高等数学一公式大全考研必备

合集下载

高等数学一常用公式表

高等数学一常用公式表

常用公式表(一)1。

乘法公式 (1)(a+b )²=a 2+2ab+b 2 (2)(a-b)²=a ²-2ab+b ² (3)(a+b)(a-b)=a ²-b ² (4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b ²) 2、指数公式:(1)a 0=1 (a ≠0) (2)a P -=P a 1(a ≠0) (3)a m n=m n a(4)a m a n =a n m + (5)a m ÷a n =n m a a =a n m - (6)(a m )n =a mn(7)(ab )n =a n b n(8)(b a)n =n nb a (9)(a )2=a(10)2a =|a|3、指数与对数关系:(1)若a b =N ,则N b a log = (2)若10b=N ,则b=lgN (3)若b e =N ,则b=㏑N 4、对数公式:(1)b a b a =log , ㏑e b=b (2)N a aN =log ,e Nln =N(3)aNN a ln ln log = (4)a b b e a ln = (5)N M MN ln ln ln +=(6)N M N Mln ln ln -= (7)M n M n ln ln = (8)㏑n M =M nln 15、三角恒等式: (1)(Sin α)²+(Cos α)²=1 (2)1+(tan α)²=(sec α)²(3)1+(cot α)²=(csc α)² (4)αααtan cos sin = (5)αααcot sin cos =(6)ααtan 1cot = (7)ααcos 1csc = (8)ααcos 1sec =(1)αααcos sin 22sin = (2)ααα2tan 1tan 22tan -=(3)ααααα2222sin 211cos 2sin cos 2cos -=-=-= 8.半角公式(降幂公式):(1)(2sin α)2=2cos 1a - (2)(2cos α)2=2cos 1a +(3)2tan α=a a sin cos 1+=a acos 1sin + 9、三角函数与反三角函数关系:(1)若x=siny ,则y=arcsinx (2)若x=cosy ,则y=arccosx (3)若x=tany ,则y=arctanx (4)若x=coty ,则y=arccotx 10、函数定义域求法:(1)分式中的分母不能为0, (a 1α≠0)(2)负数不能开偶次方, (a α≥0) (3)对数中的真数必须大于0, (N a log N>0) (4)反三角函数中arcsinx ,arccosx 的x 满足:(--1≤x ≤1) (5)上面数种情况同时在某函数出现时,此时应取其交集。

2024考研数学常必背公式汇总

2024考研数学常必背公式汇总

2024考研数学常必背公式汇总在准备2024考研数学的过程中,掌握一些常用的公式是非常重要的。

这些公式不仅可以帮助我们更快地解题,还能提高我们的答题准确性。

下面是2024考研数学一、数学二、数学三需要背诵的常用公式的汇总:一、基本数学公式:1.平方差公式:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab+ b^22.二次方程的求根公式:若ax^2+bx+c=0(a≠0),则x = (-b ± √(b^2-4ac))/2a3.数列的通项公式:递推公式:a(n+1)=a(n)+d通项公式:a(n)=a(1)+(n-1)d二、高等数学公式:1.常用三角函数公式:sin²θ + cos²θ = 1tanθ = sinθ / cosθcotθ = cosθ / sinθ2.常用反三角函数公式:sin²θ + cos²θ = 1tanθ = sinθ / cosθcotθ = cosθ / sinθ3.常用指数函数公式:a^m*a^n=a^(m+n)(a^m)^n = a^(mn)a^(-m)=1/a^m4.常用对数函数公式:log_a(m * n) = log_a(m) + log_a(n)log_a(m^n) = n * log_a(m)log_a(m/n) = log_a(m) - log_a(n)log_a(1) = 05.常用复数公式:i²=-1复数的共轭:若z = a + bi,则z的共轭为a - bi三、线性代数公式:1.行列式的加减法:A±B,=,A,±,B2.行列式的乘法:A*B,=,A,*,B3.矩阵的逆:若,A,≠0,则A存在逆矩阵A^(-1),且AA^(-1)=A^(-1)A=I4.特征值与特征向量:设A是n阶矩阵,若存在数λ和非零向量x,使得Ax=λx,则λ称为矩阵A的特征值,x称为λ对应的特征向量5.向量的内积:a ·b = ,a,,b,cosθ其中,a、b分别为向量,θ为a、b之间的夹角四、概率与统计公式:1.事件的概率公式:对于一个随机事件A,其概率满足0≤P(A)≤12.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)3.乘法公式:P(A∩B)=P(A)P(B,A)=P(B)P(A,B)4.全概率公式:P(A)=P(An)P(A,An)+P(A2)P(A,A2)+...+P(Am)P(A,Am)其中,A1,A2,...,Am为一组互斥且全体之并为样本空间Ω的事件5.贝叶斯公式:P(A,B)=P(AnB)/P(B)=P(An)P(B,An)/[P(A1)P(B,A1)+P(A2)P(B,A2)+...+P(An)P(B,An)]其中,A1,A2,...,An与前述全概率公式的条件相同。

考研数学高数重要公式总结

考研数学高数重要公式总结

考研数学高数重要公式总结高等数学是考研数学中的重要科目之一,公式的掌握对于解题非常重要。

下面是高等数学中一些重要的公式总结:1.导数公式:(1)基本公式:若y=f(x)是可导函数,则有:f'(x)=lim(h→0)[f(x+h)-f(x)]/h(2)常见函数的导数:(仅列举部分)常数函数k'(x)=0幂函数x^n的导数[nx^(n-1)]指数函数a^x的导数[a^x×ln⁡(a)]对数函数log⁡(a)x的导数[1/x×ln(a)](3)导数运算公式:[cf(x)]'=cf'(x)[f(x)+g(x)]'=f'(x)+g'(x)[f(x)×g(x)]'=f'(x)g(x)+f(x)g'(x)[f(g(x))]'=f'[g(x)]×g'(x)2.泰勒公式:设在x=a处进行n阶导数的计算,则:f(x)=f(a)+(x-a)f'(a)+(x-a)^2/2!×f''(a)+⋯+(x-a)^n/n!×f^(n)(a)3.不定积分公式:(1)基本公式:∫f'(x)dx=f(x)+C(2)常见函数的不定积分:(仅列举部分)∫c dx=cx+C∫x^(n)dx=x^(n+1)/(n+1)+C (n≠-1)∫a^xdx=a^x/ln⁡(a)+C∫du/u=ln⁡,u,+C(3)积分运算公式:∫[cf(x)+g(x)]dx=c∫f(x)dx+∫g(x)dx∫f(g(x))g'(x)dx=F(g(x))+C4.定积分公式:(1)基本公式:∫[a, b]f(x)dx=F(b)-F(a)(2)常见函数的定积分:(仅列举部分)∫[a, b]dx=b-a∫[a, b]x^(n)dx=(b^(n+1)-a^(n+1))/(n+1) (n≠-1)∫[a, b]e^xdx=e^b-e^a∫[a, b]sinθdθ=-cosθ,^b_a(3)积分运算公式:∫[a, b][cf(x)+g(x)]dx=c∫[a, b]f(x)dx+∫[a, b]g(x)dx∫[a, b]f(g(x))g'(x)dx=∫[g(a), g(b)]f(u)du (令u=g(x))以上仅是高等数学中的一部分重要公式总结,实际上还有许多其他公式和定理。

考研数学一公式手册大全

考研数学一公式手册大全

sin 3 3 sin 4 sin 3 cos3 4 cos3 3 cos tg 3 3tg tg 3 1 3tg 2
sin tg

2

1 cos 1 cos cos 2 2 2 1 cos 1 cos sin 1 cos 1 cos sin ctg 1 cos sin 1 cos 2 1 cos sin 1 cos
三角函数公式: ·诱导公式: 函数 角A -α 90°-α 90°+α 180°-α 180°+α 270°-α 270°+α 360°-α 360°+α ·和差角公式: sin
lim
sin x 1 x 0 x 1 lim(1 ) x e 2.7182818284 59045 ... x x
基本积分表:
(arcsin x)
1
1 x2 1 (arccosx) 1 x2 1 (arctgx) 1 x2 1 (arcctgx) 1 x2
tgxdx ln cos x C ctgxdx ln sin x C sec xdx ln sec x tgx C csc xdx ln csc x ctgx C
直线:K 0; 1 半径为a的圆:K . a
第 3 页
全国考研数学一公式手册
定积分的近似计算:
b
矩形法: f ( x)
a
ba ( y0 y1 yn1 ) n ba 1 [ ( y0 yn ) y1 yn1 ] n 2 ba [( y0 yn ) 2( y2 y 4 yn2 ) 4( y1 y3 yn1 )] 3n

考研高等数学高数公式

考研高等数学高数公式

考研高等数学高数公式在考研高等数学中,高数公式是非常重要的一部分,掌握了这些公式可以帮助我们更好地理解和解决数学问题。

下面是一些常见的高数公式。

1.导数相关公式:-基本导数公式:$\frac{d(c)}{dx}=0$ (常数导数为0)$\frac{d(x^n)}{dx}=nx^{n-1}$ (幂函数的导数)$\frac{d(\sin x)}{dx}=\cos x$ (正弦函数的导数)$\frac{d(\cos x)}{dx}=-\sin x$ (余弦函数的导数)$\frac{d(\tan x)}{dx}=\sec^2 x$ (正切函数的导数)-乘法法则:$\frac{d(uv)}{dx}=u\frac{dv}{dx}+v\frac{du}{dx}$ (两个函数的乘积的导数)-除法法则:$\frac{d(\frac{u}{v})}{dx}=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}$ (两个函数的商的导数)-复合函数求导法则:$\frac{d(u(v))}{dx}=\frac{du}{dv}\cdot\frac{dv}{dx}$ (复合函数的导数)2.积分相关公式:-不定积分公式:$\int kdx=kx+C$ (常数的积分)$\int x^ndx=\frac{1}{n+1}x^{n+1}+C$ (幂函数的不定积分,n不等于-1)$\int e^xdx=e^x+C$ (指数函数的不定积分)$\int \sin xdx=-\cos x+C$ (正弦函数的不定积分)$\int \cos xdx=\sin x+C$ (余弦函数的不定积分)$\int \tan xdx=-\ln,\cos x,+C$ (正切函数的不定积分)-定积分基本公式:$\int_{a}^{b}f(x)dx=F(b)-F(a)$ (定积分的基本公式)$\int_{a}^{b}kdx=k(b-a)$ (常数的定积分)-分部积分法则:$\int u dv=uv-\int v du$ (分部积分法则)3.极限相关公式:-基本极限:$\lim_{x\to 0}\frac{\sin x}{x}=1$ (正弦函数的极限)$\lim_{x\to 0}\frac{1-\cos x}{x}=0$ (余弦函数的极限)-洛必达法则:若$\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0$,则$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)}$ (洛必达法则)-泰勒展开公式:$f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3+...$ (泰勒展开公式)以上只是一些高等数学中常用的公式,掌握了这些公式可以帮助我们更好地理解和解决数学问题。

考研数学必背公式总结

考研数学必背公式总结

考研数学必背公式总结考研数学是很多考生们的重点科目之一。

为了更好地备考数学,考生们需要掌握并熟记数学中的各种公式。

下面是一些考研数学必背公式的总结:一、高等数学1.极限公式:(1)对数函数极限:lim(log(1+x)/x)=1,当x趋于0时(2)三角函数极限:lim(sin(x)/x)=1,当x趋于0时lim((1-cos(x))/x)=0,当x趋于0时2.牛顿-莱布尼茨公式:∫abf(x)dx=F(b)-F(a),其中F(x)是f(x)的一个原函数3.泰勒公式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+ Rn(x)其中,Rn(x)是余项,有Lagrange余项和Cauchy余项两种形式。

二、线性代数1.向量公式:(1)向量的模:|a|=√(x1^2+x2^2+...+xn^2)(2)向量的点积:a·b=x1y1+x2y2+...+xnyn(3)向量的叉积:a×b=(y1z2-y2z1)i-(x1z2-x2z1)j+(x1y2-x2y1)k2.矩阵公式:(1)矩阵的乘积:C=AB,其中Cij=∑(k=1到n)AikBkj(2)矩阵的逆:若A是可逆矩阵,则A的逆矩阵A^-1满足AA^-1=A^-1A=E(3)矩阵的秩:矩阵的秩是指它的行与列的最大线性无关组数,也就是矩阵中含有的一个最大的非零子式的阶数。

三、概率论与数理统计1.概率公式:(1)全概率公式:P(B)=P(AB)+P(AcBc),其中A和B是两个事件,Ac和Bc是它们的补事件(2)条件概率公式:P(A|B)=P(AB)/P(B),其中A和B是两个事件2.数理统计公式:(1)样本平均数:x=(x1+x2+...+xn)/n(2)样本方差:S^2=[(x1-x)^2+(x2-x)^2+...+(xn-x)^2]/(n-1)(3)样本标准差:S=√[S^2]以上公式是考研数学中一些必背的公式总结。

考研数学公式大全

考研数学公式大全

考研数学公式大全数学是考研的核心科目之一,而掌握必要的数学公式则是取得好成绩的关键。

以下是一份考研数学公式大全,涵盖了高等数学、线性代数和概率论与数理统计中的重要公式,希望能对备考研究生入学考试的同学有所帮助。

一、高等数学1、求导法则本文1)链式法则:f(u)f'(u)=f'(u)du本文2)乘积法则:f(u)g(u)=f'(u)g(u)+f(u)g'(u)本文3)指数法则:f(u)^n=nu'f(u)/(n-1)!2、求极值本文1)极值条件:f'(x)=0本文2)极值定理:f(x)在x=a处取得极值,则f'(a)=03、积分公式本文1)牛顿-莱布尼茨公式:∫f(x)dx=F(b)-F(a),其中F'(x)=f(x)本文2)微分定理:d/dx∫f(x)dx=f(x)本文3)积分中值定理:若f(x)在[a,b]上连续,则至少存在一点c∈[a,b],使得∫f(x)dx=f(c)(b-a)4、不定积分公式本文1)幂函数积分:∫x^n dx=(n+1)/n+1 x^(n+1)/n+1+C本文2)三角函数积分:∫sinx dx=cosx+C,∫cosx dx=-sinx+C 5、定积分公式本文1)矩形法:若a<=x<=b,a<=y<=b,则∫(a,b)(x^2+y^2)dx=∫(a,b)x^2 dx+∫(a,b)y^2 dx=(b-a)(x^2+y^2)/2本文2)梯形法:若a<=x<=b,a<=y<=b,则∫(a,b)(x^2+y^2)dx=∫(a,b)x^2 dx+∫(a,b)y^2 dx=(b-a)(x^2+[by]+[ax])/3二、线性代数6、行列式公式本文1)行列式展开式:D=a11A11+a12A12+...+an1An1,其中Aij为行列式中第i行第j列的代数余子式本文2)范德蒙行列式:V=(∏i=1n[(x-a)(i-1)]^(n-i)) / (∏i=1n[(x-a)(i-1)]),其中ai为行列式中第i行第i列的元素7、矩阵公式本文1)矩阵乘法:C=AB,其中Cij=∑AikBkj,k为矩阵乘法的维数本文2)逆矩阵:A^-1=(1/∣A∣)A,其中∣A∣为矩阵A的行列式值,A为矩阵A的伴随矩阵8、向量公式本文1)向量内积:〈a,b〉=a1b1+a2b2+...1、求导法则本文1)链式法则:若f是一个包含x和函数u=u(x),则f' = f'[u(x)] * u'(x)。

高等数学公式大全,考研必备.

高等数学公式大全,考研必备.

高等数学公式如果不足之处请见谅(公式太多了就慢慢看哦)导数公式:基本积分表:三角函数的有理式积分:一些初等函数:两个重要极限:三角函数公式:·诱导公式:函数sin cos tg ctg角A-α-sinαcosα-tgα-ctgα90°-αcosαsinαctgαtgα90°+αcosα-sinα-ctgα-tgα180°-αsinα-cosα-tgα-ctgα180°+α-sinα-cosαtgαctgα270°-α-cosα-sinαctgαtgα270°+α-cosαsinα-ctgα-tgα360°-α-sinαcosα-tgα-ctgα360°+αsinαcosαtgαctgα·和差角公式:·和差化积公式:·倍角公式:·半角公式:高阶导数公式——莱布尼兹(Leibniz)公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:多元函数微分法及应用微分法在几何上的应用:方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:斯托克斯公式——曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:(*式的通解两个不相等实根两个相等实根一对共轭复根二阶常系数非齐次线性微分方程。

考研日历之高等数学的公式大全

考研日历之高等数学的公式大全

高等数学的公式大汇总一元函数的极限与连续包括:一些初等函数公式极限连续公式如下:1、 一些初等函数公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβαβαβαβαβαββααβαβαβαβαβαβ±=±±=±±=⋅⋅±=±±=±±=±m m m 和差角公式:sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式: 1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:2222222222sin 22sin cos cos 22cos 112sin cos sin 2tan tan 21tan cot 1cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααααααααααα==-=-=-=--===+==-=+倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin 2cos 21cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-===++===-半角公式: ::ln(2::ln(211::ln21x xx xx x x x e e shx arshx x e e chx archx x shx e e xthx arthx chx e e x-----==++==±+-+===+-双曲正弦;反双曲正弦双曲余弦;反双曲余弦双曲正切;反双曲正切3322()()()a b a b a ab b ±=±+m ,222(1)(21)126n n n n +++++=L22333(1)124n n n ++++=L2、极限➢ 常用极限:1,lim 0n n q q →∞<=;1n a >=;1n =➢ ln(1())limln(1())~()()lim[()()]1/()()0,(),lim[1()]f x f x f xg x f x g x g x f x g x f x ee ++±→→∞±=−−−−−−→若则➢ 两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+ ➢:常用等价无穷小2111cos ~; ~sin ~arcsin ~arctan 1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x x n a x a e x x ax x x--++++3、连续:定义:000lim 0;lim ()() x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或 导数与微分1、 基本导数公式:00000000()()()()()limlim lim tan x x x x f x x f x f x f x yf x x x x x α∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x -+''⇔=导数存在1220; (); (sin )cos ; (cos )sin ; (tan )sec ; (cot )csc ;(sec )sec tan ; (csc )csc ; ()ln ;();11(log ); (ln ); (arcsin ) (arccos )ln a a x x x x a C x ax x x x x x x x x x x x x x ctgx a a a e e x x x x x a x -''''''======-''''=⋅=-⋅==''''====222211(arctan ); (cot ); ();();1111(); () ())1x arc x shx hx chx shx x x thx arshx archx arthx ch x x ''''==-==++''''====-2、高阶导数:()()()()!()()!; ()ln ()()!n k n k n n x n x n x n x n x x x n a a a e e n k -=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n n n n n n n n n n n x x x a x a a x a x +++--===++-- ()()(sin )sin(); (cos )cos();22n n n n kx k kx n kx k kx n ππ=⋅+⋅=⋅+⋅()1()(1)1(1)!1(1)![ln()](1)[ln()]()(1)()n n n n n n nn n a x x a x x x-----+=-⇒==-+ 牛顿-莱布尼兹公式:()()()0()(1)(2)()()()()(1)(1)(1)2!!nn k n k k n k n n n n k k n uv C u v n n n n n k u v nu v u v u v uv k -=---=---+'''=++++++∑L L L3、微分:0()()(); =()();y f x x f x dy o x dy f x x f x dx ''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导微分中值定理与微分的应用1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。

考研数学公式大全(考研必备,免费下载)共22页

考研数学公式大全(考研必备,免费下载)共22页

高等数学公式篇·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1 ,·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsi n(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

考研数学一公式手册大全(整理全面)

考研数学一公式手册大全(整理全面)

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

考研高数必备公式

考研高数必备公式

考研高数必备公式高等数学是考研数学的重点和难点之一,掌握和熟练运用高数公式可以帮助考生更好地解题。

下面是一些考研高等数学必备的重要公式,供考生参考。

导数公式:1. 常数函数的导数为零:d/dx (c) = 02. x^n的导数为nx^(n-1):d/dx (x^n) = nx^(n-1)3. e^x的导数为e^x:d/dx (e^x) = e^x4. ln(x)的导数为1/x:d/dx (ln(x)) = 1/x5. sin(x)的导数为cos(x):d/dx (sin(x)) = cos(x)6. cos(x)的导数为-sin(x):d/dx (cos(x)) = -sin(x)7. tan(x)的导数为sec^2(x):d/dx (tan(x)) = sec^2(x)8. cot(x)的导数为-csc^2(x):d/dx (cot(x)) = -csc^2(x)9. sec(x)的导数为sec(x)tan(x):d/dx (sec(x)) = sec(x)tan(x)10. csc(x)的导数为-csc(x)cot(x):d/dx (csc(x)) = -csc(x)cot(x)求导法则:1. 和差法则:d/dx (u ± v) = du/dx ± dv/dx2. 乘法法则:d/dx (uv) = u dv/dx + v du/dx3. 除法法则:d/dx (u/v) = (v du/dx - u dv/dx) / v^24. 复合函数法则:若y = f(u),u=g(x),则dy/dx = dy/du *du/dx积分公式:1. 常数函数的积分为常数乘以自变量:∫c dx = cx + C2. x^n的积分为(1/n+1)x^(n+1) + C:∫x^n dx = (1/n+1)x^(n+1) + C3. e^x的积分为e^x + C:∫e^x dx = e^x + C4. 1/x的积分为ln,x, + C:∫1/x dx = ln,x, + C5. sin(x)的积分为-cos(x) + C:∫sin(x) dx = -cos(x) + C6. cos(x)的积分为sin(x) + C:∫cos(x) dx = sin(x) + C7. tan(x)的积分为-ln,cos(x), + C:∫tan(x) dx = -ln,cos(x), + C8. cot(x)的积分为ln,sin(x), + C:∫cot(x) dx = ln,sin(x),+ C9. sec(x)的积分为ln,sec(x) + tan(x), + C:∫sec(x) dx = ln,sec(x) + tan(x), + C10. csc(x)的积分为ln,csc(x) - cot(x), + C:∫csc(x) dx = ln,csc(x) - cot(x), + C广义积分:1. 若函数f(x)在区间[a, b]上连续且非负,则∫f(x) dx是有限的;2. 若f(x)在区间[a, b]上连续,则∫f(x) dx在该区间上是可积的;3. 若f(x)在区间[a, b]上连续,则∫[a, b] f(x) dx = ∫[a, c]f(x) dx + ∫[c, b] f(x) dx (分段积分);导数和微分:1.y=f(x)在(x0,y0)处可导,则f(x)在该点连续;2. 若函数y = f(x)在区间[a, b]上可导,则y的增量Δy可以近似表示为Δy ≈ f'(x) Δx,即dy = f'(x) dx (微分近似);3. 若函数y = f(x)在区间[a, b]上可导,则在该区间上y的微分dy满足dy = f'(x) dx (微分关系);泰勒公式:1.f(x)在x=a处n阶可导,则f(x)可表示为泰勒展开式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+Rn(x),其中Rn(x)为剩余项;拉格朗日中值定理:若函数f(x)在[a,b]的内部连续,在(a,b)的内部可导,且f(a)=f(b),则存在c∈(a,b)使得f'(c)=[f(b)-f(a)]/(b-a);柯西中值定理:若函数f(x)和g(x)在[a,b]的内部连续,在(a,b)的内部可导且g'(x)≠0,则存在c∈(a,b)使得[f'(c)/g'(c)]=[f(b)-f(a)]/[g(b)-g(a)];罗尔中值定理:若函数f(x)在[a,b]的内部连续,在(a,b)的内部可导,且f(a)=f(b)=0,则存在c∈(a,b)使得f'(c)=0;这只是一部分考研高等数学的重要公式,考生还需根据自己的需求和教材内容进行学习和整理。

考研高数公式总结

考研高数公式总结

考研高数公式总结高等数学是考研数学中的一门重要课程,也是考研数学中需要记住大量公式和定理的科目之一、下面是我总结的一些高等数学中常用的公式和定理,希望对考研学子们的备考能有所帮助。

一、极限和连续1.重要的基本极限公式- $\lim\limits_{x\to0}\frac{\sin{x}}{x}=1$- $\lim\limits_{x\to0}\frac{e^x-1}{x}=1$- $\lim\limits_{x\to+\infty}(1+\frac{1}{x})^x=e$2.微分中的基本极限- $\lim\limits_{\Delta x\to0}\frac{\Delta y}{\Deltax}=\frac{dy}{dx}$- $\lim\limits_{\Delta x\to0}\frac{e^{\Delta x}-1}{\Delta x}=1$3.连续性定理-函数$f(x)$在$x_0$处连续的充分必要条件是:- $\lim\limits_{x\to x_0} f(x)=f(x_0)$- $\lim\limits_{x\to x_0^-} f(x)=\lim\limits_{x\to x_0^+} f(x)=f(x_0)$二、导数和微分1.基本导数公式-$(c)'=0$- $(x^n)'=nx^{n-1}$ (n为自然数)-$(e^x)'=e^x$- $(\ln{x})'=\frac{1}{x}$2.常见运算法则-$(u+v)'=u'+v'$- $(uv)'=u'v+uv'$- $(\frac{u}{v})'=\frac{u'v-uv'}{v^2}$ (v≠0)3.高阶导数-若$f'(x)$存在,则$f''(x)=(f'(x))'$4.微分公式- $dy=f'(x)dx$三、积分与微积分基本定理1.基本积分公式- $\int 0dx=C$- $\int x^ndx=\frac{1}{n+1}x^{n+1}+C$ (n≠-1)2.基本积分的线性运算- $\int kf(x)dx=k\int f(x)dx$- $\int (f(x)+g(x))dx=\int f(x)dx+\int g(x)dx$3.二次换元法- $\int f(g(x))g'(x)dx=\int f(u)du$4.牛顿-莱布尼茨公式- $\int_a^bf(x)dx=F(b)-F(a)$四、级数1.等差数列-$a_n=a_1+(n-1)d$- $S_n=\frac{n}{2}[2a_1+(n-1)d]$- $a_n=\frac{a_{n-1}+a_{n+1}}{2}$2.等比数列-$a_n=a_1q^{n-1}$(q≠0)- $S_n=\frac{a_1(q^n-1)}{q-1}$ (q≠1)3.幂级数- $S_n=\sum\limits_{k=1}^{n} a_k=a_1+a_2+a_3+...+a_n$五、数列和函数的收敛性1.收敛与极限-数列$\{a_n\}$的收敛定义:当无论取多大的正数$ε$,都存在一个正整数$N$,当$n>N$时,总有$,a_n-A,<ε$成立,则称$\{a_n\}$收敛于$A$。

考研高数必背公式

考研高数必背公式

对于考研高等数学,以下是一些常见的必背公式:1. 导数公式:- $(c)'=0$(常数的导数为零)- $(x^n)'=nx^{n-1}$(幂函数的导数)- $(e^x)'=e^x$(指数函数的导数)- $(\ln x)'=\frac{1}{x}$(自然对数函数的导数)- $(\sin x)'=\cos x$(正弦函数的导数)- $(\cos x)'=-\sin x$(余弦函数的导数)- $(\tan x)'=\sec^2 x$(正切函数的导数)2. 积分公式:- $\int k \,dx=kx+C$(常数的积分)- $\int x^n \,dx=\frac{1}{n+1}x^{n+1}+C$(幂函数的积分)- $\int e^x \,dx=e^x+C$(指数函数的积分)- $\int \frac{1}{x} \,dx=\ln |x|+C$(倒数函数的积分)- $\int \sin x \,dx=-\cos x+C$(正弦函数的积分)- $\int \cos x \,dx=\sin x+C$(余弦函数的积分)- $\int \sec^2 x \,dx=\tan x+C$(正切函数的积分)3. 三角函数关系:- $\sin^2 x + \cos^2 x = 1$(三角恒等式)- $\sin (2x) = 2\sin x \cos x$(双角正弦公式)- $\cos (2x) = \cos^2 x - \sin^2 x$(双角余弦公式)- $\tan x = \frac{\sin x}{\cos x}$(正切的定义)这些是考研高等数学中的一些常见公式,但并非全部。

在复习过程中,建议根据自己的教材和课程重点,对相关公式进行系统性的整理和复习。

不仅要记住公式,还要了解其推导和应用方法,以便在解题过程中能够熟练运用。

同时,还要注重理解概念和原理,培养灵活的思维和解题能力。

高等数学考研(数学一)公式大全

高等数学考研(数学一)公式大全

高等数学公式大全导数公式:基本积分表:三角函数的有理式积分: 222212211cos 12sin udu dx x tg u uu x uu x +==+-=+=, , , ax x a a a x x x x x x x x x x a xxln 1)(logln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin xarcctgx xarctgx xx xx +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x ax dx Cshx chxdx C chx shxdx Caadx aC x ctgxdx x C x dx tgx x Cctgx xdx xdxC tgx xdx x dxxx)ln(ln csc csc sec sec cscsinsec cos 22222222Cax xa dxCx a x a ax a dx C a x a x a a x dx C ax arctg a x a dxCctgx x xdx Ctgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Ca x ax a x dx x a Ca x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n nnn arcsin22ln 22)ln(221cos sin22222222222222222222220ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:函数 角A sincostancot-α -sinα cosα -tan α -cot α 90°-α cosα sinαcot αtan α90°+α cosα -sinα -cot α -tan α 180°-α sinα-c osα -tan α -cot α180°+α -sinα -cosα tan α cot α 270°-α -cosα -sinα cot α tan α270°+α -cosα sinα -cot α -tan α 360°-α -sinα cosα -tan α -cot α 360°+αsinαcosαtan αcot α·和差角公式: ·和差化积公式:·倍角公式:2sin2sin 2cos cos 2cos 2cos 2cos cos 2sin2cos 2sin sin 2cos 2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+-=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαcot cot 1cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin(±⋅=±⋅±=±=±±=± xx arthx x x archx x x arshx ee e e chxshx thx ee chx ee shx xxx x xxxx-+=-+±=++=+-==+=-=----11ln 21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim==+=∞→→e xx x xx x·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctgtg·正弦定理:R CcBb Aa 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k nn uvvuk k n n n v un n v nuv uvuCuv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

考研数学一公式大全

考研数学一公式大全

考研数学涉及多个领域,而每个领域都有大量的公式和概念。

以下是一些考研数学中常见的公式:### 高等数学1. 微积分- 极限定义:$$\lim_{x \to a} f(x) = L$$- 求导法则:$\frac{d}{dx}(u \pm v) = u' \pm v'$,$\frac{d}{dx}(uv) = uv' + vu'$,$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v -uv'}{v^2}$- 不定积分:$\int f(x) \,dx$- 定积分:$\int_a^b f(x) \,dx$2. 微分方程- 一阶线性微分方程:$y' + P(x)y = Q(x)$- 二阶线性常系数齐次微分方程:$ay'' + by' + cy = 0$### 线性代数1. 矩阵- 矩阵乘法:$C = A \cdot B$- 逆矩阵:$A^{-1}$- 行列式:$|A|$2. 向量- 向量点积:$ \mathbf{a} \cdot \mathbf{b} =|\mathbf{a}| |\mathbf{b}| \cos{\theta}$- 向量叉积:$ \mathbf{a} \times \mathbf{b} =|\mathbf{a}| |\mathbf{b}| \sin{\theta}$### 概率论与数理统计1. 概率- 条件概率:$P(A|B) = \frac{P(A \cap B)}{P(B)}$- 贝叶斯定理:$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$2. 统计- 样本均值:$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$- 样本方差:$s^2 = \frac{\sum_{i=1}^{n} (x_i -\bar{x})^2}{n-1}$这只是一小部分的公式。

考研数学公式总结

考研数学公式总结

考研数学公式总结考研数学是众多考生面临的一大挑战,而熟练掌握各种公式是取得好成绩的关键。

以下为大家总结了考研数学中一些重要的公式。

一、高等数学部分1、函数、极限与连续(1)极限的四则运算法则:若 lim f(x) = A,lim g(x) = B,则 lim f(x) ± g(x) = lim f(x) ± lim g(x) = A ± B;lim f(x) · g(x) = lim f(x) · lim g(x) = A · B;lim f(x) / g(x) = lim f(x) / lim g(x) = A / B (B ≠ 0)(2)两个重要极限:lim (sin x / x) = 1 (x → 0);lim (1 +1/x)^x = e (x → ∞)(3)无穷小量的性质:有限个无穷小量的和、差、积仍是无穷小量;无穷小量与有界量的乘积是无穷小量。

2、导数与微分(1)基本导数公式:(C)'= 0 (C 为常数);(x^n)'= nx^(n 1) ;(sin x)'= cos x ;(cos x)'= sin x ;(e^x)'= e^x ;(ln x)'= 1 / x ;(log_a x)'= 1 /(x ln a)(2)导数的四则运算法则:u(x) ± v(x)'= u'(x) ± v'(x) ;u(x) · v(x)'= u'(x) · v(x) + u(x) · v'(x) ;u(x) / v(x)'= u'(x) · v(x) u(x) · v'(x) / v(x)^2 (v(x) ≠ 0)(3)复合函数求导法则:设 y = fg(x),则 y' = f'g(x) · g'(x)(4)隐函数求导法则:方程 F(x, y) = 0 确定 y 是 x 的隐函数,两边对 x 求导,解出 y' 。

考研数学(一)公式集锦

考研数学(一)公式集锦

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

考研数学一公式手册大全

考研数学一公式手册大全

考研数学一公式手册大全1. 高等数学1.1 极限四则运算:$\lim_{x \to x_0}(f(x)\pm g(x))=\lim_{x \to x_0}f(x) \pm \lim_{x \to x_0}g(x)$,$\lim_{x \to x_0}(f(x)g(x))=[\lim_{x \tox_0}f(x)][\lim_{x \to x_0}g(x)]$,$\lim_{x \tox_0}(\frac{f(x)}{g(x)})=\frac{\lim_{x \to x_0}f(x)}{\lim_{x \to x_0}g(x)}$ 夹逼准则:若$\lim_{x \to x_0}f(x)=\lim_{x \to x_0}g(x)=A$,且$f(x) \leq h(x) \leq g(x)$,则$\lim_{x \to x_0}h(x)=A$L'Hopital法则:$\lim_{x \to a}\frac{f(x)}{g(x)}=\lim_{x \toa}\frac{f'(x)}{g'(x)}$,其中$\lim_{x \to a}f(x)=\lim_{x \to a}g(x)=0$或$\lim_{x \to a}f(x)=\lim_{x \to a}g(x)=\infty$泰勒公式:$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$,其中$f^{(n)}(x_0)$表示$f(x)$在$x_0$处的$n$阶导数1.2 导数基本公式:$(u \pm v)'=u' \pm v'$,$(uv)'=u'v+uv'$,$(\frac{u}{v})'=\frac{u'v-uv'}{v^2}$,$(f(g(x)))'=f'(g(x))g'(x)$高阶导数:$f^{(n)}(x)=\lim_{h \to0}\frac{f^{(n-1)}(x+h)-f^{(n-1)}(x)}{h}$,其中$f^{(0)}(x)=f(x)$隐函数求导:$\frac{dy}{dx}=-\frac{F_x}{F_y}$,其中$F(x,y)=0$1.3 积分基本公式:$\int kdx=kx+C$,$\int x^ndx=\frac{x^{n+1}}{n+1}+C$,$\int \frac{1}{x}dx=\ln{|x|}+C$换元积分法:$\int f(g(x))g'(x)dx=\int f(u)du$,其中$u=g(x)$分部积分法:$\int u dv=uv-\int v du$定积分:$\int_a^b f(x)dx=F(b)-F(a)$,其中$F(x)$为$f(x)$的一个原函数重积分:$D=\{(x,y)|a \leq x \leq b, \varphi(x) \leq y \leq \psi(x)\}$,$\iint_D f(x,y)dxdy=\int_a^b dx \int_{\varphi(x)}^{\psi(x)}f(x,y)dy$ 1.4 级数收敛与发散:$\sum_{n=1}^{\infty}a_n$收敛,当且仅当$\lim_{n \to \infty}a_n=0$,或$\sum_{n=1}^{\infty}|a_n|$收敛正项级数:$\sum_{n=1}^{\infty}a_n$收敛,当且仅当$a_n$单调减少且趋于零比值判别法:若$\lim_{n \to \infty}|\frac{a_{n+1}}{a_n}|<1$,则$\sum_{n=1}^{\infty}a_n$收敛;若$\lim_{n \to\infty}|\frac{a_{n+1}}{a_n}|>1$,则$\sum_{n=1}^{\infty}a_n$发散;若$\lim_{n \to \infty}|\frac{a_{n+1}}{a_n}|=1$,则判别不出绝对收敛:$\sum_{n=1}^{\infty}a_n$绝对收敛,当且仅当$\sum_{n=1}^{\infty}|a_n|$收敛幂级数:$\sum_{n=0}^{\infty}c_n(x-a)^n$的收敛半径为$R=\frac{1}{\lim_{n \to \infty}|\frac{c_n}{c_{n+1}}|}$2. 概率论与数理统计2.1 排列组合排列:$A_n^m=\frac{n!}{(n-m)!}$,其中$n \geq m$组合:$C_n^m=\frac{n!}{m!(n-m)!}$,其中$n \geq m$二项式定理:$(a+b)^n=\sum_{k=0}^{n}C_n^ka^{n-k}b^k$2.2 概率基础概率公理:$0 \leq P(A) \leq 1$,$P(\Omega)=1$,若$A_1,A_2,\cdots$两两互斥,则$P(\bigcup\limits_{i=1}^{\infty}A_i)=\sum\limits_{i=1}^{\infty}P(A_i) $条件概率:$P(B|A)=\frac{P(AB)}{P(A)}$,其中$P(A)>0$全概率公式:$\begin{aligned} P(B) &=P(AB)+P(\overline{A}B) \\&=P(A)P(B|A)+P(\overline{A})P(B|\overline{A}) \end{aligned}$贝叶斯公式:$P(A_i|B)=\frac{P(B|A_i)P(A_i)}{\sum\limits_{j=1}^{n}P(B|A_j)P(A_j)}$,其中$A_1,A_2,\cdots,A_n$为样本空间$\Omega$的一个划分2.3 随机变量分布函数:$F(x)=P(X \leq x)$概率密度函数:若$F(x)$可导,则$f(x)=F'(x)$为$X$的概率密度函数期望:$E(X)=\int_{-\infty}^{\infty}xf(x)dx$方差:$D(X)=E(X^2)-[E(X)]^2$协方差:$Cov(X,Y)=E(XY)-E(X)E(Y)$2.4 常见分布正态分布:$f(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$,其中$\mu$为均值,$\sigma$为标准差t分布:$f(x)=\frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu \pi}\Gamma(\frac{\nu}{2})}(1+\frac{x^2}{\nu})^{-\frac{\nu+1}{2}}$,其中$\nu$为自由度F分布:$f(x)=\frac{\Gamma(\frac{\nu_1+\nu_2}{2})(\frac{\nu_1}{\nu_2})^{\fr ac{\nu_1}{2}}x^{\frac{\nu_1}{2}-1}}{\Gamma(\frac{\nu_1}{2})\Gamma (\frac{\nu_2}{2})(1+\frac{\nu_1}{\nu_2}x)^{\frac{\nu_1+\nu_2}{2}}}$,其中$\nu_1,\nu_2$为自由度3. 线性代数3.1 向量向量的模:$|\vec{a}|=\sqrt{a_1^2+a_2^2+\cdots+a_n^2}$向量的点积:$\vec{a} \cdot\vec{b}=a_1b_1+a_2b_2+\cdots+a_nb_n=|\vec{a}||\vec{b}|\cos{\thet a}$向量的叉积:$\vec{a} \times\vec{b}=|\vec{a}||\vec{b}|\sin{\theta}\vec{n}$,其中$\vec{n}$为$\vec{a}$与$\vec{b}$所在平面的法向量3.2 矩阵矩阵的乘法:$C_{ij}=\sum_{k=1}^na_{ik}b_{kj}$,其中$A$为$m\times n$矩阵,$B$为$n \times p$矩阵,$C$为$m \times p$矩阵矩阵的转置:$(A^T){ij}=A{ji}$,其中$A$为$m \times n$矩阵矩阵的逆:若$AB=BA=I$,则称$B$为$A$的逆矩阵,记作$A^{-1}$,其中$I$为单位矩阵行列式:$\det(A)=\sum_{j=1}^n(-1)^{i+j}a_{ij}A_{ij}$,其中$A_{ij}$为$a_{ij}$的代数余子式3.3 特征值与特征向量特征值:若$A\vec{x}=\lambda \vec{x}$,则称$\lambda$为$A$的特征值,$\vec{x}$为$A$的对应特征向量特征多项式:$\det(A-\lambda I)=0$,其中$I$为单位矩阵特征向量的性质:$A\vec{x}=0$的解集是一个子空间,$A$可对角化当且仅当$A$有$n$个线性无关的特征向量以上是更详细的考研数学一公式手册大全,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学一公式大全考研必备导数公式:基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx xtgx a xxln 1)(logln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin xarcctgx xarctgx xx xx +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x ax dx Cshx chxdx C chx shxdx Caadx aC x ctgxdx x C x dx tgx x Cctgx xdx xdxCtgx xdx x dxxx)ln(ln csc csc sec sec csc sinseccos 22222222Cax xa dxCx a x a ax a dx C a x a x a a x dx C ax arctg a x a dxC ctgx x xdx C tgx x xdx Cx ctgxdxC x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Ca x ax a x dx x a Ca x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n nnn arcsin22ln 22)ln(221cossin22222222222222222222220ππ222212211cos 12sin ududx x tg u u ux uu x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin2cos cos 2cos 2cos 2cos cos 2sin2cos2sin sin 2cos 2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xx arthx x x archx x x arshx ee e e chxshx thx ee chx ee shx xxx x xxxx-+=-+±=++=+-==+=-=----11ln 21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim==+=∞→→e xx x xx x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctgtg·正弦定理:R CcBb Aa 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k nn uvvuk k n n n v un n v nuv uvuCuv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:.1;0.)1(limM s M M :.,1322aK a K y y dsd sK M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。

:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααααααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y na b x f y y y y n a b x f y y y na b x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=babadtt f ab dxx f ab y k rm m kF A p F s F W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。

代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。

与是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121221221221c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB AB j z z y y x x MM d zyxz y xz y xzyxz y xzy x z y x zz y y x x z z y y x x u u⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-==(马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz by ax c z b y a x q p z qyp x cz by ax ptz z nt y y mtx x p n m s t p z z n y y m x x CB A DCz By Ax d c z b y a x D Cz By Ax z y x M C B A n z z C y y B x x A多元函数微分法及应用 zy z x y x y x y x y x F F y zF F x z z y x F dx dyF F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy yu dx x u du y x v v y x u u x vv z x u u z x z y x v y x u f z t vv z t u u z dt dz t v t u f z y y x f x y x f dz z dzz u dy y u dx x u du dy yz dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J yu x u G F J x v v x G F J x u G G F F vG u G v F uFv u G F J v u y x G v u y x F vu v u∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F GG F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y xx z xzz y zy -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。

相关文档
最新文档