视图与投影测试题及答案1
初一数学投影与视图试题答案及解析
初一数学投影与视图试题答案及解析1.下图所示几何体的主视图是【答案】A.【解析】从正面看易得第一层是1个长方形,第二层右边有一个圆.故选A.【考点】简单组合体的三视图.2.若几何体从正面看是圆,从左面和上面看都是长方形,则该几何体是 .【答案】圆柱【解析】几何体从正面看是圆,从左面和上面看都是长方形,符合这个条件的几何体只有圆柱.3.春蕾数学兴趣小组用一块正方形木板在阳光下做投影实验,这块正方形木板在地面上形成的投影可能是 (写出符合题意的两个图形即可).【答案】正方形、菱形【解析】依题意知,根据三视图知识点可知,当阳光从正面投射则形成正方形或长方形投影,如果阳光从正方形对角线平行投射,则得菱形。
【考点】三视图点评:本题难度较低,主要考查学生对三视图知识点的掌握。
4.(1)用小立方块搭成的几何体,主视图和俯视图如下图,问搭成这样的几何体最多要小立方块,最少要小立方块.(2)世园会期间,西安某学校组织教师和学生参观世园会,每位教师的车费为m元,每位学生的车费为n元,学生每满100人可优惠2人的车费,如果该校七年级有教师20人,学生612人,则需要付给汽车公司的总费用为_______ 元.【答案】(1)最多8块;最少7块.(2)(20m+600n)元.【解析】最多用8个,最少7块。
俯视图的列数等于主视图的列数;每列的个数取俯视图最大的列数。
(2)(20m+600n)元【考点】整式的化简求值点评:解答本题的关键是熟练掌握在去括号时,若括号前是“-”号,把括号和括号前的“-”号去掉后,括号里各项的符号均要改变.5.如图,是由一些大小相同的小正方体组成的简单几何体从正面和上面观察到的图形.(1)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值;(2)请你画出当n取最小值时这个几何体从左面观察到的图形.【答案】(1)n=8或9或10(2)【解析】解:(1)n=8或9或10(2)【考点】三视图点评:本题难度中等,主要考查学生对三视图的学习,考查几何体的三视图画法以及立方体中包含正方形的计算6.如图所示的几何体,从上面看所得到的图形是()A、 B、 C、 D、【答案】C【解析】从上往下看,最上面的跟最下面的正方体重叠,所以最后呈现C选项所现图案【考点】三视图点评:三视图,是考察学生对立体几何的观察,多做此类题目,可以达到举一反三的效果7.(1)由大小相同的小立方块搭成的几何体如左图,请在右图的方格中画出该几何体的主视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在(1)的情形一致,则这样的几何体最少要_______个小立方块,最多要_______个小立方块.【答案】(1)如图所示;(2)5,7【解析】(1)根据主视图是从正面看到的图形,左视图是从左面看到的图形,即可作出图形;(2)先根据俯视图可得第一层有4个,再结合左视图可得第二层的前面一排没有正方形,后面一排最少有1个正方形,最多有3个正方形.(1)如图所示:(2)由题意得这样的几何体最少要5个小立方块,最多要7个小立方块.【考点】几何体的三视图点评:本题属于基础应用题,只需学生熟练掌握几何体的三视图,即可完成.8.如图,是由四个大小相同的正方体组成的几何体,分别画出从上面和从左面看到的这个几何体的形状图。
初三数学投影与视图试题答案及解析
初三数学投影与视图试题答案及解析1.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()A.3B.4C.5D.6【答案】B【解析】根据左视图和主视图,这个几何体的底层最少有1+1+1=3个小正方体,第二层最少有1个小正方体,因此组成这个几何体的小正方体最少有3+1=4个.故选B.【考点】三视图2.如图,该几何体的左视图是()A.B.C.D.【答案】D【解析】左视图有2列,从左往右依次有2,1个正方形,其左视图为:.【考点】简单组合体的三视图.3.如下左图是由五个小正方体搭成的几何体,它的左视图是()【答案】A.【解析】从左面可看到从左往右2列小正方形的个数为:2,1,故选A.【考点】简单组合体的三视图.4.如图是由四个小正方体叠成的一个立体图形,那么它的左视图是()【答案】D.【解析】从左面可看到第一列有2个正方形,第一列有一个正方形.故选D.【考点】简单组合体的三视图.5.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为()A.3,2B.2,2C.3,2D.2,3【答案】C【解析】设底面边长为x,则x2+x2=(2)2,解得x=2,即底面边长为2,根据图形,这个长方体的高是3,根据求出的底面边长是2.【考点】1.由三视图判断几何体;2.简单几何体的三视图.6.如图所示的几何体中,俯视图形状相同的是()A.①④B.②④C.①②④D.②③④【答案】B.【解析】找到从上面看所得到的图形比较即可:①的俯视图是圆加中间一点;②的俯视图是一个圆;③的俯视图是一个圆环;④的俯视图是一个圆. 因此,俯视图形状相同的是②④. 故选B.【考点】简单几何体的三视图.7.如图是由相同的小正方体组成的几何体,它的俯视图为()【答案】B【解析】根据几何体的三视图可知,主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形,由图可得它的为俯视图第二个,故选B【考点】几何体的三视图.8.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()【答案】A【解析】从几何体上面看,是左边2个,右边1个正方形.故选A.【考点】简单组合体的三视图.9.一个几何体的三视图如图所示,则这个几何体是()【答案】D.【解析】如图,俯视图为三角形,故可排除A、B.主视图以及左视图都是矩形,可排除C,故选D.【考点】由三视图判断几何体.10.下列四个水平放置的几何体中,三视图如右图所示的是()【答案】D【解析】三视图是指分别从物体的前面、左面、上面看到的平面图形.故选D.11.一个几何体的三视图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱【答案】D【解析】根据主视图和左视图可以确定该物体是棱柱,根据俯视图可以确定该物体的底面是三角形,满足上述条件的只有三棱柱,故选D.12.如图所示零件的左视图是()A. B. C. D.【答案】D.【解析】:零件的左视图是两个竖叠的矩形.中间有2条横着的虚线.故选D.【考点】三视图.13.如图是由五个相同的小正方体组成的几何体,则下列说法正确的是( )A.左视图面积最大B.左视图面积和主视图面积相等C.俯视图面积最小D.俯视图面积和主视图面积相等【答案】D.【解析】观察图形可知,几何体的主视图由4个正方形组成,俯视图由4个正方形组成,左视图由3个正方形组成,所以左视图的面积最小,俯视图面积和正视图面积相等.故选D.考点: 简单组合体的三视图.14.某几何体的三视图如下图所示,则该几何体可能为()【答案】D.【解析】试题分析:由主视图和左视图可以得到该几何体是圆柱和小圆锥的复合体,由俯视图可以得到小圆锥位于圆柱的正中间.故选D.考点:三视图判断几何体.15.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.4个B.5个C.6个D.7个【答案】A.【解析】根据给出的几何体,通过动手操作,观察可得答案为4,也可以根据画三视图的方法,发挥空间想象能力,直接想象出每个位置正方体的数目,再加上来.故选A.【考点】三视图.16.如图所示是小红在某天四个时刻看到一个棒及其影子的情况,那么她看到的先后顺序是.【答案】④③①②.【解析】根据平行投影中影子的变化规律:就北半球而言,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.可知先后顺序是④③①②.故答案是④③①②.【考点】平行投影.17.如图下面几何体的左视图是A.B.C.D.【答案】B【解析】左视图即从物体左面看到的图形,从左面看易得三个竖直排列的长方形,且上下两个长方形的长大于高,比较小,中间的长方形的高大于长,比较大。
初中数学投影与视图基础测试题附答案(1)
初中数学投影与视图基础测试题附答案(1)一、选择题1.如图是某个几何体的三视图,该几何体是()A.长方体B.圆锥C.圆柱D.三棱柱【答案】D【解析】【分析】根据三视图看到的图形的形状和大小,确定几何体的底面,侧面,从而得出这个几何体的名称.【详解】俯视图是三角形的,因此这个几何体的上面、下面是三角形的,主视图和左视图是长方形的,且左视图的长方形的宽较窄,因此判断这个几何体是三棱柱,故选:D.【点睛】考查简单几何体的三视图,画三视图注意“长对正,宽相等,高平齐”的原则,三视图实际上就是从三个方向的正投影所得到的图形.2.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是带圆心的圆,根据图中所示数据,可求这个物体的体积为()A.πB3πC.33D.31)π【答案】C【解析】【分析】3得该几何体的体积.【详解】解:由三视图可知:该几何体是一个圆锥,其轴截面是一个正三角形.∴正三角形的边长:32sin 60=o , 设圆锥的底面圆半径为r ,高为h, ∴r=1,h=3∴底面圆面积:2=S r ππ=底, ∴该物体的体积:113h=333S ππ⨯=g 底 故答案为:C【点睛】本题是基础题,考查几何体的三视图,几何体的体积的求法,准确判断几何体的形状是解题的关键.3.如图是一个正六棱柱的茶叶盒,其俯视图为( )A .B .C .D .【答案】B【解析】【分析】【详解】解:正六棱柱的俯视图为正六边形.故选B .考点:简单几何体的三视图.4.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )A .圆柱B .圆锥C .棱锥D .球【答案】A【解析】【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【详解】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选A .【点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.5.一个几何体的三视图如图所示,则这个几何体的表面积是( )A .25cmB .28cmC .29cmD .210cm【答案】D【解析】【分析】 由题意推知几何体为长方体,长、宽、高分别为1cm 、1cm 、2cm ,根据长方体的表面积公式即可求其表面积.【详解】由题意推知几何体是长方体,长、宽、高分别1cm 、1cm 、2cm ,所以其面积为:()()2211121210cm⨯⨯+⨯+⨯=,故选D .【点睛】本题考查了由三视图还原几何体、长方体的表面积,熟练掌握常见几何体的三视图是解题的关键.6.如图所示,该几何体的俯视图是( )A.B.C.D.【答案】C【解析】【分析】根据三视图的画法即可得到答案.【详解】解:从上面看是三个矩形,符合题意的是C,故选:C.【点睛】此题考查简单几何体的三视图,明确三视图的画法是解题的关键.7.一个由16个完全相同的小立方块搭成的几何体,它的主视图和左视图如图所示,其最下层放了9个小立方块,那么这个几何体的搭法共有()种.A.8种B.9种C.10种D.11种【答案】C【解析】【分析】先根据主视图、左视图以及最下层放了9个小立方块,确定每一列最大个数分别为3,2,4,每一行最大个数分别为2,3,4,画出俯视图.进而根据总和为16,分析即可.【详解】由最下层放了9个小立方块,可得俯视图,如图所示:若a为2,则d、g可有一个为2,其余均为1,共有两种情况若b为2,则a、c、d、e、f、g均可有一个为2,其余为1,共有6种情况若c为2,则d、g可有一个为2,其余均为1,共有两种情况++=种情况综上,共有26210故选:C.【点睛】本题考查了三视图(主视图、左视图、俯视图)的概念,依据题意,正确得出俯视图是解题关键.8.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()A.B.C.D.【答案】A【解析】解:将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.故选A.9.如图所示,该几何体的主视图为()A.B.C.D.【答案】B【解析】【分析】找到从正面看所得到的图形即可.【详解】从正面看两个矩形,中间的线为虚线,故选:B.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.10.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【详解】解:四棱锥的主视图与俯视图不同.故选B.【点睛】考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.11.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案.【详解】从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为:A.【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.12.如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A.B.C.D.【答案】B【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,故选B.【点睛】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.13.由若干个相同的小正方体摆成的几何体的主视图和左视图均为如图所示的图形,则最多使用小正方体的个数为()A.8个B.9个C.10个D.11个【答案】C【解析】【分析】由主视图和左视图可还原该几何体每层的小正方体个数.【详解】解:由主视图可得该几何体有3列正方体,高有2层,最底层最多有9个正方体,第二层最多有1个正方体,则最多使用小正方形的个数为10.故选C【点睛】本题主要考查了空间几何体的三视图,由主视图和左视图确定俯视图的形状,再判断最多的正方体个数.14.如图所示的几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.15.图甲是由若干个小正方体搭成的几何体的俯视图,小正方体中的数字表示在该位置的小正方体的个数,那么这个几何体的主视图是()A.B.C.D.【答案】B【解析】【分析】【详解】解:根据题意画主视图如下:故选B.考点:由三视图判断几何体;简单组合体的三视图.16.如图所示几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.17.如图,某工厂加工一批无底帐篷,设计者给出了帐篷的三视图(图中尺寸单位:m).根据三视图可以得出每顶帐篷的表面积为()A.6πm2B.9πm2C.12πm2D.18πm2【答案】B【解析】【分析】根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m,底面圆的半径为1.5m,圆柱的高为2m,由于圆锥的侧面展开图为一扇形,圆柱的侧面展开图为矩形,则根据扇形面积公式和矩形面积公式分别计算,然后求它们的和【详解】根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m,底面圆的半径为1.5m ,圆柱的高为2m ,所以圆锥的侧面积=12π 1.522n n n =3π2m 圆柱的侧面积=2π 1.52n n =6π2m 所以每顶帐篷的表面积=3π+6π=9π2m故正确答案为B【点睛】此题考查了圆锥的计算:圆锥的侧面展开图是一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,也考查了三视图18.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是( )A .B .C .D .【答案】B【解析】【分析】 找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.故选B .【点睛】本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.19.下面四个几何体中,左视图是四边形的几何体共有()A .1个B .2个C .3个D .4个 【答案】B【解析】简单几何体的三视图.【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.20.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A.B.C.D.【答案】C【解析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C。
初三数学投影与视图试题答案及解析
初三数学投影与视图试题答案及解析1.如图,桌面上有一个一次性纸杯,它的正视图应是()A.B.C.D.【答案】D.【解析】根据主视图是从正面看到的图形,可得答案.从正面看是一个上底在下的梯形.故选D.【考点】简单几何体的三视图.2.如图是由几个小立方体快所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的小数,这个几何体的主视图是()A.B.C.D.【答案】B.【解析】由俯视图知其主视图有2列组成,左边一列有4个小正方体,右边一列有2个小正方体.故选B.【考点】简单组合体的三视图.3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图()A.B.C.D.【答案】A【解析】从主视图可以看出左边的一列有两个,右边的两列只有一个;从左视图可以看出左边的一列后面一行有两个,前面的一行只有一个;从俯视图可以看出右边的一列有两排,左边的两列只有一排,故选A.【考点】三视图4.下列几何体中,主视图是矩形,俯视图是圆的几何体是A.B.C.D.【答案】A.【解析】A、主视图为矩形,俯视图为圆,故选项正确;B、主视图为矩形,俯视图为矩形,故选项错误;C、主视图为等腰三角形,俯视图为带有圆心的圆,故选项错误;D、主视图为矩形,俯视图为三角形,故选项错误.故选A.【考点】简单几何体的三视图.5.如图,下列水平放置的几何体中,俯视图是三角形的是()A.B.C.D.【答案】C.【解析】俯视图是从物体正面上面看,所得到的图形.因此,A、圆柱的俯视图是圆,故此选项不合题意;B、圆锥的俯视图是有圆心的圆,故此选项不合题意;C、三棱柱的俯视图是三角形,故此选项符合题意;D、长方体的俯视图是矩形,故此选项不合题意.故选C.【考点】简单几何体的三视图.6.下面四个立体图形中,主视图为圆的是()【答案】B【解析】长方体的主视图是长方形,球的主视图是圆,圆锥的主视图是三角形,圆柱的主视图是长方形.故选B.7.下列四个水平放置的几何体中,三视图如右图所示的是()【答案】D【解析】三视图是指分别从物体的前面、左面、上面看到的平面图形.故选D.8.从正面观察下面右图所示的两个物体,看到的是()【答案】C.【解析】由于正方体的正视图是个正方形,而竖着的圆柱体的正视图是个长方形,因此只有C的图形符合这个条件.故选C.考点: 简单组合体的三视图.9.如图是由几块小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,则该几何体的主视图是【答案】A.【解析】综合三视图,这个几何体中,根据各层小正方体的个数可得:主视图有两列:左边一列二个,右边一列3个,所以主视图是:A.故选:A.考点: 1.由三视图判断几何体;2.简单组合体的三视图.10.如图中几何体的左视图是()【答案】D.【解析】根据从左边看得到的图形是左视图,可得答案.解答:解:左视图可得一个矩形,中间有提条看不到的线,用虚线表示,故D正确,故选:D.考点:简单组合体的三视图.11.如图所示的几何体的主视图是:()【答案】C.【解析】主视图是从立体图形的正面看所得到的图形,找到从正面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.从正面看易得第一层有3个正方形,第二层中间有一个正方形.故选C.考点: 简单组合体的三视图.12.如图所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)【答案】作图见解析.【解析】先连接伞兵的头和脚与对应的影子的直线,两直线的交点即为点P,过点P作过木桩顶端的直线与地面的交点即为F.试题解析:作图如下:【考点】1.作图题;2.中心投影.13.下面关于正六棱柱的视图(主视图、左视图、俯视图)中,画法错误的是A.B.C.D.【答案】A【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,从立体图看,正六棱柱的主视图是选项C,左视图是选项D,俯视图是选项B,所以画法错误的是选项A,故选A。
初三下册—投影与视图测试题(包含答案)
初三下册—投影与视图测试题(包含答案)初三数学 投影与视图 单元测试题一、选择题:(每小题3分,共60分)1.小明从正面观察下图所示的两个物体,看到的是( )2.下面是空心圆柱在指定方向上的视图,正确的是( )3.如图是某物体的三视图,则该物体形状可能是( )(A )长方体 (B )圆锥体 (C )立方体 (D )圆柱体4.下图中几何体的主视图是( )(B )(A )(C )(D )主视图左视图(第3题)(B )(A )(C )(D )(B )(A )(C )(D )正面5.如图所示,左面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )6.把图①的纸片折成一个三棱柱,放在桌面上如图②所示,则从左侧看到的面为( )(A )Q (B )R (C )S(D )T7.两个不同长度的的物体在同一时刻同一地点的太阳光下得到的投影是( )(A )相等 (B )长的较长 (C )短的较长 (D )不能确定8.正方形在太阳光的投影下得到的几何图形一定是( )(B )(A )(C )(D )R S T P Q 图①34(第6题)(A)正方形(B)平行四边形或一条线段(C)矩形(D)菱形9.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子()(A)平行(B)相交(C)垂直(D)无法确定10.在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为()(A)16 m (B)18 m (C)20 m (D)22 m11.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()(A)上午8时(B)上午9时30分(C)上午10时(D)上午12时12.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中时间先后顺序排列,正确的是()(A )①②③④ (B )④②③①(C )④①③② (D )④③②①13.下图是由一些相同的小正方形构成的几何体的三视图,则小正方形的个数是( )(A )4个(B )5个 (C )6个(D )7个14.如图所示的几何体的俯视图是()15.如果用□表示1个立方体,用 表示两个立方体叠加,用█表示三个立方体叠加,那么下图由6个立方体叠成的几何体的主视图左视图主视图俯视图(第14题)(((C )(是 ( )(A)(B)(C)(D)16.在同一时刻,两根长度不等的杆子置于阳光之下,但它们的影长相等,那么这两根竿子的相对位置是()(A)两根都垂直于地面(B)两根平行斜插在地上(C)两根竿子不平行(D)一根到在地上17.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()(A)小明的影子比小强的影子长(B)小明的影长比小强的影子短(C)小明的影子和小强的影子一样长(D)无法判断谁的影子长(B )(A )(C )(D )224113(B )(A )(C )(D )18.底面与投影面垂直的圆锥体的正投影是( )(A )圆 (B )三角形 (C )矩形(D )正方形19.一个全透明的玻璃正方体,上面嵌有一根黑色的金属丝,如图,金属丝在俯视图中的形状是( )20.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()二、填空题(每小题4分,共24分)21.一个几何体的三视图如右图,那么这个几何体是 .俯视图主视图左视图(第21题)22.请写出三种视图都相同的两种几何体 、 .23.一个物体的俯视图是圆,则该物体有可能是 .(写两个即可)24.小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2米,小刚比小明矮5cm ,此刻小明的影长是________米。
投影与视图经典测试题含答案
【答案】B
【解析】
【分析】
【详解】
解:正六棱柱的俯视图为正六边形.
故选B.
考点:简单几何体的三视图.
10.一个几何体的三视图如图所示,其中主视图与左视图都是边长为 的等边三角形,则这个几何体的侧面展开图的面积为()
A. B. C. D.
【答案】B
【解析】
【分析】
根据三视图得到这个几何体为圆锥,且圆锥的母线长为4,底面圆的直径为4,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.
A. B. C. D.
【答案】A
【解析】
【分析】
根据俯视图即从物体的上面观察得得到的视图,进而得出答案.
【详解】
该几何体的俯视图是: .
故选A.
【点睛】
此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.
18.如图,某工厂加工一批无底帐篷,设计者给出了帐篷的三视图(图中尺寸单位:m).根据三视图可以得出每顶帐篷的表面积为( )
从上面看从左往右3列正方形的个数依次为1,1,2,
∴C是该物体的俯视图;
没有出现的是选项B.
故选B.
13.如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )
A. B. C. D.
【答案】B
【解析】
【分析】
找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中
【详解】
从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,
D、主视图为 ,俯视图为 ,故此选项错误;
故选:B.
【点睛】
初中数学投影与视图经典测试题含答案
一、选择题
1.如图是某几何体的三视图,则这个几何体可能是()
A. B. C. D.
【答案】B
【解析】
【分析】
根据主视图和左视图判断是柱体,再结合俯视图即可得出答案.
【详解】
解:由主视图和左视图可以得到该几何体是柱体,由俯视图是圆环,可知是空心圆柱.
故答案选:B.
【点睛】
12.一个由16个完全相同的小立方块搭成的几何体,它的主视图和左视图如图所示,其最下层放了9个小立方块,那么这个几何体的搭法共有( )种.
A.8种B.9种C.10种D.11种
【答案】C
【解析】
【分析】
先根据主视图、左视图以及最下层放了9个小立方块,确定每一列最大个数分别为 ,每一行最大个数分别为 ,画出俯视图.进而根据总和为16,分析即可.
考点:三视图.
7.如图所示,该几何体的主视图是( )
A. B. C. D.
【答案】D
【解析】
【分析】
从前往后看到一个矩形,后面的轮廓线用虚线表示.
【பைடு நூலகம்解】
该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.
故选D.
【点睛】
本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图的画法.
10.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是( )
A.从前面看到的形状图的面积为5B.从左面看到的形状图的面积为3
C.从上面看到的形状图的面积为3D.三种视图的面积都是4
【答案】B
【解析】
A.从正面看第一层是三个小正方形,第二层中间一个小正方形,主视图的面积是4,故A错误;
九年级数学上册第四章视图与投影习题及答案
一、精心选一选!(30分)1.图1所示的物体的左视图(从左面看得到的视图)是( D )图1 A . B . C . D .2.如图所示的是某几何体的三视图;则该几何体的形状是( B )左视图俯视图主视图 (A)长方体 (B)三棱柱 (C)圆锥 (D)正方体3.在相同的时刻;1.5米人测竿的影长为米;那么影长为30米的旗杆的高是( C ) A 、20米 B 、16米 C 、18米 D 、15米4.如图3;箭头表示投影的方向;则图中圆柱体的投影是( B ) A .圆 B .矩形 C .梯形 D .圆柱5.在一个晴朗的上午;皮皮拿着一块正方形术板在阳光下做投影实验;正方形木板在地面上形成的投影不可能是( A )6.如图5;晚上小亮在路灯下散步;在小亮由A 处径直走到B 处这一过程中;他在地上的影子( B ) A .逐渐变短 B .先变短后变长 C .先变长后变短 D .逐渐变长7.关于盲区的说法正确的有( C ) (1)我们把视线看不到的地方称为盲区 (2)我们上山与下山时视野盲区是相同的 (3)我们坐车向前行驶;有时会发现一些高大的建筑物会被比它矮的建筑物挡住 (4)人们常说“站得高;看得远”;说明在高处视野盲区要小;视野范围大 A 、1 个 B 、2个 C 、3个 D 、4个8.一个长方体的左视图、俯视图及相关数据如图6所示;则其主视图的面积为( B ) A .6 B .8 C .12 D .249.一根笔直的小木棒(记为线段AB );它的正投影为线段CD ;则下列各式中一定成立的是( D )A .AB=CDB .AB ≤CDC .CD AB D .AB ≥CD图332左视图 4俯视图图6 图510.图7-(1)表示一个正五棱柱形状的高大建筑物;7-图(2)是它的俯视图.小健站在地面观察该建筑物;当他在图7-(2)中的阴影部分所表示的区域活动时;能同时看到建筑物的三个侧面;图中∠MPN 的度数为( B )A .30ºB .36ºC .45ºD .72º二、细心填一填!(30分)11.如果一个立体图形的主视图为矩形;则这个立体图形可能是 (•只需填上一个立体图形). 12.如图8中物体的一个视图(a )的名称为_▲_.13. 一个几何体的三视图如图9所示(其中标注的a ;b ;c 为相应的边长);则这个几何体的体积是 .14.我们把大型会场、体育看台、电影院建为阶梯形状;是为了 .15.如图10;为了测量学校旗杆的高度;小东用长为3.2的竹竿做测量工具。
最新《 投影与视图》测试题及答案
《投影与视图》测试题测试时间90分钟满分120分一、选择题(每小题5分,共25分)1.当你乘车沿一条平坦大道向前方行驶时,你会发现,前方那些高一些的建筑物好像“沉”到了位于他们前面矮一些的那些建筑物后面去了,这是因为( )A.汽车的速度很快B.盲区增大C.汽车的速度很慢D.盲区减小2.当你坐在车里,会发现车子开得越快,前方的道路越窄,原因是( ) A.盲区变大B.盲区变小C.盲区不变D.视线错觉所致3.一个几何体是由一些大小相同的小立方块摆成的,其主视图和俯视图如图所示,则组成这个几何体的小立方块最少有( )A. 3个B. 4个C. 5个D. 6个4.如图是由5个底面直径与高度相等的大小相同的圆柱搭成的几何体,其左视图是( )A.B.C.D.5.在小孔成像问题中,如图可知CD的长是物长AB长的( )A. 3倍B.C.D.二、填空题(每小题5分,共25分)6.如图是某个几何体的三视图,该几何体是_________.7.如图,小丽站在30米高的楼顶远眺前方的广场,15米处有一个高为5米的障碍物,那么离楼房________的范围内小丽看不见.8.如图,在一间黑屋子里用一盏白炽灯按如图所示的方式照球、圆柱和圆锥,它们在地面上的阴影形状分别是________.(文字回答即可)9.如图所示,CD、EF表示高度不同的两座建筑物,已知CD高15米,小明站在A处,视线越过CD,能看到它后面的建筑物的顶端E,此时小明的视角∠FAE=45°,为了能看到建筑物EF上点M的位置,小明延直线FA由点A移动到点N的位置,此时小明的视角∠FNM=30°,则小明由点A移动到点N的距离是________米.10.小猫在一片废墟中玩耍时发现一只小老鼠,当小老鼠位于点A、B、E 和点________时,不易被小猫发现,因为这些点位于小猫的__________,如图所示.三、解答题(共70分)11.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=0.8 m,窗高CD=1.2 m,并测得OE=0.8 m,OF=3 m,求围墙AB的高度.12.如图,在Rt△ABC中,∠C=90°,投影线方向如图所示,点C在斜边AB上的正投影为点D,(1)试写出边AC、BC在AB上的投影;(2)试探究线段AC、AB和AD之间的关系;(3)线段BC、AB和BD之间也有类似的关系吗?请直接写出结论.13.某加工厂要加工一批密封罐,设计者给出了密封罐的三视图,请按照三视图确定制作每个密封罐所需钢板的面积.14.如图,在一间黑暗的屋子里用一盏白炽灯照一个球.(1)球在地面上的阴影是什么形状?(2)当把白炽灯向高处移时,阴影的大小怎样变化?(3)若自炽灯到球心的距离是1 m,到地面的距离是3 m,球的半径是0.2 m,问:球在地面上阴影的面积是多少?15.如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=14.5米,NF=0.2米.设太阳光线与水平地面的夹角为α,当α=56.3°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的NF这层上晒太阳.(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.(参考数据:sin 56.3°≈0.83,cos 56.3°≈0.55,tan 56.3°≈1.5)16.旗杆、树和竹竿都垂直于地面且一字排列,在路灯下树和竹竿的影子的方位和长短如图所示.请根据图上的信息标出灯泡P的位置,再作出旗杆的影子AB.(不写作法,保留作图痕迹)17.如图,一个棱长为10 cm的正方形,当你观察此物体时.在什么区域内只能看到一面?在什么区域内只能看到两个面?在什么区域内能看到三个面?答案1.【答案】B【解析】当你乘车沿一条平坦大道向前方行驶时,人的视角变大,盲区增大,你会发现,所以前方那些高一些的建筑物好像“沉”到了位于他们前面矮一些的那些建筑物后面去了.故选B.2.【答案】A【解析】通过想象我们可以知道,车子开得越快,视角就会越小,盲区就会变大.故选A.3.【答案】B【解析】由题中所给出的主视图知,物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知,左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,也可能两行都是两层.所以图中的小正方体最少4块,最多5块.故选B.4.【答案】D【解析】由图可知,左视图有二行,最下一层2个小正方体,上面左侧有一个小正方体,故选D.5.【答案】C【解析】∵CD∥AB,∴AB和CD所在的三角形相似,∴CD∶AB=6∶18,∴CD=AB,故选C.6.【答案】三棱柱【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.7.【答案】大于15米小于18米.【解析】由题意,得盲区为BD,设BD=x,则BC=x+15,∴=,解得x=3,∴在大于15米小于18米的范围内小丽看不见.故答案为大于15米小于18米8.【答案】椭圆,圆,三角形【解析】在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,所以照球、圆柱和圆锥,它们在地面上的阴影形状分别是椭圆,圆,三角形.9.【答案】15-15【解析】直角三角形CDN中,DN=CD÷tan 30°=15米,直角三角形CDA中,AD=CD÷tan 45°=15米,因此,AN=DN-AD=(15-15)米.10.【答案】C 盲区【解析】分别以小猫的眼睛为端点,分别作出图上3个障碍物后的盲区,通过图示可看出位于盲区内的位置分别是:B,C,A,E.故空中填C;原因:这些点位于小猫的盲区.11.【答案】解延长OD,∵DO⊥BF,∴∠DOE=90°,∵OD=0.8 m,OE=0.8 m,∴∠DEB=45°,∵AB⊥BF,∴∠B AE=45°,∴AB=BE,设AB=EB=xm,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴=,=,解得x=4.4.经检验:x=4.4是原方程的解.答:围墙AB的高度是4.4 m.【解析】首先根据DO=OE=0.8 m,可得∠DEB=45°,然后证明AB=BE,再证明△ABF∽△COF,可得=,然后代入数值可得方程,解出方程即可得到答案.12.【答案】解(1)边AC、BC在AB上的投影分别为AD、BD;(2)∵点C在斜边AB上的正投影为点D,∴CD⊥AB,∴∠ADC=90°,而∠DAC=∠CAB,∴△ADC∽△ACB,∴AC∶AB=AD∶AC,∴AC2=AD·AB;(3)与(2)一样可证△BCD∽△BAC,则BC∶AB=BD∶BC,∴BC2=BD·AB.【解析】(1)根据投影的定义求解;(2)通过证明△ADC∽△ACB,可得AC2=AD·AB;(3)通过证明△BCD∽△BAC,即可得到BC2=BD·AB.13.【答案】解S=2S六边形+6S长方形,=2×6×[×50×(50×sin 60°)]+6×50×50,=7 500+15 000.故每个密封罐所需钢板的面积为7 500+15 000.【解析】根据三视图可以得出该几何体是正六棱柱,分别求出上下底的面积和侧面积,相加即可.14.【答案】解(1)因为球在灯光的正下方,所以阴影是圆形;(2)白炽灯向上移时,阴影会逐渐变小;(3)设球在地面上阴影的半径为x米,则=,解得x2=,则S阴影=π(平方米).【解析】(1)球在灯光的正下方,所以阴影是圆形;(2)根据中心投影的特点可知:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,所以白炽灯向上移时,阴影会逐渐变小;(3)先根据相似求出阴影的半径,再求面积.15.【答案】解(1)当α=56.3°时,在Rt△ABE中,∵tan 56.3°=≈1.50,∴AB=10·tan 56.3°≈10×1.50=15(m),即楼房的高度约为15米;(2)当α=45°时,小猫不能再晒到太阳,理由如下:假设没有台阶,当α=45°时,从点B射下的光线与地面AD 交于点P,此时的影长AP=AB≈15 m,设MN的延长线交AD于点H,∵AC≈14.5 m,NF=0.2 m,∴PH=AP-AC-CH≈15-14.5-0.2=0.3(m),设直线MN与BP交于点Q,则HQ=PH=0.3 m,∴HQ=PH=0.3 m,∴点Q在MN上,∴大楼的影子落在MN这个侧面上,∴小猫不能晒到太阳.【解析】(1)在Rt△ABE中,由tan 56.3°=,即可求出AB=10·tan 56.3°,进而得出答案;(2)假设没有台阶,当α=45°时,从点B射下的光线与地面AD的交点为点P,与MC的交点为点Q,由∠BPA=45°,可得HQ=PH=0.3 m,进而判断即可.16.【答案】解如图所示:P点位置即为所求.【解析】利用竹竿以及树的影子得出灯泡的位置进而得出旗杆的影子.17.【答案】解根据盲区的知识可得,当眼光直看一个面的时候(平视)只能看见一面;当眼光垂直看一条棱的时候可以看见两个面;当垂直看一个顶点的时候可以看见三个面.【解析】根据棱连接两个面,点连接三个面可判断出答案.。
人教版九年级下册数学 第29章 投影与视图 同步练习题(含答案)
人教版九年级下册数学第29章投影与视图同步练习题29.1 投影1.小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()2.小飞晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说,广场上的大灯泡一定位于两人.3.一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是() A.AB=CD B.AB≤CDC.AB>CD D.AB≥CD4.如图,如果在阳光下你的身影的方向是北偏东60°方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60° D.北偏东30°5.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()6.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD. (1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示).7.如图,已知线段AB=2 cm,投影面为P,太阳光线与地面垂直.(1)当AB垂直于投影面P时(如图1),请画出线段AB的投影;(2)当AB平行于投影面P时(如图2),请画出它的投影,并求出正投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂直于投影面P的平面内逆时针旋转30°,请在图3中画出线段AB的正投影,并求出其正投影长.29.2 三视图第1课时几何体的三视图1.下列立体图形中,主视图是圆的是()2.如图是由四个小正方体叠成的一个几何体,它的左视图是()3.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()4.如图所示几何体的左视图是()5.将如图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同6.图中物体的一个视图(a)的名称为.7.画出如图所示圆柱的三视图.8.画出如图所示几何体三视图.9.下列四个几何体中,主视图与左视图相同的几何体有()A.1个 B.2个C.3个D.4个10.如图是一个空心圆柱体,其左视图正确的是()11.形状相同、大小相等的两个小木块放置于桌面,其俯视图如图,则其主视图是()12.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()13.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).14.一种机器上有一个进行转动的零件叫燕尾槽(如图),为了准确做出这个零件,请画出它的三视图.15.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为下列几何体中的哪一个?选择并说明理由.第2课时由三视图确定几何体1.如图是某几何体的三视图,则这个几何体是()A.棱柱 B.圆柱C.棱锥 D.圆锥2.一个几何体的三视图如图所示,这个几何体是()A.圆柱 B.棱柱C.圆锥 D.球3.如图所示,所给的三视图表示的几何体是()A.圆锥 B.正三棱锥C.正四棱锥 D.正三棱柱4.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()5.图中的三视图所对应的几何体是()6.已知一个正棱柱的俯视图和左视图如图,则其主视图为()7.某几何体的三视图如图所示,则组成该几何体共用了小方块()A.12块B.9块C.7块D.6块8.如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体不可能是()A.6个B.7个 C.8个 D.9个第3课时由三视图确定几何体的表面积或体积1.如图是一个几何体的三视图,根据图中提供的数据(单位: cm)可求得这个几何体的体积为()A.2 cm3B.3 cm3C.6 cm3D.8 cm32.如图是一几何体的三视图,由图中数据计算此几何体的侧面积为.(结果保留π)3.如图是某工件的三视图,求此工件的全面积.4.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积,结果为 cm2.(结果可保留根号)5.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.6.如图是一个几何体的三视图(单位:cm).(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个路线的最短长度.参考答案:第二十九章投影与视图29.1 投影1.B2.中间的上方.3.D4.A5.D6.解:如图所示.7.解:(1)点C为所求的投影.(2)线段CD为所求的投影,CD=2 cm.(3)线段CD为所求的投影,CD=2cos30°= 3 cm.29.2 三视图第1课时几何体的三视图1.D2.A3.D4.A5.D6.主视图.7.解:如图所示.8.解:如图所示.9. D10.B11.D12.D13.解:如图.14.解:如图.15.解:比较各几何体的三视图,考虑是否有长方形,圆及三角形即可.对于A,三视图分别为长方形、三角形、圆(含直径),符合题意;对于B,三视图分别为三角形、三角形、圆(含圆心),不符合题意;对于C,三视图分别为正方形、正方形、正方形,不符合题意;对于D,三视图分别为三角形、三角形、矩形(含对角线),不符合题意;故选A.第2课时由三视图确定几何体1.D2.A3.D4.B5.B6.D7.D8.D 提示:如图,根据左视图可以推测d=e=1,a,b,c中至少有一个为2. 当a,b,c中一个为2时,小立方体的个数为:1+1+2+1+1=6;当a,b,c中两个为2时,小立方体的个数为:1+1+2+2+1=7;当a,b,c三个都为2时,小立方体的个数为:1+1+2+2+2=8.所以小立方体的个数可能为6个、7个或8个.故选D.第3课时由三视图确定几何体的表面积或体积1.B2.10π.3.解:由三视图可知,该工件为底面半径为10 cm、高为30 cm的圆锥体.圆锥的母线长为302+102=1010(cm),圆锥的侧面积为12×20π×1010= 10010π(cm 2),圆锥的底面积为102π=100π(cm 2),圆锥的全面积为100π+10010π=100(1+10)π(cm 2).45.解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为 4 cm ,3 cm.∴菱形的边长为(32)2+22=52(cm ),棱柱的侧面积为52×8×4=80(cm 2). 6.解:(1)圆锥.(2)表面积S =S 扇形+S 圆=πrl +πr 2=12π+4π=16π(cm 2).(3)如图将圆锥侧面展开,线段BD 为所求的最短长度.由条件,得∠BAB ′=120°,C 为弧BB ′的中点,∴BD =33(cm ).。
投影与视图经典测试题及答案
投影与视图经典测试题及答案一、选择题1.如图是某个几何体的三视图,该几何体是()A.三棱柱B.圆柱C.六棱柱D.圆锥【答案】C【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,故选C.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.2.某几何体的三视图如图所示,则该几何体的体积为()A.3 B.3C.2D.2【答案】C【解析】【分析】依据三视图中的数据,即可得到该三棱柱的底面积以及高,进而得出该几何体的体积.【详解】解:由图可得,该三棱柱的底面积为1222,高为3,∴该几何体的体积为×23=32,故选:C.【点睛】本题主要考查了由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.3.六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【答案】B【解析】分析:俯视图有3列,从左到右正方形个数分别是2,1,2,并且第一行有三个正方形.详解:俯视图从左到右分别是2,1,2个正方形,并且第一行有三个正方形.故选B.点睛:本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.4.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.详解:四棱锥的主视图与俯视图不同.故选B.点睛:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表示在三视图中.5.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B.C.D.【答案】C【解析】试题分析:如图中几何体的俯视图是.故选C.考点:简单组合体的三视图.6.如图所示的几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】从左向右看,得到的几何体的左视图是.故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.7.如图所示的几何体的俯视图为()A.B.C.D.【答案】D【解析】【分析】【详解】从上往下看,易得一个正六边形和圆.故选D.8.如图所示,该几何体的俯视图是()A.B.C.D.【答案】C【解析】【分析】根据三视图的画法即可得到答案.【详解】解:从上面看是三个矩形,符合题意的是C,故选:C.【点睛】此题考查简单几何体的三视图,明确三视图的画法是解题的关键.9.下面是从不同的方向看一个物体得到的平面图形,则该物体的形状是()A.圆锥B.圆柱C.三棱锥D.三棱柱【答案】C【解析】【分析】由主视图和左视图可得此几何体为锥体,根据俯视图可判断出该物体的形状是三棱锥.【详解】解:∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是3个三角形组成的大三角形,∴该物体的形状是三棱锥.故选:C.【点睛】本题考查了几何体三视图问题,掌握几何体三视图的性质是解题的关键.10.如图所示的几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.11.由6个相同的立方体搭成的几何体如图所示,则它的从正面看到的图形是( )A.B.C.D.【答案】C【解析】【分析】观察立体图形的各个面,与选项中的图形相比较即可得到答案.【详解】观察立体图形的各个面,与选项中的图形相比较即可得到答案,由图像能够看到的图形是,故C选项为正确答案.【点睛】此题考查了从不同方向观察物体和几何体,有良好的空间想象力和抽象思维能力是解决本题的关键.12.图甲是由若干个小正方体搭成的几何体的俯视图,小正方体中的数字表示在该位置的小正方体的个数,那么这个几何体的主视图是()A.B.C.D.【答案】B【解析】【分析】【详解】解:根据题意画主视图如下:故选B.考点:由三视图判断几何体;简单组合体的三视图.13.如图所示几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.14.如图所示的几何体的俯视图为( )A.B.C.D.【答案】C【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看外面是一个矩形,里面是一个圆形,故选:C.【点睛】考查了简单组合体的三视图,从上边看得到的图形是俯视图.15.如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.84【答案】B【解析】试题解析:该几何体是三棱柱.如图:由勾股定理22543-=,326⨯=,全面积为:164257267247042136.2⨯⨯⨯+⨯⨯+⨯=++=故该几何体的全面积等于136.故选B.16.如图所示的几何体,从左面看到的形状图是()A.B.C.D.【答案】A【解析】【分析】观察图形可知,从左面看到的图形是2列分别为2,1个正方形;据此即可画图.【详解】如图所示的几何体,从左面看到的形状图是。
初三数学投影与视图试题答案及解析
初三数学投影与视图试题答案及解析1.学校里旗杆的影子整个白天的变化情况是()A.不变B.先变短后变长C.一直在变短D.一直在变长【答案】B【解析】中午时的影子短,早晨和傍晚时的影子长,故先变短后变长.2.(2014江西抚州)某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是()A.B.C.D.【答案】B【解析】上下两凸起的主视图是圆弧,非圆;中间是圆柱,其主视图应为矩形,故选B.3.如图,太阳在房子的后方,那么你站在房子的正前方看到的影子为()A.B.C.D.【答案】C【解析】根据平行投影的性质可知烟囱的影子应该在右下方,房子左边对应的突起应该在影子的左边.4.如图是由若干个相同的小正方体搭成的几何体的三视图,小正方体的棱长是________,则这个几何体的体积是________.【答案】40cm3【解析】由三视图可知该几何体由5个小正方体组成,所以体积是5×23=40(cm3).5.三视图中至少有两个视图是长方形的几何体是________(写出一个即可).【答案】长方体(或圆柱等)【解析】两个视图是长方形,则该几何体为柱体,如长方体、圆柱等.6.(2013山东枣庄)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是________.【答案】24【解析】挖去小正方体后剩余部分的表面积与挖去前的表面积相等,都是24.7.在图②中写出图①所给几何体对应的三视图的名称.【答案】左视图俯视图主视图【解析】理解物体的主视图、左视图和俯视图形成的过程是解题的关键,主视图是从前向后观察物体的视图,左视图是从左向右观察物体的视图,俯视图是从上向下观察物体的视图.8.对于同一个几何体的三视图,下列说法一定正确的是( )A.主视图、俯视图、左视图的形状相同B.主视图、俯视图、左视图的大小相同C.主视图、俯视图都反映这个几何体的长D.主视图、左视图都反映这个几何体的宽【答案】C【解析】因为三视图是从不同方向观察几何体得到的视图,所以它们的形状和大小不完全相同.但三视图能从不同方面反映几何体的大小,主视图和俯视图都反映这个几何体的长,主视图和左视图都反映这个几何体的高,左视图和俯视图都反映这个几何体的宽.9.如图是一个几何体的主视图与俯视图,求该几何体的体积.(π取3.14)【答案】(cm3)【解析】通过观察所给视图可知,这个几何体是由一个圆柱和一个长方体构成的,所以该几何体的体积等于圆柱和长方体的体积之和.(cm3).10.用4个完全相同的小正方体组成如图所示的几何体,则它的俯视图是( )A.B.C.D.【答案】A【解析】从上面往下面看可得到一个由2个小正方形组成的长方形.故选A.11. (2014江西抚州)某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是( )A.B.C.D.【答案】B【解析】从几何体的正面看可得下图,故选B.12. (2014湖南张家界)某几何体的主视图、左视图和俯视图如图所示,则该几何体的体积为( ) A.3πB.2πC.πD.12【答案】A【解析】根据三视图可以判断该几何体为圆柱,且圆柱的底面半径为1,高为3,故该几何体的体积为π×12×3=3π故选A.13.如图,能近似地反映上午10时北半球学校旗杆与地面投影位置关系的是( )A.B.C.D.【答案】C【解析】解本题要注意图中的方位,上午10时北半球学校旗杆的投影应在旗杆的北偏西方向上,只有C符合题意,故选C.14.如图,在路灯下,电线杆AB的影子是AB′,电线杆CD的影子是CD′,请你在图中确定光源的位置,并画出电线杆EF的影子.【答案】O为光源位置;EF′为电线杆EF的影子【解析】物体上的点(一般用顶点)及其影子上的对应点在同一条直线上,利用此性质可以确定点光源的位置,也可以画其他物体的中心投影.解:如图所示,过D,D′作直线,过B,B′作直线,两条直线相交于点O,则点O即为光源的位置.连接OF并延长,交直线AC于点F′,则EF′即为电线杆EF的影子.15.如图,请作出圆柱在投影面P上的正投影.【答案】圆柱在投影面P上的正投影如图.【解析】平行于投影面P的圆柱的最大截面是矩形,该矩形的一边长等于圆柱的底面直径,另一边长为圆柱的高.16.甲、乙两人身高相等,他们在同一路灯下影长的关系是( )A.一定相等B.甲的比乙的长C.乙的比甲的长D.不确定【答案】D【解析】因为两人位置不确定.所以影长不确定.17.线段AB的长为a,线段AB在投影面P上的正投影的长度为b,则a,b的大小关系是( ) A.a>bB.a=bC.a<bD.a≥b【答案】D【解析】当线段AB平行于投影面放置时,a=b;当线段AB倾斜于投影面放置时,a>6;当线段AB垂直于投影面放置时,a>b.综上知,a≥b.18.图①②是晓东同学在进行“居民楼高度、楼间距对住户采光影响问题”的研究时画的两个示意图.请你阅读相关文字,解答下面的问题.(1)图①是太阳光线与地面所成角度的示意图.冬至的正午时刻,太阳光线直射在南回归线(南纬23.5°)B地上,在地处北纬36.5°的A地,太阳光线与地面水平线l所成的角为α,试借助图①求α的度数.(2)图②是乙楼高度、楼间距对甲楼采光影响的示意图.甲楼地处A地,其二层住户南面窗户的下端距地面3.4m,现要在甲楼正南面建一幢高度为22.3m的乙楼,为不影响甲楼二层住户(一层为车库)的采光,两楼之间的距离至少应为多少米?(精确到1m)【答案】(1)α=30°(2)33米【解析】(1)因为太阳光线是平行的,所以α+90°+36.5°+23.5°=180°,解得α=30°.(2)如图,过点D作DE⊥CF于点E.在Rt△CDE中,CE=22.3-3.4=18.9(m).因为∠CDE=30°,,所以(m).答:两楼之间的距离至少应为33m.19.下面的四幅图中,灯光与影子的位置合理的是()A.B.C.D.【答案】B【解析】灯光下的投影是中心投影,影子在背向灯泡的方向,故选B.20.如图,路灯(P点)距地面4.8米,身高1.6米的小明从距路灯的底部(O点)6米的A点,沿OA所在的直线行走4米到B点时,身影的长度变短了多少米?【答案】2米【解析】∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP,∴,即,解得MA=3.同理,由△NBD∽△NOP可求得NB=1.所以,小明的身影变短了2米.。
投影与视图经典测试题及解析
投影与视图经典测试题及解析一、选择题1.如图是空心圆柱,则空心圆柱在正面的视图,正确的是()A.B.C.D.【答案】C【解析】【分析】找出从几何体的正面看所得到的视图即可.【详解】解:从几何体的正面看可得:.故选:C.【点睛】此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.2.如图所示,该几何体的主视图为()A.B.C.D.【答案】B【解析】【分析】找到从正面看所得到的图形即可.【详解】从正面看两个矩形,中间的线为虚线,故选:B.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.3.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是带圆心的圆,根据图中所示数据,可求这个物体的体积为( )A .πB .3πC .33πD .(31)π+【答案】C【解析】【分析】 由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3正三角形.求出半径,可得该几何体的体积.【详解】解:由三视图可知:该几何体是一个圆锥,其轴截面是一个正三角形.∴正三角形的边长:32sin 60=o , 设圆锥的底面圆半径为r ,高为h,∴r=1,h=3∴底面圆面积:2=S r ππ=底,∴该物体的体积:113h=333S ππ⨯=g 底 故答案为:C【点睛】本题是基础题,考查几何体的三视图,几何体的体积的求法,准确判断几何体的形状是解题的关键.4.如图是某几何体的三视图,该几何体是( )A .三棱柱B .三棱锥C .长方体D .正方体【答案】A【解析】【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【详解】根据俯视图是三角形,长方体和正方体以及三棱锥不符合要求,B、C、D错误,根据几何体的三视图,三棱柱符合要求,故选A.【点睛】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.5.六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【答案】B【解析】分析:俯视图有3列,从左到右正方形个数分别是2,1,2,并且第一行有三个正方形.详解:俯视图从左到右分别是2,1,2个正方形,并且第一行有三个正方形.故选B.点睛:本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.6.如图,由6个小正方体搭建而成的几何体的俯视图是()A.B.C.D.【答案】C【解析】【分析】根据三视图的概念,俯视图是从物体的上面向下看到的,因此可知其像是一个十字架.【详解】解:根据三视图的概念,俯视图是故选C .【点睛】考点:三视图.7.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要( )个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉( )个小正方体A .10:2B .9:2C .10:1D .9:1【答案】C【解析】【分析】 由已知条件可知这个几何体由10个小正方体组成,主视图有3列,每列小正方形数目分别为3、1、2;左视图又列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,据此即可得出答案.【详解】解:这个几何体由10个小正方体组成;∵主视图有3列,每列小正方形数目分别为3、1、2;左视图有3列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,∴在保持主视图和左视图不变的情况下,只能拿掉俯视图的第2列中减少1个小正方体,因此,最多可以拿掉1个小正方体.故选:C .【点睛】本题考查的知识点是三视图,需注意被其他部分遮挡而看不见的小正方体.8.图2是图1中长方体的三视图,若用S 表示面积,23S x x =+主,2S x x =+左,则S =俯( )A .243x x ++B .232x x ++C .221x x ++D .224x x +【答案】A【解析】【分析】 直接利用已知视图的边长结合其面积得出另一边长,即可得出俯视图的边长进而得出答案.【详解】解:∵S 主23(3)=+=+x x x x ,S 左2(1)=+=+x x x x ,∴主视图的长3x =+,左视图的长1x =+,则俯视图的两边长分别为:3x +、1x +,S 俯2(3)(1)43=++=++x x x x ,故选:A .【点睛】此题主要考查了已知三视图求边长,正确得出俯视图的边长是解题关键.9.下面是从不同的方向看一个物体得到的平面图形,则该物体的形状是( )A .圆锥B .圆柱C .三棱锥D .三棱柱【答案】C【解析】【分析】 由主视图和左视图可得此几何体为锥体,根据俯视图可判断出该物体的形状是三棱锥.【详解】解:∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是3个三角形组成的大三角形,∴该物体的形状是三棱锥.故选:C .【点睛】本题考查了几何体三视图问题,掌握几何体三视图的性质是解题的关键.10.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.3个或4个B.4个或5个C.5个或6个D.6个或7个【答案】B【解析】【分析】根据给出的几何体的视图,通过动手操作,观察可得答案,也可以根据画三视图的方法,发挥空间想象能力,直接想象出其小正方体的个数.【详解】解:综合三视图,第一行第1列有1个,第一行第2列没有;第二行第1列没有,第二行第2列和第三行第2列有3个或4个,一共有:4或5个.故选:B.【点睛】本题比较容易,考查三视图和考查立体图形的三视图和学生的空间想象能力.11.如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为()A.B.C.D.【答案】D【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】解:从左面看去,是两个有公共边的矩形,如图所示:故选D.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.12.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )A.B.C.D.【答案】D【解析】【分析】找到从左面看到的图形即可.【详解】从左面上看是D项的图形.故选D.【点睛】本题考查三视图的知识,左视图是从物体左面看到的视图.13.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是()A.B.C.D.【答案】A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.14.如图所示的几何体,上下部分均为圆柱体,其左视图是()A.B.C.D.【答案】C【解析】试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C.考点:简单组合体的三视图.15.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.两人的影子长度不确定【答案】D【解析】【分析】在同一路灯下由于位置不确定,根据中心投影的特点判断得出答案即可.【详解】在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长.故选D.【点睛】本题综合考查了平行投影和中心投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.16.下列几何体是由4个正方体搭成的,其中主视图和俯视图相同的是()A.B.C.D.【答案】B【解析】【分析】分别画出从几何体的上面和正面看所得到的视图,再比较即可.【详解】A、主视图,俯视图为,故此选项错误;B、主视图为,俯视图为,故此选项正确;C、主视图为,俯视图为,故此选项错误;D、主视图为,俯视图为,故此选项错误;故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握所看的位置.17.如图所示的几何体,它的左视图是()A.B.C.D.【答案】D【解析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.18.如图所示几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.19.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.【答案】C【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.20.如图所示,该几何体的主视图是()A.B.C.D.【答案】D【解析】【分析】从前往后看到一个矩形,后面的轮廓线用虚线表示.【详解】该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选D.【点睛】本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图的画法.。
投影与视图练习题及答案
一、选择题(每小题3分,共36分)1.下列各种现象属于中心投影现象的是( B )A.上午人走在路上的影子B.晚上人走在路灯下的影子C.中午用来乘凉的树影D.早上升旗时地面上旗杆的影子2.在北京阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长度的变化规律为( B )A.逐渐变长B.逐渐变短C.影子长度不变D.影子长短变化无规律3.下列投影一定不会改变△ABC的形状和大小的是( D )A.中心投影B.平行投影C.正投影D.当△ABC平行于投影面时的正投影4.一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是( A )A.长方体B.四棱锥C.三棱锥D.圆锥5.下列立体图形中,主视图为矩形的是( C )6.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离( D )A.始终不变B.越来越远C.时近时远D.越来越近7.(2021河口期末)如图所示的立体图形是一个圆柱被截去四分之一后得到的几何体,它的左视图是( C )8.(2022东营育才学校模拟)由四个正方体组成的图形如图所示,观察这个图形,不能得到的平面图形是( D )A B C D9.一个几何体由若干大小相同的小正方体组成,它的俯视图和左视图如图所示,那么组成该几何体所需小正方体最少为( B )第9题图A.4个B.5个C.6个D.7个10.已知圆锥的三视图如图所示,则这个圆锥的体积为( C )第10题图A.36π cm3B.24π cm3C.12π cm3D.8π cm311.(2020宁夏)如图所示,图②是图①长方体的三种视图,若用S表示面积,S主=a2,S左=a2+a,则S俯表示为( A )第11题图A.a2+aB.2a2C.a2+2a+1D.2a2+a12.骰子是6个面上分别写有数字1,2,3,4,5,6的小立方体,它任意两对面上所写的两个数字之和为7.将这样相同的几个骰子按照相接触的两个面上的数字的积为6摆成一个几何体,这个几何体的三种视图如图所示.已知图中所标注的是部分面上的数字,则“※”所代表的数字是( A )第12题图A.4B.5C.2D.6二、填空题(每小题3分,共18分)13.如图所示,地面A处有一支燃烧的蜡烛(长度不计),一个人在A处与墙BC之间运动,则他在墙上的投影长度随着他离墙的距离变小而变小.(填“变大”“变小”或“不变”)第13题图14.四个直立在地面上的艺术字母的投影(阴影部分)效果如图所示,在艺术字母“L,K,C”的投影中,与艺术字母“N”属于同一种投影的有L,K .第14题图15.由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图如图所示,则搭建这个几何体所需要的小正方体的个数至少为 6 .第15题图16.已知李明的身高为1.8 m,他在路灯下的影长为2 m,李明距路灯灯杆底部为3 m,则路灯灯泡距地面的高度为 4.5 m.17.(2020怀化)一个几何体的三种视图如图所示,根据图中所示数据求得这个几何体的侧面积是24π cm2.(结果保留π)第17题图18.(2022博山模拟)一块直角三角形板ABC如图所示,∠ACB=90°, BC=12 cm,AC=8 cm,测得BC边的中心投影B1C1长为24 cm,则A1B1长为8√13cm.第18题图三、解答题(共46分)19.(6分)画出如图所示组合体的三种视图.解:如图所示.20.(6分)晚上,小华在舞蹈室发现镜子反射灯光形成了教练的影子,如图所示,小丽的影子是在灯光下形成的,你能确定灯泡的位置吗?你能画出小华的影子吗?解:如图所示,点M即为灯泡的位置,小华的影子如图所示.21.(10分)已知一几何体的三视图如图所示.(1)写出这个几何体的名称;(2)画出它的表面展开图;(3)根据图中所给的数据,求这个几何体的表面积.(结果保留π)解:(1)这个几何体是圆柱.(2)它的表面展开图如图所示.(3)这个几何体的表面积为2π×(8÷2)×16+π×(8÷2)2×2= 128π+32π=160π(cm2).22.(12分)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2 m,且AC=17.2 m,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10 m,现有一只小猫睡在台阶的MN这层上晒太阳.(1)楼房的高度约为多少米?(结果精确到0.1 m)(2)过了一会儿,当α=45°时,说明小猫能不能晒到太阳.(参考数据:√3≈1.73)解:(1)当α=60°时,在Rt△ABE中,∵tan 60°=ABAE =AB 10,∴AB=10·tan 60°=10√3≈10×1.73=17.3(m).即楼房的高度约为17.3 m.(2)当α=45°时,小猫仍可以晒到太阳.理由如下:假设没有台阶,当α=45°时,如图所示,过点B的光线与地面AD的交点为点F,与MC的交点为点H.∵∠BFA=45°,∴tan 45°=ABAF=1.此时的影长AF=AB=17.3 m.∴CF=AF-AC=17.3-17.2=0.1(m).∴CH=CF=0.1 m<0.2 m.∴大楼的影子落在台阶MC这个侧面上.∴小猫能晒到太阳.23.(12分)某数学兴趣小组利用树影测量树高,如图①所示,已测出树AB的影长AC为12 m,并测出此时太阳光线与地面成30°夹角.(以下计算结果精确到1 m,√2≈1.4,√3≈1.7,√6≈2.4)(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变(用图②解答):①求树与地面成45°角时的影长;②求树的最大影长.=4√3≈7(m).解:(1)AB=AC·tan 30°=12×√33(2)①如图所示,过点B1作B1N⊥AC1于点N.则AN=B1N=AB1×sin 45°=4√3×√2=2√6≈5(m);2NC1=NB1·tan 60°=2√6×√3≈8(m);∴AC1=AN+NC1=5+8=13(m).即树与地面成45°角时的影长约为13 m.②如图所示,当树与地面成60°角时影长最大,最大为AC2的长度(或树与光线垂直时影长最大),AC2=2AB2≈14 m.故树的最大影长约为14 m.。
投影与视图技巧及练习题附答案解析
投影与视图技巧及练习题附答案解析一、选择题1.下列几何体是由4个正方体搭成的,其中主视图和俯视图相同的是()A.B.C.D.【答案】B【解析】【分析】分别画出从几何体的上面和正面看所得到的视图,再比较即可.【详解】A、主视图,俯视图为,故此选项错误;B、主视图为,俯视图为,故此选项正确;C、主视图为,俯视图为,故此选项错误;D、主视图为,俯视图为,故此选项错误;故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握所看的位置.2.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )A.圆柱B.圆锥C.棱锥D.球【答案】A【解析】【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【详解】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选A.【点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.下面四个几何体中,俯视图是圆的几何体共有( )A.1个B.2个C.3个D.4个【答案】B【解析】题目中的四个几何体,俯视图是圆的几何体为圆柱和球,共2个,故选B.4.下面是一个几何体的俯视图,那么这个几何体是()A.B.C.D.【答案】B【解析】【分析】根据各个选项中的几何体的俯视图即可解答.【详解】解:由图可知,选项B中的图形是和题目中的俯视图看到的一样,故选:B.【点睛】本题考查由三视图判断几何体,俯视图是从上向下看得到的图纸,熟练掌握是解题的关键.5.如图所示的几何体是由5个相同的小正方体组成的,下列有关三视图面积的说法中正确的是()A.左视图面积最大B.俯视图面积最小C.左视图与主视图面积相等D.俯视图与主视图面积相等【答案】D【解析】【分析】利用视图的定义分别得出三视图进而求出其面积即可.【详解】解:如图所示:则俯视图与主视图面积相等.故选:D.【点睛】此题主要考查了简单组合体的三视图,正确把握三视图的定义是解题关键.6.如图所示,该几何体的主视图是()A.B.C.D.【答案】D【解析】【分析】从前往后看到一个矩形,后面的轮廓线用虚线表示.【详解】该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选D.【点睛】本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图的画法.7.小亮领来n盒粉笔,整齐地摆在讲桌上,其三视图如图,则n的值是( )A.7 B.8 C.9 D.10【答案】A【解析】【分析】【详解】解:由俯视图可得最底层有4盒,由正视图和左视图可得第二层有2盒,第三层有1盒,共有7盒,则n的值是7.故选A.【点睛】本题考查由三视图判断几何体.8.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是( )A.从前面看到的形状图的面积为5 B.从左面看到的形状图的面积为3C.从上面看到的形状图的面积为3 D.三种视图的面积都是4【答案】B【解析】A. 从正面看第一层是三个小正方形,第二层中间一个小正方形,主视图的面积是4,故A 错误;B. 从左边看第一层是两个小正方形,第二层左边一个小正方形,左视图的面积是3,故B 正确;C. 从上边看第一层有一个小正方形,第二层有三个小正方形,俯视图的面积是4,故C错误;D.左视图的面积是3,故D错误;故选B.点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图.9.如图所示,该几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】根据几何体的三视图求解即可.【详解】解:从左边看是一个矩形,中间有两条水平的虚线,故选:B.【点睛】本题考查的是几何体的三视图,熟练掌握几何体的三视图是解题的关键.10.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.【答案】C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.11.由6个相同的立方体搭成的几何体如图所示,则它的从正面看到的图形是( )A.B.C.D.【答案】C【解析】【分析】观察立体图形的各个面,与选项中的图形相比较即可得到答案.【详解】观察立体图形的各个面,与选项中的图形相比较即可得到答案,由图像能够看到的图形是,故C选项为正确答案.【点睛】此题考查了从不同方向观察物体和几何体,有良好的空间想象力和抽象思维能力是解决本题的关键.12.从不同方向观察如图所示的几何体,不可能看到的是()A.B.C.D.【答案】B【解析】【分析】找到不属于从正面,左面,上面看得到的视图即可.【详解】解:从正面看从左往右3列正方形的个数依次为2,1,1,∴D是该物体的主视图;从左面看从左往右2列正方形的个数依次为2,1,∴A是该物体的左视图;从上面看从左往右3列正方形的个数依次为1,1,2,∴C是该物体的俯视图;没有出现的是选项B.故选B.13.由若干个相同的小正方体摆成的几何体的主视图和左视图均为如图所示的图形,则最多使用小正方体的个数为()A.8个B.9个C.10个D.11个【答案】C【解析】【分析】由主视图和左视图可还原该几何体每层的小正方体个数.【详解】解:由主视图可得该几何体有3列正方体,高有2层,最底层最多有9个正方体,第二层最多有1个正方体,则最多使用小正方形的个数为10.故选C【点睛】本题主要考查了空间几何体的三视图,由主视图和左视图确定俯视图的形状,再判断最多的正方体个数.14.如图的几何体由6个相同的小正方体搭成,它的主视图是()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.15.如图是某个几何体的三视图,该几何体是()A.三棱柱B.圆柱C.六棱柱D.圆锥【答案】C【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,故选C.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.16.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.【答案】C【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.17.如图,这是一个机械模具,则它的主视图是()A.B.C.D.【答案】C【解析】【分析】根据主视图的画法解答即可.【详解】A.不是三视图,故本选项错误;B.是左视图,故本选项错误;C.是主视图,故本选项正确;D.是俯视图,故本选项错误.故答案选C.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图的画法判断.18.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.【答案】A【解析】【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A.【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.19.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案.【详解】从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为:A.【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.20.如图所示,该几何体的俯视图是()A.B.C.D.【答案】C【解析】【分析】根据三视图的画法即可得到答案.【详解】解:从上面看是三个矩形,符合题意的是C,故选:C.【点睛】此题考查简单几何体的三视图,明确三视图的画法是解题的关键.。
九年级数学下册《投影与视图》单元测试卷(附答案解析)
九年级数学下册《投影与视图》单元测试卷(附答案解析)一、单选题1.“皮影戏”是我国一种历史悠久的民间艺术,下列关于它的说法正确的是()A. 皮影戏的原理是利用平行投影将剪影投射到屏幕上B. 屏幕上人物的身高与相应人物剪影的身高相同C. 屏幕上影像的周长与相应剪影的周长之比等于对应点到光源的距离之比D. 表演时,也可以利用阳光把剪影投射到屏幕上2.下列几何体各自的三视图中,有且仅有两个视图相同的是()A. ①②B. ②③C. ①④D. ②④3.如图,某剧院舞台上的照明灯P射出的光线成“锥体”,其“锥体”面图的“锥角”是60°.已知舞台ABCD是边长为6m的正方形.要使灯光能照射到整个舞台,则灯P的悬挂高度是()A. 3√6mB. 3√3mC. 4√3mD. √6m4.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是()A. B.C. D.5.如图所示的几何体的左视图是()A. B.C. D.6.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A. 逐渐变短B. 先变短后变长C. 先变长后变短D. 逐渐变长7.下列图形中,主视图和左视图一样的是()A. B.C. D.8.图中三视图对应的几何体是()A. B.C. D.9.图中几何体的俯视图是()A. B. C. D.10.人离窗子越远,向外眺望时此人的盲区是()A. 变大B. 变小C. 不变D. 无法确定二、填空题11.在一盏路灯旁的地面上竖直立着两根木杆,两根木杆在这盏路灯下形成各自的影子,则将它们各自的顶端与自己的影子的顶端连线所形成的两个三角形 ______ 相似.(填“可能”或“不可能”).12.如图,光源P在水平横杆AB的上方,照射横杆AB得到它在平地上的影子为CD(点P、A、C在一条直线上,点P、B、D在一条直线上),不难发现AB//CD.已知AB=1.5m,CD=4.5m,点P到横杆AB的距离是1m,则点P到地面的距离等于______m.13.圆柱的主视图是长方形,左视图是______形,俯视图是______形.14.画三种视图时,对应部分的长度要________,而且通常把俯视图画在主视图________面,把左视图画在主视图________面.15.许多影院的座位做成阶梯形,目的是____(请用数学知识回答).16.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的表面积为______.17.如图所示是一个几何体的三视图,若这个几何体的体积是6,则它的表面积是 ______.18.直角坐标系内,身高为1.5米的小强面向y轴站在x轴上的点A(−10,0)处,他的前方5米处有一堵墙,已知墙高2米,则站立的小强观察y(y>0)轴时,盲区(视力达不到的地方)范围是______.19.如图所示,是由一些相同的小立方体搭成的几何体分别从正面、左面、上面看到的该几何体的形状图,那么构成这个立体图形的小正方形有 ______个.三、解答题20.小明周末到公园里散步,当他沿着一段平坦的直线跑道行走时,前方出现一棵树AC和一座景观塔BD(如图),假设小明行走到M处时正好透过树顶C看到景观塔的第5层顶端E处,此时他的视角为30°,已知树高AC=10米,景观塔BD共6层(塔顶高度和小明的身高忽略不计),每层5米.(1)当小明向前走到点N处时,刚好看不到景观塔BD,请在图中作出点N,不必写作法;(2)请问,小明再向前走多少米刚好看不到景观塔BD?(结果保留根号)21.已知小明和树的高与影长,试找出点光源和旗杆的影长.22.明明与亮亮在借助两堵残墙玩捉迷藏游戏,若明明站在如图所示位置时,亮亮在哪个范围内活动是安全的?请在图(1)的俯视图(2)中画出亮亮的活动范围.23.如图,两棵树的高度分别为AB=6m,CD=8m,两树的根部间的距离AC=4m,小强沿着正对这两棵树的方向从左向右前进,如果小强的眼睛与地面的距离为1.6m,当小强与树AB的距离小于多少时,就不能看到树CD的树顶D?24.补全下面物体的三视图.25.一个圆柱体形零件,削去了占底面圆的四分之一部分的柱体(如图),现已画出了主视图与俯视图.(1)请只用直尺和圆规,将此零件的左视图画在规定的位置(不必写作法,只须保留作图痕迹);(2)若此零件底面圆的半径r=2cm,高ℎ=3cm,求此零件的表面积.26.如图,在楼房MN前有两棵树与楼房在同一直线上,且垂直于地面,为了测量树AB、CD的高度,小明爬到楼房顶部M处,光线恰好可以经过树CD的顶站C点到达树AB的底部B点,俯角为37°,此时小亮测得太阳光线恰好经过树CD的顶部C点到达楼房的底部N点,与地面的夹角为30°,树CD的影长DN为15米,请求出树AB和楼房MN的高度.(√3≈1.73,sin37°≈0.60,cos37°≈0.800,tan37°≈0.75,结果精确到0.1m)参考答案和解析1.【答案】C;【解析】解:A.“皮影戏”是根据中心投影将剪影投射到屏幕上,因此选项A不符合题意;B.由中心投影的性质可知幕上人物的身高与相应人物剪影的身高成比例,因此选项B不符合题意;C.由中心投影的性质可知屏幕上影像的周长与相应剪影的周长之比等于相似比,即等于对应点到光源的距离之比,因此选项C符合题意;D.表演时,不可以利用阳光把剪影投射到屏幕上,因此选项D不符合题意;故选:C.根据中心投影的意义和性质,逐项进行判断即可,同时注意与平行投影的区别与联系.此题主要考查的是中心投影的性质,注意中心投影与平行投影的区别,利用生活中的“皮影戏”体现光的中心投影性质,这是光投影在生活中的应用,平时多观察,多思考.2.【答案】D;【解析】本题是基础题,考查几何体的三视图的识别能力,作图能力,三视图的投影规则是主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等.利用三视图的作图法则,对选项判断,A的三视图相同,圆锥,四棱锥的两个三视图相同,棱台都不相同,推出选项即可.解:∵正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,∴正确答案为D.故选D.3.【答案】A;【解析】解:连接AC,∵∠APC=60°,∴∠PAC=∠PCA=60°,∵ABCD是边长为6m的正方形,∴AC=6√2,OC=3√2∴PC=6√2,∴PO=3√6,故选:A.先根据题意进行连接AC,再根据“锥体”面图的“锥角”是60°得出△PAC是等边三角形,再根据它的计算方法和正方形的特点分别进行计算,即可求出答案.此题主要考查了中心投影和圆锥的计算,解答该题的关键是根据等边三角形和正方形的计算方法进行计算.4.【答案】D;【解析】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项错误;D、在同一时刻阳光下,树高与影子成正比,所以D选项正确.故选:D.根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.该题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.5.【答案】B;【解析】解:从左边看,是一列两个矩形.故选:B.根据左视图是从左边看得到的图形,可得答案.此题主要考查了简单组合体的三视图,从左边看得到的图形是左视图.6.【答案】B;【解析】【试题解析】该题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.小亮由A处径直走到路灯下,他的影子由长变短,再从路灯下走到B处,他的影子则由短变长.解:根据中心投影的特点,知小亮由A处走到路灯下,他的影子由长变短,由路灯下走到B处,他的影子由短变长.故选B.7.【答案】D;【解析】解:A.主视图和左视图不相同,故本选项不合题意;B.主视图和左视图不相同,故本选项不合题意;C.主视图和左视图不相同,故本选项不合题意;D.主视图和左视图相同,故本选项符合题意;故选:D.根据各个几何体的主视图和左视图进行判定即可.此题主要考查简单几何体的三视图,掌握各种几何体的三视图的形状是正确判断的关键.8.【答案】B;【解析】解:由主视图可以推出这个几何体是上下两个大小不同柱体,从主视图推出这两个柱体的宽度不相同,从俯视图推出上面是圆柱体,直径小于下面柱体的宽.由此可以判断对应的几何体是选项B.故选:B.由主视图和左视图可得此几何体为柱体,根据俯视图可判断出此上面是圆柱体,由此观察图形即可得出结论.此题主要考查了三视图,用到的知识点为:由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.9.【答案】D;【解析】解:从上面看可得到三个矩形左右排在一起,中间的较大,故选:D.找到从上面看所得到的图形即可.该题考查了三视图的知识,俯视图是从物体的上面看得到的视图.10.【答案】A;【解析】解:如图:AB为窗子,EF∥AB,过AB的直线CD,通过想象我们可以知道,不管在哪个区域,离窗子越远,视角就会越小,盲区就会变大.故选:A.11.【答案】可能;【解析】解:∵中心投影是由点光源发出的光线形成的投影,∴当两根木杆距离点灯距离相等时它们各自的顶端与自己的影子的顶端连线所形成的两个三角形相似,否则不相似,故答案为:可能.根据中心投影是由点光源发出的光线形成的投影可以得到三角形是否相似.此题主要考查了相似三角形的应用及中心投影的知识,解答该题的关键是了解中心投影是由点光源发出的光线形成的投影.12.【答案】3;【解析】解:如图,作PF⊥CD于点F,∵AB//CD,∴△PAB∽△PCD,PE⊥AB,∴△PAB∽△PCD,∴ABCD =PEPF,即:1.54.5=1PF,解得PF=3.故答案为:3.易得△PAB∽△PCD,利用相似三角形对应边的比等于对应高的比可得AB与CD间的距离.考查相似三角形的应用;用到的知识点为:相似三角形对应边的比等于对应高的比.13.【答案】长方圆;【解析】解:圆柱的主视图是长方形,左视图是长方形,俯视图是圆形.从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.此题主要考查了几何体的三视图的判断.14.【答案】相等;下;右;【解析】这道题主要考查三视图的画法,熟练掌握物体的长、宽、高与三种视图的关系是解答该题的关键,首先正确理解:主视图,左视图,俯视图分别是从物体正面,左面和上面看所得到的图形,然后再从几何体的长、宽、高三个方面分析从不同的角度所观察到物体的情况,进而作出解答.解:在画三种视图时,对应部分的长度要相等,而且通常把俯视图画在主视图下面,把左视图画在主视图右面.故答案为相等;下;右.15.【答案】减少观众的盲区(看不见的地方),使得每人都能看到屏幕;【解析】解:结合盲区的定义,我们可以知道影院的座位做成阶梯形是为了然后面的观众有更大的视野从而减少盲区,使得没人都能看到屏幕,因此影院的座位做成阶梯形的原因是减少观众的盲区(看不见的地方),使得每人都能看到屏幕.故答案为:减少观众的盲区(看不见的地方),使得每人都能看到屏幕.16.【答案】(18+2√3)c m2;【解析】解:该几何体是一个三棱柱,底面等边三角形边长为2cm,高为√3cm,三棱柱的高×2×√3=18+2√3(cm2).为3,所以,其表面积为3×2×3+2×12故答案为(18+2√3)cm2.由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.该题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.17.【答案】22;【解析】解:∵由主视图得出长方体的长是3,宽是1,这个几何体的体积是6,∴设高为ℎ,则1×3×ℎ=6,解得:ℎ=2,∴它的表面积是:1×3×2+3×2×2+1×2×2=22.故答案为:22.根据主视图与左视图得出长方体的长和宽,再利用图形的体积得出它的高,进而得出表面积.此题主要考查了利用三视图判断几何体的长和宽,得出图形的高是解题关键.18.【答案】0<y≤2.5;【解析】解:过D作DF⊥OC于F,交BE于H,OF=1.5,BH=0.5,三角形DBH中,tan∠BDH=BH:DH=0.5:5,因此三角形CDF中,CF=DF⋅tan∠BDH=1因此,OC=OF+CF=1+1.5=2.5.因此盲区的范围在0<y⩽2.5.如图,本题所求的就是OC的值,过D作DF⊥OC于F,交BE于H,利用三角函数可求出.利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.19.【答案】5;【解析】解:由从上面看到的图形易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5(个)正方体组成,故答案为:5.易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.20.【答案】解:(1)如图,点N 即为所求.(2)由题意得,BE=5×5=25(米),BD=5×6=30(米),在Rt △ACM 中,∵∠M=30°,AC=10米,∴AM=10√3(米),在Rt △BEM 中,∵∠M=30°,BE=25米,∴BM=25√3(米),∴AB=BM-AM=25√3-10√3=15√3(米),∵AC ∥BD ,∴△ACN ∽△BDN ,∴AC BD =NA NB =1030=13,设NA=x 米,则NB=(x+15√3)米, x+15√3=13, 解得,x=15√33, ∴MN=MA-NA=10√3-15√32=5√32(米), 答:小明再向前走5√32米刚好看不到景观塔BD .;【解析】 (1)连接DC 并延长交BM 于点N.(2)利用直角三角形的边角关系和相似三角形的性质进行解答即可.此题主要考查直角三角形的边角关系,相似三角形的判断和性质,连接和掌握直角三角形的边角关系、相似三角形的性质是解决问题的前提.21.【答案】解:如图:连接AB、CD并延长交与点O,点O即为点光源,EG为旗杆的影子.;【解析】首先根据小明的身高和影长与树的高度和影长确定点光源,然后由过点光源和旗杆的顶部确定旗杆的影长即可.此题主要考查了中心投影的知识,中心投影是由点光源发出的,确定了点光源是解决本题的关键.22.【答案】解:阴影部分A、B为亮亮活动的范围.;【解析】亮亮活动的安全范围其实就是明明的盲区,因此画亮亮的活动范围只要画出明明的盲区就行了.本题是结合实际问题来考查学生对视点,视角和盲区的理解能力.23.【答案】解:设FG=x米.那么FH=x+GH=x+AC=x+4(米),∵AB=6m,CD=8m,小强的眼睛与地面的距离为1.6m,∴BG=4.4m,DH=6.4m,∵BA⊥PC,CD⊥PC,∴AB∥CD,∴FG:FH=BG:DH,即FG•DH=FH•BG,∴x×6.4=(x+4)×4.4,解得x=8.8(米),因此小于8.8米时就看不到树CD的树顶D.;【解析】根据盲区的定义结合图片,我们可看出在FG之间时,是看不到树CD的树顶D的.因此求出FG就是本题的关键.已知了AC的长,BG、DH的长,那么可根据平行线分线段成比例来得出关于FG、FH、BG、DH 的比例关系式,用FG表示出FG后即可求出FG的长.24.【答案】解:如图示,.;【解析】此题主要考查了三视图的画法,注意实线和虚线在三视图的用法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.25.【答案】(1)左视图与主视图形状相同,有作垂线(直角)的痕迹(作法不唯一).(2)两个底面积:2πr2×3=6π(c m2);4+2r)×3=(3π+4)×3=9π+12(c m2);侧面积:(2πr×34表面积:15π+12(c m2).;【解析】(1)由削去了占底面圆的四分之一部分的柱体易得主视图和左视图相同,可先画一条线段等于主视图中大长方形的长,然后分别做两个端点的垂线及线段的垂直平分线,在两端点的垂线上分别截取主视图的高连接即可得到几何体的左视图;(2)此零件的表面积=两个底面积+侧面积,把相关数值代入即可求解.解决本题的关键是得到零件全面积的等量关系,注意侧面积的展开图应为一个长方形,长方形的长为四分之三圆的周长+半径长.26.【答案】解:在Rt△CDN中,,∵tan30°=CDDN∴CD=tan30°•DN=5√3,∵∠CBD=∠EMB=37°,√3,∴BD=CD÷tan37°=203√3∴BN=DN+BD=15+203,在Rt△ABN中,tan30°=ABBN∴AB=tan30°•BN≈15.3,√3)≈19.9在Rt△MNB中,MN=BN•tan37°=0.75(15+203∴树高AB是15.3米,楼房MN的高度是19.9米.;【解析】,得到CD=tan30°⋅DN=5√3于是得到BD=CD=5√3,在RtΔCDN中,由于tan30°=CDDN在RtΔABN中,根据三角函数的定义即可得到结论;该题考查了解直角三角形的应用,解答本题的关键是借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.。
人教版数学九年级下册第二十九章 投影与视图 达标测试卷(含答案)
第二十九章投影与视图达标测试卷(本试卷满分120分)一、选择题(每小题3分,共30分)1.下列几何体的左视图为长方形的是()A B C D2.下列图形能表示两根立柱所形成的投影是平行投影的是()A B C D3.如图是一个正三棱柱的三视图,则这个三棱柱摆放方式正确的是()A B C D第3题图第5题图第6题图4.下列结论:①同一地点、同一时刻,不同物体在阳光照射下影子的方向是相同的;②不同物体在任何光线照射下影子的方向都是相同的;③同一物体在路灯照射下影子的方向与路灯的位置有关;④物体在光线照射下影子的长短仅与物体的长短有关.其中正确的有()A.1个B.2个C.3个D.4个5.如图,两个等直径圆柱构成如图所示的T形管道,则其俯视图是()A B C D6.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是()A.主视图B.俯视图C.左视图D.主视图和俯视图7.与图中所示的三种视图相对应的几何体是()A B C D 第7题图8.在同一天的四个不同时刻,某学校旗杆的影子如图所示,下列选项中按时间先后顺序排列正确的是()A.②④③①B. ②③④①C. ③④①②D. ④③①②第8题图9.应县木塔是中国现存最高最古的一座木构塔式建筑,主要借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼.如图,甲构件带有榫头,乙构件带有卯眼,两个构件恰好可以完全咬合,根据图中标示的方向,乙构件的主视图是()A B C D第9题图第10题图10.如图是一个几何体的三视图,其中主视图与左视图完全一样,则这个几何体的表面积是()A.80﹣2πB.80+4πC.80 D.80+6π二、填空题(每小题3分,共18分)11.如果一个几何体的主视图、左视图都是等腰三角形,俯视图为圆,那么我门可以确定这个几何体是.12.如图是一个球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会_________.(填“逐渐变大”或“逐渐变小”)第12题图第13题图第14题图13.一圆柱按如图所示方式放置,若其左视图的面积为48,则该圆柱的侧面积为_______.14.如图,晚上小红由路灯A走向路灯B,当她走到点P时,发现她的影子顶部正好接触到路灯B的底部,此时她与路灯A的距离为20 m,与路灯B的距离为5 m.如果小红的身高为1.2 m,那么路灯A的高度是___________m.15.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.第15题图第16题图16.如图,甲楼AB高18米,乙楼CD坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是1:2,已知两楼相距20米,那么甲楼的影子落在乙楼上的高DE为米.(结果保留根号)三、解答题(本大题共8小题,共72分)17.(6分)画出如图所示几何体的三视图.第17题图第18题图18.(6分)如图是小明与爸爸(线段AB)、爷爷(线段CD)在同一路灯下的情景(粗线分别表示三人的影子).请根据要求,进行作图.(不写画法,但要保留作图痕迹).(1)在图中画出灯泡所在的位置;(2)在图中画出小明的身高.19.(8分)(1)由大小相同的小立方块搭成的几何体如图,请在如图的方格中画出该几何体的俯视图和左视图;第19题图(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在方格中所画的图一致,则这样的几何体最多要个小立方块.20. (8分)如图所示为一几何体的三视图.(1)这个几何体的名称为__________;(2)画出它的任意一种表面展开图;(3)若主视图是长方形,其长为10 cm,俯视图是等边三角形,其边长为4 cm,求这个几何体的侧面积.第20题图第21题图21.(8分)如图,在Rt△ABC中,∠ACB=90°,投影线方向如图所示,点C在斜边AB上的正投影为点D. (1)试写出边AC,BC在AB上的投影;(2)试探究线段AC,AB和AD之间的关系;(3)线段BC,AB和BD之间也有类似的关系吗?请直接写出结论.22.(10分)某几何体的主视图和俯视图如图所示(单位:mm),求该几何体的体积.第22题图第23题图23.(12分)在一个阳光明媚的上午,数学陈老师组织学生测量小山坡上一棵大树CD的高度,山坡OM与地面ON的夹角为30°(∠MON=30°),同一时刻站在水平地面上身高1.7米的小明AB在地面的影长BP为1.2米,此刻大树CD在斜坡上的影长DQ为5米,求大树的高度.24.(14分)如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他(EF)在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).第24题图(1)请在图中画出灯光光源O的位置及小明位于点F时在这一灯光下的影长FM(不写画法);(2)求小明原来的速度.投影与视图达标测试卷一、1.C 2.B 3.B 4.B 5.B 6.C 7.D 8.B 9.C 10.B二、11.圆锥 12.逐渐变大 13.48π 14.6 15.108 16.18-102三、17.解:如图所示:第17题图18.解:(1)如图所示,点O即为灯泡所在的位置.(2)如图所示,EF即为小明的身高.第18题图19. 解:(1)如图所示:第19题图(2)7 提示:由俯视图可知最底层有4个小立方块,第二层最多有3个小立方块,所以最多要4+3=7(个)小立方块.20. 解:(1)该几何体是三棱柱.(2)展开图如图所示(答案不唯一):第20题图(3)三棱柱的侧面展开图是长方形,长方形的长是等边三角形的周长即4×3=12(cm).由题意,知主视图的长是三棱柱的高,所以三棱柱侧面展开图的面积为12×10=120(cm2). 所以这个几何体的侧面积是120 cm2.21. 解:(1)边AC,BC在AB上的投影分别为AD,BD.(2)因为点C在斜边AB上的正投影为点D,所以CD⊥AB.所以∠ADC=90°.因为∠A=∠A,∠ADC=∠ACB,所以△ADC∽△ACB.所以AC ADAB AC=,即AC2=AD•AB.(3)BC2=BD•AB.提示:同(2)可证△BCD∽△BAC,所以BC BDBA BC=,即BC2=BD•AB.22.解:由主视图和俯视图可知,该几何体是上下两个圆柱的组合图形.所以该几何体的体积为16×π×2162⎛⎫⎪⎝⎭+4×π×282⎛⎫⎪⎝⎭=1088π(mm3).23. 解:过点Q作QE⊥DC于点E.由题意,得△ABP∽△CEQ,所以AB BPCE EQ=.所以AB CEBP EQ=,即1.71.2CEEQ=.因为EQ∥NO,所以∠1=∠2=30°.因为QD=5,所以DE=52,EQ=532.所以1.71.2532CE=,解得CE=85324.所以CD=CE+DE=52+85324=6085324+(米).答:大树的高度为6085324+米.第23题图24.解:(1)灯光光源O,影长FM如图所示:第24题图(2)设小明原来的速度为x 米/秒,则AD=DF=CE=2x,AM=AF-MF=2x+2x-1.2=4x-1.2,EG=FH=2×1.5x=3x,MB=AB-AM=12-(4x-1.2)=13.2-4x.因为点C,E,G在一条直线上,CG∥AB,所以∠OCE=∠A,∠OEC=∠OMA,∠OEG=∠OMB,∠OCE=∠B.所以△OCE∽△OAM,△OEG∽△OMB.所以CE OEAM OM=,EG OEMB OM=.所以CE EGAM MB=,即234 1.213.24x xx x=--,解得x=1.5.经检验,x=1.5为原分式方程的根. 答:小明原来的速度为1.5米/秒.。
中考数学复习 《视图与投影》练习题含答案
中考数学复习视图与投影一、选择题1.正方形的正投影不可能是( D )A.线段B.矩形C.正方形D.梯形2.如图由7个小正方体组合而成的几何体,它的主视图是( A )3.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是( C )A.20B.22C.24D.264.将图①围成图②的正方体,则图①中的红心“”标志所在的正方形是正方体中的( A )A.面CDHE B.面BCEFC.面ABFG D.面ADHG5.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)( B )A.40πcm2B.65π cm2C.80π cm2D.105π cm2【解析】由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为8 cm,底面半径为10÷2=5(cm),故表面积=πrl+πr2=π×5×8+π×52=65π(cm2).故选B.6.如图是几何体的俯视图,小正方形内所表示数字为该位置小正方体的个数,则该几何体的主视图是( B )二、填空题7.某几何体的主视图和左视图如图所示,则该几何体可能是__圆柱体__.8.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小__相同__.(填“相同”“不一定相同”或“不相同”)9.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是__5__个.【解析】综合三视图,可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5(个).10.一个侧面积为162πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为__4__ cm.【解析】设底面半径为r,母线为l,∵主视图为等腰直角三角形,∴l=2r,∴侧面积S =πrl=2πr2=162π,解得r=4,l=42,∴圆锥的高h=4 cm.侧三、解答题11.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8 m,若两次日照的光线互相垂直,求树的高度.解:4 m12.如图是一张铁皮.(单位:m)(1)计算该铁皮的表面积;(2)此铁皮能否做成长方体的盒子?若能,画出它的几何图形,并求出它的体积;若不能,说明理由.解:(1)22 m2(2)能够,图略,6 m313.根据三视图求几何体的表面积,并画出物体的展开图.解:由三视图可知,该几何体由上部分是底面直径为10,高为5的圆锥和下部分是底面直径为10,高为20的圆柱组成,物体的展开图如图.圆锥、圆柱底面半径为r =5,由勾股定理得圆锥母线长R =52,S 圆锥表面积=12lR =12×10π×52=252π,∴S 表面积=π×52+10π×20+252π=225π+252π=(225+252)π14.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体上的点B 出发,沿表面爬到AC 的中点D ,请求出这个路线的最短路程.解:(1)圆锥(2)S 表=S 底+S 侧=π(42)2+π×2×6=16π(cm 2) (3)3 3 cm15.某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图),请你按照三视图确定制作每个密封罐所需钢板的面积.解:由三视图可知,密封罐的形状是正六棱柱(如图①),密封罐的高为50,底面正六边形的直径为100,边长为50,图②是它的展开图.由展开图可知,制作一个密封罐所需钢板的面积为6×50×50+2×6×12×50×50sin60°=75003+15000。
初三数学投影与视图试题答案及解析
初三数学投影与视图试题答案及解析1.如图是由5个大小相同的正方体组成的几何体,它的俯视图为()A.B.C.D.【答案】A.【解析】此几何体的俯视图有2列,从左往右小正方形的个数分别是2,2.故选A.考点: 简单组合体的三视图.2.下左图是由八个相同小正方体组合而成的几何体,则其主视图是()【答案】C【解析】主视图是从正面观察所看到的平面图形.根据小正方体的摆放方法,画出图形即可.故选C【考点】简单组合体的三视图的画法.3.如图下列四个几何体,它们各自的三视图(主视图、左视图、俯视图)中,有两个相同而另一个不同的几何体是A.①②B.②③C.②④D.③④【答案】B.【解析】正方体主视图、左视图、俯视图都是正方形;圆柱主视图和左视图是长方形,俯视图是圆;圆锥主视图和左视图是三角形、俯视图是带圆心的圆;球主视图、左视图、俯视图都是圆,故选B.【考点】简单几何体的三视图.4.下图是由7个完全相同的小立方块搭成的几何体,那么这个几何体的左视图是【答案】A.【解析】从左面看得到从左往右2列正方形的个数依次为3,1;故选A.考点: 简单组合体的三视图.5.一个几何体的三视图如图所示,则这个几何体是()【答案】D.【解析】如图,俯视图为三角形,故可排除A、B.主视图以及左视图都是矩形,可排除C,故选D.【考点】由三视图判断几何体.6.如图(1)所示,该几何体的主视图应为()【答案】C.【解析】从正面看可得到一个大矩形左上边去掉一个小矩形的图形.故选C.考点: 简单组合体的三视图.7.一个用于防震的L形包装塑料泡沫如图所示,则该物体的俯视图是 ()【答案】B【解析】物体的俯视图是从上面看到的平面图形.故选B.8.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为 cm2.(结果可保留根号)【答案】(75+360).【解析】根据该几何体的三视图知道其是一个六棱柱,其表面积是六个面的面积加上两个底的面积.由于其高为12cm,底面边长为5cm,所以其侧面积为6×5×12=360cm2,密封纸盒的底面积为:×5×6×5 =75cm2,所以其全面积为:(75+360)cm2.故答案是:(75+360).【考点】三视图.9.如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是【】A.B.C.D.【答案】B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级《视图与投影》单元检测题
一、选择题:
1.下列命题正确的是()
A 三视图是中心投影
B 小华观察牡丹话,牡丹花就是视点
C 球的三视图均是半径相等的圆
D 阳光从矩形窗子里照射到地面上得到的光区仍是矩形
2.平行投影中的光线是()
A 平行的
B 聚成一点的
C 不平行的
D 向四面八方发散的3.在同一时刻,两根长度不等的柑子置于阳光之下,但它们的影长相等,那么这两根竿子的相对位置是()
A 两根都垂直于地面
B 两根平行斜插在地上
C 两根竿子不平行
D 一根到在地上
4
.有一实物如图,那么它的主视图()
A
B
C D
5.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )
6.小明从正面观察下图所示的两个物体,看到的是()
7.在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为()A、16m B、18m C、20m D、22m
8.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子() A. 相交 B. 平行 C. 垂直 D. 无法确定
9.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为( )
A. 上午12时
B. 上午10时
C. 上午9时30分
D. 上午8时10.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方那些高一些的建筑物好像“沉”到了位于它们前面那些矮一些的建筑物后面去了。
这是因为() A 汽车开的很快B盲区减小 C 盲区增大 D 无法确定
B
A C D
正面
A B C D
二.填空题:
11.在平行投影中,两人的高度和他们的影子 ; 12.小军晚上到乌当广场去玩,他发现有两人的影子一个向东,一个向西,于是
他肯定的说:“广场上的大灯泡一定位于两人 ”; 13.圆柱的左视图是 ,俯视图是 ; 14.如图,一几何体的三视图如右: 那么这个几何体是 ;
三.解答题。
20.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,
中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?
(结果精确到1米.
732
.13≈,
414
.12≈
)
22.画出下面实物的三视图:
23.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据反射定律,利用一面镜子和一根皮尺,设计如右示意图的测量方案:把镜子放在离树(AB )8.7米的点E 处,然后沿着直线BE 后退到点D ,这是恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7米,观察者目高CD =1.6米,请你计算树(AB )的高度.(精确到0.1米)
24.已知,如图,AB 和DE 是直立在地面上的两根立
柱.AB =5m ,某一时刻AB 在阳光下的投影BC =3m.(1)请
你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你计算DE 的长.
D E A C B
俯视图左视图主视图
水平线
A B C D
30°
新 楼 1米 40米
旧
楼
(26)题 A B 太 阳 光
线
C
D E
参考答案: 一.选择题:
1.C ; 2.A ; 3.C ; 4.A ; 5.B ;6.C ; 7.C ; 8.B ;9.D ; 10.C ; 二.填空题: 11.对应成比例; 12.中间的上方; 13.矩形,圆; 14.圆锥;
15.画有对角线的矩形; 16 题图 三.
16. 如图 17. 如图
17题图
四
18.41.1m 19.略; 五
20.解:过点C 作CE ⊥BD 于E ,(作辅助线1
分)
∵AB = 40米
∴CE = 40米
∵阳光入射角为︒30
∴∠DCE =︒30
在Rt ⊿DCE 中 CE
DE DCE =
∠tan
∴
3
340
=
DE
∴23
3
340≈⨯
=DE ,而AC = BE = 1米
∴DB = BE + ED =24231=+米 答:新建楼房最高约24米。
(无答扣1分) 21. 略.
墙
大王 水平线 A
B
C
D 30°
新 楼
1米
40米
旧 楼
E
灯泡
六、
22.略
23 . 解:实践一:由题意知 ∠CED =∠AEB ,∠CDE =∠ABE =Rt ∠
∴△CED ∽△AEB
∴
BE
AB DE
CD = ∴
7
.87
.26.1AB =
∴AB ≈5.2米 24.解:(1)
(连接AC ,过点D 作DE //AC ,交直线BC 于点F ,线段EF 即为DE 的投影) (2)∵AC //DF ,∴∠ACB =∠DFE .
∵∠ABC =∠DEF =90°∴△ABC ∽△DEF .
53,.6A B B C D E
E F
D E
∴=∴
=
∴DE =10(m ).
说明:画图时,不要求学生做文字说明,只要画出两条平行线AC 和DF ,再连结
EF 即可.
A E D
C
B F。