两部分, 求二面角 D –AE–C 的余弦值. 20.(12 分)
2=2 x,过点( 2,0)的直线 l 交 C 与 A,B 两 点,圆 M 是以线段 AB 为直 已知抛物线 C: y 径的圆.
若最高气温不低于 25,Y=6n—4n=2n
若最高气温位于区20, ,25 ,Y=6× 300+2( n-300 ) —4n=1200— 2n;
若最高气温低于 20,Y=6×200+2( n-200 ) —4n=800—2n; 因此 EY=2n× 0.4+ ( 1200—2n )× 0。4+(800-2n) × 0。 2=640-0.4n 当 200 ≤ n 300 时, 若最高气温不低于 20,Y=6n-4n=2n; 若最高气温低于 20,Y=6×200+2( n-200 ) —4n=800-2n; 因此 EY=2n× (0.4+0.4)+(800-2n) × 0.2=160+1。2n 所以 n=300 时, Y 的数学期望达到最大值,最大值520 元。 3. 解:

2017年新课标全国卷3高考理科数学精彩试题及问题详解

2017年新课标全国卷3高考理科数学精彩试题及问题详解

绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B .2C D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为2y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为ABCD .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。

2017年全国卷3(理科数学)含答案

2017年全国卷3(理科数学)含答案

绝密★启用前2017年普通高等学校招生全国统一考试理科数学(全国Ⅲ卷)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={}22(,)1x y x y+=│,B={}(,)x y y x=│,则A B中元素的个数为【B】A.3 B.2 C.1 D.0 2.设复数z满足(1+i)z=2i,则∣z∣=【C】A.12B.CD.23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是【A】A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为【C 】 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为【B 】 A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=6.设函数f (x )=cos(x +3π),则下列结论错误的是【D 】A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为【D 】A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为【B】A.πB.3π4C.π2D.π49.等差数列{}na的首项为1,公差不为0.若a2,a3,a6成等比数列,则{}na前6项的和为【A】A.-24 B.-3 C.3 D.810.已知椭圆C:22221x ya b+=,(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线20bx ay ab-+=相切,则C的离心率为【A】A.3B.3C.3D.1311.已知函数211()2()x xf x x x a e e--+=-++有唯一零点,则a=【C】A.12-B.13C.12D.112.在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若AP=λAB+μAD,则λ+μ的最大值为【A】A.3 B.CD.2二、填空题:本题共4小题,每小题5分,共20分。

2017年高考新课标Ⅲ卷理数试题解析(精编版)(解析版)

2017年高考新课标Ⅲ卷理数试题解析(精编版)(解析版)

统计、解析几何、导数五大版块和二选一问题。以知识为载体,立意于能力。 4、命题考察的沿续性 2017 年新课标 III 卷,在力求创新基础上,也有一些不变的东西。例如 2017 年
新课标 III 卷在集合、复数、算法、线性规划的命题方式基本完全一致。 【命题趋势】 1.函数知识:以导数知识为背景的函数问题;分段函数与不等式结合的题目;三角函数的性质及其讨论; 从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。 2.函数零点问题:函数零点的应用主要表现在利用零点求参数范围,这也体现了数形结合思想的应用. 3.不等式知识:突出工具性,不等式的性质与分段函数,绝对值的性质综合起来进行考查,考查学生的等 价转化能力和分类讨论能力; 4.立体几何知识:2016 年已经变得简单,2017 年难度依然不大, 16 题填空题将立体几何的知识与运动问 题相联系,然后确定最值及取值范围;第 8 题考查圆柱的体积问题,要求学生的空间想象能力比加强. 5.解析几何知识:解答题主要考查直线、抛物线和圆的知识,考试的难度与往年持平,选择题 5 题考查共 焦点问题,属于常规题目,10 题综合了抛物线、圆和直线的问题,需要对位置关系有透彻的理解。 6.导数知识: 导数是研究函数的单调性、 极值(最值)最有效的工具, 而函数是高中数学中重要的知识点, 21 题加强了与不等式的联系,要求学生的对导数的深层含义能准确把握,12 题涉及零点问题,由唯一性确定
(5) z1 z2 z1 z2 ;(6)
z z1 1 。 z2 z1
3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了 2014 年 1 月至 2016 年 12 月期 间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是 A.月接待游客量逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在 7,8 月 D.各年 1 月至 6 月的月接待游客量相对 7 月至 12 月,波动性更小,变化比较平稳 【答案】A 【解析】

2017年新课标全国卷3高考理科数学试题及答案[2]

2017年新课标全国卷3高考理科数学试题及答案[2]

(直打版)2017年新课标全国卷3高考理科数学试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2017年新课标全国卷3高考理科数学试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2017年新课标全国卷3高考理科数学试题及答案(word版可编辑修改)的全部内容。

绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .2 C .2 D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x —y )5的展开式中x 3y 3的系数为 A .—80B .—40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为5y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2π B .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .—3C .3D .810.已知椭圆C :22221x y a b+=,(a 〉b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 ABCD .1311.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件y 0200x x y y -≥⎧⎪+-≤⎨⎪≥⎩,则z 34x y =-的最小值为__________.14.设等比数列{}n a 满足a 1 + a 2 = –1, a 1 – a 3 = –3,则a 4 = ___________. 15.设函数10()20xx x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_________.16.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最小值为60°;其中正确的是________.(填写所有正确结论的编号)三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。

(完整版)2017年全国三卷理科数学高考真题及答案解析,推荐文档

(完整版)2017年全国三卷理科数学高考真题及答案解析,推荐文档

2016年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量12(,)22BA =uu v ,31(,),22BC =uu u v 则∠ABC= (A)300(B) 450(C) 600(D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有5个(5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = (A )310 (B )10(C )10-(D )310- (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+(C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π(D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有 (A )18个 (B )16个 (C )14个 (D )12个二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件错误!未找到引用源。

(完整word)2017年全国三卷理科数学高考真题及答案解析(可编辑修改)

(完整word)2017年全国三卷理科数学高考真题及答案解析(可编辑修改)

2016年普通高等学校招生全国统一考试理科数学一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S = ,则S T ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P I (A) [2,3] (B)(- ,2] [3,+)∞U ∞(C) [3,+) (D)(0,2] [3,+)∞U ∞(2)若z=1+2i ,则 41i zz =-(A)1 (B) -1 (C) i (D)-i(3)已知向量 , 则ABC=1(2BA =u u v 1),2BC =u u u v ∠(A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有5个(5)若 ,则 3tan 4α=2cos 2sin 2αα+=(A) (B) (C) 1 (D) 642548251625(6)已知,,,则432a =344b =1325c =(A ) (B )(C )(D )b a c <<a b c <<b c a <<c a b<<(7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3(B )4(C )5(D )6(8)在中,,BC 边上的高等于,则 ABC △π4B =13BC cos A =(A (B(C )(D )-- (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18+(B )54+(C )90(D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若ABBC ,AB =6,BC =8,AA 1=3,则V 的最大值是⊥(A )4π (B )(C )6π 92π(D ) 323π(11)已知O 为坐标原点,F 是椭圆C :的左焦点,A ,B 分别为C 的左,右顶点.P 为C 22221(0)x y a b a b+=>>上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A )(B )(C )(D )13122334(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意,2k m ≤12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个 (B )16个 (C )14个 (D )12个二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件 则z=x+y 的最大值为_____________.{x ‒y +1≥0x ‒2y ≪0x +2y ‒2≪0(14)函数的图像可由函数的图像至少向右平移_____________个单位长y =sin x ‒3cos x y =sin x +3cos x 度得到。

2017年高考新课标Ⅲ卷理数试题解析(精编版)(解析版)

2017年高考新课标Ⅲ卷理数试题解析(精编版)(解析版)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .0【答案】B【考点】交集运算;集合中的表示方法【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性. 2.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .22C .2D .2【答案】C 【解析】试题分析:由题意可得2i1iz=+,由复数求模的法则可得1121zzz z=,则2i221i2z===+.故选C.【考点】复数的模【名师点睛】共轭与模是复数的重要性质,运算性质有:(1)1212z z z z±=±;(2)1212z z z z⨯=⨯;(3)22z z z z⋅==;(4)121212z z z z z z-≤±≤+;(5)1212z z z z=⨯;(6)1121zzz z=.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,学/科网绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】故选A.【考点】折线图【名师点睛】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率分布折线图,频率分布折线图的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,它们比频率分布表更直观、形象地反映了样本的分布规律.4.()()52x y x y +-的展开式中33x y 的系数为A .80-B .40-C .40D .80【答案】C 【解析】试题分析:()()()()555222x y x y x x y y x y +-=-+-,由()52x y -展开式的通项公式()()515C 2rrrr T x y -+=-可得:当3r =时,()52x x y -展开式中33x y 的系数为()3325C 2140⨯⨯-=-; 当2r =时,()52y x y -展开式中33x y 的系数为()2235C 2180⨯⨯-=,则33x y 的系数为804040-=. 故选C.【考点】二项展开式的通项公式【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.5.已知双曲线C :22221x y a b -=(a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【答案】B 【解析】【考点】双曲线与椭圆共焦点问题;待定系数法求双曲线的方程【名师点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()2220x y a bλλ2-=≠,再由条件求出λ的值即可.6.设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称 C .(π)f x +的一个零点为π6x = D .()f x 在(π2,π)单调递减【答案】D 【解析】试题分析:函数()f x 的最小正周期为2π2π1T ==,则函数()f x 的周期为()2πT k k =∈Z ,取1k =-,可得函数()f x 的一个周期为2π-,选项A 正确; 函数()f x 图像的对称轴为()ππ3x k k +=∈Z ,即()ππ3x k k =-∈Z ,取3k =,可得y =f (x )的图像关于直线8π3x =对称,选项B 正确; ()πππcos πcos 33f x x x ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()f x 的零点满足()πππ32x k k +=+∈Z ,即()ππ6x k k =+∈Z ,取0k =,可得(π)f x +的一个零点为π6x =,选项C 正确;当π,π2x ⎛⎫∈⎪⎝⎭时,π5π4π,363x ⎛⎫+∈ ⎪⎝⎭,函数()f x 在该区间内不单调,选项D 错误.故选D.【考点】函数()cos y A x ωϕ=+的性质【名师点睛】(1)求最小正周期时可先把所给三角函数式化为(n )si y A x ωϕ=+或(s )co y A x ωϕ=+的形式,则最小正周期为2πT ω=;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x bω=+的形式.(2)求()()sin 0()f x A x ωϕω+≠=的对称轴,只需令()ππ2x k k ωϕ+=+∈Z ,求x ;求f (x )的对称中心的横坐标,只需令π()x k k ωϕ+=∈Z 即可.7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .2【答案】D 【解析】试题分析:阅读程序框图,程序运行如下:首先初始化数值:1,100,0t M S ===,然后进入循环体:此时应满足t N ≤,执行循环语句:100,10,1210MS S M M t t =+==-=-=+=; 此时应满足t N ≤,执行循环语句:90,1,1310MS S M M t t =+==-==+=;此时满足91S <,可以跳出循环,则输入的正整数N 的最小值为2. 故选D.【考点】程序框图【名师点睛】利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构.当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断.注意输入框、处理框、判断框的功能,不可混用.赋值语句赋值号左边只能是变量,不能是表达式,右边的表达式可以是一个常量、变量或含变量的运算式.8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.3π4C.π2D.π4【答案】B【考点】圆柱的体积公式【名师点睛】(1)求解空间几何体体积的关键是确定几何体的元素以及线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.9.等差数列{}n a的首项为1,公差不为0.若a2,a3,a6成等比数列,则{}n a前6项的和为A.24-B.3-C.3 D.8 【答案】A【解析】试题分析:设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A. 【考点】等差数列求和公式;等差数列基本量的计算【名师点睛】(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.10.已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .13【答案】A 【解析】【考点】椭圆的离心率的求解;直线与圆的位置关系【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见的有两种方法:①求出a ,c ,代入公式e =c a; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).11.已知函数211()2(ee )x xf x x x a --+=-++有唯一零点,则a =A .12-B .13C .12D .1【答案】C 【解析】试题分析:函数()f x 的零点满足()2112e e x x x x a --+-=-+, 设()11eex x g x --+=+,则()()21111111e 1eeee ex x x x x x g x ---+----'=-=-=, 当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C. 【考点】函数的零点;导函数研究函数的单调性,分类讨论的数学思想【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.12.在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+u u u r u u u r u u u r,则λμ+的最大值为 A .3B .22C .5D .2【答案】A 【解析】试题分析:如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y , 易得圆的半径25r =,即圆C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=u u u r u u u r u u u r ,若满足AP AB AD λμ=+u u u r u u u r u u u r,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+,设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(20),到直线102xy z -+-=的距离d r ≤,即221514z -≤+,解得13z ≤≤, 所以z 的最大值是3,即λμ+的最大值是3,故选A. 【考点】平面向量的坐标运算;平面向量基本定理【名师点睛】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.二、填空题:本题共4小题,每小题5分,共20分。

2017年高考新课标3理科数学真题及答案详解

2017年高考新课标3理科数学真题及答案详解

2017年普通高等学校招生全国统一考试(新课标全国卷Ⅲ)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分,考试时间120分钟。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为A.3B.2C.1D.0 (2)设复数z 满足(1i)2i z +=,则z =A.12 D.2(3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.2014年 2015年 2016年根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳(4)5()(2)x y x y +-的展开式中33x y 的系数为A.-80B.-40C.40D.80(5)已知双曲线22221x y C a b-=:(0a >,0b >)的一条渐近线方程为y x =,且与椭圆221123x y+=有公共焦点.则C 的方程为A.221810x y -=B.22145x y -= C.22154x y -= D.22143x y -= (6)设函数π()cos()3f x x =+,则下列结论错误的是 A.()f x 的一个周期为2π-B.()y f x =的图像关于直线8π3x =对称 C.()f x π+的一个零点为π6x = D.()f x 在π(,π)2单调递减(7)执行右图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为 A .5 B .4 C .3 D .2(8)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.3π4 C.π2 D.π4 (9)等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列, 则{}n a 前6项的和为A.-24B.-3C.3D.8(10)已知椭圆2222:1x y C a b+=(0a b >>)的左、右顶点分别为1A ,2A ,且以线段1A 2A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为D.13(11)已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a = A.-12 B.13 C.12 D.1(12)在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为A.3B.D.2第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分. (13)若x ,y 满足约束条件0,20,0,-⎧⎪+-⎨⎪⎩x y x y y ≥≤≥则34z x y =-的最小值为________.(14)设等比数列{}n a 满足121a a +=-,133a a -=-,则4a =________. (15)设函数1,0,()2,0,+⎧=⎨>⎩x x x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________.(16)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60︒角时,AB 与b 成30︒角; ②当直线AB 与a 成60︒角时,AB 与b 成60︒角; ③直线AB 与a 所成角的最小值为45︒; ④直线AB 与a 所成角的最大值为60︒.其中正确的是________(填写所有正确结论的编号)三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤. (一)必考题:共60分. (17)(12分) ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 0A A +=,a =,2b =.(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[),,需求量为300瓶;如果最高气温低于20,需求量为200瓶,2025为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形.∠ABD=∠CBD,AB BD=.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分.求二面角D AE C--的余弦值.DAB CE已知抛物线2:2=,过点(2,0)的直线l交C于A,B两点,圆M是C y x以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,2-),求直线l与圆M的方程.已知函数()1ln f x x a x =--. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)...(1)222n m+++<,求m 的最小值.(二)选做题:共10分。

2017全国卷3理科数学试题与参考答案解析[WORD版]

2017全国卷3理科数学试题与参考答案解析[WORD版]

绝密★启封并使用完毕前试题类型:新课标Ⅲ2016年普通高等学校招生全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共24题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的、填写清楚,将条形码准确粘贴在条形码区域。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑字迹的签字笔书写,字体工整,笔迹清楚。

3.请按照题号顺序在各题目的答题区域作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破,不准使用涂改液、修正液、刮纸刀。

第I 卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S I T =A. []2,3B. (][),23,-∞+∞UC. [)3,+∞D. (][)0,23,+∞U 【答案】D【解析】易得(][),23,S =-∞+∞U ,(][)0,23,S T ∴=+∞I U ,选D 【考点】解一元二次不等式、交集 (2)若12z i =+,则41izz =- A. 1 B. 1- C. i D. i - 【答案】C【解析】易知12z i =-,故14zz -=,41ii zz ∴=-,选C 【考点】共轭复数、复数运算 (3)已知向量13,2BA ⎛⎫= ⎪ ⎪⎝⎭u u u r ,BC u u u r =(3,12),则ABC ∠ A. 30° B. 45° C. 60° D.120° 【答案】A【解析】法一:332cos 11BA BC ABC BA BC ⋅∠===⨯⋅u u u r u u u ru u u r u u u r ,30ABC ∴∠=o 法二:可以B 点为坐标原点建立如图所示直角坐标系,易知60,30,30ABx CBx ABC ∠=∠=∴∠=o o o 【考点】向量夹角的坐标运算(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C o ,B 点表示四月的平均最低气温约为5C o .下面叙述不正确的是A. 各月的平均最低气温都在0C o 以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20C o 的月份有5个 【答案】D【解析】从图像中可以看出平均最高气温高于20C o 的月份有七月、八月,六月为20C o 左右,故最多3个 【考点】统计图的识别 (5)若3tan 4α=,则2cos 2sin 2αα+= A.6425 B. 4825 C. 1 D. 1625【答案】A【解析】22222cos 4sin cos 14tan 64cos 2sin 225cos sin 1tan ααααααααα+++===++ 【考点】二倍角公式、弦切互化、同角三角函数公式xyCAB(6)已知4213332,3,25a b c ===,则A. b a c <<B. a b c <<C. b c a <<D. c a b << 【答案】A【解析】422123333324,3,255a b c =====,故c a b >> 【考点】指数运算、幂函数性质(7)执行右面的程序框图,如果输入的a =4,b =6,那么输出的n =A. 3B. 4C. 5D. 6 【答案】B 【解析】列表如下 a4 2 6 -2 4 2 6 -2 4 b6 4 6 4 6 s 0 6 10 16 20 n1234【考点】程序框图(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =A.31010 B. 1010 C.1010- D. 31010-【答案】C【解析】如图所示,可设1BD AD ==,则2AB =,2DC =,5AC ∴=,由余弦定理知,25910cos 10225A +-==-⨯ 【考点】解三角形(9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. 18365+B. 54185+C. 90D. 81 【答案】B【解析】由三视图可知该几何体是一个平行六面体,上下底面为俯视图的一半,各个侧面平行四边形,故表面积为DCAB2332362354⨯⨯+⨯⨯+⨯+【考点】三视图、多面体的表面积(10)在封闭的直三棱柱ABC -A 1B 1C 1有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是A. 4πB.9π2C. 6πD. 32π3【答案】B【解析】由题意知,当球为直三棱柱的接球时,体积最大,选取过球心且平行于直三棱柱底面的截面,如图所示,则由切线长定理可知,接圆的半径为2, 又1322AA =<⨯,所以接球的半径为32,即V 的最大值为34932R ππ=【考点】接球半径的求法(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E . 若直线BM 经过OE的中点,则C 的离心率为 A.13B.12C.23D. 34【答案】A 【解析】易得,2ON OB a MF MF AF a cMF BF a c OE ON AO a-=====+ 12a a c a ca c a a c --∴=⋅=++13c e a ∴== 【考点】椭圆的性质、相似(12)定义“规01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数,若m =4,则不同的“规01数列”共有( ) A .18个B .16个C .14个D .12个【答案】C 【解析】86011110111010111101001110011110110011101010111001111011001110101⎧⎧→⎧⎪⎪⎪→⎧⎪⎪⎪⎨⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪→⎪⎪⎩⎩⎩⎪⎪⎧→⎪⎨⎧⎪⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪→⎨⎩⎪⎩⎪⎨⎪→⎪⎧⎪⎪→⎨⎪⎪⎪→⎩⎩⎩⎪⎪⎧→⎧⎪⎪⎪→⎪⎧⎨⎪⎨⎪⎪⎪→→⎨⎩⎩⎪⎪⎪→⎧⎪⎪→⎨⎪→⎪⎩⎩⎩【考点】数列、树状图第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设x ,y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,则z x y =+的最大值为________.【答案】32【解析】三条直线的交点分别为()()12,1,1,,0,12⎛⎫-- ⎪⎝⎭,代入目标函数可得33,,12-,故最小值为10-【考点】线性规划(14)函数sin y x x =的图像可由函数sin y x x =+的图像至少向右平移______个单位长度得到. 【答案】23π【解析】sin 2sin ,sin 2sin 33y x x x y x x x ππ⎛⎫⎛⎫==-==+ ⎪ ⎪⎝⎭⎝⎭Q ,故可前者的图像可由后者向右平移23π个单位长度得到 【考点】三角恒等变换、图像平移(15)已知f (x )为偶函数,当0x <时,()()ln 3f x x x =-+,则曲线()y f x =在点()1,3-处的切线方程是______【答案】210x y ++= 【解析】法一:11'()33f x x x-=+=+-,()'12f ∴-=,()'12f ∴=-,故切线方程为210x y ++= 法二:当0x >时,()()ln 3f x f x x x =-=-,()()1'3,'12f x f x∴=-∴=-,故切线方程为210x y ++= 【考点】奇偶性、导数、切线方程(16)已知直线l:30mx y m ++与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D两点,若AB =,则||CD =__________. 【答案】3【解析】如图所示,作AE BD ⊥于E ,作OF AB ⊥于F,3AB OA OF ==∴=Q ,即3=,m ∴= ∴直线l 的倾斜角为30°3CD AE ∴=== 【考点】直线和圆、弦长公式三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知数列{}n a 的前n 项和S n =1+λa n ,其中λ≠0. (1) 证明{}n a 是等比数列,并求其通项公式; (2) 若53132S =,求λ. 【答案】(1) ;(2) 【解析】解:(1) 1,0n n S a λλ=+≠Q 0n a ∴≠当2n ≥时,11111n n n n n n n a S S a a a a λλλλ---=-=+--=- 即()11n n a a λλ--=,0,0,10,n a λλ≠≠∴-≠Q 即1λ≠即()1,21n n a n a λλ-=≥-, ∴{}n a 是等比数列,公比1q λλ=-,当n =1时,1111S a a λ=+=, 即111a λ=- 1111n n a λλλ-⎛⎫∴=⋅ ⎪--⎝⎭(2)若53132S =则555111131113211S λλλλλλλ⎡⎤⎛⎫-⎢⎥ ⎪--⎝⎭⎢⎥⎛⎫⎣⎦==-= ⎪-⎝⎭--1λ∴=-【考点】等比数列的证明、由n S 求通项、等比数列的性质 (18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑721()0.55ii yy =-=∑7≈2.646.参考公式:()()nii tt y y r --=∑ 回归方程y a bt =+)))中斜率和截距的最小二乘估计公式分别为:121()()()nii i nii tt y y btt ==--=-∑∑$,$a y bt =-$ 【答案】(1)见解析;(2)0.920.10y t =+,1.82亿吨 【解析】(1) 由题意得123456747t ++++++==,711.3317ii yy ==≈∑7()()0.99nii i itt y y t ynt yr ---≈∑∑因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归方程来拟合y 与t 的关系(2) 121()()2.890.10328()nii i nii tt y y btt ==--==≈-∑∑$ $ 1.330.10340.92ay bt =-=-⨯≈$ 所以y 关于t 的线性回归方程为$0.920.10y a bt t =+=+$ 将9t =代入回归方程可得,$1.82y =预测2016年我国生活垃圾无害化处理量将约为1.82亿吨【考点】相关性分析、线性回归 (19)(本小题满分12分)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.【答案】(1) 见解析;(2)【解析】(1) 由已知得223AM AD ==,取BP 的中点T ,连接,AT TN , 由N 为PC 中点知//TN BC ,122TN BC ==. ......3分 又//AD BC ,故TN 平行且等于AM ,四边形AMNT 为平行四边形, 于是//MN AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以//MN 平面PAB . ........6分(2) 取BC 中点E ,连接AE ,则易知AE AD ⊥,又PA ⊥Q 面ABCD ,故可以A 为坐标原点,以AE 为x 轴,以AD 为y 轴,以AP 为z 轴建立空间直角坐标系,则()())()0,0,00,0,42,01,20,2,0A P CN M ⎫⎪⎪⎝⎭、、、、()1,2,0,2,4,1,2AN PM PN N ⎫⎫∴==-=-⎪⎪⎪⎪⎝⎭⎝⎭u u u r u u u u r u u u r故平面PMN 的法向量()0,2,1n =r4cos ,52AN n ∴<>==u u u r r∴直线AN 与平面PMN【考点】线面平行证明、线面角的计算 (20)(本小题满分12分)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 【答案】(1) 见解析;(2) 21y x =- 【解析】(1)法一:由题设1(,0)2F .设12:,:l y a l y b ==,则0ab ≠,且22111(,),(,),(,),(,),(,)222222a b a b A a B b P a Q b R +---. 记过,A B 两点的直线为l ,则l 的方程为2()0x a b y ab -++=. .....3分 由于F 在线段AB 上,故10ab +=. 记AR 的斜率为1k ,FQ 的斜率为2k ,则122211a b a b abk b k aa a a ab ---=====-=+-. 所以FQ AR ∥. ......5分 法二:证明:连接RF ,PF ,由AP =AF ,BQ =BF 及AP ∥BQ ,得∠AFP +∠BFQ =90°, ∴∠PFQ =90°, ∵R 是PQ 的中点, ∴RF =RP =RQ , ∴△PAR ≌△FAR ,∴∠PAR =∠FAR ,∠PRA =∠FRA ,∵∠BQF +∠BFQ =180°﹣∠QBF =∠PAF =2∠PAR , ∴∠FQB =∠PAR , ∴∠PRA =∠PQF , ∴AR ∥FQ .(2)设l 与x 轴的交点为1(,0)D x , 则1111,2222ABF PQF a b S b a FD b a x S ∆∆-=-=--=. 由题设可得111222a b b a x ---=,所以10x =(舍去),11x =. 设满足条件的AB 的中点为(,)E x y . 当AB 与x 轴不垂直时,由AB DE k k =可得2(1)1yx a b x =≠+-. 而2a by +=,所以21(1)y x x =-≠. 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为21y x =-. ....12分【考点】抛物线、轨迹方程(21)(本小题满分12分)设函数()()()cos 21cos 1f x a x a x =+-+,其中0a >,记()f x 的最大值为A .(1)求()'f x ;(2)求A ;(3)证明:()'2f x A ≤.【答案】见解析【解析】(1) ()()'2sin 21sin f x a x a x =---(2) 当1a ≥时,|()||cos 2(1)(cos 1)|f x a x a x =+-+2(1)a a ≤+-32a =-(0)f =因此,32A a =-.当01a <<时,将()f x 变形为2()2cos (1)cos 1f x a x a x =+--. 令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值, (1)g a -=,(1)32g a =-,且当14a t a-=时,()g t 取得极小值, 极小值为221(1)61()1488a a a a g a a a--++=--=-. 令1114a a --<<,解得13a <-(舍去),15a >. ①当105a <≤时,()g t 在(1,1)-无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-. ②当115a <<时,由(1)(1)2(1)0g g a --=->,知1(1)(1)()4a g g g a-->>. 又1(1)(17)|()||(1)|048a a a g g a a--+--=>,所以2161|()|48a a a A g a a -++==. 综上,2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩.(3) 由(1)得'|()||2sin 2(1)sin |2|1|f x a x a x a a =---≤+-. 当105a <≤时,'|()|1242(23)2f x a a a A ≤+≤-<-=. 当115a <<时,131884a A a =++≥,所以'|()|12f x a A ≤+<. 当1a ≥时,'|()|31642f x a a A ≤-≤-=,所以'|()|2f x A ≤.【考点】导函数讨论单调性、不等式证明请考生在22、23、24题中任选一题作答,作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑。

2017年新课标全国卷3高考理科数学试题及答案

2017年新课标全国卷3高考理科数学试题及答案

绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(x +y )(2x —y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为ABC.3D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017全国3卷理科数学解析
1.已知集合A ={}22(,)1x y x y +=│
,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3
B .2
C .1
D .0
【答案】B
【考点】 交集运算;集合中的表示方法。

【深化拓展】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件。

集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性。

2.设复数z 满足(1+i )z =2i ,则∣z ∣=
A .12 B
.2 C
D .2
【答案】C
【考点】 复数的模;复数的运算法则
【深化拓展】共轭与模是复数的重要性质,注意运算性质有: (1)1212z z z z ±=± ;(2) 1212z z z z ⨯=⨯; (3)22z z z z ⋅== ;(4)121212z z z z z z -≤±≤+ ; (5)1212z z z z =⨯ ;(6) 1121
z z z z =。

3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是
A .月接待游客量逐月增加
B .年接待游客量逐年增加
C .各年的月接待游客量高峰期大致在7,8月
D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳
【答案】A
【解析】
动性大,选项D 说法正确;
故选D 。

【考点】 折线图
【深化拓展】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图,频率分布折线图的的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,他们比频率分布表更直观、形象地反映了样本的分布规律。

4.()()5
2x y x y +-的展开式中x 3y 3的系数为 A .80-
B .40-
C .40
D .80
【答案】C
【解析】 试题分析:()()()()555222x y x y x x y y x y +-=-+-,
由()52x y - 展开式的通项公式:()
()5152r r r r T C x y -+=- 可得: 当3r = 时,()52x x y - 展开式中33x y 的系数为()33252140C ⨯⨯-=- ,
当2r = 时,()52y x y - 展开式中33x y 的系数为()2
2352180C ⨯⨯-= , 则33
x y 的系数为804040-= 。

故选C 。

【考点】 二项式展开式的通项公式。

相关文档
最新文档